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ABSTRACT
We present an i-band photometric study of over 800 young stellar objects in the OB
association Cep OB3b, which samples timescales from 1 minute to ten years. Using
structure functions we show that on all timescales (τ) there is a monotonic decrease in
variability from Class I to Class II through the transition disc (TD) systems to Class
III, i.e. the more evolved systems are less variable. The Class Is show an approximately
power-law increase (τ0.8) in variability from timescales of a few minutes to ten years.
The Class II, TDs and Class III systems show a qualitatively different behaviour
with most showing a power-law increase in variability up to a timescale corresponding
to the rotational period of the star, with little additional variability beyond that
timescale. However, about a third of the Class IIs show lower overall variability, but
their variability is still increasing at 10 years. This behaviour can be explained if all
Class IIs have two primary components to their variability. The first is an underlying
roughly power-law variability spectrum, which evidence from the infrared suggests is
driven by accretion rate changes. The second component is approximately sinusoidal
and results from the rotation of the star. We suggest that the systems with dominant
longer-timescale variability have a smaller rotational modulation either because they
are seen at low inclinations or have more complex magnetic field geometries.

We derive a new way of calculating structure functions for large simulated datasets
(the “fast structure function”), based on fast Fourier transforms.

Key words: open clusters and associations: individual: Cep OB3b – stars: formation
– stars: pre-main-sequence – stars: rotation – stars: variables: T Tauri – accretion

1 INTRODUCTION

Accretion is a noisy process almost everywhere it occurs in
astrophysics, but the resulting variability can be used to in-
fer information about processes on length scales from the
final stages of accretion onto neutron stars (e.g. van der Klis
2000) to the broad-line regions of active galactic nuclei (e.g.
Peterson 2006). If young stellar objects (YSOs) are no differ-
ent in this respect, there is the potential for accretion-driven
variability to yield information about the final stages of ac-
cretion through the magnetosphere, and the structure of the
planet-forming disc which surrounds it. Whilst interferome-
try can explore the spatial scales of a large fraction of the
disc size in these objects, it cannot reach the innermost disc,
or the region where the disc is disrupted by the magnetic
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field of the young star and the material follows magnetic
fields lines in its final stages of being accreted onto the star.
Thus the amplitudes and timescales of the variability contain
important clues to understanding the underlying physics of
young stars.

Until recently, most work on young star variability has
concentrated on searches for periodicity (e.g. Herbst et al.
2002; Lamm et al. 2004; Rebull et al. 2006; Littlefair et al.
2010), typically using frequency analysis (e.g. Lomb 1976;
Scargle 1982) to identify dominant periods. This periodic
variability is attributed to the presence of cool (e.g. Bouvier
et al. 1986) or hot (e.g. Kenyon et al. 1994) spots on the
surface of the rotating star, and so the observed period is
the rotation period of the star. Thus studying modulations
at this period gives insight into the accretion structures ro-
tating with the star, and the distribution of periods holds
information about the astrophysics of the star-disc interac-
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tion. Only one-third of YSOs, however, appear to exhibit be-
haviour that is broadly periodic. Herbst et al. (2002) found
only 25-40 per cent of stars in the ONC to offer convincing
periods, Littlefair et al. (2010) found 25-30 per cent in Cep
OB3b.

This leaves roughly half to two-thirds of the variable
stars in star-forming regions without well-defined periods,
and this aperiodic variability may provide a window on dif-
ferent physical phenomena to those associated with periodic
variability. Aperiodic variability has often been noted and
catalogued but until recently has been relatively uninter-
preted within the YSO literature. Many stars slip between
periodic and aperiodic variability (Herbst et al. 1994; Rucin-
ski et al. 2008), and many exhibit quasi-periodic lightcurve
behaviour (e.g. Bouvier et al. 2003; Cody et al. 2014). For
example Alencar et al. (2010) find that 28 ± 6 per cent of
stars monitored in NGC 2264 using the CoRoT spacecraft
exhibit quasi-periodic fading behaviour. Such aperiodic or
quasi-periodic variability in YSOs has been attributed to
a number of mechanisms, including obscuration by circum-
stellar material (Herbst et al. 1994; Chelli et al. 1999; Alen-
car et al. 2010), accretion shock instability (Sacco et al.
2008; Matsakos et al. 2013), unsteady accretion (Fernan-
dez & Eiroa 1996; Scholz et al. 2009; Stauffer et al. 2014;
Venuti et al. 2014) and instabilities within the circumstellar
disc (Bouvier et al. 2007; Romanova et al. 2008, 2011).

Importantly, these phenomena can result in variability
on different timescales. Many studies to-date have concen-
trated on timescales of days to a few years (e.g. Bouvier et al.
1993; Herbst et al. 1994; Grankin et al. 2007; Rice et al. 2012;
Wolk et al. 2013). However there is significant evidence that
we should see important variability on a much wider range
of timescales. For example Sacco et al. (2008) and Matsakos
et al. (2013) propose that accretion shock instabilities at
the surface of the star may show variability on timescales of
minutes. In contrast Contreras Peña et al. (2019) show that
YSOs have outbursts on timescales of 104 (Class I) to 105

(Class II) years (sometimes called FUor events, see Reipurth
1990), and Herbig (2007, 2008) discusses the shorter recur-
rence timescale EXor outbursts. This longer-term behaviour
is predicted to be driven by accretion rate variability (e.g.
Vorobyov & Basu 2005; D’Angelo & Spruit 2012), with large
surveys such as those by Contreras Peña et al. (2017) and
Scholz et al. (2013) providing good evidence that such long-
term variability is a common phenomenon.

1.1 Analysis Tools

Given the above, the scientific aim of this paper is to char-
acterise YSO variability, irrespective of whether or not that
variability is periodic, and assess what this teaches us about
the underlying physics. The characterisation part of this
question can be summarised as imagining we have a sin-
gle epoch observation of a cluster of young stars, and asking
what we could predict about their magnitudes at some fu-
ture time. To answer this question we will characterise the
variability using histograms of the frequency with which a
YSO is found at a particular magnitude (see Section 4), and
a structure function (described in Section 5), which encap-
sulates the degree of variability as a function of timescale.
Broadly speaking these two descriptions are orthogonal. The
structure function reflects the fact that we see larger changes

in magnitude if we have two observations separated by a
week, than if the observations are separated by a minute.
Conversely the histograms tell us whether that variability is
symmetric about a mean magnitude, or the object spends
(say) longer in a faint state than a bright state.

To a degree, the choice of these analysis tools is forced
upon us by the nature of our data, and our scientific aims.
With a few notable exceptions, previous datasets in this field
have been well sampled for timescales of a few days, and
extended over at most a few weeks, culminating in space-
based data which has dense, uninterrupted coverage for over
a month. Here we have a very unevenly sampled dataset
which has large periods of time which are under-sampled
compared with the rotation period. Furthermore we are ex-
pressly searching for aperiodic signals. This has forced us
to adopt structure functions, which have been only rarely
used in the field, and so we also address (mainly through
the appendices) how to apply these to YSOs.

Whilst we have developed the techniques for this paper,
we anticipate that they will be important for at least two
upcoming datasets that will also be under-sampled with re-
spect to the rotation period. The first of these will be the
Gaia lightcurves, which we already have a foretaste of from
the Gaia alert stream (Wyrzykowski 2016). The second will
be LSST (Ivezić et al. 2008) which importantly will pro-
vide lightcurves in many colours, which have the potential
to elucidate further the mechanisms driving variability (see,
for example Froebrich et al. 2018).

1.2 The Target and the Dataset

The dataset we analyse in this paper is a set of Sloan i-
band (hereafter i) photometric observations for '800 YSOs,
which covers more than six orders of magnitude in timescale
with cadences ranging from 1 minute to 10 years. The stars
in question are members of the young OB association Cep
OB3b, which was chosen simply because of the availabil-
ity of a dataset taken with the same instrument over many
years. Cep OB3b contains more than 3000 X-ray and in-
frared identified PMS stars (Allen et al. 2012). It is similar
in membership and overall size to the ONC, however Cep
OB3b appears older and more evolved. Bell et al. (2013) as-
signs Cep OB3b an age of '6 Myr (similar to σ Ori and IC
348), though a reassessment of that age is required given the
Gaia DR2 distance. Allen et al. (2012) measure an average
disc fraction in the region as 33±2 per cent.

1.3 Data Tables, Figures and Symbols

The '800 YSO lightcurves we analyse in this paper are a
small sub-sample (chosen to be statistically appropriate for
our purposes, see Section 3) of a much larger dataset which
could be used for other analyses. We therefore made a deci-
sion early in the preparation of this paper to make all the
lightcurves available. From that position it was then logical
to make the tables of data we derived from the lightcurves
available as well, and so most of our figures are constructed
directly from columns of those tables, often after selecting
appropriate subsets. As a result we have a tight correspon-
dence between the data axes in our figures, the symbols used
in the mathematics given in Table 1, and the columns in our
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Table 1. Mathematical symbols used in this paper.

Symbol Description

AH68 Half the magnitude range covering 68 percent of

observations.

B A fitted constant for the photon and instrument
noise model.

D The ratio of the maximum number to median

number of times a datapoint is used.
F Flux from a star in counts s−1.

Fi, Fj The flux for lightcurve points i and j.

Fmed The median flux in a lightcurve in counts s−1.
K1, K2 Fitted constants for the photon and instrument

noise model.

N The number of datapoints in a time series.
N (0, σ) A normal distribution about zero of width σ.

Pk The Fourier power at fk.
p The number of datapoint pairs contributing

to a measurement of the SF.

peff The effective number of independent datapoint
pairs contributing to a measurement of the SF.

pLPS As peff but for a nLPS at a particular magnitude.

Rm The autocorrelation function at time m.
S(τ), Sτ The value of the SF, including contributions from

photon and instrument noise, at timescale τ .

Sbrk The value of the SF at the break in
power-law slope.

SLPS A value of the estimated median LPS SF.

Snett A value of the SF, after removing
contributions of photon and instrument noise.

Yij A shortened notation for (Fi − Fj)/Fmed.

Xk The discrete Fourier transform of xn.
cm The mth element of a discrete cyclic convolution.

c′m The mth element of a discrete linear convolution.

f A Fourier frequency.
k The label for a given Fourier frequency f .

m The label for a given timescale τ .
n The label for a given time t.

t The time of a flux measurement.

tmax The time of the last flux measurement
(assuming the first was at t = 0).

xn An alternative to Fn/Fmed when discussing the

FSF, and an n-element time-series.
yn, zn n-element time-series.

α The exponent characterising the Fourier amplitude

spectrum (f−α).
β The power characterising the slope of a SF.

∆S The uncertainty in a value of S or Snett.

ε The photon and instrument noise in a
measurement, in counts s−1.

ν The number of flux datapoints contributing to a
measurement of the SF at a given τ .

τ The timescale for a particular value of the SF.

τi, τj The timescales for lightcurve points i and j.
τ1, τ2 Boundaries for SF timescale bins.

τbrk The timescale at which there is a change in the
slope of the SF.

ω A frequency corresponding to a period of τ = 2π
ω
.

tables. This we believe gives our work an added accessibility,
and importantly makes it easy to reproduce and verify our
results.

Table 2. Summary of observations made and collated as part of
this study.

Date Number of Exposure Publication

observations time (s)

2004 Sep 21- Oct 6 424 300 1

2005 Aug 28 - Nov 1 28 300 1

2007 Oct 23 - 24 2 200 2
2007 Oct 23 - 24 1 500 2

2013 Nov 9 1 300 -
2013 Nov 10 82 30 -

1Littlefair et al. (2010)
2Bell et al. (2013)

2 OBSERVATIONS AND DATA REDUCTION

2.1 Observations and photometric extraction

We compiled time-series photometry of Cep OB3b from
several observing runs carried out between 2004 and 2013.
These all used the i-band filter with Wide Field Camera on
the Issac Newton Telescope in La Palma, and so present no
problems of colour corrections between different photomet-
ric systems. The camera has four EEV 2k×4k CCDs with
a pixel scale of 0.33 arcsec pixel−1. The CCDs are arranged
in an ‘L’ shape providing a field of view of 34×34 arcmin2,
but with a small square region missing from the north-west
corner and approximately 1 arcmin gaps between CCDs. A
single field was observed centred on α = 22h 55m 43s.3, δ =
+62d 40m 13s J2000.0 (see Fig. 1 of Littlefair et al. 2010).

A summary of the observations is shown in Table 2. The
data taken during 2004 Sep 21-Oct 6 are a time series over 16
nights with a cadence of '8 minutes. Some breaks occurred
due to poor weather, however observations were made for at
least 2 hours on most nights. The observations made between
2005 Aug 23 - Nov 1 typically consisted of one or two expo-
sures per night. Some nights in this period were missed due
to weather or telescope scheduling constraints. Full details
for these two runs and their data reduction are given by Lit-
tlefair et al. (2010). Bell et al. (2012, 2013) conducted a sur-
vey of star-forming regions. The data presented in those pa-
pers were colour-magnitude diagrams created using a range
of exposures and filters. We selected only the 200s and 500s
i-band exposures of Cep OB3b (taken 2007 Oct 23 and 24),
rejecting the shorter exposures as they would add significant
inhomogeneity to the dataset. The final set of observations
were made specifically for this study and consisted of a single
300s exposure on the night of 9 November 2013, and 82 30s
exposures on the following night. The aim of the latter set
of observations was to investigate variability on the short-
est timescales we could, since the readout time of the CCDs
(approximately 30s) limited the cadence to '1 minute for
reasonable signal-to-noise. The night of November 10 was
photometric, and the seeing for this dataset ranged from 0.9
to 1.3 arcsec with a median of 1.1 arcsec.

2.2 Merging the datasets

To combine the 2007 and 2013 data with 2004/5 dataset
we extracted photometric magnitudes from the 2007 and
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2013 images using star positions given in the Littlefair
et al. (2010) catalogue, which were translated into the co-
ordinate system of each 2007 and 2013 observation using a
six-coefficient model. The data reduction followed the pro-
cedures described in Bell et al. (2012), with the final step
being the extraction of the optimal photometry as described
in Naylor (1998).

It is normal to correct these optimally extracted mag-
nitudes for changes in the point-spread function as a func-
tion of position in the focal plane, in a process analogous to
aperture correction. The corrections are derived by compar-
ing optimally extracted magnitudes for bright stars to their
large aperture magnitudes in the same images, and express-
ing these corrections as a function of position using low-order
polynomials. Having applied such corrections we compared
the magnitudes of individual stars derived from single im-
ages in the 2007 and 2013 datasets with the median magni-
tudes from the 2004 dataset. We found there were still slow
changes in magnitude difference as a function of position in
the focal plane, and sharp changes at the CCD edges. We
believe that this is caused by errors in both the flatfield cor-
rection and the profile correction. The most likely cause of
flatfield errors is scattered light in the twilight flatfields that
we used for calibration, which would introduce an apparent
change of sensitivity which would be a slowly changing func-
tion of position in the focal plane. Again, this correction is
normally a slow function of position in the focal plane.

We decided, therefore, to profile correct the 2007 and
2013 data not by comparing measurements of bright stars
with their optimal extractions, but by comparing their opti-
mally extracted magnitudes with their median magnitudes
in the 2004 data (see King et al. 2013, for a previous use
of this technique). Since these median measurements have
much higher signal-to-noise than large aperture measure-
ments, they allow us to use much fainter stars for profile
correction, and hence provide a much denser network of
stars to be fitted by the profile-correction polynomials. In
this way we simultaneously carried out the profile correc-
tion and corrected for flatfielding errors. We then converted
all the lightcurves from corrected countrates to the Sloan
AB system by applying a single zero point calculated by
comparing the median 2004 fluxes with the magnitudes in
the Bell et al. (2013) catalogue.

The disadvantage of this profile correction scheme is
that any flatfield errors in the 2004 data will become er-
rors in the star-to-star mean magnitudes. However, as we
are interested in variability, not in star-to-star comparisons,
this is a reasonable sacrifice to obtain the reduction in long-
temporal-baseline drifts this procedure yields. Finally, we
applied the same profile correction procedure to all the
2004/5 data, despite the fact they had already been pro-
file corrected, to remove any residual errors introduced by
the large-aperture bright-star technique.

The resulting set of lightcurves is given in the Elec-
tronic Table A, a description of which is given in Table 3.
Each point in each lightcurve consists of a barycentrically
corrected mid-exposure time1, a magnitude, an uncertainty
in magnitude, a logical flag which is set true if the flux is

1 We used http://astroutils.astronomy.ohio-state.edu/

time/utc2bjd.html - see Eastman et al. (2010).

Table 3. Column descriptions for Cep OB3b lightcurves
(Electronic Table A, available from CDS at http://cdsarc.

u-strasbg.fr/viz-bin/qcat?II/362 or in FITS from https://

doi.org/10.24378/exe.2124).

Column Name Units Description

CCD The CCD the star was
observed with.

STAR ID Star identifiera.

BJD Decimal days Mid exposure - 2450000.
MAG Magnitudes Sloan i-band magnitude.

UNCERT Magnitudes Uncertainty in MAG.

FLAG Quality flagb.
NEG FLUX Set true if flux is negative.

RUN NUM INT run number.

aFrom Littlefair et al. (2010), unique only within each CCD.
bSee Burningham et al. (2003) for the meanings of the flags.

negative (when the magnitude relates to the modulus of the
flux), and quality flag which is described in detail in Burn-
ingham et al. (2003). A set of summary statistics for each
lightcurve is given in Electronic Table B, whose columns are
described in Table 4. There are just over 25 million dat-
apoints for just over 40 000 stars, of which 46 percent are
flagged as good and have uncertainties less than 0.1 mags.
In Fig. 1 we show an example lightcurve which is a large am-
plitude Class II YSO. The different sampling timescales for
the different datasets are clearly visible, from the slow vari-
ation in the high cadence 2013 data (bottom right), through
the relatively well sampled variations of the 2004 data (top
panel) and the sparsely sampled 2005 data (bottom left).

Part of our purpose in presenting Electronic Table A is
that we anticipate it being a useful dataset for other stud-
ies, as we have used only about two percent of the data.
We caution any potential user that it is important to ex-
amine the images2 if a result relies on a small subset of the
data (especially if that subset is chosen using the data it-
self, e.g. looking for large amplitude variables), as the bad
pixel map is not complete and the algorithm for finding non-
stellar images, which should flag measurements affected by
charged particle events and image blending will not always
be successful.

2.3 Data selection and sample properties

We chose for further analysis only those data points which
have an uncertainty less than 0.2 mags, with the data quality
flag OO and that do not have negative flux. We refer to these
as “good” datapoints. There about 14 million photometric
datapoints which match these criteria, spread over 38 600
stars, with a maximum of 540 good datapoints in any one
lightcurve. We further restrict ourselves to using just those
25 000 lightcurves with more than 250 good datapoints and
a mean uncertainty below 0.1 mags, and will refer to this
as the primary sample. Of this primary sample, 21 000 stars
have i-band photometry flagged OO with a signal-to-noise
better than 10 in the Bell et al. (2013) colour-magnitude

2 The images are available through the ING archive; http://

casu.ast.cam.ac.uk/casuadc/ingarch/.
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Figure 1. The INT WFC i-band lightcurve for the Class II source 1.02 468 in Cep OB3b. The length of each symbol in the y-direction
represents the 68 percent confidence limit for the measurement. The top panel shows the data collected over 16 nights in September

2004. The bottom left panel is the data collected over a period of 68 nights in August to November 2005. The bottom middle panel is
the data from October 2007, and the bottom right panel the one minute cadence data collected on a single night in November 2013. The

only datapoint not shown is the single 300s exposure on the night before the high cadence data.

tables, 90 percent of which are brighter than i = 22.0. At
this magnitude the lightcurves have a mean signal to noise
of around eight per point. The bright limit of the sample is
set by saturation, which results in a significant loss in the
number of available datapoints in each lightcurve for stars
brighter than i = 16.5, although there are lightcurves in the
primary sample (i.e. with more than 250 good datapoints)
a magnitude brighter than this.

3 SAMPLE SELECTION

If we are to obtain a statistically robust description of YSO
variability we need to begin with a well-chosen sample.
Specifically, that sample cannot be chosen using variability
as part of its selection criteria. Hence we used the classifica-
tions of Allen et al. (2012) which are based on Spitzer colours
and X-ray fluxes to identify stars from our sample as Class I,
Class II, transition disc (TD) and Class III YSOs. Allen et al.
(2012) used two definitions for Class III sources. Both first
selected sources which were defined as purely photospheric

on the basis of their Spitzer colours, but they then selected
Class III objects from this sample either on the basis of their
X-ray flux, or position in the V vs V -I colour-magnitude di-
agram. We tested the efficacy of these selections, to establish
which is the more appropriate for our purposes, using the
fact that we expect a high fraction of Class III objects to
have detectable periods. We found that 332 out of the 1440
colour-magnitude selected Class III objects were detected as
periodic in Littlefair et al. (2010). In contrast 219 out of 499
X-ray selected objects have detected periods, suggesting the
latter sample has a much lower contamination rate, in agree-
ment with the contamination rates calculated by Allen et al.
(2012). Hence we chose to use the X-ray selected objects as
our sample of Class III YSOs, although this does lead to
a much brighter limiting magnitude for the Class II sam-
ple compared with the Class IIIs (see Fig. 2). The resulting
classifications for each star are given in Table 4, along with
summary statistics for its lightcurve.

Our primary sample (defined in Section 2.3) contains
12 Class I objects, 500 Class II stars, 21 TDs and 274 Class

MNRAS 000, 1–23 (2019)



6 Darryl J. Sergison et al.

Table 4. Column descriptions for object properties and lightcurve summary statistics (Electronic Table B, available from CDS at

http://cdsarc.u-strasbg.fr/viz-bin/qcat?II/362 or in FITS from https://doi.org/10.24378/exe.2124).

Column Name Units Description

CCD CCD the star was observed with.

STAR ID Star identifiera.

i MAG CLEAN Magnitudes Clean i-band magnitude from Bell et al. (2013).
i Z MAG CLEAN Magnitudes Clean i-Z colour from Bell et al. (2013).

NPTS Number of good lightcurve pointsb.

A H68 Magnitudes Half the magnitude range covering 68 percent of observations for good low-cadence datapoints.
MEDIAN Magnitudes Median magnitude for good low-cadence datapoints.

MEAN Magnitudes Mean magnitude for good low-cadence datapoints.
RED CHI Reduced χ2 about weighted mean of good datapoints.

MEAN UNCER Magnitudes Mean uncertainty for all unflagged datapoints.

MEDIAN 2004 Magnitudes Median magnitude from 2004 data for unflagged datapoints.
MEDIAN 2005 Magnitudes Median magnitude from 2005 data for unflagged datapoints.

MEDIAN 2007 Magnitudes Median magnitude from 2007 data for unflagged datapoints.

MEDIAN 2013 Magnitudes Median magnitude from 2013 data for unflagged datapoints.
Cl Class (I, II, TD, III or LPS).

Per Days Period from Littlefair et al. (2010).

R Ha MAG CLEAN Magnitudes Clean R−Hα colour from Littlefair et al. (2010).
RA Decimal degrees J2000.0 RA from Littlefair et al. (2010).

Dec Decimal degrees J2000.0 declination from Littlefair et al. (2010).

aFrom Littlefair et al. (2010), unique only within each CCD.
bI.e. unflagged datapoints with positive flux and uncertainty less than 0.2 mags.

III stars. Of these roughly a quarter of the Class II and TD
stars have periods from Littlefair et al. (2010), along with
about two-thirds of the Class III sources and two of the
twelve Class Is. The approximately 95 percent of the primary
sample that have useful photometry in the Bell et al. (2013)
catalogue are shown in Fig. 2. Although most of the stars lie
in the region of the CMD traditionally identified with PMS
stars, above and to the right of the field stars, this is clearly
not true of the Class I sources, where six out of the nine
with sources plotted lie in the region normally associated
with the contamination. To some degree the Class I sample
must be extreme objects simply because they are optically
visible, and this caused us concern because, given our large
sample, these could simply be mis-classifications. However,
as a class their photometric properties are different from the
other classes, and we shall show below that they have very
different variability.

To define the noise characteristics of our dataset, we also
selected a group of local photometric standards (LPSs) by
first matching against the Bell et al. (2013) catalogue, and
then removing those stars in the pre-main-sequence region of
the i vs i−Z colour-magnitude diagram. To keep the sample
below 5000 stars in total (for speed of computation), we then
restricted this to lightcurves with more than 536 datapoints,
and finally removed the obvious outliers in a plot of mean
signal-to-noise vs RMS. Again, those stars classified as LPSs
are noted as such in Table 4.

4 SNAPSHOT VARIABILITY

As we discussed in the introduction, we divide our study of
the variability into two parts, first discussing (in this sec-
tion) the distribution of magnitudes an object explores as
it varies, and then (in Sections 5 to 7) discussing how those

Figure 2. i vs i-Z CMDs showing the classification of sources

in Cep OB3b. The Class I (purple dots), Class II (red crosses),

TD (green dots) and Class III (blue crosses) samples are overlaid
on the photometry for half of all stars. The PMS locus is clearly

visible, offset from the field stars. A few faint, red PMS stars lie
outside the region plotted.

individual observations are linked in time. This first section
can be viewed as considering a series of snapshots of a clus-
ter, where we have magnitudes for each YSO, but do not
have any information as to the timing of each observation.
To characterise this aspect of YSO behaviour we must first
find the distribution of the amplitudes of variability of YSOs,
and then ask where within that range a star is likely to be
found.
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Figure 3. The cumulative distributions for half the 68 percent

variability amplitude for the different classes of YSO. Class III
YSOs are shown in blue, TD systems in green, Class II in red and

Class I in purple.

Table 5. Measures of overall variability as a function of YSO
class.

Class I II Transition III
Discs

Median AH68 (mags) 0.064 0.053 0.031 0.025
Median S0.5

brk 0.13 0.13 0.10 0.051

4.1 The amplitude of variability

The simplest measure of the amplitude of variability is the
difference between the brightest and faintest magnitudes
recorded for an object. The problem with such a measure
is that it will depend on how many observations are avail-
able, systematically increasing as more data are taken and
the full range of variability is explored. A simple measure
which will not depend in a systematic way with the number
of measurements is to use the difference between the 16th
and 84th percentile points in the observed distribution of
magnitudes (i.e. the range which encloses 68 percent of the
data). For Gaussian noise half of this amplitude is equal to
the RMS, and so we use half the 68 per cent variability am-
plitude (AH68) as our metric, which should tend towards a
fixed value as the number of datapoints used increases.

Using this definition of the amplitude of a star we de-
termined the cumulative and differential distributions for
each class of YSO (Fig. 3 and Fig. 4), using just the good
datapoints from the primary sample. We also excluded the
data from from the night of 2013 November 10, otherwise
its high cadence means that about 10 percent of the data
are at roughy the same magnitude.

4.2 The distribution of datapoints

Whilst the amplitudes derived above represent the range of
variability, they tell us nothing about how likely a star is to
be found at a given point within that range. We addressed

Figure 4. The differential distributions for half the 68 percent

variability amplitude for Class III (blue), and Class II YSO (red).

Figure 5. The distribution of normalised magnitudes for Class
II (red), Class III (blue), TD (green) and Class I (purple) YSOs.

this issue using “normalised magnitudes”, calculated by sub-
tracting each magnitude measurement from the mean of the
good datapoints for that star, and then dividing by AH68. We
then created the distributions for each class of YSO shown
in Fig. 5 using all the individual normalised magnitudes for
each star in the class. In doing this we had to be careful
that the distribution did not become dominated by the sta-
tistical noise in each measurement, and so we selected only
stars with a mean uncertainty less than 0.03 mags, except
for the Class I objects, where the median uncertainty is so
large (0.04 mags) that such a cut would have removed most
of the sample.

MNRAS 000, 1–23 (2019)



8 Darryl J. Sergison et al.

4.3 Interpreting the snapshot variability

It is clear from Fig. 3 and Fig. 4 that there is a decrease in
variability with increasing evolutionary class, i.e. Class I ob-
jects are more variable than Class IIs, which are in turn more
variable than Class IIIs. The same trend has been found in
the JHK IR by Rice et al. (2015). For the mid-range of
amplitudes the different classes follow a roughly power law
distribution. Outside this range the Class II and Class III
YSOs show low-amplitude tails which can be attributed to
the photometric uncertainties in our data, which are typi-
cally 0.015 mags. Presumably the same tail exists for the
TD systems, but we have too few objects to resolve it. It
may also exist for the Class I YSOs as they have a median
uncertainty (0.04 mags) which is much larger than the other
samples, which will shift the start of the cumulative distri-
bution to the right in Fig. 3. The Class II objects have a
small tail of large amplitudes, with about 1 percent of ob-
jects showing amplitudes larger than 1 magnitude. There is
a similar tail of large amplitudes for the Class III sources,
but this could be caused by contamination of the sample by
Class IIs. In summary, the distributions of the amplitudes
of all the classes have very similar shapes, but scaled by a
mean which decreases with evolutionary age. The surprise
here is the large amplitude of the Class I systems. To our
knowledge there is no other direct comparison of the opti-
cal variability of these stars with that of the other classes,
and we shall return to their large variability after we have
established their power spectrum in Section 7.

Given the similarity of the distribution of amplitudes,
one could be tempted to assume we are looking at a sin-
gle physical mechanism whose amplitude declines with time.
However, the histograms of normalised magnitudes (Fig. 5)
show that this is not true. The clearest difference between
classes is shown in the top panel of Fig. 5, where the Class
III histogram is flat-topped and symmetric, but the Class II
is asymmetric. The Class III distribution presumably comes
from a modulation caused by cool spots on the surface of
the star. If we assume the modulation is sinusoidal, with
an extra source of Gaussian noise we can create a model
such as the one we have overlaid on the data in Fig. 6. Here
the amplitude of the sine wave is 1.1 times AH68, and the
Gaussian noise has an RMS of 0.4 in the same units. As the
median AH68 for the Class IIIs is about 0.025 mags, the 0.4
RMS corresponds to about 0.01 mags. This is considerably
larger than the median uncertainty for the data points in
the sample, which is 0.005 mags, and so the Gaussian noise
component of our model is almost certainly astrophysical in
origin. We also note that the model does not fit the extended
wings of the distribution, suggesting that the noise compo-
nent is non-Gaussian in the sense that the stars spend more
time at extreme magnitudes than the model predicts.

Turning to the Class IIs, the sense of the asymmetry is
such that the systems are spending longer in bright states
than faint states, i.e. are dippers in the classification of Cody
et al. (2014). However, its is clear that in practice the Class
IIs are a mixture of systems which dip and burst, and our
data is reflecting the preponderance of dipping behaviour
(Findeisen et al. 2013; Cody et al. 2014), although it is not a
strong effect, with the median only shifted by 0.1 normalised
units with respect to the mean.

The Class Is are different again, lacking the flat top of

Figure 6. The distribution of normalised magnitudes for the

Class III YSOs (blue histogram) with the model described in
Section 4.3 overlayed as a black line.

the Class II sources, suggesting a concentration of magni-
tudes towards the mean. However, some caution is required
in over-interpreting the data since the effect of a small sam-
ple is clear: the two spikes at −1.3 and 0.6 mags are due to
a single star (1.02 1732) which shows a deep dip.

In summary, although the distributions of amplitudes
seem to have a similar form for the different classes, albeit
with a scaling, the distributions of magnitudes within those
ranges are starkly different. For the Class III objects we
can understand the distribution of normalised magnitudes
as noisy sine-waves, resulting from stellar activity spots on
their surface. It is unsurprising that the Class II and I distri-
butions are different from the Class III, as we expect accre-
tion phenomena to be the underlying mechanism powering
the variability of the Class I/II YSOs.

We can summarise the results of this section by return-
ing to our experiment of creating a set of synthetic observa-
tions of a group of YSOs knowing only their mean magni-
tudes. For each YSO we would randomly select a AH68 using
Fig. 3, and a normalised magnitude from Fig. 5. Multiply-
ing the two together will give the change in magnitude which
should be added to the mean magnitude to yield a final sim-
ulated magnitude for each star. We could then predict the
distribution of magnitude changes for our group of YSOs
between two epochs by carrying out the above procedure
twice and differencing the magnitudes on a star-by-star ba-
sis. This highlights the problem we have not addressed. For
a real group of YSOs the distribution of changes is very dif-
ferent for a time interval of one minute as opposed to one
year. In the remainder of this paper we shall argue that this
can be addressed using structure functions, and in doing so
show they also provide clues as to what drives the shape of
the magnitude distributions of the different classes.
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5 STRUCTURE FUNCTIONS

5.1 Introduction

Characterising aperiodic variability is a challenge for sta-
tistical techniques. Lomb-Scargle periodograms are success-
ful in characterising the presence of periodic components
in lightcurves. They are ineffective, however, in analysing
aperiodic signals. No standard metric analogous to the pe-
riodogram exists for characterising aperiodic signals. Auto-
correlation functions are a useful tool for finding repeat-
ing patterns in signals and may also be of use in systems
where cyclical physical behaviour occurs. However, they re-
quire that the sampling is regular and uninterrupted (though
see Kreutzer et al. in prep for a possible solution to this),
a situation that is very rarely achievable in astronomical
datasets. A tool that is useful for studying aperiodic signals
is the structure function (SF), which has been widely used
for extra-galactic work (e.g. Simonetti et al. 1985; Hughes
et al. 1992; de Vries et al. 2003). Its use for characteris-
ing young stars has been more limited, with Rigon et al.
(2017) using the closely related “pooled sigma” for a sample
of bright objects and Findeisen et al. (2015) assessing the
usefulness of the related ∆m-∆t plots.

5.2 Definition

The key concept of the SF is that it considers all possible
pairings of the points in a lightcurve. It is calculated in dis-
crete logarithmically spaced timescale bins, by first taking
all pairings of points in a given bin, where

τ1 < τi − τj < τ2. (1)

and τ1 and τ2 are the lower and upper time difference limits
for each bin. We then calculate the SF in each bin as

S(τ1, τ2) =
1

p(τ1, τ2)

∑ (Fi − Fj)2

F 2
med

. (2)

The summation is made for all p(τ1, τ2) pairs of data points
(i, j) with fluxes Fi and Fj and time separations given by
Equation 1. It is normal in Equation 2 to divide by the mean
flux of all the data points in the light curve, but we choose
the median flux, Fmed, as it is more robust against outliers.
We label each value of the SF S(τ) where τ is the geometric
mean of τ1 and τ2, but emphasise that this is a choice, driven
by the logarithmic binning we will choose later.

Sometimes the SF is defined as the square root of the
left-hand side of Equation 2. This is useful in that it draws
the analogy with the RMS variability, giving the values of
the SF an accessible interpretation. However, because the
SF is based around two samples of the data (rather than
considering the deviation of each sample from the mean),
the square root of the SF is a factor of root two larger than
the RMS, for a Gaussian noise signal. In this paper we follow
a middle course, and use the standard definition of the SF,
but plot its square root throughout the paper, and use the
same range of S0.5 in all the plots.

5.3 Strengths and Limitations

The resulting SFs provide a method for assessing the fre-
quency spectrum of the variability. In contrast to Fourier
techniques they have the advantage of being calculated in

Figure 7. A schematic SF, illustrating the main regimes (see text

for detail).

the time domain, and thus their dependence on sampling
is much reduced. Specifically gaps in the sampling have lit-
tle impact on the SF, as long as a statistically meaning-
ful number of time differences exist within a each bin. This
makes them particularly useful in analysing data such as
YSO lightcurves, where the sampling is by necessity discrete,
sometimes sparse and on a wide variety of cadences. They
also have the advantage of being sensitive to all variabil-
ity (including aperiodic variability) unlike a Fourier analysis
which is preferentially sensitive to periodic signals. Upper
and lower limits on the timescales of physical phenomena
within the system may be determined, providing the am-
plitude of the variability is larger than or comparable to
the photometric uncertainties. Hence SFs have been widely
used in the study of active galactic nuclei, where stochastic
lightcurves (similar to those often seen in YSOs) are common
(e.g. Kawaguchi et al. 1998; Hawkins 2002; Wilhite et al.
2008; MacLeod et al. 2012).

The main potential drawback of SFs is that they do
not take any account of the uncertainties in each datapoint,
which could lead to it being unclear how much of a signal is
actually due to non-astrophysical noise in the data. However,
we present a solution to this problem in Appendix C and
Section 6.2. Finally, it is worth noting that the requirement
for a large number of datapoints in each time-domain bin
leads to these bins being large (covering a range of 1.5 in
time in our case). Hence it is normal to refer to the time
axis as a timescale axis; hence the symbol τ rather than t.

5.4 Simple structure functions

Fig. 7 shows an schematic SF and highlights the three main
regimes. Region 1 is at a timescale where any intrinsic vari-
ability within the lightcurve is much smaller than the mea-
surement uncertainties for the data points. This region pro-
vides an independent estimate of the short-timescale pho-
tometric uncertainty. Region 2 sees the SF increase with a
gradient determined by the frequency spectrum of the vari-
ability exhibited by the target. It is possible to see plateaux
in this region if the variability spectrum contains discrete

MNRAS 000, 1–23 (2019)



10 Darryl J. Sergison et al.

low and high frequency components. Region 3 is beyond
τbrk, the point at which the variability tends to zero. i.e. at
timescales longer than τbrk, no additional intrinsic variabil-
ity, beyond that seen on shorter timescales is present. Hence
the most important conceptual difference between SFs and
many other forms of power spectra is their cumulative na-
ture. If an object has a given variability at timescale τ we
expect the SF to match or exceed that value for all timescales
longer than τ , though as we shall see later periodic variabil-
ity can break this rule.

5.5 Link to Fourier transforms

If region 2 is linear in log-log space, with a gradient β, it
implies that the amplitude of the variability can be param-
eterised as a power law of the form S ∝ τβ . A lightcurve of
random noise, i.e. one where each point is drawn randomly
from the same Gaussian distribution, so there are no point-
to-point correlations will give a SF where S ∝ τ0. This is
the same gradient as one obtains for the Fourier power spec-
trum. This leads naturally to the idea that power-law Fourier
power spectra will result in a power-law form for the SF (e.g.
Paltani et al. 1997), and that there may be a functional rela-
tionship between the two power laws (e.g. Voevodkin 2011;
Chapman et al. 2005). In fact, as we demonstrate below, this
is only approximately true. Emmanoulopoulos et al. (2010)
have already shown that whilst a power-law Fourier power
spectrum does produce a power-law SF over much of its
range, at the very longest timescales (especially the final
decade), there is a tendency for the SF to flatten out. It is
concerns such as this which have led to the idea that the
power law should always be measured by simulating the SF.
The problem is that good simulations require a very large
number of data points, in part to overcome the noise in the
simulation, but primarily to be sure one is free of sampling
effects. For example, covering the entire time period of our
the observations at the sampling of the high-cadence dataset
requires approximately 5× 106 datapoints, for which a typ-
ical CPU takes several hours to perform a direct evaluation
of the SF. In practice one needs to sample well beyond the
timescale “window” of the observations, and as the calcula-
tion time scales as N2, suites of simulations rapidly become
impractical. However, in Appendix A we show how it is pos-
sible to reformulate the SF using fast Fourier transforms,
and create a Fast Structure Function (FSF) algorithm.

Fig. 8 shows the FSFs for various Fourier amplitudes
including proportional to f0 (uncorrelated noise), f−0.5

(flicker noise, see for example Press 1978) and f−1 (a ran-
dom walk). There are 225 datapoints, which corresponds
to 10.6 years with a 10 s sampling. As expected a Fourier
power spectrum proportional to f0 gives a SF of the form
S ∝ τ0. A random walk gives S ∝ τ over most of its
length, with the roll over at long timescales seen by Em-
manoulopoulos et al. (2010). Flicker noise is more complex,
with a power law close to zero, but which steepens to shorter
timescales giving a mean slope of ' 0.1 over the timescales
of the low-cadence dataset. Flicker noise FSFs with fewer
datapoints retain the same shape, but losing the points at
shorter timescales. Flicker noise, and our example of f−1.5

noise show that whilst Fourier amplitudes of 0, −1 and −2
correspond to β values of 0, 1 and 2, this simple relation-
ship does not hold for non-integer powers. Rather than using

Figure 8. Solid lines: fast structure functions for Fourier am-

plitudes proportional to f0 (red), f−0.5 (fuchsia), f−1 (green),

f−1.5 (purple) and f−2 (blue) solid lines. The FSFs have been
normalised to similar values at 3 000 days and placed on an arbi-

trary timescale. Dashed lines: median SFs constructed from 100

realisations with the sampling of the low cadence dataset and the
Fourier amplitudes as given above. Each SF is normalised to lie

close to its corresponding FSF.

Table 6. Comparison of power law indices

Physical Fourier Fourier Structure

Process Power Amplitude Function

Sine function δ-fnctn δ-fnctn 1− cos(ωτ)

' τ2 for τ < π
2ω

Random walk f−2 f−1 τ

Flicker noise f−1 f−0.5 ' τ0.1

Uncorrelated noise f0 f0 τ0

Gaussian noise we also tried using the PDF from the Class
II YSOs (see Section 4.2 and Fig. 5), but found this made
little perceptible difference.

5.6 Structure functions with (quasi) periods

Although the above suggests that the SF should always in-
crease with timescale, signals containing a significant peri-
odic component can break this rule. Findeisen (2015) shows
that in the continuous case the SF of sin(ωτ) is 1−cos(ωτ).
Intuitively this makes sense as timescales close to the period
(or an integer number of periods) will show little variabil-
ity, since the lightcurve points differenced will be at similar
phases. In contrast, for timescales close to an odd integer
number of half periods, the differenced points are exactly
out of phase and hence show large variability. This results
in an effect akin to aliasing, which can be seen in Fig. 9,
which shows the SF for a sine wave. However, in real cases
the binning makes a significant difference. The size of the
steps chosen to sample the light curve plays an important
role here, averaging out the aliasing. Fig. 9 demonstrates
that the aliasing effect is much smaller when each timescale
step is 1.5 times longer than the previous one (as we use
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Figure 9. The SF for a sine wave of period 4 days, where the

semi-amplitude is equal to the mean. The red line histogram uses

bins where each boundary is 1.5 times the previous one, the blue
curve boundaries 1.05 times the previous one.

later in this paper) than when the time steps are separated
by a factor of 1.05.

Fig. 9 also shows that a sine-wave has a nearly power-
law slope corresponding S ∝ τ2 (β=2) for timescales shorter
than about a quarter of the period. This slope is a function of
the shape of the modulation. Triangle functions give a sim-
ilar slope, but saw-tooth or square-wave modulations give a
flatter slope, because their sharp transitions introduce power
at very short timescales, lifting the function at this point.

6 CONSTRUCTING THE STRUCTURE
FUNCTIONS FOR YSOS IN CEP OB3B

6.1 Raw structure functions

For each star we selected all datapoints which were un-
flagged and had uncertainties of less than 0.2 mags. From
these SFs were created with logarithmically spaced timescale
bins in the range 0.00075 to 3686 days ('1.0 minute to '10
years). Each bin has an upper timescale limit that is 1.5
times greater than that of the previous bin. We found that
care was needed when combining the 30s exposure data from
2013 November 10 with the remaining data which is almost
all 300s exposures. This was for two reasons. First, combin-
ing datapoints with very different signal-to-noise ratios can
lead to a SF which is dominated by photon noise from the
low signal-to-noise datapoints. Second, the large number of
datapoints on 2013 November 10 taken over a period of time
which is much shorter than the typical variability timescale,
and at a higher cadence than the remaining data can lead to
a dominant variability amplitude which is not representative
of the whole lightcurve, as discussed at the end of Appendix
C. Hence, it is important that the long exposures were dealt
with separately, as far as possible, from the short-exposure
2013 November 10 data. Hence we created two datasets. For
for the shortest timescales (τ<5 min) we used only the data
from the night commencing 2013 November 10; we will refer
to this as the high cadence dataset. For longer timescales

we binned the 30-second data from November 10 by a factor
10, so its effective exposure time matched that of the other
data, and its cadence is rather slower, and then combined
this with the remaining data to create what we shall refer
to as the low cadence dataset. The calculated SFs are given
in Electronic Tables C and D, whose columns are described
in Table 7.

6.2 Instrument and photon noise

The usual way to remove the contribution of noise induced
by the instrument and of photon noise from the SF is to
subtract the mean value of region 1 in Fig. 7 from the SF,
as any noise in this region is assumed to be non-astrophysical
in origin, specifically photon noise and other sources of noise
due to the instrument (e.g de Vries et al. 2003). The problem
for our dataset is that instrument noise is not constant over
all timescales. Specifically, the long term instrumental drifts
referred to in Section 2.2 (e.g. flatfield changes), mean that
the systematics in our data are larger at longer timescales.
In Appendix B we describe how we used the local standard
stars to model the contributions of instrument and photon
noise to the SFs and then subtracted it. The value of the
structure function after this correction we refer to as Snett.

6.3 The uncertainties

Given an infinite number of evenly sampled observations
Snett would be a noiseless measurement of the SF. However,
our unevenly sampled and finite timeseries means Snett is
only an estimate of the true structure function, and hence
has uncertainties associated with it. Fig. 8 addresses the
issue of uneven sampling by comparing well-sampled FSFs
(see Appendix A) with simulations of data sampled at the
times of the low-cadence dataset (see also Emmanoulopoulos
et al. 2010). To mitigate the effects of the small numbers of
datapoints in each timeseries, the SFs are the medians of
100 SFs. It can be seen that our sampling has little impact
on our observed SFs.

However the process we are studying is itself noisy, and
so identically sampled lightcurves of the same star at differ-
ent times will produce different SFs because of the limited
number of samples. This is also a function of the sampling,
as different samplings may have different susceptibilities to
noise. As an example, contrast the situation where point
pairs are taken from two small windows in the lightcurve
separated by the timescale we are interested in, with taking
the same number of pairs chosen randomly from the entire
lightcurve. If the main variability is at a timescale corre-
sponding to the separation of the windows, the first case will
give us many point pairs with very similar values, whereas
the second case would truly represent the range of variability
at that timescale. Hence this issue has to be addressed for
the sampling in question, and so in Fig. 10 we show ten real-
isations of random walk noise taken on the sampling of our
low-cadence dataset. We can see that at short timescales
where we have many independent samples the SF is well
measured, but on longer timescales individual SFs will have
uncertainties of a factor of order two. We address this issue
by simulation in Appendix C, where we derive uncertainties
(∆S) from this process, which we use in the remainder of
our analysis.
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Table 7. Column descriptions for tables of SFs (electronic Tables C and D, available from CDS at http://cdsarc.u-strasbg.fr/

viz-bin/qcat?II/362 or in FITS from https://doi.org/10.24378/exe.2124).

Column Name Units Description Symbol

TAU Day Timescale. τ

S NETT SF after removal of photon and instrument noise (see Appendix B2). Snett

DELTA S Uncertainty in S and S NETT as defined in Appendix C. ∆S

S The SF including photon and instrument noise (see Equation 2). S

DELTA 16 S LPS Estimated 16th percentile SF for an LPS of MEDIAN FLUX.
S LPS Estimated mean SF for an LPS of MEDIAN FLUX. SLPS

DELTA 84 S LPS Estimated 84th percentile SF for an LPS of MEDIAN FLUX.

CCD The CCD the star was observed with.
STAR ID Star identifiera.

MEDIAN FLUX Counts s−1 Median flux using conversion from magnitude for 2004 data.

Cl Class (I, II, TD, III or LPS).
FLAG Set to OU if S NETT < DELTA S, otherwise OO.

aFrom Littlefair et al. (2010), unique only within each CCD.

Figure 10. Ten simulated SFs with each with a different real-
isation of noise whose Fourier amplitude spectrum proportional

to f−1. The time sampling of the lightcurves is that of the low
cadence dataset.

7 INTERPRETING THE STRUCTURE
FUNCTIONS

7.1 Individual structure functions

Examples of the calculated SFs are shown in Fig. 11. It is im-
mediately clear that they broadly follow the characteristics
described in Section 5.4. At the shortest timescales the vari-
ability is dominated by upper limits with S0.5.1 per cent,
which would yield a region of constant variability caused
by the photon and instrument noise, had we not removed
it. Stars 1.02 468 and 1.04 1075 (Class II and III respec-
tively) show a rise in the SF from timescales of a few min-
utes to around a day, after which the variability is approx-
imately constant with timescale. Although fitting in with
this broad model, Star 1.02 468 also shows a dip centered
on four days, which is almost certainly the aliasing effect
referred to in Section 5.6, since the timescales are similar to
the rotation period. Both these systems contrast with the
Class I YSO (1.02 468) whose variability continues to in-

crease even beyond timescales of 5 years. Finally we show
the Class III YSO 1.02 1720, which has a very low level vari-
ability (AH68=0.0086 mags) with a high mean uncertainty
(0.009 mags) which means we fail to detect the variability
on any timescale. Hence the upper limits in this plot show
the typical lowest level of variability we can detect.

7.2 Median structure functions

To examine the differences in SF between classes we created
median SFs for Classes I, II, III and TD YSOs. To create
these SFs we took the median of all the datapoints within a
given timescale bin for all the stars in the clean sample. The
resulting SFs are shown in Fig. 12. For Classes II, III and
the TD systems the median SFs again show the expected
pattern of an increase to a break at around one day, after
which the gradient is considerably smaller. The large sample
allows us to see that the rate of increase below one day is
almost linear in log-log space, and is therefore power-law
like.

Whilst the results from Section 4 would lead us to ex-
pect a hierarchy of variability, with smaller long-term vari-
ability for more evolved stars, Fig. 12 shows that this hi-
erarchy is true at all timescales. Strikingly, the shape of
the SFs are vary similar for Class II, TD and Class III
YSOs, but where these systems show a break at about one
day, Class I YSO variability continues to increase to the
longest timescale we can sample, with a slope of S ∝ τ0.8,
which corresponds to a Fourier amplitude of roughly f−0.8

and hence is slightly less steep than a random walk, but
much steeper than “flicker noise”. However, we should cau-
tion here that Figure 8 shows that, due to sampling effects,
at timescales over 5 years the SF may underestimate the
slope for noise whose amplitude spectrum is steeper than
f−0.5 (which would strengthen the result). Conversely Fig-
ure 10 shows for small numbers of objects the results at long
timescales can be noisy (which would weaken the result).
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Figure 11. Example SFs for YSOs. Circles are the SF for the target star, after the removal of photon and instrument noise, with the

line showing the estimate of the uncertainty (see Section 6.3). The upper limits are the values of ∆S for datapoints where Snett < ∆S.
The green points are those which only use the high cadence data from 2013 November 10, whereas the black points are calculated using

the low-cadence dataset. Each panel is labelled with the identifier and classification for the star.

8 FITTING THE INDIVIDUAL STRUCTURE
FUNCTIONS

To make further progress we need to compare the SFs with
the models presented in Section 5.4. We therefore fitted each
YSO SF with a simple two part model where S is a constant
(equal to Sbrk) for τ>τbrk and is a power law of the form
S ∝ τβ below this. Hence we have

log10 S =A+ β log10(τ) τ < τbrk

log10 S = log10(Sbrk) τ > τbrk,
(3)

where A = log10(Sbrk)−β log10(τbrk). We carried out χ2 fits
for all the stars in the good sample, using the uncertainties
for each value of the SF derived in Appendix C, though our
use of log-log space forced us to remove SF points whose
value was below zero, and we further removed any stars with
fewer than 15 out of the possible 29 timescales. We also
imposed a minimum uncertainty of 0.1 dex, given that the
uncertainties are probably lower limits (see Section 6.3). We
grid searched the parameter ranges −6 ≤ log10(Sbrk) ≤ 0,
0 ≤ β ≤ 3 and −2.0 ≤ log10(τbrk) ≤ 3; SFs where the best-
fitting parameters reached these limits were removed from
the analysis.

8.1 The distributions of Sbrk, β and τbrk

Fig. 13 compares histograms of the derived parameters for
the different YSO classes. There are no obvious gaps in the
distributions of the amplitudes (Sbrk, and see also Fig.4), or
the timescales (β and τbrk), which would show as flat regions
in the cumulative distributions of Fig. 13. This fits with the
findings of Findeisen et al. (2013) who show that there is a
continuum of timescale and amplitude behaviours in both
bursters and faders, with Cody et al. (2017) coming to a
similar conclusion for bursters. It also fits into the broader
picture drawn by Contreras Peña et al. (2014) where it is
argued that the continuum of properties stretches across the
canonical YSO classes.

8.2 Interpreting τbrk as the rotational period

Fig. 14 shows a comparison of τbrk with the rotational pe-
riods of periodic stars found by Littlefair et al. (2010). It
is clear that τbrk correlates strongly with rotational period,
although the value of τbrk is ∼1/4 of the period for any given
star. This matches very well to the expected break point for
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Figure 12. Median SFs for each YSO class.

Figure 13. Histograms of derived parameters for YSOs in Cep

OB3b. The left panel compares S(τ) when τ > τbrk, for stars

in the Class II (red), transition disc ( dashed green) and Class
III (blue) samples. The center panel compares the exponent of

the variability power-law (β) for the samples. The right panel

compares τbrk.

a sine wave sampled at our time sampling (see Section 5.6
and Fig. 9), and so we conclude that the break in the SF
reflects the rotation period of the star. Since the SFs are
relatively flat beyond τbrk, we could conclude that most of
the variability of most YSOs occurs on timescales shorter
than the rotational period, though there are important de-
tails hiding behind this sweeping statement.

For example, there is a group of stars at long τbrk where
the rotational period is much shorter than τbrk. This means a
very large fraction of their variability originates at timescales
greater than their rotation periods. We will return to the ob-
jects which lie outside the τbrk-period relationship in Section
8.3.

Figure 14. τbrk as a function of the rotation periods for periodic

stars. Class II (red circles), TD (green asterisks) and Class III

(blue crosses) YSOs.

8.3 Explaining β for Class II YSOs

In discussing the origin of the slope below τbrk, we begin by
considering just the Class II systems. Having identified τbrk

as the rotational period of the stars, it would seem natu-
ral to associate the slope prior to the break with processes
driven by the rotation. Given that we know that many YSO
lightcurves are broadly sinusoidal, we might expect the slope
to correspond to that of a sine wave, i.e. β=2 (Section 5.6).
In fact as Figs. 13 and 14 show, the gradients range from
β=0.5 to only just over β=2, and so the problem becomes
identifying processes which flatten the slope. Sharp features
in a strictly periodic lightcurve will decrease the slope, as we
showed in Section 5.6. For example, whilst sine waves and
triangle functions give β=2, a sawtooth or square wave will
flatten the slope. However, the phase-folded lightcurves of
Class II stars are relatively time symmetric, but it is also
well known that aperiodic variability occurs in YSOs, and
so one or more of random walks (β=1), flicker noise (β'0.1)
and uncorrelated noise (β=0) must also contribute.

We can gain further insight by dividing our sample of
Class II objects using a diagram of τbrk as a function of SF
slope (Fig. 15). Objects where τbrk is consistent with being
a rotational period show no correlation between slope and
τbrk, whilst those with larger values of τbrk show an anti-
correlation. We therefore split the sample into those stars
with τbrk<5.4 days (or log10 τbrk<0.73) and those with either
a longer τbrk, or with no minimum in τbrk within our χ2 grid.
We show the median SFs for these groups in Fig. 16. Objects
below the cut-off (which consists of roughly two-thirds of the
Class II stars) have a very straightforward median SF, which
at short timescales has a slope of τ1.4, after which there is
a break at a timescale which corresponds to the rotational
period, followed by a region which is entirely consistent with
being flat, i.e. there is no extra variability at long timescales.
As this median SF is dominated by variability close to the
rotational period, we will refer to these as the rotation group.
For the objects where log10 τbrk>0.73 the SF has a slope of
β'1.0 for timescales less than a day, but then continues to
grow albeit with a flatter slope to the longest timescales we
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Figure 15. τbrk as a function of the fitted SF slope for the Class

II YSOs.

Figure 16. The median SFs for Class II systems which have a SF

consistent with a modulation dominated by the rotation period
and those which show long-timescale variability (red lines with

circles). Overlaid in black are the models described in the text.

can sample. Hence we will refer to this as the long-timescale
group.

What is striking is that the long-timescale group were
selected for the shape of their SFs, yet they clearly have a
smaller overall variability. This suggests a model where the
difference between the groups is only the amplitude of the
variability at rotational timescales. In Fig. 16 we show that
this is plausible by overlaying on the SF of the long-timescale
group a model consisting of a sinusoid and a power law with
Fourier amplitude proportional to f−0.75. The model is cre-
ated by taking the median of 120 simulations each with a
different period for the sinusoidal component taken from the
120 known rotation periods of the Class II primary sam-
ple. Increasing the power of the sinusoidal component by a
factor five then gives the model overlaid on the rotational
group. The models could clearly be improved at the expense
of more free parameters by making the power law a weak

declining function of timescale, and perhaps injecting more
power at shorter timescales in the rotational component.
However, the aim with these models is to show that a sin-
gle model can explain both groups, and that the mechanism
which drives the largest amplitudes in Class II YSOs acts on
timescales commensurate with the rotational period. There
are in addition longer-term smaller-amplitude changes, but
unless the rotational variation is weak, these are swamped
by the short-term variation.

A straightforward explanation of the groups we observe
might be that the rotation-dominated objects are viewed at
high inclination, and so geometrical effects drive a large frac-
tion of their variability, whereas the long-timescale group
are viewed more pole-on. Alternatively the long-timescale
group may have more complex magnetic field geometries
than simple dipoles. This might lead to smaller geometric
modulations in the same way as a larger number of star-
pots leads to a smaller rotational modulation for Class III
YSOs. Unfortunately, with the data to hand there is no way
of testing these models. For example, there is no correlation
between Hα equivalent width and inclination Appenzeller &
Bertout (2013), despite theoretical expectations (Kurosawa
et al. 2006; Lima et al. 2010). However, the inclination hy-
pothesis could be tested using the velocity width of the Hα
line measured in high resolution data.

8.4 Previous measurements of β for Class II
YSOs.

Our interpretation of the SFs also fits the Fourier spectra
observed by Cody et al. (2014) (see their Fig. 17). At high
frequencies their spectra are flat, presumably corresponding
to the instrumental noise in their data. Between a tenth of
a day and 10 days their spectra are proportional to 1/f in
amplitude (equivalent to β=1, see Section 5.5), similar to our
median Class II spectra, before flattening out again at longer
periods. Interestingly the Fourier spectrum of the Herbig Ae
star HD 37806 by Rucinski et al. (2010) also shows a break
at 1.5 days which may be a rotation period and again an
amplitude proportional to 1/f below this.

In contrast Rucinski et al. (2008) and Siwak et al. (2016)
found a ‘flicker noise’ spectrum in MOST data of TW Hya
(between 0.1 and 10 days) and RU Lup (between 0.5 and
10 days). Given this corresponds to a β of around 0.1 (see
Section 5.5), this is much flatter than slopes we observe for
our rotationally dominated group. However RU Lup shows
long-term large-amplitude variations with no sign of a rota-
tion period (Siwak et al. 2016) which would place it firmly in
our long-timescale group which have flatter slopes. Likewise
TW Hya is almost certainly viewed at very low inclination
(Andrews et al. 2016; Qi et al. 2004), and so its flat slope
adds weight to our suggestion that the long-timescale group
are low-inclination objects.

8.5 Explaining β for Class III YSOs

The median gradient β, for the region of the SF where
τ < τbrk appears to be very similar for the Class II and
Class III objects. Considering the different physical mecha-
nisms at play in the two populations, this might appear sur-
prising, but in fact it shows how the SF alone does not give

MNRAS 000, 1–23 (2019)



16 Darryl J. Sergison et al.

a full picture of the variability. There are two key differences
between the two classes. First, if we consider the distribu-
tion of the normalised magnitudes of the points within the
lightcurves (shown in Fig. 3), we can see that these are very
different. The Class III objects show a double peaked distri-
bution which, as explained in Section 4.2, is characteristic
of a sine wave with noise. This contrasts with the single-
peaked asymmetric distribution for the Class IIs. Second,
if we split the Class III SFs in the same way we did for
the Class II YSOs by the value of the break timescale we
find both sub-classes tend to the same overall variability at
large timescales, but the long-timescale group take longer to
reach this value, again in contrast to the Class IIs. Hence
although the SFs of Class II and Class III YSOs are similar,
there is other evidence which points to the differences in the
mechanism producing the variability.

Fig. 12 shows that there is no evidence for an increase
in variability on timescales longer than a month. This agrees
with the result of Grankin et al. (2008), who found very little
increase in the variability of a sample of Class III YSOs on
timescales of years, and it implies that although the changing
morphology of the spots of the Class III sources can drive
year-to-year variations in the shapes of their modulations,
it does not significantly change the overall amplitude. Given
that we might expect magnetic cycles to drive changes in
spot coverage, this is perhaps surprising.

8.6 Sbrk for Class II and III YSOs

Both Venuti et al. (2015) and Rigon et al. (2017) report a
mean amplitude for timescales beyond the rotational ones.
From the tables in Venuti et al. (2015), the mean r-band
RMS values for their Class II and Class III stars are 0.13
and 0.031 mags respectively, which is very close to our me-
dian values (0.13 and 0.051 mags respectively; see Table 5).
In contrast Rigon et al. (2017) report a mean saturated vari-
ability which is much stronger at 0.22 mags (especially when
it it recalled that we expect the RMS to be a factor of root
two smaller than the SF; see Section 5.2), suggesting the
Class II amplitude may not be universal. This is not sur-
prising, we will show in Section 10 that there is a correla-
tion between variability amplitude and accretion rate, so we
would expect samples with mean ages to have have different
variability, as accretion rate varies with age.

9 THE VARIABILITY OF CLASS II YSOS FOR
τ>1 YEAR

The idea that Class II variability extends beyond the rota-
tional timescale is not new, but is controversial. Findeisen
et al. (2013) show that for a subset of sources they define
as bursters and faders their variability extends out to a few
hundred days. Similarly Grankin et al. (2007) find that 20
percent of their sample of Class II objects show significant
variability on a timescale of years, in much the same way
as we find a third of our Class II sample are in our long-
timescale group, which shows variability on timescales longer
than a year.

The case against such long-term variability is made by
Rigon et al. (2017) and Venuti et al. (2015). The former carry
out a similar analysis to ours using “pooled sigma” which is

broadly equivalent to the SF, for a sample of 39 Class II stars
for timescales longer than a week. Although they conclude
that the variability on timescales of a month is no larger than
that over a decade, there is evidence in their data for an in-
crease in pooled sigma on longer timescales, though as they
state, that evidence is weak. Venuti et al. (2015) present u-
and r-band photometry for NGC2264, primarily taken over
a fortnight, but with two epochs on years timescales. They
conclude that there is no extra variability beyond timescales
of weeks. We think the issue here two-fold. In the log-space
in which the variability is plotted the increase in variabil-
ity over the rotational timescale will always dwarf the long-
term increase, even if in absolute terms they are of similar
magnitude. Fundamentally, however, we believe the differ-
ence between our work and that of Rigon et al. (2017) and
Venuti et al. (2015) is that these two studies do not have
the combination of a large sample and the long timescales
required to reliably detect what is a relatively subtle effect.

In contrast to the difficulty of detecting long-term vari-
ability in the optical, long-term variability seems to be a
large component of IR variability. At JHK wavelengths
there is clearly increased variability as the timescale stud-
ied extends beyond a year, as demonstrated for stars in Cyg
OB7 (Rice et al. 2012; Wolk et al. 2013), the Orion Nebula
Cluster (Rice et al. 2015) ρ Oph (Parks et al. 2014) and the
southern Galactic Plane (Contreras Peña et al. 2017). Cru-
cially Scholz (2012) detect JHK variability on timescales
up to 8 years for a sample drawn from many clusters. Mov-
ing to still longer wavelengths Flaherty et al. (2016) present
observations at around 4µm of Chamaeleon I taken over 200
days, which show an increase in amplitude with time, and
then combine their data with older IR data to show mid-IR
variability extends out to a decade. This indicates that the
fraction of variability as a function of timescale is different
for optical and mid-IR data. This would be unsurprising as
even at short timescales the classifications of the lightcurves
are different in the different bands; few periodicities discov-
ered in the optical are present in the mid IR, and the fluxes
in the two bands are only weakly correlated (Cody et al.
2014). Thus it is likely that the mid-IR variability (' 4µm)
has a different driving mechanism from the majority of the
changes in optical flux.

This behaviour is explained by the fact that the ro-
tational modulation is believed to be primarily caused by
accretion hot-spots on the surface of the star. Hence the
rotational modulation will have a lower amplitude in the in-
frared than the optical because the flux contrast between
the hotspots and other, cooler material is smaller at longer
wavelengths. This lower amplitude then allows the longer-
term variability to emerge as the dominant variation in the
IR. Interestingly, by examining the JHK colours of the vari-
ability in the ONC, Rice et al. (2015) make the case that the
majority of the long-term IR variability is driven by accre-
tion changes, and D’Angelo & Spruit (2012) show how the
interaction of the magnetosphere with the disc might drive
such accretion rate changes with the required timescale. In
combination with the results from Section 8.3 this allows
us to suggest a comprehensive model for the optical and IR
variability where there two components; a short-term modu-
lation driven by geometric effects at the rotation period, and
a longer-term modulation driven by changes in the accretion
rate. Due to its high temperature the rotational component

MNRAS 000, 1–23 (2019)



YSO variability 17

can only dominate in optical observations of high inclina-
tion systems, in lower inclination systems and in the infrared
accretion-rate changes will dominate the variability.

We know this is not a complete explanation of the op-
tical lightcurves of Class II YSOs; for example dips caused
by obscuration by the accretion disc must also play a role,
but it may explain the majority of systems. Furthermore
there is other evidence we could collect, such as the long-
term multicolour lightcurves LSST will supply. Finally, the
absence of any large accretion-rate changes found by Costi-
gan et al. (2014) on timescales longer than a year from Hα
measurements (though their sample is small) argues against
this model.

10 THE CORRELATION BETWEEN
ACCRETION RATE AND VARIABILITY

To test for effects related to mean accretion rate we divided
our Class II objects in the primary sample based on the r-
Hα colour given in Littlefair et al. (2010). They show that
the position of the pre-main-sequence in this colour is only
a weak function of V -I, and so we have not performed any
correction for colour. We split the sample at r-Hα = 2.5,
which places roughly two thirds of the sample in the Hα-faint
group. We then assembled median SFs for the two samples
which are presented in Fig. 17. The most obvious result in
Fig. 17 is that the Hα-bright sample are about twice as
variable (in terms of S0.5, i.e RMS variability) as the faint
sample. This re-enforces the result of Cody et al. (2017)
who report that a sample of bursters in ρ Oph and Upper
Sco have stronger Hα than non bursters. Here, however, we
can see that the increased variability is not just at the long
timescales associated with bursts, indeed the ratio of the
variability between the two samples is remarkably constant
as a function of timescale (see the upper panel of Fig. 17)
given that S varies by two orders of magnitude.

Clearly, this means that higher accretion rates drive
higher fractional variability, which is consistent with many
theories where various instabilities increase in amplitude
with increasing accretion rate. Choosing between those the-
ories requires understanding where in the frequency spec-
trum any enhanced variability occurs. Enhanced variability
at long timescales would favour theories associated with the
viscous timescale of the disc, shorter timescales those asso-
ciated with the rotation of the magnetosphere. The small
amplitude of the ratio in the top panel of Fig. 17 argues
against a mechanism acting on just one timescale. That said,
there is a case that the Hα-bright sample is more variable
at short times than the Hα-faint objects. The timescale as-
sociated with the excess variability is so short that it argues
for instabilities near the shock in the accretion column, such
as those modelled by Matsakos et al. (2013).

11 CONCLUSIONS

Analysing the i-band variability of 11 Class I, 501 Class II,
21 transition disc and 274 Class III sources on timescales
between 1 minute and '10 years gives this study a unique
combination of a large sample of YSOs studied over a broad

Figure 17. The median SFs of Hα-bright and Hα-faint stars.

The upper panel shows the ratio of the two SFs (not the ratio of

S0.5).

range of timescales. Variability has not been used as a selec-
tion criterion for the sample, and so the sample can be used
to draw conclusions about the amplitude and prevalence of
variability at the age of Cep OB3b. The key results are as
follows.

(i) There is a hierarchy of i-band optical variability between
the different evolutionary classes in the sense that Class I
variability is greater than Class II, which is greater than the
TDs, which is in turn greater than the variability of Class
III, i.e. the younger a YSO is in evolutionary terms, the
more variable it is (Section 4.3 and Fig. 4). This is true at
all timescales (Section 7.2 and Fig. 12).

(ii) On timescales .15 minutes the i-band variability in the
mean structure function of any class of YSO is less than
'0.2 per cent (Section 7.2 and Fig. 12).

(iii) The i-band variability of Class I YSOs appears to in-
crease roughly as a power-law function of timescale up to at
least ten years. The power-law rise (S ∝ τ0.8) is slightly less
steep than a random walk (S ∝ τ), but much steeper than
“flicker noise” (Section 7.2 and Fig. 12).

(iv) On timescales between '30 minutes and 1 day, the i-
band variability for Class II, TD and Class III stars is en-
tirely dominated by a power-law spectrum whose amplitude
is roughly proportional to timescale to a power between 0.5
and 2. This can be explained as a roughly sinusoidal sig-
nal at the rotational period of the star, with the addition
of correlated noise (Sections 8.2 and 8.3), which probably
originates from the instabilities in the accretion flow at the
timescale of the inner disc (see e.g. Romanova et al. 2008).

(v) Class III YSOs show no significant increase in i-band
variability on timescales longer than a month (Section 8.5).

(vi) About two-thirds of the Class II sample show no in-
crease in variability beyond the rotational timescale of a
few days, with the remainder showing significant variability
on timescales of years. Since the sample with the longer-
timescale variability also has smaller overall variability, it is
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clear that the amplitude of the rotational modulation is re-
duced. Possible explanations for this reduction include view-
ing the system at relatively low inclination, or more complex
field geometries (see Section 8.3). This reduction in turn re-
veals the longer-term modulation which is probably due to
changes in the accretion rate (Section 9).
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APPENDIX A: FAST STRUCTURE FUNCTION
SIMULATIONS

The simulations presented in Section 5.4 required us to de-
rive SFs for very large numbers of points, which we achieved
by developing a Fast Structure Function (FSF) which creates
SFs in a time of order N logN . In what follows we first show
how to construct time-series (xn) with given noise proper-
ties using discrete Fourier transforms (DFTs), and then use
these results to derive the FSF. We also present demonstra-
tion code implementing the FSF algorithm in the supple-
mentary material for this paper.

Since we are using DFTs, we use the variables n, m

and k as integer indices labelling the observation time t(n),
delay time τ(m) and Fourier frequency f(k) values in the
usual manner, i.e.

t(n) = n∆t, τ(m) = m∆t, f(k) = k∆f (A1a–c)

where

∆t = tmax/(N − 1) and ∆f = 1/tmax. (A2a–b)

The time-series duration tmax must be no less than the to-
tal observation time (9.1 yr) and N must be large enough
that ∆t, the time resolution, is no greater than the shortest
interval between observations (466 s). We assume that N is
an integer power of two, a choice that allows DFTs to be
evaluated in times O(N logN) using the Cooley-Tukey fast
Fourier transform (FFT) algorithm (Cooley & Tukey 1965).

A1 Gaussian White Noise

An N -sample realisation of a stationary Gaussian white
noise process with zero mean and variance σ2,

xn ∼ N
(
0, σ2) for n = 0 . . . (N − 1) (A3)

can be generated as follows. The DFT of the random vector
xn will be

Xk = DFT(xn)k

=
1

N

N−1∑
n=0

xn exp

(
−i2πnk

N

)
for k = 0 . . . (N − 1),

(A4)

which is a complex Gaussian random vector (see, for exam-
ple, Richards 2013) with Hermitian symmetry. This can be
realised directly:

X0 ∼ N
(

0,
σ2

N

)
, (A5a)

Xk ∼
1√
2
N
(

0,
σ2

N

)
+

i√
2
N
(

0,
σ2

N

)
for k = 1 . . . (N/2)− 1,

(A5b)

XN/2 ∼ N
(

0,
σ2

N

)
, (A5c)

XN−k = X∗k for k = 1 . . . (N/2)− 1. (A5d)

The inverse discrete Fourier transform (IDFT) is then used
to construct the desired white Gaussian time-series from Xk:

xn = IDFT(Xk)n

=

N−1∑
k=0

Xk exp

(
+i

2πnk

N

)
for n = 0 . . . (N − 1).

(A6)

For a given realisation, the power spectral density (PSD) is
calculated directly from its definition

Pk = XkX
∗
k . (A7)

On average, 〈Pk〉white = σ2/N, is independent of k, i.e. fre-
quency.
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A2 Gaussian Pink Noise

To simulate the astronomical observations, we need samples
from a bandwidth-limited pink-noise process with a PSD

〈Pk〉pink ∝
{

0 for k = 0,
1/f2α

k for 0 < k < (N − 1).
(A8)

A sample of Gaussian noise with the desired PSD can be
realised using a simple modification of equations A5a–A5d
(Timmer & Koenig 1995):

X0 = 0, (A9a)

Xk ∼
1√
2
N
(

0, 〈Pk〉pink

)
+

i√
2
N
(

0, 〈Pk〉pink

)
for k = 1 . . . (N/2)− 1,

(A9b)

XN/2 ∼ N
(

0, 〈Pk〉pink

)
, (A9c)

XN−k = X∗k for k = 1 . . . (N/2)− 1 (A9d)

followed by equation (A6) to construct xn, the required time-
series.

A3 Non-Gaussian Pink Noise

We showed in Section 4.2 that YSO noise is non-Gaussian,
and we wished to be able to simulate this for pink noise. To
realise such a series zn we use spectral mimicry (Cohen et al.
1999), which is an approximate method that was originally
developed to design an experiment in microbial population
dynamics. The steps are as follows.

(i) Generate xn an N -element realisation of Gaussian
noise with the desired PSD as described in section A2 above.

(ii) Calculate the sort-order of the elements of xn. This
is an N -element look-up table n[j] defined such that xn[j] ≤
xn[j+1] for j = 0 . . . N − 2.

(iii) Generate yn comprising N samples drawn from the
desired PDF and sorted into ascending order.

(iv) Calculate zn[j] = yj for j = 0 . . . N − 1.

The result zn is a realisation that has the desired PDF and a
spectrum that approximates that of xn. The execution time
for this method is dominated by the sorting algorithm in
step (ii), i.e. O(N logN).

A4 A Fast Structure Function

Of course it is not the xn that we are really interested in,
but the SF as defined in Equation 2. For our N -sample re-
alisation this becomes

Sτ =
1

(N −m)

N−1−m∑
n=0

(xn+m − xn)2, (A10)

where τ = m∆t for m = 0 . . . (N − 1). It is not practical
to evaluate equation (A10) directly for large values of N
because this requires, see Table A1, a time O(N2). Instead,
we convert it into a form suitable for evaluation using FFT
methods.

It is well-known that DFTs can be used to calculate
cyclic convolutions (Rabiner & Gold 1975, pp. 59-60) of two

N -sample signals xn and yn

cm = (xn ~ yn)m

= IDFT(DFT(xn)×DFT(yn))m for m = 0 . . . (N − 1),

(A11)

where cm also has N elements. This calculation is directly
applicable only to periodic signals, i.e.

cm = c(m+N) and xn = x(n+N) and yn = y(n+N),
(A12)

but the signals that interest us are aperiodic. Fortunately,
this obstacle can be overcome (Rabiner & Gold 1975, pp. 61-
66) by padding xn and yn with zeros, e.g.

x′n =

{
xn for n = 0 . . . (N − 1)
0 for n = N . . . (2N − 1),

(A13)

which facilitates calculation of the discrete linear convolu-
tion of xn and yn

c′m(xn, yn) = (xn ∗ yn)m

= IDFT(DFT(x′n)×DFT(y′n))m

for m = 0 . . . (2N − 1)

(A14)

and the discrete linear autocorrelation function

R′m(xn) =
1

N

N−1−|m|∑
n=0

xnxn+|m|

= 2c′|m|(xn, x
∗
n) for m = (1−N) . . . (N − 1).

(A15)

We use N padding-zeros in equation (A13), one more than
strictly necessary, so that the length of x′n remains an integer
power of two, i.e. optimal for fast calculation.

Returning our attention to the SF (eqn A10), after ex-
pansion of the summand it comprises three terms

Sτ =
1

N −m

(
S(a)
τ + S(b)

τ + S(c)
τ

)
(A16)

that can be evaluated as follows:

S(a)
τ =

N−1−m∑
n=0

−2 (xnxn+m) = −2NR′τ (xn), (A17a)

S(b)
τ =

N−1−m∑
n=0

x2
n =

N−1∑
n=0

x2
n −

m−1∑
n=0

x2
N−1−n (A17b)

S(c)
τ =

N−1−m∑
n=0

x2
n+m =

N−1∑
n=0

x2
n −

m−1∑
n=0

x2
n. (A17c)

These need to be combined and rearranged into a form suit-
able for implementation in computer code

Sτ =
1

(N −m)

2N
(
R′0(xn)−R′τ (xn)

)
−
m−1∑
n=0
m>0

(
x2
N−1−n + x2

n

)
(A18)

where, as above, τ = m∆t for m = 0 . . . (N − 1). The CPU
time required to evaluate the SF in this form when N is
an integer power of two is O(N logN), see Table A1. For
clarity, this method and its results will be referred to as the
fast structure function (FSF).
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Table A1. Comparison of the CPU (3.06 GHz Intel Core i3 pro-

cessor) time needed to evaluate the SF using the direct (eqn A10)

and fast (eqn A18) methods for a range of sample sizes, N .

Samples N Direct (s) Fast (s)

4 K 212 0.013 0.001

32 K 215 0.61 0.008
256 K 218 38.2 0.072

2 M 221 4090 0.84

16 M 224 6.8
32 M 225 13.7

64 M 226 29

128 M 227 116

A5 Practicalities

The demonstration code in the supplementary material gives
details of the FSF implementation. Power-law noise was cre-
ated in the following way. We used the Box-Muller transform
(Box & Muller 1958) to realise Gaussian variates, N (0, σ2).
Distributions with a specified cumulative distribution func-
tion (CDF), F(X), are realised using the inversion method
(Devroye 1986, §III.2), i.e. solving F(x) = U [0, 1), where
U [0, 1) is a uniform variate we generated using the Mersenne
Twister algorithm SFMT19937 (Saito & Matsumoto 2008).
We then solved for F(x) numerically using a binary search,
accelerated by guide tables, followed by interpolation.

APPENDIX B: THE PHOTON AND
INSTRUMENT NOISE

B1 Modelling the photon and instrument noise

As we discussed in Section 6.2, it is desirable to remove the
photon and instrument noise from the SF, using the local
photometric standard stars to model that noise as a func-
tion of timescale. Of course the noise is also a function of
the magnitude of the star, and so we need to use LPSs close
in brightness to our targets. Koz lowski et al. (2010) achieve
this by using the SFs of four stars with similar magnitudes
to the target. In contrast we modelled the noise as a func-
tion of magnitude using a semi-emipircal model, and then
interpolated the models for the magnitudes of our targets.
To achieve this the SFs for the local photometric standard
stars on each CCD were ordered by mean flux and then sliced
into groups of 51 stars. The median SF as a function of τ
was calculated for each 51-star magnitude slice. The SF at
a particular timescale was then extracted from each of these
median SFs to obtain the empirical SF as a function of flux
at each timescale (see Fig. B1). Next, for each timescale the
SF was converted into flux and fitted as a function of flux
with an analytical model of the form

F 2S = ε = B2 +K1F +K2F
2. (B1)

Here B is the noise due to the sky background in the frame
(a fitted parameter that is constant across the CCD), F
is the measured stellar flux and K1 and K2 are empirically
derived constants. This formula is motivated in the following
way. The first term represents the idea that for very faint
stars the noise in their flux is dominated by the photon noise
counts from the sky, and so the noise is independent of the

Figure B1. Example noise model for the local photometric stan-

dard stars on CCD 4. Each point represents a slice of 51 stars

in flux, in a given SF timescale bin. The data are the measured
values, the lines are the best-fit analytical model described by

Equation B1. The error bars represent the RMS of the measured

values. The different colours represent different timescales.

flux (see, for example Naylor 1998). Once the star becomes
significantly brighter than the sky, the photon noise from the
star itself dominates, giving the second term where the noise
is proportional to the square root of the flux (which is then
squared to be added in quadrature to the sky term). Finally,
for the brightest stars errors in the flat field will dominate,
giving a term which varies linearly with stellar flux. However,
the ultimate justification for the form of Equation B1 is that
the model fits the data (especially as roughly 10 percent of
models have negative, i.e. unphysical values of B or K1).
Examples of the empirical relations and analytical fits are
shown in Fig. B1.

B2 Subtracting the photon and instrument noise

These models characterise the SF of the photon and instru-
ment noise, and can be interpolated to the flux of each target
star for a given timescale, CCD and stellar flux. This was
then subtracted from each target SF using the formula which
assumes the corresponding values of Y are uncorrelated.

Snett = S − SLPS (B2)

A small number of objects were so bright that they exceeded
the highest flux datapoint in the fit. In these cases we used
the noise for the brightest fitted value rather than extrapo-
lating, which gives an over-estimate of the fractional noise.

APPENDIX C: UNCERTAINTIES FOR
STRUCTURE FUNCTIONS

C1 A model for structure function uncertainties

Our definition of the SF (Equation 2) can be interpreted as
averaging many individual estimates of its value, in which
case one might expect the RMS of the individual values
about that mean to give an estimate of the uncertainty in an

MNRAS 000, 1–23 (2019)
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individual value. This could then be divided by the square
root of the number of contributing datapoints (p1/2) to yield
a standard error, which is an estimate of the uncertainty in
the mean. This intuition is almost correct.

For brevity of notation let us begin by defining Yij as
(Fi−Fj)/Fmed. If our values of Y are distributed as a Gaus-
sian about a mean value of zero, then we expect Y 2 to be
distributed as χ2 with one degree of freedom, scaled by the
σ2 of the Gaussian distribution characterising Y . The SF
is the mean of this distribution, and the RMS does provide
a measure of its width (albeit that its distribution is not
Gaussian). Hence we could estimate the uncertainty in the
mean as

∆S =
1

p
1/2
eff

√
1

p

∑
ij

(Y 2
ij − S)2 (C1)

where the following discussion centres around the value of
peff , which is the effective number of independent datapoints.
The reason peff is not one is that a given datapoint can con-
tribute to many values of Y , and so the values of Y are not
independent. Without making the above arguments explicit,
Collier & Peterson (2001) suggest peff = p/2, which they ac-
knowledge is ad hoc, but gives reasonable estimates of the
uncertainties. Conversely, re-arranging Equation B1 of Cz-
erny et al. (2003) gives peff = p/4. Part of the issue here
may be the non-Gaussian nature of the distribution, but
an equally serious issue is the number of independent data
points. Were the SF derived from 2p lightcurve points each
of which was only paired with one other data point to cre-
ate p values of y then the RMS should clearly be divided by
p1/2. But in constructing a value of the SF many lightcurve
points are used many times, and so the number of truly inde-
pendent points is probably the number of lightcurve points
used. We confirmed this by creating a single SF value us-
ing every possible pairing of a set of ν values drawn from a
Gaussian distribution. We then used the RMS of the values
of Y 2

ij − S divided by ν1/2 to estimate the uncertainty for
this SF value. If we then created many SF values in this way
we found their RMS matched the predicted uncertainty, ap-
parently confirming peff should be the number of lightcurve
points used.

Unfortunately in real SFs a single lightcurve point may
be used in many values of Y , or just one, meaning that a
small number of lighcurve points can dominate the value
of the SF at a particular timescale, so the number of inde-
pendent points is effectively reduced. To illustrate this we
created simulated lightcurves on the sampling of our low-
cadence data, where each lightcurve point was drawn from
a Gaussian distribution. We then compared the RMS val-
ues of the SFs at each timescale with the RMS predicted by
Equation C1 if peff is set to one. As Fig. C1 shows this is a
good way to estimate the uncertainties in the SF, giving an-
swers which are within about a factor two of the true answer
for timescales less than a few hundred days. The timescales
where this does not work are indeed dominated by a few dat-
apoints. (This is the same effect as we illustrated in Figure
10.) One measure of this dominance is to examine distribu-
tion of the number of times each lightcurve point is used
in creating a given point of the SF, and take the maximum
of this distribution divided by its median. We will call this
metric D. In principle we could simulate a correction factor

Figure C1. The RMS between sets of simulated SFs compared

with the estimate of the noise given by Equation C1. The simu-

lated SFs used the same time sampling as the low-cadence data,
and points drawn from a Gaussian distribution. The red (upper)

line sets the effective number of datapoints (peff) to be the num-

ber of datapoints in the lightcurve (ν), whereas the lower (blue)
curve uses peff = ν/D1/3.

for each SF using the number of times each lightcurve point
is used at each timescale, which would vary (due to flagged
datapoints) from star to star. In fact we found that if we
use peff = ν/D1/3 we have a good estimate of the noise (see
Fig. C1), though with no better justification for the power of
D than it works for our low-cadence data, and makes little
difference for our high-cadence data.

C2 A test for structure function uncertainties

We tested Equation C1 using the local photometric stan-
dards in a similar fashion to the way we used them to find
the photon and instrument noise. Fig. C2 shows that there
is scatter about the mean relationship for the photon and
instrument noise. That scatter represents the uncertainty in
the measurement of the SF, and so in the same way as we
fitted the median value in Section B1, we can fit the 16 and
84 percentage points at each value of the flux (given in elec-
tronic Tables C and D), as shown in Fig. C2. In principle
these are equivalent to the ±1σ limits enclosing 68 percent
of the SFs, but of course the distribution is distinctly non-
Gaussian. For example the 16th percentile point is closer to
the median line than the 84th percentile point by, on average
a factor of '0.7.

For each LPS we compared the ratio of the model noise
for every SF timescale as given Equation C1, to the mea-
sured differences in the SFs for an ensemble of stars of similar
brightness, given by the half the difference between the 16th
and 84th percentile points. We then collected together all the
resulting datapoints which had the same effective number of
datapoints in the LPS (though different mean fluxes), calcu-
lated the median ratio and plotted this as a function of the
number of point pairs. This is shown in Fig. C3. It is clear
than in both the low and high cadence datasets we are still
under-estimating the uncertainties, by a factors of 2.3 and
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Figure C2. The distribution of the values of the SFs at τ=6.7

years for the local photometric standard stars on CCD 4. Each

point is the value of the SF plotted at the median flux for that
star. The red line was constructed by first dividing the data by

flux into groups of 51 stars. A polynomial was then fitted to the

median value of the SFs in each group, and so it represents the
50th percentile by SF, and is identical to the red line in Fig. B1,

though with the ordinate in SF rather than noise squared (i.e.

different by a factor of the flux squared). The fuchsia-coloured
lines are the 16th and 84th percentiles calculated in the same

way.

1.4 respectively. There is also a weak residual dependence
with peff for the low cadence data.

We then examined whether there was any residual de-
pendence with S (the SF before it is corrected for photon
and instrument noise). In this case, though, rather than plot-
ting the median for all points with the same number of point
pairs, in Fig. C4 we take a sample from the entire dataset
of SF values for the LPS and plot them as a function of
S. In this figure both datasets show the same offsets as the
plots as a function of peff , with the ratio of measured to
the predicted noise is constant over most of the range of S.
Only below an RMS of ∼0.01 (S∼10−4) is there a significant
deviation from this.

C3 The final model uncertainties

The main issue to be addressed, therefore, is the global offset
roughly independent of S and peff . The underlying physical
reason for this difference between random simulated data
and real data is unclear, but it is clear we must correct for
it. Therefore to evaluate the uncertainties in Snett we use
Equation C1 with peff=ν/D1/3, and apply the multiplicative
factor for the low and high cadence datasets given above.

This paper has been typeset from a TEX/LATEX file prepared by
the author.

Figure C3. The median ratio of measured noise to estimated

uncertainty as a function of the effective number of datapoints.

Figure C4. The ratio of measured noise to estimated uncertainty
as a function for one in ten of the measured values of the SFs of

the LPS.
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