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Abstract. Semantic segmentation is one of the most popular and challenging applications of
deep learning. It refers to the process of dividing a digital image into semantically homogeneous
areas with similar properties. We employ the use of deep learning techniques to perform seman-
tic segmentation on high-resolution satellite images representing urban scenes to identify roads,
vegetation, and buildings. A SegNet-based neural network with an encoder–decoder architecture
is employed. Despite the small size of the dataset, the results are promising. We show that the
network is able to accurately distinguish between these groups for different test images, when
using a network with four convolutional layers. © 2019 Society of Photo-Optical Instrumentation
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1 Introduction

Deep learning has received growing interest in the last 10 years due to its unprecedented capabil-
ity in the processing of images. Due to the availability of higher computational power and the
versatility of neural networks, deep learning techniques have been applied in many fields of
research, outperforming traditional machine learning methodologies. Deep neural networks are
generic models that are able to model any multivariate nonlinear relationship, given a sufficient
number of neurons and layers. For this reason, they can be employed for classification, regres-
sion, clustering, and generative processes, and they are able to process complex data such as
digital signals (audio, images, and videos).1,2

A popular and promising application of deep learning is semantic segmentation. Semantic
segmentation refers to the division of an image into semantically homogeneous areas,3 which
means that every pixel in a given area is associated with the same meaning (that is, the same in
some sense). For example, an image representing an indoor scene could include a chair, table,
person, and background, whereas an image representing an outdoor scene could include moun-
tains, fields, beaches, roads, and buildings. Thus, semantic segmentation is a particular case of
classification where each pixel of the image is classified according to the probability of each
class.

Convolutional neural networks (CNNs) have been proven to be effective in image
segmentation.4,5 Indeed, the most popular algorithms for semantic segmentation employ CNN
as this is the most suitable architecture to process images since it is very efficient and effective,6

and it can even be employed for real-time applications.7

More generally, CNN are particularly suited for image processing. The most important fea-
ture of CNN is the convolutional layer. This layer convolves the input with a certain number of
filters. Each filter is able to capture a specific feature (e.g., edges and corners),8 and each time
that feature is detected in the image, the filter outputs an increased value. The outputs of the
filters are aggregated to form a new representation of the input, and the more convolutional layers
there are, the more abstract and complex the representation is.9 The first layers are able to capture
basic geometric features, while higher levels may model features with high-level semantics and
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complex shapes (e.g., faces, cars, and trees). Convolutional layers are usually followed by a
pooling layer with the purpose of reducing the dimensionality of the input10,11 and nonlinear
functions [sigmoid, rectified linear unit (ReLU), and hyperbolic tangent] to introduce the ability
to model nonlinear relationships.

Semantic segmentation has been applied in different scenarios. These include, for example,
urban scenes,12 indoor scenes,13 outdoor scenes,14 and autonomous driving,15 whereas several
studies focus on satellite images.16 The purpose of the CNN model in this application is to divide
the image into the elements that characterize a map, such as vegetation, buildings, and roads, to
provide a real-time application range from coverage mapping to urban planning. This task is
particularly difficult since elements belonging to the same class may exhibit a large variation
in terms of shape, color, and texture. Moreover, it is difficult to collect a large dataset for the
training stage.

In the deep learning field, it is commonly known that a large amount of data is required to
properly train a network. This concept gets stronger every year, as the trend in the AI community
is to research always deeper and more complex networks. Unfortunately, accessing a suitable
amount of data is not possible for everyone along with data ground truth information, thus mak-
ing difficult to train a large network for a custom application.

In this paper, we introduce a methodology, implemented in MatLab R2018b, for semantic
segmentation on RGB satellite images with a dataset of limited size. One of the goals of this
work is to acquire a high-quality CNN using a small dataset. We consider three classes: build-
ings, vegetation, and roads. We employ a CNN with an encoder–decoder architecture based on
SegNet. The data are processed with different augmentation techniques and the best network
architecture is searched by running several experiments where the important parameters are
tuned. We show that even with a small number of training images promising results can be
achieved.

The choice of a CNN is motivated by the multitude of studies that prove the general supe-
riority of this approach over traditional methods, as explained in the next section.

Six high-resolution satellite images are initially used and shown in Fig. 1. It is possible to see
that they can be grouped into three groups in terms of similarity (first and second; third and
fourth; fifth and sixth). For this reason, we consider them separately in the training stage and
in the results analysis.

Fig. 1 (a) The six images that we considered for this study, together with (b) their labeled ground
truth. (Images are taken from Ref. 17.)
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To produce optimal results, the training dataset should have the following characteristics
where possible: (1) class balance: every class should appear in the dataset with approximately
the same frequency (same number of samples/observations). For example, images with 95%
volume of vegetation class and just one small building class will result in poor classification
performance on the small class. Theoretically, if some classes have a low probability, these will
have a low accuracy of determination, because CNN net has poor training for this. See Ref. 18
for more details. (2) Intraclass homogeneity: pixels/areas belonging to the same class should be
similar to each other. For example, if all the areas belonging to vegetation are green in the RGB
image, red trees are unlikely to be correctly classified. Similarly, if the network learns that all
buildings are rectangular, a building with another shape may be assigned to another class. See
Ref. 19 for more details. (3) Scale: the images used should have the same approximate zoom
level. Different sized images make it difficult to create a model. See Ref. 20 for more details.
(4) Dataset size: the more images used for the better the results seen, particularly for CNNs.
See Ref. 21 for more details.

2 Related Work

2.1 Semantic Segmentation

Semantic segmentation was addressed before the advent of deep learning, with popular algo-
rithms such as watershed segmentation,22,23 semantic texton (the elements of texture perception)
forests,24 and random forest-based classifiers.25

In satellite image segmentation, several approaches have been tried. In Ref. 26, two swarm-
intelligence-based global optimization algorithms for multilevel thresholding were employed,
obtaining good results for satellite image segmentation. Bhandari et al.27 presented a more com-
putationally efficient algorithm, in terms of accuracy and computational time, for satellite image
segmentation based on a modified artificial bee colony.

2.2 Convolutional Networks

The advent of the neural network has had a considerable impact on image processing. CNNs
show excellent performance with respect to state-of-the-art methods both for semantic segmen-
tation and other applications. Generally speaking, it can be said that deep learning-based meth-
ods outperform the traditional ones.28

In 2014, fully convolutional networks4 were shown to be able to produce dense predictions
without any fully connected layers, allowing much faster predictions for large images. The sub-
sequent works on deep learning-based semantic segmentation followed this paradigm.

In 2015, SegNet was introduced.7 SegNet is a fully deep convolutional network designed for
image segmentation. It is based on an encoder–decoder architecture, with a high number of
convolutional layers. There are no fully connected layers, reducing the number of parameters
of the network. The final layer produces a probability value for each pixel in the original image.

An important feature in SegNet is the use of maxpooling indices in the decoder to perform
upsampling of low-resolution features. When maxpooling is performed in the encoder, the loca-
tions of the maximum feature value in each pooling window are stored and used by the decoder. As
a consequence, high-frequency details are retained in the segmented images, preventing blurred
boundaries, and the total number of trainable parameters in the decoder is reduced. The architecture
is trained end-to-end using stochastic gradient descent (SGD). The network is tested on several test
cases, such as urban scenes and indoor scenes, obtaining impressive results.

Although it has not been designed specifically for satellite images, we believe that architec-
ture similar to SegNet is particularly applicable to this domain. As we will explain later, we use
this structure as a base reference and then subsequently reduce the number of layers.

2.3 Other Work Related to This Problem

The literature on semantic segmentation includes some works that face a problem similar to the
one that is presented in this paper and are used as a baseline to compare our method, as shown in
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Sec. 4. Here a short description of these works, which are mostly based on traditional methods, is
provided.

Gamba and Houshmand29 combined the multimodal data coming from remote sensors to
model the shape of buildings and land cover. Fuzzy c-means clustering algorithms are employed.
In Refs. 30 and 31, traditional classification methods based on decision trees are employed on
aerial multispectral images. In Ref. 32, features are extracted from high-resolution aerial images
and used to train pixel-based (support vector data description, Gaussian mixture model, and
nearest-neighbor) and object-based classifiers (eCognition) of vegetation and urban areas. In
Ref. 33, segmentation on nine categories from remotely sensed images using genetic sequential
image segmentation, an iterative segmentation algorithm, tries to optimize the local balance
between coverage, consistency, and smoothness of each class. In Ref. 34, a combination of
low-computation algorithms is employed on aerial orthophotography and digital elevation model
(DEM) data and a 7-class segmentation task. In Ref. 35, a knowledge-based system is used
on multimodal data in order to better discriminate between asphalt road, vegetation, and
nonvegetation.

3 Methodology

3.1 Data Preparation

Six RGB images (I1, I2, I3, I4, I5, and I6) of various sizes, representing a large-scale urban
landscape, were used as the first training set. The ground truth was manually built by labeling
the pixels according to three different classes: buildings, vegetation, and roads. These images
were then splitted into 128 × 128 sized subimages.

Since this dataset is quite limited for a semantic segmentation task, several augmentation
techniques were employed to make it larger. In particular, affine transformations, brightness
transformation, and the addition of noise were used. These techniques are typically used in deep
learning36 with affine transformations, including horizontal and vertical flipping and rotation
with a random angle.37 Brightness transformation was also randomly applied to each image,
while the noise used was Gaussian.38

Technically, the augmentation process transforms the training images in such a way that for
the neural network they are different, increasing the diversity of the data, and preventing the
network from memorizing the exact details of the existing images.39

For each individual function and for each of the three groups of functions, the probability of
their occurrence is given, as well as the range of values that the function can accept. Further, a
random number of functions that will take part in the transformations is randomly selected, then
one is selected from the available range of values in the same way, after which the selected
functions process the image in turn, with the results that all received effects overlap each other.
This process increases the diversity of the data.

Each large image resulted in a number of subimages ranging from 212 to 1164, after aug-
mentation. Examples of such image augmentations are shown in Figs. 2 and 3. Then the images
were divided as follows.

We ran the training using a sixfold cross-validation strategy. At each training iteration, the
subimages coming from five original images were used for training and validation, while the
images coming from the remaining one were used for testing. In this way, all the images
contributed to the training and testing without overlapping and, at the same time, we perform
validation to assess the accuracy of the network and monitor the presence of overfitting.

Our dataset is summarized in Table 1.
An analysis stage was conducted where the occurrence of each class in the six images was

checked. If the classes are not balanced in the dataset, some remedial action needs to be taken.
Figure 4 shows the results of this analysis. It can be seen from this chart that the dataset is not
balanced: vegetation has a much higher frequency of occurrence in the first 4 images, while for
images 5 and 6 the number of pixels related to vegetation was much lower than the other classes.
In every image, roads have a lower frequency with respect to the other classes. As we explain
in the next section, we take this issue of dominant classes into account by means of class
weights.
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Fig. 3 Set of augmented images for image 1.

Table 1 Dataset details.

Original image No. of subimages after augmentation

1 212

2 237

3 372

4 372

5 1002

6 1164

Total 3359

Fig. 2 Example of image augmentation. Original image (upper left) and augmented images,
generated by rotation (90 deg, 180 deg, and 270 deg) and reflection (up/down, left/right).
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3.2 Data Preprocessing

The preprocessing step is crucial in neural network training and must be carefully planned in
order to make the learning faster and more stable. In particular, it is known that normalizing the
input data to a fixed range produces better classification results.40

Each input image is resized to a fixed size (128 × 128 × 3) in order to have a good trade-
off between too large images (long training time) and too small images (bad classification
performance). Histogram equalization is performed on each RGB channel in order to
increase the contrast and improve the network performance.41 Then the images are normalized
to the [0, 1] range. Normalization is typically performed in neural networks because the
nonlinear functions that are employed work better in this range. Moreover, if the inputs have
different ranges, with normalization, we bring them to the same range so that they are
comparable.

3.3 Network Architecture and Training

For the network implementation, the architecture of SegNet was used as the starting point. The
choice was motivated by the fact that this network achieves good results on different datasets and
offers a structure that can be modified according to specific needs. SegNet is based on the
encoder–decoder architecture. The encoder part takes an image as input and encodes it in a lower
dimensional vector which contains the feature that best characterizes the image. It consists of
several convolutional layers, each followed by batch normalization, ReLU nonlinearity, and
a maxpooling. The dimensionality of the data is reduced after each pooling layer.

The decoder takes a vector of features as input and produces an image of the same size as the
input. It reflects the same structure as the encoder, with an equal number of deconvolutional
blocks followed by batch normalization, leaky ReLu, and upsampling. At the end, the SoftMax
layer provides a probability value for each class.42 Each pixel is assigned the class with the
highest probability, since the purpose is to provide a classification which is as equal as possible
to the ground truth.

The number of convolutional layers, the number of filters per layer, and the filter size are
important parameters that determine the abstraction and modeling ability of a neural network.
This number depends on the particular task that is being faced and has to be chosen carefully in
order to avoid underfitting and overfitting. Moreover, the computational complexity and the
memory requirement of the trained model depend on these parameters.

SegNet was conceived to be trained and tested on a large amount of data with many classes.
For this reason, as typically found in the state-of-the-art deep learning, it employs a very high
number of layers and has a particularly large dataset for the training phase. Since we do not have
a large number of images at our disposal, as mentioned in Sec. 1, we modified the structure of the
network. The number of convolutional layers and the number of parameters per layer was
reduced, in order to prevent overfitting. The choice of these numbers was determined after a
phase where different configurations were tested. The performance of the network was tested
at each phase and the best configuration was chosen. We describe the different configurations
in Sec. 4.1.

The architecture of our network is depicted in Fig. 5.

Fig. 4 Occurrence of each class in the six images.
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As the class distribution in our dataset was not balanced (the number of pixels related to
vegetation was higher than the other classes), the SoftMax computation assigns a weight to each
class,43 based on the inverse of the frequency of occurrence (the rarer the class, the higher the
weight). Weights are related to the probability of observing a given class. If all classes occur with
equal frequency, there is no issue. But if a class is extremely rare, when the network is uncertain
whether to predict that class or a more likely one, it will always predict the latter in order to have
more probability to guess correctly. However, when using weights, Eq. (1), this problem is
greatly reduced because it prevents the network from classifying every pixel to the most frequent
class, which reduces classification error.

The weights are given by

EQ-TARGET;temp:intralink-;e001;116;228wi ¼
medianðpiÞ

pi
; (1)

where wi is the weight associated to class i and pi is the relative frequency of class i.7

3.4 Training

As mentioned above, we conducted the training phase using sixfold cross-validation. At each
iteration, one of the six images was kept out and used for validation once the network was
trained. The coefficients of the filters were initialized with a normal distribution. The network
was trained using the SGD algorithm, with learning rate equal to 0.5, a drop factor of 0.5, and a
drop period of 200 epochs (images are not fed one by one into the network in the training set,
but are grouped in batches). The training algorithm uses cross entropy as the loss function

Fig. 5 Our network’s architecture.
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(see Ref. 44 for more details), which is commonly used in neural network-based image process-
ing. Filters of various sizes were used (according to the network configuration) and stride 1
for the convolutions. The training accuracy was computed as the percentage of correctly clas-
sified pixels in the validation set. When the accuracy reached a stationary level, the training is
stopped.

4 Results

In this section, we describe the results that were achieved for the test images, which are the six
original images. Each test image was considered separately, showing the result of the prediction
in terms of a segmented image, which offers an easier interpretation of the results through show-
ing how accurately the image is predicted visually by comparing how well it matches with actual
ground truth; and confusion matrices, which indicate the correct classification rate for each pair
of classes by providing the vectors with predicted pixels and true pixels.

4.1 Network Configurations and Training

As introduced in the previous section, we conducted a comparison of the performance of differ-
ent network configurations, starting from a simplified version of SegNet. The purpose was to
find a good configuration for our limited dataset. Training and validation were performed in an
iterative fashion. We considered three parameters: number of layers, number of filters per layer,
and kernel size. At each iteration, different combinations of these parameters were chosen, and
the training was performed. At the end, we compared the performance of the different networks
that we trained. The comparison is illustrated in Table 1. The average training and validation
accuracy achieved over the whole dataset were used as the performance metric. The configu-
rations that achieved the worse results have been discarded.

From Table 2, it can be seen that the number of layers most strongly affects the accuracy
(as clearly shown in Fig. 6). In terms of training and validation accuracy, the best model is a
model with 4 deep layers and 64 feature maps. However, it is worth noting that the model with
the maximum number of layers has a slightly lower accuracy, likely due to the attenuation of
the gradient. It was also noted that the number of feature maps does not significantly affect the
accuracy. Comparing models 10, 11, and 12, where the number of layers and feature maps is the
same, but the filter size is different, we can say that the model with filter size 7 has the highest
accuracy.

If too simple a network is used, the trained model is not able to correctly fit our data. For
example, using just one layer, the validation accuracy does not exceed 62%. This is because only
simple features (such as edges) have been captured. The highest validation accuracy (89%) is
achieved using four layers. This appears to be one of the most important parameters as relevant
changes were not seen when the filter size or the number of filters per layer was varied.
Therefore, our chosen network configuration includes 4 layers with 64 filters per layer and
a filter size equal to 5.

The training and validation plots are depicted in Fig. 7, relatively to the training stage with the
dataset including images 1 to 5. For reasons of space, the plots related to the other cases are not
displayed. However, the results were similar. In particular, two plots are displayed. The first is
related to the accuracy in the training set, i.e., the percentage of correctly classified pixels (Fig. 7
green curve). An increasing accuracy means that the network is improving its prediction capabil-
ity. Conversely, the second plot refers to the training loss/error measure (Fig. 7 red curve). The
lower the loss, the higher the performance. The slope of these curves depends on the learning rate
and on the state of the network. A higher learning rate means that the weights change faster, and
so do the accuracy and the loss. At the beginning, we did not know whether the optimization
algorithm reached a global minimum or a local minimum.45 In the latter case, we needed a high
change in the loss to proceed from the local minimum toward a better minimum. If the curve
flattened, we could say that a local or global minimum had been reached, and when such
a minimum was reached, each change in the weights did not affect the accuracy and loss
significantly.
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The training was stopped when the accuracy reached a stationary value (about 200 epochs),
meaning that further iterations would have produced no significant change in the network’s
weights.

As expected, and mentioned above, the validation accuracy is slightly lower than the training
accuracy. The training has been stopped when the performance stopped improving, and the accu-
racy reached an almost constant value.

Fig. 6 Effect of the number of layers on accuracy. Acc is the training accuracy (%) and Val Acc is
the validation accuracy (%).

Table 2 Impact of different network configurations on results, where K is the size of the convolu-
tional filters and Li is the i ’th layer.

No. of layers K

No. of filters Accuracy (%)

L1 L2 L3 L4 L5 Train Val

1 5 32 — — — — 63.39 61.69

1 5 64 — — — — 63.86 62.35

1 5 96 — — — — 63.77 62.13

1 5 128 — — — — 64.06 62.56

2 5 64 32 — — — 75.72 74.05

2 5 64 64 — — — 77.71 76.78

2 5 96 96 — — — 79.61 77.70

2 5 128 128 — — — 76.81 75.34

3 5 64 32 16 — — 84.80 83.73

3 5 64 64 64 — — 87.44 86.23

3 3 64 64 64 — — 78.44 77.74

3 7 64 64 64 — — 90.05 88.88

3 5 96 96 96 — — 88.70 87.33

3 5 64 96 128 — — 85.62 84.43

4 5 64 64 64 64 — 90.73 89.24

5 5 64 64 64 64 64 90.56 88.85

Note: The bold values indicate the best model and the corresponding train and validation accuracy.
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4.2 Test Results

In this section, the prediction results are depicted that were achieved in the six different test
stages. As already mentioned, each time a different image was used as a test case.

By looking at the results, it is possible to draw some interesting observations. The vegetation
has been well modeled by the network, even when the color is not green. For example, images 5
and 6 include red vegetation which is correctly segmented. The network is able to segment
the roads, which, however, are not always segmented with straight edges. See, for example,
test image 2. Moreover, it is possible to notice some confusion between roads and trees
(image 1). The buildings are very well modeled, at different zoom levels.

In Table 3, standard metrics, precision, recall, F-score, kappa, and overall accuracy (OA) are
presented over the different test stages. From this, it can be seen that the network is particularly
good at predicting buildings with an OA of 93.67% and vegetation with an OA of 95.83%. As for
the roads, the OA is lower (67.71). This can be explained by the scarcity of pixels related to roads
in the datasets, as clearly shown in Fig. 4. We believe that the same architecture could perform
much better even on roads, with a larger dataset. The low precision on roads, together with the
accuracy values, indicates that many pixels that the network tends to classify is part of the roads
as buildings or vegetation.

Precision and recall are combined in the F-score as shown in Eq. (2), a measure of test’s
accuracy which is given by

EQ-TARGET;temp:intralink-;e002;116;3142 � precision � recall
precisionþ recall

: (2)

Based on the F-score, the class that is best modeled by the system is buildings. The relation
between the predictions of the various classes is shown in detail in the confusion matrices and
segmented images presented in Figs. 8–10. B, V, and R mean buildings, vegetation, and roads,
respectively.

Table 3 Evaluation metrics.

Buildings (%) Vegetation (%) Roads (%)

Producer accuracy (precision) 96.35 92.93 73.56

User accuracy (recall) 93.67 95.83 67.71

F-score 94.99 94.36 70.51

Kappa 86.7%

Mean OA 92.63%

Fig. 7 Training accuracy and loss with the dataset for the chosen network architecture.
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Fig. 8 Confusion matrices and predicted images for test (a) image 1 and (b) image 2.

Fig. 9 Confusion matrices and predicted images for test (a) image 3 and (b) image 4.
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When dealing with an imbalanced dataset, it is essential to pay attention not only to the
overall evaluation metrics but also the corresponding misclassification costs. Thus, kappa
statistics are a good performance measure when facing an imbalanced dataset. Längkvist
et al.46 proposed a qualitative interpretation of kappa statistics (Table 4) which was assigned
to the corresponding agreement measures.

4.2.1 Images 1 and 2

Here, the prediction results for images 1 and 2 are shown considering the network with the
chosen configuration. The confusion matrices and segmented images are shown in Fig. 8.
This concerns the network with four layers, so it can be seen that the performance of image 1
[Fig. 8(a)] is high for classes one and two, while it is very low for class three, suggesting
that more abstraction and complexity is needed to model this class. Figure 8(b) shows the con-
fusion matrix and the prediction for image 2. In this case, the prediction accuracy for the third

Fig. 10 Confusion matrices and predicted images for test (a) image 5 and (b) image 6.

Table 4 Strength of agreement for categorical data of kappa interpretation.

Kappa statistic Interpretation

<0.00 Poor agreement

0.00 to 0.20 Slight agreement

0.21 to 0.40 Fair agreement

0.41 to 0.60 Moderate agreement

0.61 to 0.80 Substantial agreement

0.81 to 1.00 Almost perfect agreement
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class is much higher. As can be seen in the predicted image, the content related to the third class
is much clearer than the previous image, where the roads were covered by trees. This implies the
necessity to introduce some more prediction ability to model hidden areas. This can be given by
a larger dataset and a more complex network.

4.2.2 Images 3 and 4

The third image achieved good performance, although it is very different from images 1 and
2 in terms of content and class distribution. The OA is 92.6%, as shown in Fig. 9(a). Even better
is the accuracy of image 4, which is shown in Fig. 9(b). The overall value is 95.5%. The roads are
more difficult to distinguish with respect to image 3, producing a lower class-specific accuracy.
This big influence on the accuracy of roads is owing to the fact that many regions around car
parks, which all have the same color features as roads, are not marked as roads on the ground
truth of both images. The images 3 and 4 have large car parks with cars in them, and look-like
building roofs but are attached to the vegetation class, which raises a segmentation error.

4.2.3 Images 5 and 6

Images 5 and 6 are the ones that achieved the best performance, especially in terms of buildings
and roads. As we can see in Fig. 10, the roofs were clearly discernible, and the network could
segment them correctly. The confusion matrices indicate an accuracy of more than 97% for class
one and more than 80% for class three, while the performance for class two is lower. This could
be due to the shortage of vegetation in the training set for images 5 and 6.

4.3 Comparison with Other Works

In this section, the results that were achieved are compared with the works introduced in Sec. 2.
Although the datasets are not the same (e.g., some use hyperspectral, some use elevation, etc.)
and each has been implemented with different tools and software, this comparison provides an

Table 5 Comparison between segmentation methods.

Method OA (%) Data Categories

Fuzzy C means29 68.9 Aerial image, laser scanning 4 (vegetation, buildings, roads,
and open areas)

Segmentation and
classification tree method30

70 Multispectral aerial imagery 5 (water, pavement, rooftop,
bare ground, and vegetation)

Classification trees and
test field points31

74.3 Aerial image 4 (building, tree, ground, and soil)

Segmentation and
classification rules32

75 Multispectral aerial imagery 6 (building, hard standing, grass,
trees, bare soil, and water)

Region-based GeneSIS33 89.86 Hyperspectral image 9 (asphalt, meadows, gravel, trees,
metal sheets, bare soil, bitumen,
bricks, and shadows)

Object-based imagery
analysis34

93.17 Aerial orthophotography
and DEM

7 (buildings, roads, water, grass,
tree, soil, and cropland)

Knowledge-based
method35

93.9 Multispectral aerial imagery,
laser scanning, digital surface
models (DSM)

4 (buildings, trees, roads,
and grass)

CNN47 94.49 Multispectral orthophotography
imagery, DSM

5 (vegetation, ground, road,
building, and water)

This work 92.63 Satellite images 3 (buildings, vegetation, and roads)
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indication of the effectiveness of this method. The OA obtained by the average of the six test
cases is used as the comparison metric. The other values are taken from Ref. 47, where the
segmentation is performed by training multiple simple neural networks (1 convolution layer
and 50 filters) and combining their results. The comparison is shown in Table 5.

It is possible to see that our method outperforms the methods which are not based on deep
learning, except for Refs. 34 and 35, which, however, take advantage of a richer dataset
with more than one source. As for the results obtained with CNNs in Ref. 47, the difference
is certainly due to the fact that our neural network was trained with much less data. This is an
essential aspect in deep learning, and in future studies, we plan to increase the size of our
dataset. The results, however, are very promising even with the limitations that have been
presented.

A further comparison is also made with work presented in Ref. 17, where the same dataset
that we presented is employed. The authors tested eight different machine learning methods
(fine decision tree, medium decision tree, fine KNN, coarse KNN, cubic KNN, bagged tree,
boosted tree, and RUS boosted tree) to segment the satellite images. The total accuracy that
the authors achieved is 93.7, which is comparable with the results obtained here. As far as the
single images are concerned, our method outperforms Ref. 17 only in some cases, in particular,
for images 2, 4, 5, and 6. However, the results suggest that our method, with the right parameter
tuning, can outperform state-of-the-art methods.

5 Conclusion and Future Works

Deep learning is receiving growing interest from the academic community, and the availability of
more powerful hardware allows for the development of complex applications. Among these,
semantic segmentation is undoubtedly one of the most popular and challenging. Unfortunately,
accessing the required amount of data combined with good quality labeled ground truth for a
high-accuracy neural network is not feasible for everyone. In this work, we applied semantic
segmentation to different satellite images representing urban scenes with different proportions of
buildings, vegetation, and roads, using a small dataset compared to the ones used in the same
field. A CNN based on SegNet was employed using this dataset which we expanded with “hard”
augmentation.

The results show promising performance of the network. The scarcity of the dataset does not
prevent the network from having high test accuracy, especially for some images, as it did not tend
to produce overfitting during the training phase. Moreover, our model is very lightweight, result-
ing in fast inference with respect to more complex neural networks. The authors believe that even
better performances can be achieved with more data.

A second contribution of this work was to show how, in the presence of a small dataset, the
variation of the number of layers and filters affect the performance. This knowledge is useful
when a small amount of data is available.
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