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Abstract. A new framework is presented for analysing the
proximate causes of model Arctic sea ice biases, demon-
strated with the CMIP5 model HadGEM2-ES (Hadley Cen-
tre Global Environment Model version 2 – Earth System).
In this framework the Arctic sea ice volume is treated as a
consequence of the integrated surface energy balance, via
the volume balance. A simple model allows the local de-
pendence of the surface flux on specific model variables to
be described as a function of time and space. When these
are combined with reference datasets, it is possible to esti-
mate the surface flux bias induced by the model bias in each
variable. The method allows the role of the surface albedo
and ice thickness–growth feedbacks in sea ice volume bal-
ance biases to be quantified along with the roles of model
bias in variables not directly related to the sea ice volume. It
shows biases in the HadGEM2-ES sea ice volume simulation
to be due to a bias in spring surface melt onset date, partly
countered by a bias in winter downwelling longwave radia-
tion. The framework is applicable in principle to any model
and has the potential to greatly improve understanding of the
reasons for ensemble spread in the modelled sea ice state.
A secondary finding is that observational uncertainty is the
largest cause of uncertainty in the induced surface flux bias
calculation.
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1 Introduction

The Arctic sea ice cover has witnessed rapid change during
the past 30 years, with a decline in the September extent of
1.05×106 km2 per decade from 1986 to 2015 (HadISST1.2,
Rayner et al., 2003). In association with the changes in ex-
tent, Arctic sea ice thinning has been observed from subma-
rine and satellite data (Rothrock et al., 2008; Lindsay and
Schweiger, 2015). Arctic sea ice has also become younger on
average as older ice has been lost (Maslanik et al., 2011), the
onset of summer melt has become earlier in the year (Markus
et al., 2009) and the onset of winter freezing has become later
(Stammerjohn et al., 2012).

The changes have focussed interest on model projections
of Arctic sea ice, the loss of which influences the climate di-
rectly through increased absorption of shortwave (SW) radia-
tion during summer and through greater release of heat from
the ocean to the atmosphere during winter (Stroeve et al.,
2012b). However, substantial spread remains in model sim-
ulations of present-day Arctic sea ice and of the long-term
rate of decline under climate change (Stroeve et al., 2012a).
The causes of this spread are poorly understood, resulting in
large uncertainty in future projections of Arctic sea ice.
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Evaluating sea ice extent or volume with respect to ref-
erence datasets shows that some models reproduce present-
day sea ice state more accurately than others (e.g. Wang and
Overland, 2012; Massonnet et al., 2012; Shu et al., 2015).
However, an accurate simulation of sea ice extent and volume
under the present-day climate does not necessarily imply an
accurate future projection of sea ice change, as a correct sim-
ulation can occur through cancelling model errors. Sea ice
extent in particular is known to be a very unsuitable metric
for diagnosing model performance due to its high internal
variability (Notz, 2015; Swart et al., 2015). Hence there is a
need to better understand the drivers which lead a model to
simulate a given Arctic sea ice state.

This study presents a new framework (the induced surface
flux, ISF, framework) to improve understanding of sea ice
model bias by identifying proximate drivers of model bias in
sea ice volume balance. (Throughout this study we use the
term volume balance to describe changes in sea ice volume
rather than the more commonly used term mass balance.) The
framework is motivated in the following way. Sea ice vol-
ume balance is determined by the surface and basal energy
balance; assuming constant ice density, the ice volume is to
first-order approximation proportional to the energy required
to melt the ice. Basal melting of the interior ice pack results
primarily from direct solar heating of the ocean (e.g. Maykut
and McPhee, 1995), and basal freezing results primarily from
conduction of energy upward through the ice (Perovich and
Elder, 2002). The total downwards surface energy flux (sur-
face flux) thus contains the principal sources and sinks of en-
ergy for the sea ice volume balance on an Arctic-wide scale.

However, interactions between sea ice thickness and sur-
face energy balance, via the surface temperature and surface
albedo, give rise to the thickness–growth feedback (Bitz and
Roe, 2004) and the surface–albedo feedback (Bitz, 2008),
both of which exert first-order control on the sea ice state.
Hence, components of the surface energy balance (SEB) can-
not be viewed as independent of the sea ice state but are di-
rectly affected by it. To resolve this, we need to separate sur-
face flux biases that arise from the sea ice state (representing
feedbacks of the sea ice volume balance) from those that rep-
resent forcings on the sea ice volume balance.

In the proposed ISF framework, the total downwards sur-
face energy flux is expressed as an explicit function of key
Arctic climate model metrics, allowing the dependence of
modelled surface flux on each metric to be described. Ref-
erence datasets (observational estimates or model reanaly-
ses) then allow the model bias in surface flux induced by the
model bias in each model metric to be estimated. Attribution
of biases in ice growth and melt over the course of the year
is then possible for specific model quantities. The method al-
lows the contributions to model biases in ice growth and melt
caused by the surface–albedo feedback, the ice thickness–
growth feedback and “forcings” to be independently quan-
tified. In this way it can be seen how model biases in the
external forcings drive model bias in the sea ice volume bal-

ance, offering a valuable tool for setting sea ice state biases
in context and for understanding spread in sea ice simulation
within multi-model ensembles.

The ISF framework works by expressing the total down-
ward surface energy flux Fsfc, at each point in time t and
space x, as an explicit function gx,t of quasi-independent
climate variables vi . The variables are quasi-independent in
the sense that while they affect each other on timescales
varying from days to months, they affect the surface flux
instantaneously. Taking partial derivatives, the dependence
of the surface flux on each variable can be separately
expressed as (

[
∂gx,t/∂vi

]MODEL
). Given an estimate of

the model bias in any variable via a reference dataset(
vMODEL
i,x,t − vREFERENCE

i,x,t

)
, this can be multiplied by the field

of surface flux dependence to produce an estimate of the sur-
face flux bias induced (instantaneously) by the model bias in
that variable, as a function of space and time.

This method has two key strengths. Firstly, the fields of in-
duced surface flux bias (ISF bias) can be averaged in time or
space to determine the large-scale effects of particular model
biases. This bypasses nonlinearities in the dependence of sur-
face flux on some model metrics. Secondly, the effects of
each on the surface flux are separated such that the sum of
the ISF biases theoretically approaches the total (true) model
surface flux bias. This is logically implied by the dependent
variables affecting the surface flux instantaneously but only
affecting each other over longer timescales.

The analysis is applied to the four members of the his-
torical ensemble of the coupled CMIP5 model HadGEM2-
ES (Hadley Centre Global Environment Model version 2 –
Earth System). As demonstrated below, this model simulates
anomalously low annual minimum ice extent, and ice volume
that is both too low in the annual mean and too amplified in
the seasonal cycle, which is a similar behaviour to that iden-
tified by Shu et al. (2015) in the CMIP5 ensemble mean. A
variety of reference datasets demonstrate the large observa-
tional uncertainties present in the Arctic, which affect our
ability to attribute sea ice volume balance bias with the ISF
framework.

The paper is structured as follows. In Sect. 2, the
HadGEM2-ES model and the reference datasets used are de-
scribed in turn. In Sect. 3, the sea ice and surface radiation
simulations of HadGEM2-ES are evaluated. The demonstra-
tion of the sea ice volume balance biases of HadGEM2-ES,
as well as possible drivers, motivates the following analysis.
In Sect. 4, the ISF framework is described in more detail and
examples are shown. In Sect. 5 the ISF analysis is applied to
HadGEM2-ES, allowing the role of each model bias identi-
fied in Sect. 3 and causing sea ice volume balance bias to be
quantified. In Sect. 6 the implications of the results are dis-
cussed, in particular the mechanisms by which the identified
external drivers determine the modelled sea ice state and the
likely drivers behind the corresponding model biases. Con-
clusions are presented in Sect. 7.
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2 Model and reference datasets

2.1 The HadGEM2-ES model

HadGEM2-ES is a coupled climate model employing addi-
tional components to simulate terrestrial and oceanic ecosys-
tems, and tropospheric chemistry (Collins et al., 2011). It is
part of the HadGEM2 “family”, a collection of models that
all use the HadGEM2-AO coupled atmosphere–ocean sys-
tem. HadGEM2-AO is developed from HadGEM1 (Johns et
al., 2006), a coupled atmosphere–ocean model whose sea ice
extent verified well against observations (Wang and Over-
land, 2009). While the atmospheric and ocean components
of HadGEM2-ES contain a large number of improvements
relative to HadGEM1, many of these targeted at improving
simulations of tropical weather, the sea ice component is very
similar to that of HadGEM1 (except for three minor differ-
ences, summarized in Martin et al., 2011, Table A4).

A fundamental feature of the sea ice component of
HadGEM2-ES is the sub-grid-scale sea ice thickness dis-
tribution (Thorndike et al., 1975). In this formulation, ice
in each grid cell is separated into five thickness categories
with boundaries at 0, 0.6, 1.4, 2.4, 3.6 and 20 m, each with
its own area, thermodynamics and surface exchange calcu-
lations. Another key aspect of the sea ice model is the zero-
layer thermodynamics scheme (appendix to Semtner, 1976),
in which the sea ice surface temperature responds instanta-
neously to changes in forcing, with conduction being uni-
form within the ice and snow column, and neither sea ice
nor overlying snow has heat capacity (sensible heat storage
is parameterized in the top 10 cm of the snow–ice column
during surface exchange calculations to aid stability).The
HadGEM2-ES sea ice model also includes elastic–viscous–
plastic sea ice dynamics (Hunke and Dukowicz, 1997) and
incremental remapping (Lipscomb and Hunke, 2004). Most
sea ice processes are calculated in the ocean model, but the
surface energy balance (SEB) calculations are carried out in
the atmosphere model, which passes top melting flux and
conductive heat flux to the ocean model as forcing for the
remaining components. A more complete description of the
sea ice component can be found in McLaren et al. (2006).

This study uses the four ensemble members of the CMIP5
historical simulation of HadGEM2-ES, forced with observed
solar, volcanic and anthropogenic forcing from 1860 to 2005.
The period of 1980–1999 is used for the model evaluation,
and all analyses are carried out with data restricted to the
Arctic Ocean region. The Arctic Ocean is defined as the
area enclosed by the Fram Strait, the northern boundary of
the Barents Sea, the eastern boundary of the Kara Sea, the
Bering Strait and the northern edge of the Canadian Arctic
Archipelago (Fig. 1).

Figure 1. The Arctic Ocean region used in the analysis, defined as
the area enclosed by the Fram Strait, Bering Strait and the northern
boundary of the Barents Sea.

2.2 Reference datasets

Observational uncertainty in the Arctic is greater than in the
temperate and tropical regions. There are severe practical dif-
ficulties with collecting in situ data on a large scale over re-
gions of ice-covered ocean. While satellites have in many
cases been able to produce Arctic-wide measurements, most
notably of sea ice concentration, the relative lack of in situ
observations against which these can be calibrated means
knowledge of the observational errors is limited. Reanaly-
sis data over the Arctic are also more subject to model er-
rors than in other regions, due to errors in atmospheric forc-
ing, and the existence of fewer direct observations available
for assimilation (Lindsay et al., 2014). The approach of this
study is to use a wide range of observational data to evalu-
ate modelled sea ice state and surface radiative fluxes, con-
strained where possible, by in situ validation studies. The
same datasets are used as reference datasets for the induced
surface flux framework.

To evaluate modelled sea ice concentration, we use the
HadISST1.2 dataset (Rayner et al., 2003), derived from pas-
sive microwave observations. To evaluate modelled sea ice
thickness Arctic-wide, we use the Pan-Arctic Ice Ocean
Modeling and Assimilation System (PIOMAS) (Zhang and
Rothrock, 2003), which is forced with the National Centers
for Atmospheric Prediction (NCEP) reanalysis and assimi-
lates ice concentration data. Laxon et al. (2013) and Wang et
al. (2016) found PIOMAS to estimate anomalously low win-
ter ice thicknesses compared to satellite observations over
some years. In particular, Wang et al. (2016) found PIOMAS
to have a mean bias of−0.31 m relative to observations from
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the ICESat (Ice, Cloud and land Elevation Satellite) laser
sensor. To set the PIOMAS comparison in context, we use
two additional datasets to evaluate the model over smaller
regions: measurements from radar altimetry aboard the Eu-
ropean remote sensing (ERS) satellites from 1993 to 2000
(Laxon et al., 2003), limited to latitudes below 82◦ N, and
estimates compiled by Rothrock et al. (2008), derived from
a multiple regression of submarine transects over the central
Arctic Ocean from 1975 to 2000.

To evaluate modelled surface radiative fluxes across the
whole Arctic Ocean, three datasets are used. Firstly, we use
the CERES–EBAF (Clouds and Earth’s Radiant Energy Sys-
tems – Energy Balanced And Filled) dataset (Loeb et al.,
2009), based on direct measurements of top-of-atmosphere
radiances from EOS sensors aboard NASA satellites, avail-
able from 2000 to present. Secondly, we use the ISCCP-FD
(International Satellite Cloud Climatology Project FD-series)
product (Zhang et al., 2004). Lastly, we use the ERA-Interim
(ERAI) atmospheric reanalysis dataset, which provides grid-
ded surface flux data from 1979 to present using a reanal-
ysis system driven by the ECMWF (European Centre for
Medium-Range Weather Forecasts) IFS forecast model and
the 4D-Var data assimilation system (Dee et al., 2011).

In situ validation of these datasets in the Arctic has been
limited, but Christensen et al. (2016) found CERES to per-
form quite well relative to other products, albeit underesti-
mating downwelling longwave (LW) fluxes from November
to February by 10–20 Wm−2 relative to in situ observations
at Point Barrow (Alaska). Liu et al. (2005) found ISCCP-FD
to simulate SW radiative fluxes fairly accurately relative to
observations from SHEBA (Surface Heat and Energy Bud-
get of the Arctic) but found it to underestimate] downwelling
SW fluxes in spring by over 30 Wm−2, also to overestimate
downwelling LW fluxes in winter by around 40 Wm−2. Lind-
say et al. (2014) identified ERAI as producing a relatively
accurate simulation of surface fluxes compared to in situ ob-
servations at Point Barrow (Alaska) and Ny-Ålesund (Sval-
bard), although it tends to underestimate downwelling SW
fluxes in the spring by up to 20 Wm−2 and overestimate
downwelling LW fluxes in the winter by around 15 Wm−2.
Comparison of winter downwelling LW fluxes in all datasets
to in situ measurements compiled by Lindsay (1998) sug-
gests that while ISCCP-FD is likely to be biased high, ERAI
and CERES may be relatively accurate.

In addition to the datasets above, in Sect. 4 we make use of
satellite estimates of date of melt onset over sea ice (Ander-
son et al., 2011), also derived from passive microwave sen-
sors. In Sect. 5, to evaluate the impact of observational un-
certainty in the ice area, we use the NSIDC “Sea Ice Concen-
trations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS
Passive Microwave Data, Version 1” (Cavalieri et al., 1996)
and HadISST.2 (Hadley Centre Ice and Sea Surface Temper-
ature dataset) (Titchner and Rayner, 2014). Finally, in Sect. 6,
the CERES-SYN (Synoptic Radiative Fluxes and Clouds)
dataset (Rutan et al., 2015), similar to CERES-EBAF but

available at higher temporal resolution, is used to examine
modelled surface radiation evolution during May in more de-
tail.

3 Evaluating HadGEM2-ES

In this section, and throughout the rest of the paper, a dif-
ference between a model simulation of a particular quantity,
and any reference dataset for that quantity, is referred to as a
“bias”. In a similar way, the difference in model surface flux
judged to arise from the difference in a particular quantity
relative to a reference dataset is referred to as an “induced
surface flux bias”. Attention is drawn to the fact that, due to
observational inaccuracy, true model bias relative to the real
world may be somewhat different from the biases described
in this way.

Modelled September sea ice extent in HadGEM2-ES from
1980 to 1999 is systematically lower than that observed
(Fig. 2a); the four members of the HadGEM2-ES histori-
cally forced ensemble simulate a mean September sea ice ex-
tent of 5.78× 106 km2, with ensemble standard deviation of
0.24×106 km2. By comparison, the mean observed Septem-
ber sea ice extent over this period was 6.88× 106 km2 ac-
cording to the HadISST1.2 dataset.

Arctic mean ice thickness is lower than that estimated by
PIOMAS for the Arctic (Fig. 2b), with the largest bias of
−0.4 m in October (minimum of the annual cycle) and a
near-zero bias in May close to the maximum. Modelled ice
thickness is also biased low relative to the ERS satellite mea-
surements (Fig. 2c), with biases ranging from −0.57 m in
November to −0.16 m in April. Finally, modelled ice thick-
ness is biased low relative to the submarine data (Fig. 2d),
at −1.5 m in August and −0.8 m in January and May. We
conclude that annual mean ice thickness is biased low in
HadGEM2-ES.

There is also a model bias in the seasonal cycle of vol-
ume balance. Model biases at minimum ice thickness tend
to be larger (i.e. more negative) than those at maximum ice
thickness. The model simulates excess ice melt in summer,
and excess ice growth in winter, equivalent to 38, 42 and
38 cm over the Arctic Ocean region on average, relative to PI-
OMAS, ERS altimetry and submarine upward-looking sonar,
respectively (Fig. 1). Hence HadGEM2-ES is likely to over-
estimate the magnitude of the ice thickness seasonal cycle
by around 40 cm across the Arctic Ocean on average. In par-
ticular, the large negative model bias in ice thickness in late
summer is likely to be the principal cause of the low bias
in the September ice area. We note that both ERS and sub-
marine measurements are seasonally and spatially limited; in
each comparison above, model data are calculated only for
regions and times of year for which data exist in the respec-
tive dataset.

The thin ice thickness bias is smaller on the Pacific side
of the Arctic than on the Atlantic side of the Arctic in both
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Figure 2. (a) HadGEM2-ES 1980–1999 mean Arctic Ocean ice
extent, compared to HadISST1.2 1980–1999, with September ice
fraction bias map. (b)–(d) HadGEM2-ES ice thickness compared to
(b) PIOMAS 1980–1999, (c) Envisat 1993–1999 and (d) submarine
datasets from 1980 to 1999 over respective regions and periods of
coverage, with April and October ice thickness bias maps. For each
seasonal-cycle plot, the model is in black and reference datasets in
red. In (c), data are not plotted from May to September due to the
region of coverage being very small.

April and October, relative to all three datasets, becoming
very small or positive in the Beaufort Sea (Fig. 2b–d). The
seasonal cycle in ice thickness in HadGEM2-ES is ampli-
fied across much of the Arctic, but not in the Beaufort Sea
(Fig. 3), relative to all three datasets; here, the seasonal cy-
cle amplitude is diagnosed as the difference between April
and October ice thickness. There is a correspondence be-
tween areas where modelled annual mean ice thickness is
biased low (high) and areas where the modelled seasonal cy-
cle is over-amplified (under-amplified). This is likely to be
associated with the ice thickness–growth feedback, whereby
a steeper temperature gradient induces stronger conduction
and hence ice growth for thin ice. Indeed, negative correla-
tions between summer sea ice and sea ice growth the follow-
ing winter are a ubiquitous feature of CMIP5 models (Mas-
sonnet et al., 2018).

The bias in ice volume balance is associated with a bias
in ice energy uptake. Ignoring sensible heat uptake, and as-
suming a constant ice density of 917 kg m−3 (as used in
HadGEM2-ES), a 40 cm ice melt bias during summer is as-
sociated with an energy uptake bias of around 1.5×108 J, or
15 Wm−2 over a 4-month melting season; a 40 cm ice growth
bias during winter is associated with an energy uptake bias of

−7.5 Wm−2 over an 8-month freezing season. The ice energy
uptake has three drivers: surface energy balance, oceanic heat
convergence and ice divergence. For the rest of this study,
we concentrate on the surface energy balance and neglect
the other two terms, although the ocean heat convergence
is briefly discussed in Sect. 6. This is justified by observing
that sea ice divergence is comparatively small in magnitude
(e.g. Serreze et al., 2007), and that while Arctic Ocean heat
convergence can be significant, across much of the Arctic
the sea ice is insulated from the warm Atlantic layer beneath
by fresh water derived mainly from river runoff (e.g. Ser-
reze et al., 2006; Stroeve et al., 2012b). Hence in the Arctic
Ocean interior direct solar heating of the ocean is a much
larger contributor to sea ice basal melting than oceanic heat
convergence, as observed by Maykut and McPhee (1995),
McPhee et al. (2003) and Perovich et al. (2008), and mod-
elled by Steele et al. (2010) and Bitz et al. (2005). In partic-
ular, oceanic heat convergence is of negligible importance to
the sea ice heat budget in HadGEM2-ES (Keen and Block-
ley, 2018).

Surface radiative fluxes are now evaluated. In the follow-
ing discussion, and throughout this study, the convention is
that positive numbers denote a downwards flux. Upwelling
SW radiation shows a low magnitude model bias through-
out the summer (Fig. 4b), with June biases of 16, 37 and
44 Wm−2 relative to ERAI, CERES and ISCCP-FD respec-
tively (a positive bias in an upward flux demonstrates that the
modelled flux is too low in magnitude). There is no consistent
signal for a low bias in downwelling SW during the summer
(Fig. 4a), suggesting that the model surface albedo is biased
low. Net downward SW flux shows a high model bias rela-
tive to all observational datasets in June and relative to some
in July and August. Relative to CERES, the June upwelling
SW bias, and hence the net SW bias, tends to be somewhat
higher in magnitude towards the central Arctic (Fig. 4b–c).

The June surface albedo bias is likely to be associated
with a bias in surface melt onset in HadGEM2-ES (Fig. 5).
Surface melt onset, associated with the formation of low-
albedo melt ponds, occurs around mid-June in the central
Arctic (although earlier around the Arctic Ocean coasts), as
measured by satellite observations. In contrast, HadGEM2-
ES simulates surface melt onset in mid- to late May across
the Arctic Ocean. This would cause a bias in surface albedo
with a strong maximum in the central Arctic, consistent
with the spatial pattern of the net SW bias discussed above.
HadGEM2-ES parameterizes the effect of melt ponds by
lowering sea ice albedo as surface temperature reaches the
melting point. In the comparison to above, melt onset date
in the model is defined as the first day on which the surface
temperature exceeds−1 ◦C. Varying this threshold by 0.5 ◦C
in either direction changes the date in only a small minority
of grid cells.

LW radiation fluxes (both downwelling and upwelling)
are lower in magnitude in HadGEM2-ES throughout the
winter than in all observational datasets (Fig. 5d–f). For
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Figure 3. HadGEM2-ES model bias in ice thickness change from October to April compared to (a) PIOMAS 1980–1999, (b) Envisat 1993–
2000 and (c) submarine regression analysis 1980–1999. In each plot, the model period used matches the period of the reference dataset.
Differences are taken as model reference so that areas of green (purple) correspond to areas where the HadGEM2-ES model simulates too
much (not enough) sea ice growth through the winter.

downwelling LW, the mean model biases from December to
April are −16, −22 and −40 Wm−2 for ERAI, CERES and
ISCCP-FD respectively. There is no indication from in situ
studies as to where the true model bias may lie, as in situ
studies of downwelling LW measurements have shown un-
derestimation by CERES and overestimation by ERAI and
ISCCP-FD. For upwelling LW, the biases are 11, 16 and
18 Wm−2 for CERES, ERAI and ISCCP respectively. There
is uncertainty in inferring a model bias in net downwelling
LW, with negative biases suggested by the satellite datasets
but a neutral bias by ERAI. The bias in downwelling and net
down LW is somewhat higher towards the North American
side of the Arctic and lower on the Siberian side (Fig. 5d, f).

The surface radiation evaluation provides clues as to the
causes of the HadGEM2-ES ice volume balance bias but also
underlines why a more detailed analysis is required to prop-
erly quantify these causes. For example, in winter the low
downwelling LW bias provides a clear mechanism for the
bias in ice freezing. However, the reference datasets also sug-
gest a low bias in upwelling LW that at first sight would tend
to counteract this. In fact, these biases are fully consistent: a
low bias in downwelling LW would be expected to cause a
low surface temperature bias, causing both a high bias in ice
growth and a low bias in upwelling LW. The qualitative eval-
uation fails to capture the full causal relationship; for this, an
analysis of exactly how the downwelling LW bias affects sur-
face flux, including the upwelling LW response, is necessary.

In the summer, meanwhile, the surface radiation evalua-
tion suggests that a bias in net SW radiation is responsible
for the ice volume balance bias, and that this in turn is re-
lated to a surface albedo bias. However, at least two possible
drivers of this have been identified: the surface melt onset
bias and the underlying ice area bias that is itself likely to be
caused by the ice volume balance bias. Quantifying the ex-

tent to which each driver is important, and at which times of
year, is likely to help in resolving this circular causal loop.
In the next section, it is described how the effects of each
model bias on the sea ice volume balance can be separated
and quantified through their effect on the surface flux, in the
ISF framework.

4 The induced surface flux (ISF) framework: a way to
quantify the effect of each model bias on sea ice
volume balance

We are motivated by the observation that each of the model
biases described above affects the sea ice volume balance
by acting through the total downwards surface energy flux
(referred to as the surface flux). An excess of downwelling
radiation leads directly to a higher surface flux, higher sea
ice energy uptake and a bias towards ice melting. A bias
in ice area, or in surface melt onset, is associated with a
bias in surface albedo, hence a bias in net SW, and in the
total surface flux. Finally, a bias in ice thickness alters the
thermodynamics of the entire snow–ice column and of the
near-surface atmosphere layer. Flux continuity considera-
tions show that in the freezing season, thinner ice is as-
sociated with a warmer surface temperature, and hence a
higher upwelling LW flux and a smaller total downwards
surface energy flux. Thinner (thicker) ice is also associated
with a stronger (weaker) upwards conduction flux and hence
stronger (weaker) ice growth.

Each of these relationships can be quantified, in prin-
ciple, at any point in model space and time. Specifically,
the rate at which the surface flux depends on each vari-
able alone, with others being held constant, can be esti-
mated. To this end, we approximate the surface flux Fsfc
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Figure 4. (a) Downwelling SW, (b) upwelling SW, (c) net down SW, (d) downwelling LW, (e) upwelling LW and (f) net down LW, for
HadGEM2-ES 1980–1999 over the Arctic Ocean region, compared to CERES 2000–2013, ISCCP-D 1983–1999 and ERAI 1980–1999. (a)–
(c) show absolute values. (d)–(f) show model bias relative to each respective dataset. For all fluxes, a positive number denotes a downward
flux and vice versa. Maps of flux bias relative to CERES are shown for downwelling SW in May, upwelling and net down SW in June, and
downwelling and net down LW in February.

Figure 5. Average date of year of surface melt onset, 1980–1999, (a) as modelled by HadGEM2-ES and (b) as measured by SSMI observa-
tions. (c) shows model bias.

at each point in model space x and time t by an explicit
function gx,t of quasi-independent variables vi . The func-
tions gx,t are constructed in such a way as to capture each
of the relationships described above in a manner that best
represents both HadGEM2-ES and also the conditions at the
point x and time t . In addition, the function captures the in-
direct effect of any model bias on surface flux via surface
temperature and upwelling LW, which will tend to coun-

teract the direct effect to a degree. Hence the dependence
of the surface flux on each of the independent variables at
point x, time t can be approximated by

[
∂gx,t/∂vi

]MODEL.
Given a model bias in variable vi at (x, t) we can then es-
timate the surface flux bias induced by that model bias as[
∂gx.t/∂vi

]MODEL
∂gx,t/∂vi

(
vMODEL
i,x,t − vREFERENCE

i,x,t

)
.

The function gx,t and its derivation are described fully in
Appendix A but are summarized briefly here. The surface
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Figure 6. Demonstrating the calculation of fields of surface flux bias due to model bias in melting surface fraction (a)–(c) and downwelling
LW (d)–(f). (a) and (d) show model bias in each variable, (b) and (e) the local rate of dependence of surface flux on each variable as
calculated above, and (c) and (f) the induced surface flux bias, calculated as the product of these two fields. The first historical simulation of
HadGEM2-ES is used for the illustration.

flux is expressed as a sum of separate radiative and turbulent
components. Ice-covered and ice-free portions of a grid cell
are treated separately; in ice-covered areas, dependence on
surface temperature is linearized, and flux continuity at the
surface and a uniform vertical conductive flux through the
ice are assumed, allowing surface temperature to be elimi-
nated and the dependence of surface flux on upwelling LW
to be captured. The surface albedo, upon which the upwelling
SW component depends, is expressed in terms of ice fraction,
snow fraction and melt onset occurrence, based on the albedo
parameterization of HadGEM2-ES. Latent heat flux over ice
is neglected. In this way the surface flux is expressed as an
explicit function of downwelling shortwave (SW) and long-
wave (LW) radiation, ice concentration, category ice thick-
ness, snow thickness, sensible and latent heat fluxes over ice
and ocean, and melt onset occurrence (a logical determina-
tion of whether or not the snow surface is undergoing melt-
ing). Induced surface flux due to ice thickness bias is deter-
mined by summing each of the separate ISF biases by cate-
gory.

The usefulness of this approach is that surface flux op-
erates linearly on the sea ice volume balance, meaning that
each of the ISF biases at (x, t) can be averaged over large
regions of time and space to understand large-scale sea ice
biases. Clearly, none of the driving model biases operate on

the sea ice state in a linear sense. For example, given iden-
tical surface melt onset (and hence surface albedo) biases at
different points in the Arctic, each could have very differ-
ent implications for local sea ice volume balance depending
on the downwelling SW modelled at each point. Conversely,
identical downwelling SW biases would have different im-
plications for sea ice volume balance depending on the mod-
elled surface albedo. Model bias in ice thickness behaves in a
particularly nonlinear fashion, with bias in regions of thinner
ice having far more influence than that in regions of thicker
ice. The effect of estimating ISF bias at each point separately,
and then averaging to determine large-scale effects, is the by-
passing of all nonlinearities.

A second advantage of this approach lies in the quasi-
independence of the variables. While each variable may af-
fect the others over timescales varying from days to months,
each affects the surface flux instantaneously (in HadGEM2-
ES). Hence a model bias in any variable represents an effect
on the surface flux that is separable from the effect of a model
bias in any other. If the surface flux variation is completely
described by the function gx,t , the sum of the ISF biases, over
all variables, must therefore approach the true model surface
flux bias (although it will be seen that this claim is impossi-
ble to evaluate precisely due to observational uncertainty). In
this way, large-scale model biases in surface flux, and hence
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sea ice volume balance, can be broken down into separate
contributions from model biases in each of the independent
variables.

The ISF calculation process is now illustrated for two pro-
cesses in turn. The model bias in melting surface fraction for
the month of June 1980 is positive over most of the Arc-
tic, although only weakly so towards the coasts (Fig. 6a),
reflecting melt onset modelled earlier than observed during
this month. The reference dataset is derived from SSMI mi-
crowave observations. The rate of change of surface flux with
respect to melt onset occurrence tends to be higher in the cen-
tral Arctic (Fig. 6b). This reflects a greater tendency towards
clear skies in the central Arctic, as this field is effectively
downwelling SW multiplied by the difference in parameter-
ized albedos. The product of these two fields represents the
modelled surface flux bias induced by the model bias in melt
onset; this is also positive over most of the Arctic Ocean, by
up to 25 Wm−2 in the central Arctic, reflecting the greater
absorption of SW radiation induced by the early melt onset
(Fig. 6c)

The model bias in downwelling LW radiation in Febru-
ary 1980 is predominantly negative (Fig. 6d); here CERES-
EBAF is the reference dataset. The rate of dependence of
surface flux on downwelling LW (Fig. 6e) is everywhere be-
tween 0 and 1, tending to be lower in regions of thicker ice,
and is associated with a greater tendency for downwelling
LW biases to be counteracted by upwelling LW biases in
these regions. The resulting ISF bias (Fig. 6f) is negative al-
most everywhere but is lower in magnitude than the driving
downwelling LW bias.

5 Induced surface flux biases

5.1 Aggregate ISF biases

We calculate surface flux biases induced by model biases in
downwelling SW, downwelling LW, ice area, local ice thick-
ness and surface melt occurrence (the variables for which ref-
erence datasets are available). The resulting fields are aver-
aged over the model period and over the Arctic Ocean region,
to produce for each variable a seasonal cycle of total surface
flux bias induced by the bias in that variable. The induced
surface flux (ISF) biases are displayed in Fig. 7 together with
total ISF bias, net radiative flux bias estimated by the di-
rect radiation evaluation relative to ISCCP-FD, CERES and
ERAI, and also sea ice energy uptake biases implied by the
seasonal ice volume balance bias relative to PIOMAS. The
ISF biases are also shown in Table 1, using CERES as ref-
erence dataset for the radiative terms. During winter, ISF bi-
ases generally sum to negative values, indicating that model
biases in this season induce net additional surface energy loss
and ice growth. During summer, ISF biases generally sum to
positive values, indicating additional net surface energy gain

Figure 7. Surface flux bias induced by model biases in ice fraction,
melt onset occurrence, ice thickness, downwelling SW and down-
welling LW respectively for the Arctic Ocean region in HadGEM2-
ES, 1980–1999. Total ISF bias is indicated by black bars. For
each month, induced surface flux biases are estimated using in turn
CERES, ISCCP-FD and ERAI as radiation reference datasets, from
left to right. Sea ice latent heat flux uptake bias relative to PIOMAS
is indicated in black. Net radiative flux biases relative to CERES,
ISCCP-FD and ERAI are indicated in brown. Spatial patterns of
induced surface flux bias for four processes in key months, with
CERES as reference dataset, are displayed beneath and above (©
Crown copyright 2019. Distributed under the Creative Commons
Attribution 4.0 License.).

and ice melt. In both seasons, these results are consistent with
the radiation and ice volume balance evaluation.

Major roles are identified for particular processes in cer-
tain months. Firstly, in June the surface melt onset bias,
through its effect on the surface albedo, induces a surface
flux bias of −13.6 Wm−2, equivalent roughly to an extra
11 cm of melt. Secondly, in August a bias in ice fraction in-
duces a surface flux bias of 9.6 Wm−2, equivalent to an extra
8 cm of melt. This is associated with the overly fast retreat
of sea ice in HadGEM2-ES and the low extents in late sum-
mer, as noted in Sect. 3. Thirdly, from October to March the
downwelling LW biases induce substantial surface flux bi-
ases ranging from −6.5 to −3.8 Wm−2 depending on choice
of reference dataset, equivalent to additional sea ice growth
of 20–33 cm. Finally, from November to March the nega-
tive ice thickness bias induces substantial surface flux biases
reducing from −8.3 to −2.0 Wm−2 as the freezing season
progresses and is equivalent to a total additional ice growth
of 24 cm.
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Table 1. Surface flux biases induced by model bias in five different variables in HadGEM2-ES (Wm−2), with CERES used as reference
dataset for the radiative components. Total ISF bias and total net radiative flux bias relative to CERES are shown for comparison, as well as
their residual. The difference between net radiative flux bias as evaluated by CERES and ERAI is also shown. A positive number denotes a
downwards flux, and vice versa.

Downwelling Downwelling Ice Ice Melt onset Total induced Radiative ISF CERES-ERAI net
Month SW LW thickness area occurrence surface flux bias flux bias residual radiation difference

Jan 0.0 −6.5 −4.3 2.7 0.0 −8.1 −1.6 3.3 −12.2
Feb 0.0 −4.8 −2.8 2.3 0.0 −5.3 −10.4 4.6 −12.5
Mar 0.1 −3.8 −2.0 2.0 0.0 −3.7 −10.5 5.9 −12.0
Apr 0.4 −4.4 −1.4 1.4 0.2 −4.2 −12.2 7.6 −9.7
May 2.1 −4.8 −0.6 0.0 0.1 −3.2 −3.7 0.5 −3.5
Jun −8.3 7.4 0.0 1.7 11.4 12.2 27.8 −15.4 −4.2
Jul −13.6 8.0 0.0 3.7 3.3 1.4 5.1 −3.9 −16.9
Aug 0.5 −3.3 −0.1 9.6 1.9 8.5 8.6 −0.0 −12.9
Sep 3.3 −7.1 −0.7 −0.7 0.0 −5.2 −0.2 −4.8 −2.4
Oct 0.9 −5.7 −4.2 −1.8 0.0 −10.8 −14.4 3.4 −4.6
Nov 0.0 −5.4 −8.3 −0.3 0.0 −14.0 −21.6 8.1 −11.7
Dec 0.0 −6.4 −6.4 2.4 0.0 −10.4 −14.9 4.1 −12.2

Internal variability in the ISF biases is measured by taking
the standard deviation of the whole-Arctic ISF bias for each
process and month across all 20 years in the model period,
and all four ensemble members used. Variability is highest
in the ice area term, reaching 4.0 Wm−2 in July. Variabil-
ity reaches considerable size in some other terms in some
months, for example 1.1 Wm−2 for surface melt onset in
June, 1.9 Wm−2 for ice thickness in November but is oth-
erwise mainly under 1 Wm−2 in magnitude. In each case,
therefore, the ISF biases noted above are persistent features
of the model; surface melt onset and ice fraction biases in-
duce additional ice melt in summer, while downwelling LW
and ice thickness biases induce additional ice growth in win-
ter. The total summer volume balance bias accounted for by
the analysed processes is of the order 20 cm, while the total
winter volume balance bias is of the order 45–55 cm depend-
ing on radiation reference dataset.

5.2 Spatial variability

Examining first the June melt onset ISF bias, the spatial pat-
tern of the bias is characterized by a maximum in the central
Arctic, with values falling away towards the coast; this is di-
rectly related to the spatial pattern of the melt onset bias it-
self shown in Fig. 6. It is very similar to the spatial pattern of
the directly evaluated net SW bias in this month, providing
additional evidence that the melt onset bias is the principal
cause of this. This implies that the additional ice thinning in-
duced by this bias is greatest in the central Arctic and least at
the coasts.

The August ice concentration ISF bias displays a sharply
defined pattern, with high values across the shelf seas and the
Atlantic side of the Arctic falling to low or negative values in
the Beaufort Sea, again very similar to the pattern of the ice
concentration bias itself. The implication is that the model

bias towards ice thinning in August is largely based in areas
where ice concentration is already biased low.

The November–March ice thickness ISF bias displays a
pattern which is almost identical to that of the August ice
fraction ISF bias, but with the opposite sign, with high neg-
ative values on the Atlantic side of the Arctic rising to near-
zero values in the Beaufort Sea. Hence this model bias has
the reverse effect to that of the ice concentration bias, reduc-
ing existing ice thickness biases by promoting additional ice
growth in these areas.

Finally, the winter downwelling LW ISF bias is much more
spatially uniform but displays slightly higher values on the
Pacific side of the Arctic than the Atlantic side, which is a
different pattern to that displayed by the downwelling LW it-
self in Fig. 4d. The contrast is due to the role the effective ice
thickness scale factor plays in determining the induced sur-
face flux bias; the thicker ice present on the American side
of the Arctic tends to greatly reduce the flux bias. This rep-
resents the thickness–growth feedback; thicker ice will grow
less quickly than thin ice under the same atmospheric condi-
tions. The downwelling LW bias tends to increase ice growth
Arctic-wide but less so in regions where ice is already thick.

The spatial patterns of total ISF bias show many similar-
ities to the total net radiation bias evaluated by CERES in
most months of the year (Fig. 8). Notably there is a tendency
in July and August for positive surface flux biases to be con-
centrated on the Atlantic side of the Arctic, and a tendency
throughout the freezing season for negative surface flux bi-
ases to be least pronounced in the Beaufort Sea, where the ice
thickness biases are lowest. We note that the spatial pattern of
amplification of the ice thickness seasonal cycle displayed in
Fig. 3 is very similar, with amplification most pronounced in
the Atlantic sector and least pronounced in the Beaufort Sea.
The surface flux biases produced by ice fraction biases in Au-
gust, and ice thickness biases in November, provide reasons
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Figure 8. Comparing fields of total ISF bias (left) to net radiation
bias (right) relative to CERES for each month of the year for the
four historical members of HadGEM2-ES, 1980–1999.

for the spatial variation in amplification of the ice thickness
seasonal cycle seen in Fig. 4, as well as the close resemblance
of this pattern to the model biases in annual mean ice thick-
ness. Ice which is thinner in the annual mean will tend to melt
faster in summer, due to the net SW biases associated with
greater creation of open water (the surface albedo feedback)
and will tend to freeze faster in winter, due to greater con-
duction of energy through the ice (the ice thickness–growth
feedback).

5.3 Using the ISF biases to separate sea ice forcings
and feedbacks

It is helpful to divide the processes examined into feedbacks
(surface flux biases induced by biases in the sea ice state it-
self) and forcings (those induced by variables external to the
sea ice state). In this sense, a “forcing” refers to a variable
which is independent of the sea ice volume on instantaneous
timescales, rather than being used in the traditional sense of
a radiative forcing. Of the variables examined, downwelling
SW and LW radiation, as well as the surface melt onset, have
this property, and hence their corresponding ISF biases can
each be regarded as a “forcing” on the sea ice state. How-
ever, ice thickness and area do not have this property, and
their corresponding ISF biases should be regarded instead as
intrinsic feedbacks of the sea ice state.

The ice concentration ISF flux bias (specifically during the
melting season) can be identified with the effect of the sur-
face albedo feedback on the sea ice state. During the melting
season the ice area affects the estimated surface flux only
through the surface albedo, and the surface flux biases in-
duced in this way cause associated biases in ice melt.

On the other hand, the ice thickness ISF bias (specifically
during the freezing season) can be identified with the ef-
fect of the thickness–growth feedback on the sea ice state.
This is perhaps less obvious, as the ice thickness affects the
estimated surface flux via the surface temperature and up-
welling LW radiation, while the thickness–growth feedback
is usually understood to result from differences in conduc-
tion. However, the assumption of flux continuity at the sur-
face in constructing the estimated surface flux means that
the cooler surface temperatures, and shallower temperatures
gradients occurring for thicker ice categories are manifesta-
tions of the same process. Slower ice growth at higher ice
thicknesses is caused by a smaller negative surface flux, and
the surface temperature is the mechanism by which this is
demonstrated. Hence the effect of the thickness–growth feed-
back is described by the ice-thickness-induced component of
the surface flux bias.

The ISF analysis allows the effect of the surface albedo
and thickness–growth feedbacks on the sea ice state to be
quantified and compared to the effect of external drivers.
Arctic-wide, the surface albedo feedback, diagnosed as the
ice-area-induced component of the surface flux bias, con-
tributes an average of 5.2 Wm−2 to the surface flux bias over
the summer months, equivalent to an extra 13 cm of ice melt.
This is very similar to the effect of the component induced
by the surface melt onset, which contributes an average of
5.3 Wm−2, equivalent also to an extra 13 cm of ice melt. In
the freezing season, meanwhile, the thickness–growth feed-
back, diagnosed as the ice-thickness-induced component of
the surface flux bias, contributes an average of −4.4 Wm−2

to the surface flux bias from October to April, equivalent
to an extra 26 cm of ice freezing, while the downwelling-
LW-induced component (using CERES as reference dataset)
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contributes an average of−4.9 Wm−2, equivalent to an extra
29 cm of freezing over this period.

5.4 ISF residuals and observational uncertainty

The ISF biases, summed over all independent variables,
should approach the true total surface flux bias. However,
this is difficult to evaluate as the true surface flux bias is not
known. Hence it is necessary to use proxy quantities to eval-
uate the total ISF bias. We use directly evaluated surface net
radiation bias (relative to ISCCP-FD, ERAI and CERES re-
spectively), and ice energy uptake bias, derived from ice vol-
ume balance bias relative to PIOMAS.

For most months of the year, all estimates of total ISF
bias fall within the spread of these four datasets (Fig. 6),
the exceptions being June and July when total ISF bias is
smaller than all surface flux proxies. However, the spread is
extremely large. For example, in the month of January the
estimates of total ISF bias are −12.3, −8.2 and −6.1 Wm−2

(with ISCCP-FD, CERES and ERAI used as downwelling ra-
diation datasets respectively), while the estimates of net radi-
ation bias are−18.2,−11.6 and 0.6 Wm−2 from ISCCP-FD,
CERES and ERAI respectively, and ice heat uptake bias is
estimated as −10.1 Wm−2. Hence it is difficult to evaluate
the total ISF bias within current observational constraints,
and at best it can be said that the total ISF bias is qualita-
tively consistent, over the year as a whole, with the surface
flux bias proxies. A possible cause of the lower total ISF bias
in June and July is the “missing process” of snow on ice,
which cannot be evaluated here due to the lack of a refer-
ence dataset. The early surface melt onset, and sea ice frac-
tion loss, as modelled by HadGEM2-ES, would be associated
with an early loss of snow on ice, with an additional surface
albedo bias and hence an additional ISF bias.

On the other hand, the annual mean ice heat uptake bias
(0.0 Wm−2) provides a strong constraint on the annual mean
surface heat flux bias in the absence of a significant oceanic
heat convergence contribution. For example, the annual mean
total ISF biases are −3.6 and −4.5 Wm−2 when CERES and
ISCCP-FD are used as reference datasets respectively; these
would imply sea ice thickening of 7 and 9 m over the 1980–
1999 in HadGEM2-ES, which does not occur. Hence in the
annual mean, the total ISF bias is too low. This annual mean
bias is related to the tendency for the ISF analysis to account
for a greater bias towards ice growth in winter (45–55 cm)
than that towards ice melt in summer (20 cm). It is likely to
be derived, at least in part, from the use of multiple refer-
ence datasets whose errors are not constrained to correlate
in a physically realistic sense but may also be related to the
missing processes in June and July.

Observational error is one potential cause of error in the
ISF biases. An idea as to the potential magnitude of this
can be seen from the large spread in SW and LW ISF bias
(across different datasets) during summer (Fig. 6). For ex-
ample, in July the model downwelling LW bias with respect

to ERAI produces an aggregated ISF bias of −7.0 Wm−2,
but that with respect to CERES produces an aggregate ISF
bias of 8.0 Wm−2. Calculation of ice area ISF biases using
NSIDC and HadISST.2 as references, described in Sect. 2.2
and not shown here, showed a similar magnitude of uncer-
tainty in the ice area term (±10 Wm−2 in summer,±2 Wm−2

in winter). We note that the evidence from in situ validation
studies suggests that the winter downwelling LW estimates
of ERAI and CERES are more likely to be accurate than that
of ISCCP-FD. Hence the downwelling LW ISF bias is likely
to be estimated more accurately when ERAI or CERES are
the reference dataset, and the bias towards ice growth is likely
to lie closer to the lower end of the range (20 cm).

In Appendix B, inherent theoretical errors in the ISF analy-
sis are discussed and are found to be small relative to the sen-
sitivity to use of observational datasets. The largest errors are
listed here: firstly, due to sub-monthly variation in the com-
ponent variables, the winter downwelling LW component
may be underestimated in magnitude by around 0.6 Wm−2

on average, and the ice area component in August may be
overestimated by around 1.6 Wm−2. Secondly, due to the
evaluation of surface flux dependence at a model state which
is itself biased, the total ISF bias in October is overestimated
in magnitude by around 3.6 Wm−2. Thirdly, due to nonlin-
earities in the surface flux dependence on ice thickness, the
ice thickness component is overestimated in magnitude by
0.7 Wm−2 on average from October to April, with a max-
imum overestimation in November of 1.9 Wm−2. As these
biases are, in the main, considerably smaller than the differ-
ences between ISF biases when different reference datasets
are used, it is concluded that observational errors are the
more important contribution to error in the ISF biases.

6 Discussion

6.1 Using the ISF framework to understand the
HadGEM2-ES sea ice state

The HadGEM2-ES ISF biases are qualitatively consistent
with the direct net radiation evaluation and with the sea
ice simulation, both in terms of seasonal and spatial varia-
tion, and allow the effect of the surface albedo feedback and
thickness–growth feedback on the sea ice volume balance to
be separated. This allows the HadGEM2-ES sea ice biases to
be understood by considering, in turn, the separate ISF com-
ponents, their magnitudes, and the times of year when they
are important. The anomalous summer sea ice melt is initi-
ated by the early melt onset occurrence and maintained by the
surface albedo feedback, which acts preferentially in areas of
thinner ice. The anomalous winter ice growth is maintained
both by the thickness–growth feedback (occurring mainly in
areas of thinner ice, of greater importance in early winter)
and by the downwelling LW bias (more spatially uniform, in
late winter). It is unclear that any significant role is played
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by the downwelling SW bias, as at the only time of the year
when the radiation datasets agree that this bias is of signifi-
cant value (May), the induced surface flux bias is more than
balanced by that induced by downwelling LW. However, this
may have a role in causing the later melt onset bias, as dis-
cussed below.

The means by which the external forcings – anomalous
LW winter cooling and early late spring melt onset – cause
an amplified seasonal cycle in sea ice thickness are clear. It
can also be seen how, in the absence of other forcings, these
combine to create an annual mean sea ice thickness that is
biased low, as seen in Sect. 4. The melt onset forcing, by
inducing additional ice melting through its effect on the ice
albedo, enhances subsequent sea ice melt through the surface
albedo feedback. The downwelling LW bias, on the other
hand, by inducing additional ice freezing through its cool-
ing effect attenuates subsequent sea ice freezing through the
thickness–growth feedback. Surface flux biases induced by
melt onset occurrence are enhanced, while those induced by
downwelling LW are diminished.

Acting together, the ice thickness–growth feedback and
surface albedo feedback create a strong association between
lower ice thicknesses and amplified seasonal cycles, because
ice which tends to be thinner will both grow faster during the
winter and melt faster during the summer. Hence the melt on-
set bias, acting alone, would induce a seasonal cycle of sea
ice thickness whose annual mean thickness is lower, but that
was also more amplified than that observed. This is because
the surface albedo and thickness—growth feedbacks act to
translate lower ice thicknesses into faster melt and growth.
For similar reasons, the downwelling LW bias, acting alone,
would induce a seasonal cycle of sea ice thickness whose
annual mean thickness is higher, and that was also less am-
plified than that observed.

The bias seen in HadGEM2-ES is a result of the melt on-
set bias “winning out” over the downwelling LW, due to it
occurring at a time of year when the intrinsic sea ice feed-
backs render the ice far more sensitive to surface radiation.
The anomalously low ice cover in September arises as a con-
sequence of the low annual mean ice thickness and in par-
ticular as a consequence of the anomalously severe summer
ice melt. The finding that the low annual mean ice thickness
is driven by surface albedo biases is consistent with the find-
ing by Holland et al. (2010) that variance in the mean sea
ice volume in the CMIP3 ensemble was mostly explained by
variation in summer absorbed SW radiation.

The feedbacks of the sea ice state explain the association
between spatial patterns of annual mean ice thickness bias
and ice thickness seasonal cycle amplification. However, the
external forcings (melt onset and downwelling LW bias) can-
not entirely explain the spatial patterns in the mean sea ice
state biases, because on a regional-scale effects of sea ice
convergence, and hence dynamics, become more important.
The annual mean ice thickness bias seen in HadGEM2-ES is
associated with a thickness maximum on the Pacific side of

Figure 9. Frequency distributions of (a) October–April cloud liquid
water percentage in HadGEM2-ES compared to MODIS observa-
tions, for the Arctic Ocean region. (b) December–February surface
net downwelling LW in HadGEM2-ES in the SHEBA region, com-
pared to the values observed at SHEBA.

the Arctic, at variance with observations which show a simi-
lar maximum on the Atlantic side. It was shown by Tsamados
et al. (2013) that such a bias could be reduced by introducing
a more realistic sea ice rheology.

6.2 Looking beyond proximate drivers

The ISF framework, as noted in Sect. 1, can only identify the
proximate causes of sea ice biases. Here, we briefly discuss
causes of the two external drivers. Underestimation of win-
tertime downwelling LW fluxes in the Arctic is known to be
a widespread model bias in the CMIP5 ensemble (e.g. Boeke
and Taylor, 2016) probably associated with cloud liquid wa-
ter deficit caused by errors in cloud microphysics schemes
(Pithan et al., 2014). HadGEM2-ES was not one of the mod-
els assessed by Pithan et al. (2014), but its winter climate
simulation displays many of the characteristic CMIP5 biases,
namely low cloud liquid water fractions during winter com-
pared to MODIS observations (Fig. 9a). In addition, observa-
tions suggest a bimodal nature of Arctic winter temperatures
associated with strong and weak inversions, (e.g. Stramler
et al., 2011; Raddatz et al., 2014), and a failure to simulate
the milder mode (Fig. 9b), diagnosed by 6-hourly fluxes of
net LW, is a feature of the HadGEM2-ES simulation simi-
lar to the models assessed by Pithan et al. (2014). Here we
conclude that a similar mechanism is likely to be at work
in HadGEM2-ES and that insufficient cloud liquid water is
the principal driver of the anomalously low downwelling LW
fluxes.

The causes of the early melt onset bias of HadGEM2-ES
are harder to determine. For most of the spring, comparisons
of daily upwelling LW fields of HadGEM2-ES to CERES-
SYN observations (not shown) show the Arctic surface to be
anomalously cold in the model, as during the winter. During
May, however, upwelling LW values rise much more steeply
in the model, and surface melt onset commences during mid-
to-late May, far earlier than in the satellite observations. A
possible cause of the overly rapid surface warming during
May is the zero-layer thermodynamics approximation used
by HadGEM2-ES, in which the ice heat capacity is ignored.
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Comparing fields of surface temperature in HadGEM2-ES
between the beginning and the end of May shows a “miss-
ing” ice sensible heat uptake flux of 10–30 Wm−2 over much
of the central Arctic, which would in turn be associated with
a reduction of flux into the upper ice surface of 5–15 Wm−2.
Examination of modelled and observed daily time series of
downwelling LW and net SW fluxes in late May and early
June suggests that a surface flux reduction of this magnitude
could delay surface melt by up to 2 weeks. This would repre-
sent a substantial part of the modelled melt onset bias seen.

Another cause of the rapid warming may be the increasing
relative magnitude of the downwelling SW response to cloud
biases, as May progresses (compared to the downwelling LW
response). Comparison of 5-daily means of HadGEM2-ES
radiative fluxes during May to those from the CERES-SYN
product (not shown) supports this hypothesis; a modelled
bias in downwelling SW grows quickly during early May,
from ∼ 0 to ∼ 30 Wm−2, while the modelled bias in down-
welling LW remains roughly constant.

6.3 Missing processes in the ISF analysis

The ISF analysis, as presented, does not comprise an exhaus-
tive list of processes affecting Arctic Ocean surface fluxes.
The missing process of the effect of snow fraction on sur-
face albedo, and its likely effect on the total June and July
ISF bias, has already been noted. We note also that the direct
effect of thinning ice on ice albedo could induce an addi-
tional flux bias relative to the real world, despite the fact that
this effect is not represented in HadGEM2-ES. The effect of
snow thickness bias on winter conduction and surface tem-
perature is another such process which cannot be included
due to inadequate observations. Model biases in the turbu-
lent fluxes may also be significant. While the process which
is likely most important in determining these during the win-
ter is captured (ice fraction in the freezing season), a more
detailed treatment of turbulent fluxes would also examine the
effect on these of the overlying atmospheric conditions. It is
also noted that snowfall itself is a component of the surface
flux that could, in theory, be evaluated directly given a suffi-
ciently reliable observational reference.

A complete treatment of model biases affecting the sea ice
volume budget would also examine causes of bias in oceanic
heat convergence. For the reasons discussed in Sect. 4,
these are likely to be small in the Arctic Ocean interior in
HadGEM2-ES and in observations, but the model bias could
nevertheless conceivably be of considerable size in the con-
text of the surface flux biases shown in Fig. 6. The total
Arctic Ocean heat convergence modelled by HadGEM2-ES
for the period 1980–1999 is 4.4 Wm−2, although this figure
shows high sensitivity to the location of the boundary in the
Atlantic sector, suggesting that most of this heat is released
close to the Atlantic ice edge. This figure is slightly higher
than the 3 Wm−2 found by Serreze et al. (2007) in their anal-
ysis of the Arctic Ocean heat budget but is broadly consis-

tent with observational estimates of oceanic heat transport
through the Fram Strait from 1997 to 2000 by Schauer et
al. (2004) (likely to be the major contributor to Arctic Ocean
heat convergence). This suggests that errors in oceanic heat
convergence are unlikely to contribute significantly to sea ice
volume biases in HadGEM2-ES. However, for a hypotheti-
cal model that simulated greater oceanic heat convergence in
the Arctic Ocean interior, the surface flux analysis presented
here would fail to adequately describe the model bias in the
sea ice volume budget.

Finally, the assumptions underpinning the ISF framework
include an instantaneous effect of the independent variables
on the surface flux. In the real world, and in many models,
there is a time lag associated with the effect of the ice and
snow thickness, due to the thermal inertia of the snow and
ice. In the time taken for a change of ice thickness to cause a
change in surface flux, other variables such as downwelling
radiation could in theory be affected, raising doubts as to
whether ice and snow thickness are truly independent vari-
ables. However, it is likely that any mechanism by which
ice thickness could affect another variable would act first
through the surface flux, and hence that the timescale on
which ice thickness affects surface flux is shorter than that
on which it affects other variables. It is also seen in this study
that the ISF biases are largest, by far, in the thinnest ice cate-
gory, where the effect of ice thickness on surface flux would
be near instantaneous. ISF biases in the thickest ice category,
where the time lag could be of significant size, tend to be
negligible.

7 Conclusions

A framework has been designed (the ISF framework) that
allows the proximate causes of biases in sea ice volume bal-
ance to be separated and quantified. Given reference datasets
for independent variables, fields of induced surface flux bias
can be calculated from the underlying model bias; these in
theory sum to the total surface flux bias. In practice, the total
ISF bias matches both the net radiation bias, and the ice vol-
ume balance bias to the first order. Processes evaluated cause
around 40 cm additional ice growth during the ice freezing
season and 20 cm additional ice melt in winter; a missing
process for which we have no reference (snow thickness)
is likely to account for at least some additional ice melt in
summer. However, observational uncertainty in the evaluated
terms prevents direct evaluation of the total ISF bias and is
the largest contribution to ISF uncertainty.

The ISF analysis enables model biases in sea ice growth
and melt rate to be attributed in detail to different causes. In
particular, the roles played by the surface–albedo feedback,
by the sea ice thickness–growth feedback and by external
forcings can be quantified. The analysis reveals how the melt
onset bias of HadGEM2-ES tends to make model ice thick-
ness both low in the annual mean and too amplified in the
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seasonal cycle, with the downwelling LW bias acting to mit-
igate both effects. The result is consistent with the prediction
of DeWeaver et al. (2008) that sea ice state is more sensi-
tive to surface forcing during the ice melt season than during
the ice freeze season. The analysis also suggests that through
an indirect effect on surface albedo at a time when sea ice
is particularly sensitive to surface radiation biases, the zero-
layer approximation, which was until recently commonplace
in coupled models, may be of first-order importance in the
sea ice state bias of HadGEM2-ES.

The ISF analysis also allows a more detailed analysis of
the spatial patterns in sea ice volume balance simulation. In
particular, the mechanisms behind the near-identical spatial
pattern of biases in annual mean ice thickness (likely driven
by ice dynamics) and that of biases in the ice volume balance
are explicitly demonstrated. Where ice thickness is biased
low in the annual mean, an enhanced seasonal cycle is appar-
ent. This is due to the ice thickness ISF bias (in the freezing
season) and the ice area ISF bias (in the melting season),
corresponding to the thickness–growth and ice albedo feed-
backs. The downwelling LW and melt onset biases, by con-
trast, are more spatially uniform and do not contribute to the
annual mean ice thickness control on the ice volume balance.

The finding that observational uncertainty is the most im-
portant cause of uncertainty in the ISF bias calculation itself
suggests that if observational uncertainty could be reduced,
the ISF analysis could become a very powerful tool for Arctic
sea ice evaluation. In particular, large observational uncer-
tainties for snow cover and summer surface radiation limit
the overall accuracy of the methodology presented here. The
addition of freezing season snow thickness, and melt season
snow fraction, would represent useful extensions to the anal-
ysis presented. An additional caveat is that the ISF frame-
work does not consider factors influencing turbulent fluxes
(with the exception of the ice area, but this contribution is
subject to particularly high uncertainty). It also does not con-
sider the influence of oceanic heat convergence on sea ice
state; in HadGEM2-ES the latter is small (∼ 10 %) but might
be more significant in other models.

The ISF analysis, as presented here, is designed specifi-
cally to approximate HadGEM2-ES but could in principle be
generalized to other models, particularly by altering the sur-
face albedo parameterization used here or by using different
sea ice thickness categories. The zero-layer thermodynamic
assumption used in the ISF analysis is likely to be appro-
priate for any model during the ice freezing season, as the
largest ISF biases tend to arise from the thinnest ice cate-
gories, in which the zero-layer approximation is closest to
reality. However, there is a question as to whether the zero-
layer approximation conceals significant surface flux bias re-
lating to ice sensible heat uptake in the late spring.

In the case study presented here, the analysis provides
mechanisms behind a model bias in sea ice simulation. How-
ever, the analysis could also be used to investigate a sea ice
simulation that was ostensibly more consistent with obser-

vations, to determine whether or not the correct simulation
was the consequence of model biases that cause opposite er-
rors in the surface energy budget; a negative result would
greatly increase confidence in the future projections of such
a model. The analysis could be also used to investigate a
model ensemble, to attribute spread in modelled sea ice state
to spread in the underlying processes affecting the SEB, fo-
cussing attention on ways in which spread in modelled sea
ice could be reduced. It is noteworthy that Shu et al. (2015)
found the CMIP5 ensemble mean Arctic sea ice volume to be
biased low in its annual mean, and over-amplified in its sea-
sonal cycle, relative to PIOMAS (albeit over the entire North-
ern Hemisphere), suggesting that the behaviour exhibited by
HadGEM2-ES may be quite common in this ensemble.

Finally, it is suggested that the ISF framework, as well as
being used to compare a model to observations, could also
be used to understand the reasons for the biases of one model
with respect to another. Such a comparison would avoid the
issues of observational uncertainty discussed above, enabling
the contributions of the different model variables to the sur-
face flux biases to be evaluated more accurately. However,
the choice as to which model parameters on which to base
the ISF framework would be subjective.
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Appendix A: Description and derivation of the surface
flux formula used in the ISF calculation

The ISF framework depends upon the construction, at each
point in the model space and time, of an explicit function
gx,t , which approximates the surface flux as a function of
quasi-independent variables vi . The functions gx,t are con-
structed as follows. We start from the standard equation for
surface flux:

Fsfc = (1−αsfcFSW)+FLW↓− εsfcσT
4

sfc+Fsens

+Flat+Fsnowfall, (A1)

where the surface flux is expressed as the sum of separate ra-
diative and turbulent components. In this equation, αsfc rep-
resents surface albedo, FSW↓ downwelling SW flux, FLW↓
downwelling LW flux, εsfc = 0.98 ice emissivity (as parame-
terized in HadGEM2-ES), σ = 5.67× 10−8 Wm−2 K−4 (the
Stefan–Boltzmann constant), Tsfc surface temperature, Fsens
sensible heat flux, Flat latent heat flux and Fsnowfall heat flux
represented by the transfer of negative enthalpy from the at-
mosphere to the ice associated with snowfall.

Given a model grid cell x, over a model month t , the cell
is classified as freezing or melting depending upon whether
the monthly mean surface temperature is greater or lower
than −2 ◦C. In the case that the cell is classified as melt-
ing, Eq. (A1) is simplified in the following way: Tsfc = Tf,
where Tf = 0 ◦C, and Fsnowfall and Flat are both neglected. In
addition we expand

αsfc = aiceαice+ (1− aice)αocn, (A2)

where aice is ice concentration, αice mean surface albedo over
sea ice and αocn = 0.06 the albedo of open water used by
HadGEM2-ES. Finally the ice albedo is further expanded.

αice =
(
αmelt_ice−αsea

)
+ Isnow

(
αmelt_snow−αmelt_ice

)
+ (1− γmelt)(1− Isnow)

(
αcold_ice−αmelt_ice

)
+ (1− γmelt)Isnow

(
αcold_snow−αmelt_snow

)
(A3)

Here αsea = 0.06, αmelt_ice = 0.535, αmelt_snow = 0.65,
αcold_ice = 0.61 and αcold_snow = 0.8 denote the parameter-
ized albedos of open water, melting ice, melting snow, cold
ice and cold snow respectively, and γmelt denotes melting sur-
face fraction as a fraction of ice area, while Isnow is an indi-
cator for the presence of snow that is set to 1 or 0 depend-
ing on whether monthly mean snow thickness exceeds 1 mm.
Equation (A3) mimics the parameterization of ice albedo in
HadGEM2-ES, in which the albedo of both snow and ice is
progressively reduced from the “cold” to the “melting” val-
ues as surface temperature rises from −1 to 0 ◦C.

If the grid cell is classified as freezing, we likewise ignore
Fsnowfall. We assume FSW↓ and FLW↓ to be constant across a
grid cell, and parameterize αsfc as above. We expect the re-
maining terms (−εiceσT

4
sfc, Fsens and Flat) to vary over the

six different surface types present in a grid cell: open wa-
ter and the five different ice thickness categories. Hence we
express each as a sum over the surface types as follows:

−εiceσT
4

sfc =−(1− aice)εiceσT
4

sfc−water

−

5∑
cat=1

aice−catεiceT
4

sfc−cat (A4)

Fsens = (1− aice)Fsens−water

+

5∑
cat=1

aice−catFsens−cat (A5)

Flat = (1− aice)Flat−water

+

5∑
cat=1

aice−catFlat−cat. (A6)

We make the following further approximations: firstly, that
Flat−cat = 0 for all ice categories; secondly, that Fsens−cat =

Fsens−ice for all categories (i.e. that the sensible heat flux does
not vary across categories); thirdly, that Tsfc−water = 1.8 ◦C.
Lastly, for each ice category we approximate T 4

sfc−cat =

A+B (Tsfc−cat− Tsfc−REF) , where A= T 4
sfc−REF and B =

4εiceσT
3

sfc−REF, and Tsfc−REF being the monthly mean sur-
face average temperature of the grid cell x.

Flux continuity implies that over each category the surface
flux is equal to Fcondtop−cat, the downwards conductive flux
from the ice surface, unless surface melting is taking place;
as the freezing case is being discussed, melting is assumed to
be zero. We also make the zero-layer approximation used in
HadGEM2-ES, that the sea ice has no sensible heat capacity
and that conduction is therefore uniform in the vertical for
each category. This implies that

Fcondtop−cat = (Tsfc−cat− Tbot)Rice−cat, (A7)

where Tbot =−1.8 ◦C is ice base temperature and Rice−cat =(
hice−cat
kice
−
hsnow
ksnow

)
, with kice and ksnow being ice and snow

conductivity respectively, and hice−cat and hsnow local ice
and snow thickness (the latter of which is assumed to be
uniform across ice categories). For each category, setting
Fsfc−cat = Fcondtop−cat allows Tsfc−cat to be eliminated. This
results in the following equation for Fsfc:

Fsfc ≈ g
w
x,t = aice (Fatmos−ice+BTocn)

∑
cat
γ cat

ice−REF(
1−BRcat

ice
)−1
+ (1− aice)Fatmos−ocean, (A8)

where

Fatmos−ice = FLW↓− εiceσT
4

sfc−REF+Fsens−ice

+ (1−αice)FSW↓, (A9)

and

Fatmos−ocean = FLW↓− εocnσT
4

ocn+Fsens−water+Flat−water

+ (1−αocn)FSW↓.
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(A10)

Hence we approximate the surface flux as a function of ice
area, category ice thickness, snow thickness, downwelling
SW, downwelling LW, melting surface fraction, sensible heat
fluxes over ice and open water, and latent heat flux over open
water. In the ISF analysis, we analyse the resulting depen-
dence of surface flux on ice area, ice thickness, melting sur-
face fraction, and downwelling SW and LW, all of which in
HadGEM2-ES affect the surface flux instantaneously and can
therefore be said to be quasi-independent.

Ice thickness does not appear in the surface flux formula
directly; instead, the surface flux is expressed as a function
of the individual category thicknesses hice−cat. To estimate
the ISF bias due to ice thickness, it is hence necessary to sum
over categories the ISF biases due to bias in each hice−cat.
The estimation of model biases in hice−cat, therefore, requires
some discussion.

Given an estimated model bias in mean thickness h
′

ice, it
can be argued that the least arbitrary approach is to esti-
mate the model bias in each thickness category to also be h

′

ice
(i.e. the thickness distribution is uniformly shifted to higher
or lower values). However, this leads to unphysical results at
the low end of the distribution. In the case of a negative bias,
it implicitly assumes the creation of sea ice of negative thick-
ness, and in the case of a positive bias, it assumes that no sea
ice of thicknesses between 0 m and h

′

icem exists.
Hence we use a slightly modified approach (Fig. S1 in the

Supplement). The model bias in the lowest thickness cate-
gory is estimated to be h

′

ice/2, equivalent to translating the
top end of the category by h

′

ice but allowing the lower end
to remain at 0 m. The model biases in the other four cate-
gories are then estimated to be h

′

ice
aice−a1/2
aice−a1

; i.e. the transla-
tion is increased to ensure that the mean ice thickness bias
remains correct. Following this, we iterate through the cat-
egories identifying grid cells where the bias is such that a
negative category sea ice thickness in the reference dataset is
implied. In these cells, the bias is reduced such that the ref-
erence thickness in that category becomes 0 m, and the bias
in the remaining categories is increased proportionally to en-
sure the mean sea ice thickness bias remains correct.

Appendix B: Analysis of potential errors in ISF bias
calculation

The two principal sources of error in the ISF bias calcula-
tion method are examined in turn. Firstly, error in correctly
characterizing the dependence of surface flux on a climate
variable is estimated; secondly, error in approximating the
surface flux bias induced by this as the product of the sur-
face flux dependence with the model bias in that variable is
estimated.

B1 Error in calculating surface flux dependence

To understand error in calculating dependence of surface flux
on model variables, fields of the approximated surface flux
gx,tare compared to those of the real modelled surface flux
Fsfc. The gx,t is found to capture well the large-scale seasonal
and spatial variation in surface flux, but is prone to systematic
errors which vary seasonally, indicated in Fig. B1. Firstly, a
tendency to underestimate modelled negative surface flux in
magnitude from October to April by 13 % on average. Sec-
ondly, during May, an underestimation varying from 5 to
20 Wm−2. Thirdly, a tendency to overestimate modelled pos-
itive surface flux from June to August by up to 10 Wm−2.

On examining first the winter underestimation (demon-
strated in Fig. B1a–c), it is found that for each model month
the relationship between estimated and actual surface flux is
linear, with underestimation factors ranging from 6 %±1 %
in December to 17 %,± 2 % in April. This suggests that the
cause lies in systematic underestimation of the scale factor∑
cat
γ cat

ice−REF
(
1−BRcat

ice
)−1. A possible cause is covariance in

time between γ cat
ice−REF and Rcat

ice within each month, particu-
larly in the first ice category; during the freezing season, oc-
currence of high fractions of ice in category 1, the thinnest
category, would be expected to be associated with forma-
tion of new ice, and correspondingly with lower mean thick-
nesses of ice in this category, lower values of Rcat

iceand higher

values of
(
1−BRcat

ice
)−1. A calculation using daily values of

γ cat
ice−REF ranging from 0.1 to 0.5, and daily values of hcat

I
ranging from 0.2 to 0.5 m, predicts that this effect would in
this case lead to an underestimation of 9 % in the magnitude
of the surface flux and is sufficient to explain all of the under-
estimations in October, December and January, and most in
November, February and March. This effect would produce a
corresponding underestimation of the rate of dependence of
surface flux on downwelling LW radiation and ice thickness
throughout the freezing season. It is calculated that the down-
welling LW component of the ISF bias is underestimated by
0.6 Wm−2 for the freezing season on average due to this ef-
fect.

Secondly, we examine the reasons for the underestima-
tion of surface flux in May (Fig. B1d–f), a pattern unique
to this month which is seen to be small in the central Arc-
tic but to approach 20 Wm−2 at the Arctic Ocean coasts. A
likely cause of this inaccuracy is the classification of grid
cells as “freezing” or “melting” for entire months. During
May, as has been seen, most model grid cells in fact cross
from one category to the other; however, virtually all Arc-
tic Ocean grid cells are classified as freezing for the month
as a whole. The difference field between estimated “freezing
surface flux” and “melting surface flux” is similar in magni-
tude and in spatial pattern to the underestimation field, being
near zero in the central Arctic but rising to 25 Wm−2 close to
the Arctic Ocean coasts. It is concluded that the actual model
mean surface flux is much higher than that estimated near
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the coast due to these grid cells experiencing melting condi-
tions from relatively early in the month. Although this error
is not directly relevant to the results of this paper, as no un-
equivocal ISF biases were identified for May, it would have
the potential to lead to overestimation of the dependence of
surface flux on ice thickness, and underestimation of depen-
dence on all other variables, as the upwelling LW flux is un-
able to counteract changes in surface forcing once the surface
has hit the melting point.

Thirdly, we examine the tendency to overestimate surface
flux during the summer (Fig. B1g–i), an effect that displays
a spatially uniform bias rather than a spatially uniform ra-
tio, ranging from 5 to 15 Wm−2 in July and August; the bias
is smaller, and in the central Arctic negative, during June.
A possible contributing factor to this bias is within-month
covariance between ice area and downwelling SW; during
July and August, both downwelling SW and surface albedo
fall sharply, an effect that would tend cause the monthly
mean surface flux to be overestimated. To estimate this effect,
monthly trends in these variables were estimated by comput-
ing half the difference between modelled fields for the fol-
lowing and previous month. For July, an overestimation in
surface flux of magnitude 5–15 Wm−2 was indeed predicted
in the Siberian seas, as well as the southern Beaufort and
Chukchi seas; however, in the central Arctic no overestima-
tion was predicted due to near-zero trends in ice area in the
summer months. It is possible that some covariance between
ice area and downwelling SW is nevertheless present in these
regions due to enhanced evaporation and cloud cover in re-
gions of reduced ice fraction.

However, this effect would have no direct impact on the
ISF biases because these are computed from monthly means
of the model bias in one variable by the model mean in the
other; hence, it is covariance between bias and mean that
would induce inaccuracy in this case. By similarly approx-
imating the trend in monthly mean model bias as half the
difference between model bias in the adjacent months, the er-
ror in downwelling SW and ice area contributions were eval-
uated. Error in the downwelling SW term was found to be
significant early in the summer, with an error of −2.7 Wm−2

in June; error in the ice area term was found to be significant
later in the summer, with errors of −1.7 and −1.6 Wm−2 in
July and August respectively. However, the August error is
small relative to the total ISF bias identified.

B2 Error in characterizing induced surface flux bias

The surface flux dependencies, for each variable, are eval-
uated at a model state which is itself biased. This intro-
duces an error in characterizing the induced surface flux
bias. For example, a component of the surface flux, net SW,
is equal to FSW↓ (1−αsfc), and induced surface flux biases
due to model biases in FSW↓ and αsfc would be calculated
as F ′SW↓ (1−αsfc) and FSW↓α

′

sfc respectively. However, the
sum of the two induced surface flux biases will not be ex-

Figure B1. Illustrating approximated (left) and actual (centre)
model net surface flux, as well as the approximation error (right),
in (a)–(c) February; (d)–(f) May; (g)–(i) July, for the period 1980–
1999 in the first historical run of HadGEM2-ES.

actly equal to the true surface flux bias, F ′SW↓ (1−αsfc)−

F obs
SW↓

(
1−αobs

sfc
)

but will differ from it by F ′SW↓α
′

sfc.
This apparent problem can be resolved partly by viewing

the ISF method as a way not simply of estimating model bi-
ases due to a particular variable but as a way of character-
izing them, i.e. by accepting that the quantity that we are
trying to estimate is itself somewhat subjective. Instead of
requiring the ISF method to be correct, it is required that
it gives useful, physically realistic results. In the case given
above, a sufficient condition is that F ′SW↓α

′

sfc is small relative
to F ′SW↓ (1−αsfc) and FSW↓α

′

sfc, i.e. that the model bias in
both downwelling SW and in surface albedo is small relative
to the absolute magnitudes of these variables.

More generally, the difference between the surface
flux bias F ′sfc and the sum of the induced surface
flux biases

∑
i

v′i∂gx,t/vi can be approximated by∑
i,j

i 6= j

v′iv
′

j∂
2gx,t/∂vi∂vj , a term that can be calculated

relatively easily as many of the derivatives go to zero.
Averaged over the Arctic Ocean, this term was small (below
1 Wm−2 in magnitude) in most months of the year but was of
significant size in October (3.6 Wm−2) due to co-location of
substantial negative biases in downwelling LW and category
1 ice thickness in this month, indicating that the true surface
flux bias in this month may be substantially smaller (in
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absolute terms) than the −11.5 Wm−2 obtained from the
summing of the ISF biases.

Finally, the induced surface flux calculation implicitly
assumes a linear dependence of surface flux on each
climate variable. However, this is not the case for the
ice thickness, where higher-order derivatives do not go
to zero and in some regions of thinner ice actually di-
verge. It is possible to quantify the error introduced by the
assumption of linearity by comparing the partial deriva-

tive (A+BTb)acat
(
1−BRice

cat
)−2

(∑
cat
acat

)−1

to the quantity

(A+BTb)acat
(
1−BRice

cat
)−1

(
1−BRice−REF

cat

)−1
(∑

cat
acat

)−1

,

where Rice−REF
cat = hOBS

I /kI+hS/hSkS, hOBS
I being clima-

tological ice thickness in the reference dataset, in this case
PIOMAS, and all other terms defined as in Sect. 4. It can
be shown that multiplying this quantity by the model bias
produces the exact bias in estimated surface flux that is
being approximated by ∂gx,t/∂hI

(
hMODEL

I −hOBS
I

)
. Hence

the bias in the ice thickness component induced by the
nonlinearity can be calculated directly. It is found that
the nonlinearity causes the ice thickness component to
be overestimated in magnitude by 0.7 Wm−2 on average
from October to April, with a maximum overestimation of
1.9 Wm−2 in November.
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