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31 Abstract

32 With accumulation of carbon cycle observations and model developments over the past decades, 

33 exploring interannual variations (IAV) of terrestrial carbon cycle offers the opportunity to better 

34 understand climate-carbon cycle relationships. However, despite growing research interest, 

35 uncertainties remain on some fundamental issues, such as the contributions of different regions, 

36 constituent fluxes and climatic factors to carbon cycle IAV. Here, we overviewed the literature on 

37 carbon cycle IAV about current understanding of these issues. Observations and models of the 

38 carbon cycle unanimously show the dominance of tropical land ecosystems to the signal of global 

39 carbon cycle IAV, where tropical semi-arid ecosystems contribute as much as the combination of 

40 all other tropical ecosystems. Vegetation photosynthesis contributes more than ecosystem 

41 respiration to IAV of the global net land carbon flux, but large uncertainties remain on the 

42 contribution of fires and other disturbance fluxes. Climatic variations are the major driver to the 

43 IAV of net land carbon flux. Although debate remains on whether the dominant driver is 

44 temperature or moisture variability, their interaction, i.e. the dependence of carbon cycle 

45 sensitivity to temperature on moisture conditions, is emerging as key regulators of the carbon 

46 cycle IAV. On time-scales from the interannual to the centennial, global carbon cycle variability 

47 will be increasingly contributed by northern land ecosystems and oceans. Therefore, both 

48 improving Earth system models (ESMs) with the progressive understanding on the fast processes 

49 manifested at interannual time-scale and expanding carbon cycle observations at broader spatial 

50 and longer temporal scales are critical to better prediction on evolution of the carbon-climate 

51 system. 

52

53
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54 Introduction

55 Terrestrial ecosystems are the largest sink of airborne CO2, offsetting more than one fourth of 

56 fossil fuel emissions (Le Quéré et al., 2018). This carbon sink has significantly slowed down 

57 global warming (Shevliakova et al., 2013). However, the land carbon sink is also by far the most 

58 uncertain component of the global carbon budget (Ballantyne et al., 2012; Keenan et al., 2018). 

59 The net land carbon flux is often deduced from the mass balance as a residual between fossil fuel 

60 emissions, atmospheric accumulation and ocean uptake, and exhibits large year-to-year 

61 differences, ranging from a net uptake of 4.0 PgC yr-1 to a net emission of 0.3 PgC yr-1 during the 

62 decade of the 1990s, exemplifying the variability of terrestrial carbon cycle.

63

64 The large IAV, on the one hand, complicates the detection of longer-term changes in the carbon 

65 cycle (Keeling et al., 1995). On the other hand, since the IAV of the global net land carbon flux is 

66 driven by climatic variations (Braswell et al., 1997; Zeng et al., 2005; Raupach et al., 2008; Liu et 

67 al., 2017), it provides a unique opportunity to observe the behavior of global terrestrial ecosystems 

68 exposed to climate anomalies, which cannot be achieved by any local observation or ecosystem 

69 manipulative experiment. The sensitivity of net land carbon flux to climatic variations was also 

70 used to provide an emergent constraint to future carbon cycle climate feedbacks (Cox et al., 2008; 

71 Cox et al., 2013). Therefore, IAV of the land carbon cycle is not merely characterizing terrestrial 

72 ecosystems, but also provides a “natural experiments” that help us better understand the complex 

73 relationships between climate and the terrestrial carbon cycle. 

74

75 While IAV of terrestrial carbon cycle has received increasing research interest, debates remain 

76 about which regions and mechanisms underpin it. The prospects of using carbon cycle IAV to 

77 constrain carbon cycle climate feedbacks are also appealing. At the 25-year milestone of Global 

78 Change Biology, and with six decades of atmospheric CO2 records, satellite records for four 

79 decades, rapidly growing ground-based observations networks and the development of global 

80 gridded land carbon cycle models by many research teams, it is time to review recent knowledge 

81 on the topic, shedding light on the projection of interactions between carbon cycle and climate at A
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82 scales from the interannual to the centennial. In this review, we first discussed concept and 

83 methods to obtain IAV of terrestrial carbon cycle from the observation and modelling data. We 

84 then estimate the contribution of different regions, constituent fluxes and climatic factors to IAV, 

85 based on multiple observation data-streams and model results. We last discuss the perspective of 

86 utilizing information obtained from IAV to inform future projections of the carbon cycle response 

87 to climate change. 

88

89 Separating IAV from seasonal variability and longer-term trends

90 The large year-to-year variability is a prominent characteristic of atmospheric CO2 growth rate and 

91 net land carbon flux (Le Quéré et al., 2018). The first evidence of IAV in the atmospheric CO2 

92 growth rate was given by Keeling et al. (1976) and Bacastow (1976). For a few decades, 

93 atmospheric CO2 concentration from few atmospheric stations and its 13C isotopic signature were 

94 the only tool to attribute global carbon cycle IAV to land vs. ocean fluxes (Keeling et al., 1995). 

95 Since the 1980s, observation and modelling capacity have grown rapidly (Ciais et al., 2014). For 

96 example, we now have continuous atmospheric CO2 measurements for six decades (Keeling et al., 

97 1976), global atmospheric column CO2 measurements from several satellites with data availability 

98 varying from a few years to a decade (e.g. Kuze et al., 2009; Eldering et al., 2017; Liu et al., 

99 2018), more than 2000 eddy-covariance sites with varying operational period (Urbanski et al., 

100 2007; Froelich et al., 2015; Aubinet et al., 2018; Burba, 2019). Atmospheric inversions use 

101 atmospheric CO2 observations with atmospheric transport models to produce maps of surface 

102 fluxes, and their results now cover up to four decades (Rödenbeck et al., 2003; Chevallier et al., 

103 2010; Le Quéré et al., 2018). Data-driven models upscale local eddy covariance data in space and 

104 time using gridded satellite and climate fields e.g. with machine learning algorithms (Tramontana 

105 et al., 2016), estimating land CO2 fluxes for past four decades. On the process modelling side, 

106 gridded land carbon cycle models have been developed that encapsulate equations describing 

107 carbon, water and energy cycles, some further simulating carbon-nutrient interactions. For 

108 example, the TRENDY ensemble of 16 global land carbon cycle models following the same 

109 simulation protocol produced gridded land CO2 fluxes for the annual update of the global carbon A
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110 budget since 1960s (Le Quéré et al., 2018). These developments have brewed a growing body of 

111 literature on IAV in the global carbon cycle. Our perspective here is based on these papers and 

112 data-streams (see Table S1 for full list of datasets and models included). It should be noted that 

113 ground-based inventory of carbon stock change is an essential tool in assessing the long-term 

114 magnitude of carbon storage change (e.g. Pan et al., 2011), but seldom helpful in exploring IAV, 

115 because soil carbon stock change cannot be detected on a year-to-year basis (Smith, 2004) and 

116 systematic inventory surveys at country scale are usually performed in 5-10 year intervals 

117 (FAO-FRA, 2010). 

118

119 An important concept to clarify is that IAV is a temporal component of the time series for carbon 

120 fluxes or climatic variables that is in addition to variability on shorter and longer time scales. For 

121 data/modelling time-series of several decades, IAV can be separated from seasonal variability and 

122 decadal and long-term trends. When annual data were analyzed, detrended anomalies were 

123 commonly obtained as IAV (e.g. Anderegg et al., 2015). But, when monthly or higher resolution 

124 data were analyzed, there are different methods in the literature to extract the IAV signal from 

125 other modes of variability. Different methods may yield different results, especially for time series 

126 with high temporal resolutions (e.g. monthly or daily). To illustrate this point, we compare six 

127 different methods for extracting IAV from monthly CO2 growth rates at Mauna Loa (MLO): Fast 

128 Fourier Transform (FFT; Rödenbeck et al., 2018), Singular Spectrum Analysis (SSA; Mahecha et 

129 al., 2010), Ensemble Empirical Mode Decomposition (EEMD; Hawinkel et al., 2015), detrended 

130 annual growth rate with no filter (SMN; Wang et al., 2014c), detrended annual growth rate with a 

131 6-month smoothing filter (SMS; Patra et al., 2005) and with a 13-month smoothing (SML; Wang 

132 et al., 2013). In frequency-based methods (FFT, SSA and EEMD), we can define IAV as the sum 

133 of all frequency components with frequencies between 2 years and 11 years, while in the three 

134 other methods (SMN, SMS and SML), IAV contains all residual variability from the mean 

135 seasonal cycle and the long-term trends. The magnitude of IAV of CO2 growth rate (i.e. standard 

136 deviation of extracted IAV) during 1959-2017 varies between the different methods from 0.9 PgC 

137 yr-1 to 2.5 PgC yr-1 (Figure 1), with four of the six methods resulting in a magnitude of between A
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138 1.0 and 1.4 PgC yr-1 (Figure 1). Overall, five of the six methods extracted similar signals of IAV 

139 time series, except for EEMD (Figure 1b) that produced the magnitude of IAV larger by a factor 

140 of two. IAV from EEMD contains mixture of signals from different temporal scales, indicating 

141 that this method is less suitable for isolating IAV, though it may work well for trend analyses with 

142 shorter time series (Chen et al., 2017). The lower magnitude of IAV from SMS and SML 

143 compared with FFT and SSA, suggests that the subjective choices with lower-pass filters probably 

144 removes some IAV signals (Figure 1a). Nevertheless, irrespective of the methods used to isolate it, 

145 IAV is a significant temporal component of the global carbon cycle variability (Baldocchi et al., 

146 2016; Zhang et al., 2018), which has larger magnitude of variance than longer-term trends (Figure 

147 1a). 

148

149 Tropical semi-arid regions are hotspots for IAV of global net land carbon flux

150 At the time of 1970s, interannual variations of ocean carbon uptake were thought to be chiefly 

151 responsible for IAV of atmospheric CO2 growth rates (Keeling et al., 1976; Bacastow, 1976). This 

152 view slowly changed towards a land dominance. Byy the same year when Global Change Biology 

153 was launched, Keeling et al. (1995) used CO2 and 13C measurements from SCRIPPS-CIO network 

154 and a global box carbon cycle model to identify a significant land contribution to IAV of 

155 atmospheric CO2 growth rate, though uncertainty in fractionations and box carbon cycle models 

156 precluded the conclusion of land/ocean dominance at the time (e.g. Francey et al., 1995).In the 

157 early 2000s, analyses of 13C isotopic measurements (Keeling et al., 2005; Rayner et al., 2008), 3D 

158 atmospheric inversions (Bousquet et al., 2000; Gurney et al., 2008; Roedenbeck 2003) and land 

159 carbon cycle models (Zeng et al., 2005) independently confirmed the dominance of IAV being 

160 from terrestrial ecosystems (Figure 2). The diversity and heterogeneity of terrestrial ecosystems 

161 make it challenging to accurately identify the dominant land regions contributing to global land 

162 carbon cycle IAV. Both northern hemisphere and tropical terrestrial ecosystems were reported to 

163 be responsible for years showing anomalous large atmospheric CO2 growth rate (e.g. Ciais et al., 

164 2005; Jones & Cox, 2005; van der Werf et al., 2004; Knorr et al., 2007; Gatti et al., 2014). 

165 A
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166 Studies based on the eddy-covariance data-driven model (FLUXCOM with both remote sensing 

167 and climate data as forcing dataset; Tramontana et al., 2016; Jung et al., 2019) and atmospheric 

168 inversions (Table S1) ubiquitously attribute most of global IAV to tropical land ecosystems since 

169 1980s (e.g. Bousquet et al., 2000; Patra et al., 2005; Baker et al., 2006; Rayner et al., 2008; Jung et 

170 al., 2011, 2017; Peylin et al., 2013; Rödenbeck et al., 2018), though the absolute magnitude of 

171 IAV in FLUXCOM data is about one order of magnitude smaller than the other approaches 

172 (Figure 3a; Figure S2). Studies also differ on the ecosystems which IAV sourced from. Some 

173 inversions show higher variability over the moist tropical forest region (Marcolla et al., 2017), 

174 while process-based carbon cycle models challenged this view by suggesting that the less 

175 productive but extensive semi-arid ecosystems up to 45oN have the greatest contribution to IAV of 

176 net land carbon flux (Ahlström et al., 2015). Recent satellite-based biomass carbon stock change 

177 also implies a relative stronger role of tropical semi-arid ecosystems than forests in driving IAV of 

178 net land carbon flux (Fan et al., 2019). It appears counter intuitive at first sight that the less 

179 productive semi-arid lands could contribute more to IAV than wet forests where a small change in 

180 the balance between large and opposite CO2 fluxes of photosynthesis and respiration (Wang et al. 

181 2013) could lead to a large change in the net flux. On the other hand, semi-arid ecosystems can 

182 become a large carbon sink in a wet year because vegetation productivity was found to be 

183 enhanced (Poulter et al., 2014) and those systems contain less soil carbon as a substrate for soil 

184 respiration anomalies. This positive carbon sink anomaly can be amplified by the “memory” effect 

185 of previous droughts, because previous droughts can reduce the current size of biomass and litter, 

186 which acts to suppress respiration (Poulter et al., 2014). However, it was not yet mature to 

187 conclude the issue because the findings of Ahlström et al. (2015) were mainly based on land 

188 carbon cycle models, and these models are known to have issues, for example, in reproducing the 

189 timing of events that cause large year-to-year variability (Keenan et al., 2012). Satellite-based CO2 

190 inversions, as well as satellite-based biomass carbon stock change, provide an potential alternative 

191 source of information on spatial pattern of IAV, but they are at the moment only available for few 

192 years (Palmer et al., 2019; Fan et al. ,2019). 

193 A
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194 Revisiting here this issue following the land cover classification (Figure S1) and methods in 

195 calculating regional contribution by Ahlstrom et al. (2015), but using the latest results from land 

196 carbon cycle models, global atmospheric inversions based on in-situ data, and eddy-covariance 

197 data-driven model (FLUXCOM) (Table S1), we found that the share in contributions of tropical 

198 semi-arid ecosystem versus tropical non-semi-arid ecosystem to global IAV between different 

199 approaches is in fact quantitatively not so different (Figure 3). In land carbon cycle models the 

200 contribution of semi-arid tropical ecosystems to IAV of global net land carbon flux (35% - 47%) is 

201 marginally larger than the contribution of non-semi-arid tropical ecosystems (33% - 38%) during 

202 1980-2016. The FLUXCOM data-driven model shows similar contribution to IAV of global net 

203 land carbon flux from tropical semi-arid ecosystems and tropical non-semi-arid ecosystems 

204 (Figure 3b). Semi-arid ecosystems outside the tropics (>30oN or <30oS), however, account for less 

205 than 2% of IAV of global net land carbon flux in all data-streams (Figure 3b), and are not 

206 necessarily more variable than forests of the same region (Shiga et al., 2018). In the climate space, 

207 a higher mean annual temperature seems a better predictor of IAV than aridity, here defined by the 

208 mean annual water deficit (precipitation minus potential evapotranspiration) (Figure 3c). 

209

210 When comparing different approaches, the contribution to global IAV from the extra-tropics (e.g. 

211 Europe; Figure 3a) is relatively larger in atmospheric inversions than in other approaches. This 

212 may be because surface in-situ atmospheric CO2 observations are sparse over the tropics (Gaubert 

213 et al., 2018), limiting the inversions’ capability to separate IAV from the tropics and from the 

214 extra-tropics (Peylin et al., 2013), regardless of the improving nominal spatial resolution of the 

215 atmospheric inversions (Chevallier et al., 2010; Le Quéré et al., 2018). The recent developments 

216 of satellite-based CO2 inversions, with coverage of tropical continents being as dense as that of 

217 northern lands, however, have the potential to better resolve the issue (e.g. Liu et al., 2017; Palmer 

218 et al., 2019) though uncertainties remain large at the moment (Houweling et al., 2015; Crowell et 

219 al., 2018). 

220

221 Photosynthesis carbon uptake contributes more to IAV than ecosystem respirationA
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222 Photosynthesis (GPP) and ecosystem respiration (TER) are the two largest constituent carbon 

223 fluxes that mostly determine the IAV of net land carbon flux (Houghton, 2000; Van der Werf et 

224 al., 2010). The hotspot regions for IAV of net land carbon flux are generally coincident with those 

225 of GPP and TER (Jung et al., 2011). Both land carbon cycle models and FLUXCOM generally 

226 agree that, globally, IAV of GPP largely drives IAV of net land carbon flux (as indicated by the 

227 blue shading in Figure 4b and c; Jung et al., 2011; Ahlström et al., 2015). However, the estimated 

228 contribution of GPP IAV to the net carbon balance IAV varies from 56% to more than 90% 

229 among land carbon cycle models (Ahlström et al., 2015). In over 72% of the FLUXNET sites 

230 (Table S1) with more than 5 years of observations, GPP IAV has a larger contribution than TER 

231 IAV to the IAV of net land carbon flux (Figure 4d; e.g. Wu et al., 2012; Jensen et al., 2017; 

232 Marcolla et al., 2017; Baldocchi et al., 2018), since GPP is more sensitive to climatic variations 

233 interannually (e.g. Schwalm et al., 2010; Shi et al., 2014; Kim et al., 2016). Large uncertainties 

234 remain on the spatial patterns of the relative contribution of vegetation productivity and respiration 

235 fluxes to IAV of net land carbon flux (Figure 4b-d; e.g. Ciais et al., 2009; Piao et al., 2009; 

236 Ahlström et al., 2015; Jung et al., 2017; Liu et al., 2018). 

237

238 Fire emissions can explain a significant proportion of regional anomalies of the net land carbon 

239 flux in the tropics during specific extreme years, mainly peat fires in Indonesia in 1997/1998 (Van 

240 der Werf et al., 2004) and droughts in the Amazon basin in 2010 and 2015 (Gatti et al., 2014; 

241 Aragão et al., 2018). African savannas that have large contribution to the mean fire emissions 

242 show small fire emission IAV (van der Werf et al., 2017), which can be understood as these 

243 systems ‘will always burn’ during the dry season. The variations of carbon emissions due to fire 

244 (Van der Werf et al., 2017) are strongly correlated with CGR over the past two decades (R2=0.46, 

245 P<0.01, Figure 2), however, their magnitude (0.23 PgC yr-1) accounts for less than one third of the 

246 IAV in net land carbon flux estimated by atmospheric inversions. Note that this number does not 

247 account for the legacy effects of fire on depleted soil carbon for respiration and stimulated/reduced 

248 post-fire productivity. Tree mortality induced by drought events may significantly affect the net 

249 land carbon flux of tropical forests, contributing largely to carbon flux anomalies during the dry A
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250 years 2005 and 2010 over the Amazon (Phillips et al., 2009; Da Costa et al., 2010; Moser et al., 

251 2014). The effect of tree mortality may last quite a few years after the drought events (Saatchi et 

252 al., 2013; Anderegg et al., 2015; Yang et al., 2018). Still, no evidence suggests tree mortality as a 

253 significant factor to IAV of global net land carbon flux at the moment, because both land carbon 

254 cycle models and data-driven models (e.g. FLUXCOM) have not yet well represented forest 

255 mortality process. With the expectation of increasing drought frequencies in the tropics (IPCC, 

256 2012; Sillmann et al., 2013), the role of tree mortality and associated disturbances such as pests 

257 and diseases may become more obvious in the future (Lewis et al., 2015). 

258

259 Carbon emissions from fossil fuel combustion are large in magnitude but have relatively small 

260 IAV at global scale (s.d. of 0.37 PgC yr-1, R2=0.01, P=0.55). Fossil fuel IAV thus cannot account 

261 much for the large year-to-year variations in atmospheric CO2 growth rate (Figure 2; Langenfelds 

262 et al., 2002). Land use change flux estimated by bookkeeping models has even smaller magnitude 

263 of IAV (s.d. of 0.14 PgC yr-1, R2<0.01, P=0.96) (Figure 2; Hansis et al., 2015; Houghton and 

264 Nassikas, 2016), which is probably due to the 5-yr time-scale of the underlying forcing data and 

265 the fact that bookkeeping models do not consider IAV of climate affecting the components of land 

266 use change flux. Still, large uncertainties exist in the land use change flux estimates and therefore 

267 their role in IAV. For example, whether the IAV in the carbon sink over plantations and 

268 re-growing secondary forests should be accounted as IAV of land use change flux remains 

269 inconsistent across studies (Houghton et al., 2010; Pongratz et al., 2014; Arneth et al., 2017; Le 

270 Quéré et al., 2018).     

271

272 Climatic drivers of carbon cycle IAV: temperature, precipitation and their interactions

273 The largest anomaly of atmospheric CO2 growth rate over the instrumental records is in year 1992 

274 (Figure 2). The approximately negative -2 PgC yr-1 anomaly (Tans & Keeling, 2019) is associated 

275 with the volcanic eruption in Mount Pinatubo in June 1991 (Le Quéré et al., 2018). Earth 

276 observations were pretty much nascent at that time, rendering the spatial pattern of the net land A
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277 carbon flux anomaly largely uncertain (Figure 5; Baker et al., 2006; Brovkin et al., 2010). The 

278 mechanisms driving the large carbon sink after Pinatubo eruption is still not fully understood, 

279 since the latest land carbon cycle model ensemble cannot capture the post-Pinatubo land sink 

280 anomalies (Le Quéré et al., 2018). On the one hand, the volcanic-aerosol induced increase of 

281 diffuse light fraction can enhance photosynthesis (Roderick et al., 2001; Gu et al., 2003), while, on 

282 the other hand, the volcanic induced surface cooling could also suppress the heterotrophic 

283 respiration and biomass burning (Lucht et al., 2002; Angert et al., 2004). Most models do not 

284 account both processes at the same time. The one land carbon cycle model that does estimated that 

285 both mechanisms contribute ~1 PgC respectively to global land sink anomaly in 1992 (Mercado et 

286 al., 2009). 

287

288 Except for few large volcanic eruptions, El Niño Southern Oscillation is the major climatic mode 

289 that alters global temperature, precipitation and solar radiation (Gu and Adler, 2011), and thus 

290 drives IAV of the carbon cycle (Bacastow, 1976; Keeling & Revelle, 1985; Rayner et al., 2008). 

291 The largest three El Niño events over past thirty years (1987, 1997 and 2015) led to average 

292 positive anomalies of net land carbon flux ranging from 0.22±0.16 PgC yr-1 by FLUXCOM 

293 (Tramontana et al., 2016) to 0.94±0.31 PgC yr-1 by atmospheric inversions (Le Quéré et al., 2018), 

294 while the largest three La Niña years (1989, 1999 and 2011) led to anomalies of carbon uptake 

295 from 0.21±0.13 PgC yr-1 by FLUXCOM (Tramontana et al., 2016) to 1.19±0.39 PgC yr-1 by land 

296 carbon cycle models (Sitch et al., 2015) (Figure 5). Hot and dry climate conditions in El Niño 

297 years are the primary reasons for the lower net carbon uptake or net carbon release by terrestrial 

298 ecosystems (Jones et al., 2001; Zeng et al., 2005; Piao et al., 2009), which is particularly evident in 

299 tropical ecosystems (Figure 5; Figure 6 b-d; Liu et al., 2017; Gloor et al., 2018). 

300

301 Warmer temperature reduces tropical net carbon uptake (Wang et al., 2013; Schneising et al., 

302 2014), which was found to be the dominant climatic driver in many studies of atmospheric CO2 

303 growth rate (Figure 6; Table 1) and tropical ecosystems (e.g. Kindermann et al., 1996; Clark et al., A
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304 2003; Doughty and Goulden, 2008). The negative impacts of higher temperature come from the 

305 reduced vegetation productivity and enhanced heterotrophic respiration over the tropics. Higher 

306 temperature was observed to reduce vegetation productivity over tropical ecosystems (Corlett et 

307 al., 2011; Clark et al., 2013; Aubry-Kientz et al., 2015) since their photosynthesis may operate at a 

308 temperature optimum close to current air temperature (Huang et al., 2019). Warming induced 

309 increase in vapor pressure deficit could also directly stress photosynthesis through reducing 

310 canopy conductance (Novick et al., 2016; Yuan et al., 2019). In addition, higher temperature was 

311 shown unanimously to increase heterotrophic respiration through enhanced microbial metabolism 

312 that decompose soil carbon (Wang et al., 2014b; Bond-Lamberty et al., 2018), though the 

313 temperature sensitivity remains uncertain and changing with time and carbon stock size (Mahecha 

314 et al., 2010; Crowther et al., 2016; Melillo et al., 2017). 

315

316 Water availability is one of the major climatic variables that affect anomalies of tropical net 

317 carbon flux (e.g. Gatti et al., 2014; Jung et al., 2017). Anomalies of water availability, often 

318 proxied by precipitation, were found to be significantly correlated with anomalies of atmospheric 

319 CO2 growth rate in several studies (Table 1) and also with net carbon flux of tropical ecosystems 

320 (Figure 6 b-d; Tan et al., 2013). The impacts of drought on ecosystem carbon cycling have been 

321 extensively studied, but its mechanisms are complex and incompletely understood (Corlett, 2016). 

322 Soil moisture deficit can directly induce stomatal closure (Manzoni et al., 2013) and reduce light 

323 use efficiency (Stocker et al., 2019). In addition, drought can inhibit new leaf formation and 

324 accelerate leaf-fall (Nepstad et al., 2002) leading to lower vegetation greenness (Xu et al., 2011; 

325 Anderson et al., 2018) and thus lower photosynthesis carbon uptake (Tan et al., 2013; Doughty et 

326 al., 2015). However, deep root system or altered allocation strategy could buffer drought impacts 

327 (Nepstad et al., 1994; Oliveira et al., 2005; Doughty et al., 2015), leading to debates on whether 

328 net primary production reduces in response to droughts (Moser et al., 2014; Doughty et al., 2015). 

329 Response of soil respiratory flux to drought is even less well understood, but recent studies show 

330 strong enhancement of soil CO2 emission after severe drought events (O’Connell et al., 2018). 

331 Nevertheless, there is general agreement on drought-induced increasing mortality rates (e.g. A
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332 Philipps et al., 2009; de Costa et al., 2010; Brienne et al., 2015) and flammability (e.g. Aragão et 

333 al., 2008; Liu et al., 2017), which could substantially contribute to positive anomalies of net 

334 carbon flux in drought years (Gatti et al., 2014; van der Laan-Luijkx et al., 2015; Withey et al., 

335 2018). 

336

337 Despite growing understanding of the drivers and response of IAV of carbon fluxes, whether 

338 variations in thermal conditions contribute more than moisture conditions in driving IAV of the 

339 tropical net carbon flux (e.g. Wang et al., 2013; Schneising et al., 2014; Wang et al., 2014c), or the 

340 reverse (e.g. Wang et al., 2016; Jung et al., 2017; Humphrey et al., 2018), remains debated in the 

341 literature. At global/continental scale, interannual temperature anomalies consistently better 

342 explain IAV of atmospheric CO2 growth rate and tropical net land carbon flux than interannual 

343 precipitation anomalies (Figure 6a), regardless of the approaches in estimating net land carbon 

344 flux. On the contrary, recent studies show that if replacing precipitation with other indices of water 

345 availability considering the balance of water supplies and demands, such as the Palmer Drought 

346 Severity Index (PDSI) and Terrestrial Water Storage (TWS; i.e. the sum of groundwater, soil 

347 moisture, snow, surface water, ice, and biomass (Tapley et al., 2004)), the correlation between 

348 IAV of CO2 growth rate and water availability indices becomes stronger (Keppel-Aleks et al., 

349 2014; Jung et al., 2017) and even surmounts the relationship between IAV of CO2 growth rate and 

350 temperature, when using global and time-lagged anomaly of TWS (Humphrey et al., 2018). 

351 However, the stronger correlation between global TWS and the CO2 growth rate as compared to 

352 the tropical TWS only (Humphrey et al., 2018) should be viewed with cautions, because it may be 

353 interpreted as a significant contribution of moisture limited northern ecosystems to IAV, which is 

354 inconsistent with the lower contribution of land fluxes of northern ecosystems to global IAV 

355 (Figure 3). 

356

357 These lines of evidence highlight the challenge to separate the contributions of climatic factors to 

358 IAV of net land carbon flux: On the one hand, IAV in tropical temperature and precipitation are 

359 significantly negatively correlated (e.g. Gu and Adler, 2011; Zscheischler et al., 2014), making the A
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360 separation of their respective contributions difficult. On the other hand, warmer temperature 

361 affects ecosystems not only through directly influencing metabolism but also indirectly through 

362 higher evaporative demand and increased VPD (Novick et al., 2016; Yuan et al., 2019) and 

363 interacts with insufficient precipitation supply to result in drought stress (Brando et al., 2014; 

364 Corlett, 2016). There is also growing evidence showing that photosynthesis and respiration are 

365 significantly affected by the interactions between temperature and moisture conditions (Zhou et 

366 al., 2016; Reich et al., 2018; Wang et al., 2018). However, only few studies on the relationship 

367 between IAV of CO2 growth rate and climate considered the interactions of climatic factors (Table 

368 1). To illustrate this point, we reanalyzed the relationship between IAV of climatic factors, 

369 reconstructed terrestrial water storage, leaf area index and CO2 growth rate with the structural 

370 equation model (SEM) (Figure 7), which has been widely used to understand direct and indirect 

371 relationship among potential driving factors (Grace, 2006). Since variability of CO2 growth rate is 

372 dominated by tropical land ecosystems (see Section 3), we aggregated gridded variables over the 

373 tropical region. The SEM results confirm the dominant role of temperature and TWS in driving 

374 IAV of CO2 growth rate (e.g. Humphrey et al., 2018) and further demonstrate the need to consider 

375 interactions of climatic factors in predicting IAV of CO2 growth rate. IAV of TWS is mostly 

376 explained by both precipitation and temperature anomalies (Figure 7), consistent with Gloor et al. 

377 (2018) who found strong negative correlation between tropical temperature and TWS anomalies. 

378 Thus, the indirect pathway of temperature impacts on CO2 growth rate through interaction of 

379 temperature and precipitation has significant contribution to IAV of CO2 growth rate (Figure 7), 

380 which also explains why water availability indices or soil moisture datasets considering 

381 evaporative demands have stronger predictive power to IAV of CO2 growth rate than precipitation. 

382

383 Sensitivities of atmospheric CO2 growth rate to interannual tropical temperature variations (γIAV) 

384 were reported by many studies, whose results differ by a factor of two (Table 1). Different 

385 methods to isolate IAV signal in CO2 growth rate time series (see Section 2) and different 

386 temperature data used could affect the derived magnitude of γIAV. Calculating γIAV based on 

387 tropical land and ocean surface temperature anomalies (e.g. Cox et al., 2013; Chylek et al., 2018) A
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388 leads to higher value than calculation based on tropical land temperature anomalies (Table 1). The 

389 other major source leading to the differences is the time period used to derive γIAV. γIAV during 

390 1960s-1970s was significantly lower than that during 1990s-2000s (Wang et al., 2014c; 

391 Rödenbeck et al., 2018). The magnitude of γIAV in the most recent two decades dropped down, 

392 though it is still larger than that during 1960s-1970s (Rödenbeck et al., 2018; Luo & Keenan, 

393 2019). Changing γIAV can result either from geographical reasons, as temperature anomalies of the 

394 tropical region became more coherent over time (Yang et al., 2019), leading to expansion of the 

395 geographical area that have synchronous temperature-driven variations of net ecosystem carbon 

396 flux (Jung et al., 2017), or from a physiological response of tropical ecosystems becoming more 

397 sensitive to temperature variations under drier conditions (Wang et al., 2014c; Luo & Keenan, 

398 2019), leading to increasing variability of CO2 growth rate (Anderegg et al., 2015) under similar 

399 magnitude of temperature variability. The changing sensitivity of net land carbon flux to 

400 interannual temperature variations not only took place in the tropics, but also in the northern 

401 hemisphere, where positive temperature effects over IAV of net land carbon flux has been 

402 weakening over the past three decades (Piao et al., 2017; Yin et al., 2018; Wang et al., 2018). 

403 There is growing concern that these findings are early warning signals of driver shift or even 

404 abrupt status shift of the terrestrial ecosystem dynamics (Lewis et al., 2015; Peñuelas et al., 2017; 

405 Liptak et al., 2017). 

406

407 Can we constrain future carbon cycle-climate feedbacks from carbon cycle IAV?

408 The prospect that using historical interannual carbon cycle variations to help constrain future land 

409 carbon cycle-climate feedback, known as γLT (see Friedlingstein et al. (2006) for detailed 

410 definition), at centennial scale (Cox et al., 2013) is of high interest to the carbon cycle community 

411 and of great policy relevance. γLT is one of the major sources of uncertainties in climate 

412 projections by ESMs (Friedlingstein et al., 2006; Arora et al., 2013) but not observable. Applying 

413 the emergent constraint approach, which builds on an empirical relationship between the 

414 measurable interannual sensitivity (γIAV) and γLT among ESMs, Cox et al. (2013) lower the best 

415 estimate of γLT by 23% and reduce projected uncertainty of γLT by 56%. This success has inspired A
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416 growing studies on carbon cycle IAV and searching for other observable metrics to constrain 

417 future evolution of the global carbon cycle (Wenzel et al., 2014; Mystakidis et al., 2016; Liu et al., 

418 2019). 

419

420 However, there are concerns on efficiency and even validity of the emergent constraint on γLT. The 

421 efficiency of the emergent constraint relies largely on the existence and strength of a relationship 

422 between the measurable interannual sensitivity (γIAV) and the future long-term one (γLT) across 

423 ESMs, since error reductions come through replacing the original model spread of the long-term 

424 target projection with the propagated error of the measurable metric and the metric-target 

425 relationship across ESMs (Hall et al., 2019). Recent studies found that the metric-target 

426 relationship between γIAV and γLT is dependent on the selection of ESM ensemble and seasonal 

427 variants of the metric (Wang et al., 2014a; Keppel-Aleks et al., 2018), which could result in no 

428 error reduction on the future sensitivity through the emergent constrain (Wang et al., 2014a). 

429

430 Moreover, statistically significant and physically meaningful relationship between γIAV and γLT is 

431 the premise for the validity of the emergent constraint, in order to avoid meaningless significant 

432 correlation by chance (Caldwell et al., 2014). The mechanistic links between γIAV and γLT, 

433 however, remain unclear. IAV of atmospheric CO2 growth rate mainly brings information on 

434 “fast” processes controlling fluxes of photosynthesis and respiration of mainly tropical ecosystems 

435 (involving fast carbon pools such as plant reserves, fine roots, litter and labile soil carbon). With 

436 increasing time-scale from interannual to decadal and centennial, controlling regions and 

437 processes may change. According to the CMIP5 ESMs (Table S1), the tropical region contributes 

438 to 87% of net land carbon flux variance at interannual scale (Figure 8; see also section 3), but the 

439 northern hemisphere’s extra-tropics contribute to 41% of net land carbon flux variance at 

440 centennial scale. Moreover, contribution of ocean carbon flux variations to total carbon flux 

441 variations increases from interannual scale to centennial scale (Figure 9), even though some ocean 

442 model may underestimate the decadal variability in ocean carbon flux (Rodenbeck et al., 2015; Le 

443 Quere et al., 2018). It is questionable whether climate sensitivity of tropical ecosystems may A
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444 represent that of temperate ecosystems, given the differences in the historical relationship between 

445 net carbon flux and climatic variations (Figure 6b-d), as well as emerging role of ocean 

446 ecosystems (e.g. Randerson et al., 2015) at centennial scale (Figure 9). There are also 

447 slow-evolving and climate-sensitive processes and tipping elements, which may not manifest 

448 themselves on interannual time scales, but contribute to or even dominates the climate sensitivity 

449 of terrestrial ecosystems at the time scale of γLT, such as change in nutrient limitations, soil carbon 

450 turnover and permafrost thawing (Arneth et al., 2010; Zaehle et al., 2011; Zhang et al., 2011; 

451 Friend et al., 2014; Koven et al., 2015). There is a risk that a diagnostic inter-model relationship 

452 between γIAV and γLT depends on the model ensemble considered, due to similar carbon turnover 

453 parameterization or common deficiencies in process representations in ESMs, like widely 

454 under-representation of nutrient cycling, climate-induced mortality and permafrost dynamics 

455 (IPCC, 2013). Therefore, using γIAV to constraint γLT would possibly lead to underestimating the 

456 projected uncertainties of carbon cycle-climate feedbacks. 

457

458 Conclusions

459 The IAV of the terrestrial carbon cycle represents an integrative research opportunity that has 

460 distinctive characteristics to seasonal variability and long-term trends. The IAV of global net land 

461 carbon flux was dominated by the tropical region, where semi-arid ecosystems may contribute as 

462 large as the sum of all the other tropical ecosystems. Climate perturbations, like volcanic 

463 eruptions, or variability of atmospheric circulation modes, drive carbon cycle variability through 

464 exposing ecosystems to year-to-year climatic variability. With growing numbers of observations, 

465 manipulation experiments and modelling capacities, the impacts of single climatic factors (e.g. 

466 temperature or precipitation) on IAV of net carbon flux became better understood, but interactive 

467 impacts of multiple climatic factors were often neglected, which contribute to the confusion of the 

468 dominant climatic factor driving IAV of net land carbon fluxes. Despite major advances in 

469 physiological understanding on ecosystem response to climatic variations, current studies 

470 disproportionately focus on tropical forests. Future studies should fill the gap over more arid 

471 tropical ecosystems, such as savannas, shrublands and grasslands. A
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472

473 The carbon cycle sensitivity to interannual climatic variations is proven to be an effective metric 

474 to evaluate model performance on IAV of photosynthesis, respiration and net land carbon flux 

475 (Piao et al., 2013; Huntzinger et al., 2017). In addition, changes in the magnitude of variability 

476 might serve as a potential early warning signal for more abrupt change. However, we caution that 

477 the challenges to applying metrics derived from IAV to predict carbon-climate feedbacks are 

478 greater than what was shown in previous emergent constrain studies. Capturing interannual 

479 variability does not necessarily lead to better prediction of carbon-climate feedbacks in future due 

480 to missing critical slow-evolving processes, but it helps improving our confidence that, at least, 

481 fundamental processes at interannual time-scale for current climate are robustly represented in the 

482 carbon cycle models. Advancing our understanding to IAV of the carbon cycle requires new 

483 technologies to measure globally the component fluxes of the net land carbon flux to better 

484 disentangle process contributions and improved ESMs to properly integrate process knowledge 

485 learnt at spatial scales from sites to the globe. 

486
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Table 1. Summary of studies on the relationship between interannual variations (IAV) of global net land carbon flux and climatic variables

Proxy 

for IAV 

of global 

net land 

flux1

Proxy for 

temperature 

IAV

Proxy for IAV of 

water 

availability2

Considered 

interactions 

between 

temperatur

e and water 

availability3

RT 
4 RP 

5

ST

(PgC yr-1 

oC-1)6

SP

(PgC yr-1 

100 

mm-1)7

Time 

period

Climate 

aggregation8
Reference

CGR mean precipitation no 0.65 -0.3 - - 1960-2003 30N - 30S
Adams et al., 

2005

CGR mean precipitation no 0.55 -0.25 - - 1960-2003 global
Adams et al., 

2005

CGR mean - no 0.65 - 5.1 - 1960-2009
30N - 30S 

(L&O)

Cox et al., 

2013

CGR mean precipitation no 0.7 -0.5 3.5 - 1959-2011 24N - 24S
Wang et al., 

2013

CGR mean precipitation case 1 0.53 -0.19 2.7 - 5.5 - 1959-2009 23N - 23S
Wang et al., 

2014
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CGR mean
precipitation, 

PDSI
no 0.68

-0.58 

(precipitation) 

-0.65 (PDSI)

2.4 -1.1 1997-2011 global
Keppel-Aleks 

et al., 2014

RLS nighttime precipitation no 0.56 -0.19 - - 1959-2010 30N - 30S
Anderegg et 

al., 2015

NEE mean precipitation no 0.94 -0.37 - - 1980-2013 global
Jung et al., 

2017

CGR mean precipitation no 0.77 0.63 2.92 -0.46 1960-2012 23N - 23S
Wang et al., 

2016

CGR mean precipitation case 2 0.54 0.03 2.6 -0.1 1959-2010 30N - 30S
Fang et al., 

2017

CGR mean TWS no
0.18 - 

0.57
-0.65 - -0.85 3.89 - 1980-20169 global

Humphrey et 

al., 2018

CGR mean TWS no
0.53 - 

0.77
-0.65 - -0.75 - - 1980-20169 24N - 24S

Humphrey et 

al., 2018

NLS
mean - no - - 2.8 - 4.1 - 1957-2016 25N - 25S

Rodenbeck et 

al., 2018
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1 proxy for IAV global net land carbon flux includes: atmospheric CO2 growth rate (CGR), residual land sink (RLS) as the residual mass balance of other term (fossil fuel 

emission, CGR, ocean sink and land use change emission) of the global carbon budget (see Le Quere et al., 2018), net ecosystem exchange (NEE) as the empirical 

scale-up of eddy-covariance measurements (see Tramontana et al., 2016); net land sink (NLS) derived from atmospheric inversions, which includes both net ecosystem 

exchange and land use change emission (see Rodenbeck et al., 2018). 

2 proxy for IAV of water availability includes: annual precipitation, Palmer Drought Severity Index (PDSI), terrestrial water storage (TWS)

3 Consideration of interactions between temperature and water availability index: in case 1, temperature sensitivity of CGR is regulated by water availability; in case 2, 

temperature/precipitation sensitivity of CGR is different between El Nino and La Nina years. 

4 correlation/partial correlation between IAV of net land carbon flux and temperature. The lead/lag of time series is applied in some studies.

5 correlation/partial correlation between IAV of net land carbon flux and water availability. When more than one proxy of water availability are used, the bracket after the 

number indicates the water availability index used. The lead/lag of time series is applied in some studies.

6 Sensitivity of IAV of net land carbon flux to temperature IAV, often termed as γIAV in the literature. When γIAV of different periods were reported, we presented the 

range here. 

7 Sensitivity of IAV of net land carbon flux to precipitation IAV

8 aggregation of climate variable over spatial domain. Most studies only consider land area. When land and ocean area were both considered, it is noted as (L&O).

CGR mean - no - - 5.9 - 1960-2017
30N - 30S 

(L&O)

Chylek et al., 

18
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9 In this study, the time-length of correlation between CGR and temperature and the correlation between CGR and TWS are not the same due to different time coverage of 

temperature and TWS data. Data were extracted from its Figure 2. 
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493 Figure legends

494

495 Figure 1. Comparison of interannual variations (IAV) of atmospheric CO2 growth rate extracted 

496 by six methods. (a) magnitude of variance (standard deviations) of IAV and longer-term trend of 

497 CO2 growth rate. (b) Matrix of correlation between IAV extracted from different methods. 

498 Correlation coefficients in the upper-left triangle and statistical significance (P-value) in the 

499 lower-right triangle. The six IAV extraction methods are: Fast Fourier Transformation (FFT), 

500 Ensemble Empirical Mode Decomposition (EEMD) and Singular Spectrum Analysis (SSA), and 

501 three smoothing-filter methods (no smoothing (SMN), smoothing with a short (6 month) time 

502 window (SMS), and smoothing with a long (13 month) time window (SML)). For frequency 

503 component decomposition methods (FFT, EEMD and SSA), the monthly CO2 growth rate was 

504 decomposed into seasonal (<16 months), IAV (16 months – 128 months) and long-term trend 

505 signals (>128 month). For three other methods, seasonal variability was removed by taking the 

506 difference between the CO2 concentration in one month and the same month in the previous year, 

507 and applying the smoothing filter of different window length. The linear trend was extracted with 

508 the least-square fitting.

509

510 Figure 2. Interannual variations (IAV) in detrended anomalies of the global CO2 budget 

511 components (left) and their standard deviation of IAV (right) for the period 1980-2017. The global 

512 CO2 budget components include CO2 growth rate (CGR, black), fossil fuel emissions (light grey), 

513 land use change emission (purple), net land carbon flux estimated by land carbon cycle models 

514 (LM, light green) and by atmospheric inversion models (INV, dark green), ocean net carbon flux 

515 estimated by ocean carbon cycle models (OM, light blue) and atmospheric inversion models (INV, 

516 dark blue), and fire emission derived from Global Fire Emission Dataset (GFEDv4.1s, yellow). 

517 Positive values indicate anomalies that tend to increase CGR anomalies (e.g. releasing more 

518 carbon to or uptake less carbon from the atmosphere). Error bars indicate inter-model standard 

519 deviation of the detrended anomaly each year (left panel) and that of the s.d. for interannual 

520 variation of each CO2 budget component (right panel). Note that GFEDv4.1s fire emission is only A
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521 available since 1997. See Table S1 for details of datasets used.

522

523 Figure 3. Spatial distribution of interannual variations (IAV) of net land carbon flux. (a) Spatial 

524 distribution of the standard deviation (s.d.) for IAV in detrended anomalies of net land carbon 

525 flux. The s.d. for IAV is estimated by the average of sixteen land carbon cycle model (LM), the 

526 average of two atmospheric inversion models (INV) and the average of 36 FLUXCOM models 

527 derived from three machine learning methods, shown as an RGB image map. Redder the grid cell 

528 is, larger the s.d. at this grid cell estimated by LM is, relatively to the maximum of IAV s.d. 

529 estimated by LM. Similarly, greener grid cell means larger s.d. of IAV estimated by INV and bluer 

530 grid cell means larger s.d. of IAV estimated by FLUXCOM. Brighter pixels indicate larger IAV 

531 than the darker pixels. (b) Regional contribution to global net carbon flux IAV. Global land is 

532 divided into four different regions: tropical non-semi-arid ecosystems, tropical semi-arid 

533 ecosystems, extra-tropical semi-arid ecosystems and others. The definition of semi-arid region and 

534 calculation of regional contributions follow Ahlström et al. (2015) (c) Contribution of each grid 

535 cell to global net land carbon flux IAV projected in the climate space. T indicates mean annual 

536 temperature of this grid while P-PET indicates the water deficit between mean annual precipitation 

537 (P) and potential evapotranspiration (PET).

538

539 Figure 4. Explained interannual variation (R2) of gross primary productivity (GPP) and terrestrial 

540 ecosystem respiration (TER) on net carbon flux (a) and spatial distribution of the difference 

541 estimated by the average of sixteen land carbon cycle models (LM) (b), FLUXCOM (c) and 

542 FLUXNET (d). In panel b-d, a blue color indicates that IAV in net carbon flux are more driven by 

543 IAV in GPP than by TER. A red color indicates the opposite. Black dots in panel b and c indicate 

544 grids where more than 75% of the models (12 of 16 LM or 27 of 36 FLUXCOM models) agree on 

545 the sign of the difference. Inset in panel d shows histogram of the R2 difference in FLUXNET 

546 sites. IAV in carbon fluxes are obtained as detrended annual value. In panel a, GPP and TER are 

547 ensemble mean of 16 LMs. Only FLUXNET sites with more than 5-years of data are shown in 

548 panel d. A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

549

550 Figure 5. Anomalies of net carbon flux in El Niño, La Niña and Volcanic eruption years. The 

551 anomalies in El Niño year were the average of net carbon flux anomalies in three strongest El 

552 Niño years (1987, 1997 and 2015) and those in La Niña year were the average of net carbon flux 

553 anomalies in three strongest La Niña years (1989, 1999 and 2011). The anomalies in volcanic 

554 eruption years were the average of net carbon flux anomalies in years after the strongest volcanic 

555 eruption (El Chichón (1982-1983) and Pinatubo (1991-1992)). Grey area in the patterns of land 

556 carbon cycle models (LM) and FLUXCOM indicate grids where less than 75% of the models (12 

557 of 16 LM or 27 of 36 FLUXCOM models) agree on the sign of the anomalies.

558

559 Figure 6. Partial correlation between interannual variations (IAV) in net carbon fluxes and those 

560 in annual temperature and precipitation. (a) Partial correlation coefficients between tropical net 

561 land carbon flux anomaly and tropical annual temperature/precipitation anomaly. Symbols show 

562 detrended anomalies of tropical net land carbon flux were estimated by atmospheric CO2 growth 

563 rate (CGR), land carbon cycle models (LM), atmospheric inversion models (INV) and FLUXCOM 

564 models. Spatial pattern of partial correlation between local temperature or precipitation anomaly 

565 and local net land carbon flux anomaly estimated by LM, INV, FLUXCOM and FLUXNET are 

566 shown in panel b, c, d, respectively. The latitudinal distribution of partial correlation coefficients 

567 between latitudinal average of net land carbon flux and temperature (T) or precipitation (P) is 

568 shown on the right of panel b-d. Note 1991-1993 are excluded from the correlation analyses 

569 because variations in the post-Pinatubo are known to be affected by factors other than climatic 

570 variations.

571

572 Figure 7. The structure equation model on the relationship of the direct and indirect effects on 

573 IAV of CO2 growth rate during 1980-2016. Blue arrows indicate negative relationships while red 

574 arrows indicate positive relationships. Single-headed solid arrows indicate significant relationship 

575 (P < 0.05) with the arrow thickness proportional to the strength of the relationship (standardized 

576 coefficient shown besides the arrow). Double-headed grey arrows indicate covariations between A
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577 variables. R2 on the top right indicates the variance of CGR explained by the SEM. RMSEA is the 

578 Root Mean Square Error of Approximation. AGFI is the Adjusted Goodness-of-Fit Index provide 

579 an absolute metric for how well the model describes the data. It ranges between 0 (bad) and 1 

580 (perfect). 

581

582 Figure 8. Regional contributions to net land carbon flux, GPP and TER anomalies at seasonal, 

583 interannual, decadal and centennial timescales. Carbon fluxes were estimated by eighteen CMIP5 

584 climate-carbon-cycle models for the period 1861-2099 (Table S1). Variations at seasonal, 

585 interannual, decadal and centennial time scales were extracted with Fast Fourier Transformation. 

586 The left four panels show the spatial pattern of contributions of Net biome productivity (NBP) 

587 anomalies in grid cells to global NBP anomalies at different timescales. Contributions of carbon 

588 flux (NBP, gross primary productivity GPP or total ecosystem respiration TER) anomalies in 

589 latitudinal bands to global carbon flux anomalies at the corresponding timescales are shown in the 

590 right panels. Error bars indicate inter-model standard deviation.

591

592 Figure 9. Contribution of land and ocean carbon flux to its sum at seasonal, interannual, decadal 

593 and centennial timescales. Carbon fluxes were estimated by fourteen CMIP5 climate-carbon-cycle 

594 models for the period 1861-2099 with both land and ocean flux available (Table S1). Similar with 

595 Figure 8, variations at seasonal, interannual, decadal and centennial timescales were extracted with 

596 Fast Fourier Transformation. Error bars indicate inter-model standard deviation.

597
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