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Abstract 

The anthropogenic and natural input and transport of particulate organic carbon 

(POC) into and along stream systems from land to ocean is not yet well described 

(Regnier et al, 2013). Accelerated soil erosion due to changes in land use (e.g. 

expansion and intensification of agriculture) contribute to POC transport from 

land to ocean, while artificial damming of river systems, such as hydropower, trap 

the suspended particulate fractions and contribute to limnic storage in reservoirs. 

These perturbations on the landscape impact the volumes, transport and fate of 

suspended organic material. While mainly geomorphic processes control erosion 

and deposition of inorganic sediments, the mobility and transformation of POC is 

further subject to within-catchment stabilisation processes, sequestration by 

burial into sediments, and microbial fermentation which contribute to the vertical 

emission of potent greenhouse gases like CO2 and CH4. These sources, sinks 

and transformations of POC along the land-ocean aquatic continuum (LOAC) are 

dynamic and depend on input, transport, and deposition of suspended organic 

materials. Particulate organic carbon dynamics has been studied broadly in the 

past, both in freshwater systems, estuaries and oceans. However, its role in the 

global carbon cycle has been highlighted especially in recent years due to the 

lack of quantifiable pathways of POC sequestration, transport and mineralisation 

in freshwater systems. This project studied POC in two contexts: 1) POC 

transport and fate in a tropical reservoir was modelled and measured, and 2) the 

effects of flocculation on riverine DOM was measured by experiments. 

In the first study, erosion rates were calculated from fallout radionuclides 

(FRN) in a highly perturbed and largely deforested tropical catchment in Brazil. 

The results from these field observations were used to quantify soil erosion and 

sedimentation in the catchment. The results also validated modelled output with 

Revised Universal Soil Loss Equation (RUSLE) which was used to model soil 

erosion for the whole catchment. The contribution of allochthonous organic 

carbon from catchment soils into the reservoir was then quantified.  

The second study utilized the same field site, and addressed the relative 

inputs of allochthonous and autochthonous POC into the reservoir. Physical and 

chemical protection of organo-mineral aggregates and flocs determine the fate of 

catchment-derived POC. This second part of the study investigated whether 
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allochthonous POC derived from terrestrial soils was more important than 

autochthonous POC (e.g. from macrophytes, biofilms and algae) for limnic 

storage in post-flooding sediments of a tropical reservoir. POC was calculated 

from C inventories of reservoir sediment cores collected along the delta–reservoir 

gradient and linked to organic matter content by loss on ignition (LOI). POC 

sources were determined by analysis of carbon-nitrogen ratio (C/N). Finally a 

POC budget was calculated for the post-flooding reservoir sediments.  

 The third part of this project investigated flocculation dynamics of riverine 

organic matter in the LOAC. Flocculation experiments were undertaken to 

determine the effects of three treatments with coagulants on water DOM quality 

from eight streams draining a rural landscape with headwaters in Exmoor, UK. 

Through flocculation experiments stream samples were reacted with added clay 

and salt standards which simulated three flocculation boundaries along the 

LOAC. The three treatments were T1: increased input of minerogenic coagulants, 

such as clay, by soil erosion into streams, T2: saline mixing at the estuarine 

boundary, and T3: a mixture of salt and clay representing soil erosion at the 

estuarine boundary.  Residual DOM quality by each treatment was analysed by 

mass spectrometry, UV-Vis absorbance and synchronous fluorescence. The 

results showed preferential removal of humic-like components in residual DOM 

and the efficiency of the chosen coagulant standards, which demonstrated the 

dynamics of chemical change in riverine organic matter along the LOAC.   
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Chapter 1. Introduction 

The biogeochemical cycle of carbon composes multiple fluxes of carbon species 

between C pools of the biosphere, geosphere, pedosphere, hydrosphere and 

atmosphere.  These natural exchanges of organic and inorganic carbon species 

have been perturbed by human impact, by for instance the release of fossil fuels 

into the atmosphere (IPCC, 2013). While carbon is stored in its inorganic and 

organic forms in terrestrial soils, bedrock, vegetation and the ocean, potent 

greenhouse gases such as carbon dioxide (CO2), methane (CH4) and nitrous 

oxide (N2O) have increased rapidly in the atmosphere since the industrial 

revolution to levels unprecedented in the last 800 000 years (IPCC, 2013). These 

greenhouse gases absorb and radiate energy and contribute to global warming 

and climate change.  Examples of natural emissions of greenhouse gases occur 

due to mineralisation and fermentation of decaying organic matter by microbes, 

CO2 evasion from supersaturated waters, and fires. Anthropogenic sources 

contribute with emissions from for instance burning of fossil fuels, cement 

production, deforestation and land use change (Le Quéré et al, 2013). Part of this 

land use change perturbs the lateral transport of C from land to ocean. This is 

represented in Figure 1, as erosion from soils to rivers, or the freshwater transport 

of total dissolved and particulate suspended matter (sediment, organic matter 

and total dissolved solids, among other aquatic species) containing C. This 

project aims to investigate the nature of particulate organic carbon (POC) and its 

sources, transformation processes, and sinks along the land–ocean aquatic 

continuum (LOAC). A brief introduction to the various pathways and turnover of 

this carbon pool are presented in this section. 
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Figure 1 Schematic model showing the pathways of carbon on Earth's surface. 

From IPCC report, 2013. 

 

1.1 POC dynamics along the LOAC 

The land–ocean aquatic continuum (LOAC) is the drainage network of 

watercourses with the ability to transport chemical species, including various 

forms of carbon (e.g. DOC, DIC, POC), from sources on land to the estuaries and 

oceans (Regnier, 2013). This freshwater transport of carbon composes one of 

the important pathways in the carbon cycle (Hope et al, 1994). Freshwater 

ecosystems therefore are concluded to serve as dynamic conduits of carbon 

transport and transformation, rather than acting as neutral pipelines of lateral 

carbon transport from land to ocean (Cole et al., 2007; Tranvik et al, 2009; 

Aufdenkempe et al, 2011). Only a few years ago the riverine pipeline transport 

model in global carbon budgets neglected in-stream sources, sinks and 

transformation processes of carbon species (ICPP, 2007) such as net primary 

production (NPP), heterotrophic microbial mineralisation, photolytic oxidation, 
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organic carbon burial, etc., but recently several studies have contributed to a 

more dynamic picture of the lateral carbon transport in freshwater drainage 

systems (e.g. Cole et al, 2007; Battin et al, 2009; Raymond et al, 2012; Regnier 

et al, 2013; Kirschbaum et al, 2019).  

POC consists of a dynamic organic carbon pool of varying mineralisability, 

which is provided into the aquatic environment from several sources of organic 

matter (Porcal et al, 2009; Petrone et al, 2011). The nature of the POC 

determines its reactivity in the water column, which partly controls its pool size 

and turnover in the LOAC together with other parameters, e.g. hydrology, geology 

of the drained landscape, geochemistry, vegetation and litterfall, solar irradiation 

(further discussed in 2.5). The natural processes which conserve and transform 

organic matter are important for the final carbon load that reach the oceans 

(Trumbore et al, 1992; Raymond et al, 2004). While vertical C fluxes readily 

exchange greenhouse gases (GHG) across the terrestrial–atmospheric 

boundary, lateral C fluxes are influenced by geomorphic boundaries of catchment 

characteristics on all scales in the landscape. The lateral transport of carbon 

follows the downstream direction through the water film of the LOAC (Regnier et 

al, 2013). This implicates that carbon ages and transforms throughout the 

downstream gradient, and that vertical sources of C become increasingly 

complicated while mixing of organic matter occurs beyond headwaters. In the 

humid tropics, Mayorga et al (2005) reported that while riverine bulk organic 

matter could be up to thousands of years old, the main contributor to CO2 

outgassing composed organic matter contemporary in age, reducing the main 

source of outgassing to a small reactive part of total organic matter transported 

in watercourses. While outgassing from the Amazon basin has been attributed to 

470 Tg C year−1 (Richey et al, 2002), it has been estimated that c. 32.7×1012 g C 

year−1 (DOC: 2.7 x 1013 g year−1; POC: 0.5 x 1013 g year−1) is released into the 

costal sea of the Atlantic Ocean from the Amazon River system (Moreira-Turcq 

et al, 2003).  

Hydrological factors are closely related to riverine transport of total 

suspended sediments and particulate organic carbon in equatorial rivers, e.g. by 

increasing the amount of erosion of river banks that contain plant litter and soil 

organic carbon (Seyler et al, 2006). In a study of tropical rivers in Venezuela a 

positive linear relationship was found between increased concentrations of DOC 
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and the chromophoric properties of DOM, which corroborates that qualitative 

properties of riverine organic carbon in the tropics are coupled to riverine 

discharge patterns (Yamashita et al, 2010). Humankind impacts the 

geomorphology of the landscape directly through erosion and indirectly through 

the carbon transport through the LOAC. When natural drainage areas are 

perturbed by anthropogenic impact, e.g. through change of land use or damming 

of reservoirs, the carbon cycle is influenced (Tranvik et al, 2009). For instance, 

increased agricultural land use can lead to more tillage and water erosion with 

accelerated carbon loads into river systems (Regnier et al, 2013), and the 

constructions of manmade reservoirs become sites of vertical greenhouse gas 

emissions as well as sites of sequestration through burial of carbon rich 

sediments due to the artificial catchment acting as a sediment trap in the 

landscape (Maavara et al, 2017).   

To distinguish the fluxes of the natural biogeochemical cycle of carbon 

from the perturbed cycle, it is important to understand the magnitude of fluxes 

between the carbon pools and where perturbation influences the natural cycle. 

Lateral carbon transport in the LOAC is a well-known pathway for carbon, 

something that was described as a mixture of perturbed and natural transport 

already decades ago by Meybeck (1982) as: “Effect of man’s activities are 

generally not taken into account or are indirectly estimated”. Yet the impact of 

anthropogenic perturbation on this part of the carbon cycle is still under debate 

(Regnier et al, 2013). 

 

1.2 Research problem 

In relation to DOC, POC comprises a small fraction of TOC in the water column. 

Wetzel (1984) reported an average POC:DOC ratio of 1:10 in rivers, while other 

studies which have used models to estimate average fluxes of POC and DOC 

suggest that the contributions of these carbon species to the worlds surface 

oceans are of similar values, for instance studies like Li et al (2017) who reported 

DOC (0.24 Pg year-1) and POC (0.24 Pg year-1) indicate that the average overall 

contribution of DOC and POC is in principle equal. However, the heterogeneity 

of world rivers affect the individual contribution from each river system, where 

river POC:DOC ratios compose the result of various environmental factors such 
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as climate, geology, vegetation. Observations of varying POC:DOC ratios have 

been found for different aquatic systems. For example, in subtropical to tropical 

regions, higher ratios have been reported, e.g. 5.8 in the Godavari river in India 

(Balakrishna et al, 2006), and 4.1-17.7 for the extensive Paraná River in South 

Central America, which flows through various climate regions from its headwaters 

to the SW Atlantic (Depetris & Kempe, 1993). In temperate regions such as the 

the UK, Pawson et al (2012) have similarly reported POC:DOC ratios of 1.01-

4.00 from blanket peat in the catchment of River Ashop in the English Peak 

District; the results of their study suggested that POC fluxes in riverine systems 

are not only controlled by upstream POC erosion but are also influenced by in-

stream POC dynamics within the aquatic continuum. Properties such as stream 

order, trophic state, environmental setting and climate all contribute to the 

variation in POC:DOC ratios of these highly diverse aquatic systems.  

Fractional size and chemical composition plays a role in protecting OC 

from mineralisation at different degrees by physical and chemical stabilization, 

allows POC to transform by e.g. complexation, coagulation, flocculation and 

photooxidation, and consequently the higher density of POC reduces its transport 

distance compared to the dissolved phase of organic carbon in freshwaters which 

increases its probability to accumulate in sedimentation basins, and contribute to 

limnic storage of organic carbon. This has impact on emissions of greenhouse 

gas concentrations from the terrestrial environment to the atmosphere and OC 

burial in sediment stores. POC forms an important part of the dynamic global 

carbon cycle, yet its origin and fate in the LOAC is not yet fully understood. 

 

1.3 Aims 

This project aims to increase process understanding of the fate of POC in the 

LOAC. The main research questions to be investigated include 1) explaining the 

influence of anthropogenic impact on carbon export (by land use induced soil 

erosion and hydrological traps in the form of dams) and the subsequent effect on 

the fate of POC in freshwaters, and 2) clarifying flocculation dynamics of stream 

waters draining perturbed landscapes and how physicochemical parameters 

constrain this process. The results from aims 1) and 2) will be used as validation 

data for case studies on POC export from soils to freshwaters in the LOAC. 



21 
 

Chapter 2. Background 

This section introduces the environment of POC studies. Findings on 

characteristics and transport of POC along the land-ocean aquatic continuum by 

previous studies are presented to summarize current understanding of the 

significance of POC in the carbon cycle and its relevance to climate change.  At 

the end of this chapter the aims and hypotheses of this project are presented. 

 

2.1 What is POC? 

The precise definition of POC is subject to debate. Ittekot & Laane (1991) and 

Delu et al (2013) for example define POC in terms of the living and biologically 

active organic carbon, such as plankton and microbes, along with the non-living 

POC which comprises decaying organic matter. Ittekot & Laane (1991) also 

described the labile fraction of particulate organic matter (POM) that can be 

subjected to mineralisation, and the refractory or recalcitrant fraction which, due 

to its non-reactivity, has the potential of being transported along the LOAC and 

reaching the estuaries and the oceans.  

Other definitions of POC focus on size where, in numerous studies, POM 

and POC are considered to be the filtered organic matter and associated C that 

will not pass a 0.45 µm pore size filter (Schlesinger & Melack, 1981; Koelmans & 

Prevo, 2002; Adams et al, 2015; Delu et al, 2013), without any upper maximum 

size defined. Similarly, dissolved organic carbon/matter (DOC/DOM) compose 

the soluble fraction which includes soil humic substances, polysaccharides, and 

polypeptides (Schlesinger & Melack, 1981) that pass a 0.45 µm filter (Trumbore 

et al, 1992; Bisutti et al, 2004). Chemical characteristics and sources have also 

been considered: in the natural ecosystem POC and POM derive from various 

organic sources and may compose plant litter from terrestrial and aquatic 

sources, algae and biofilms, and soil organic matter (SOM) (Hope et al, 1994).  

In this work POC and POM are defined by the often used >0.45 µm fraction 

of organic carbon, with varying recalcitrance. While in some literature POC and 

POM are considered equivalent organic species, in this study POC is strictly 

defined as organic carbon, and similarly POM is considered particulate organic 

matter which may compose various organic compounds.  
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2.2 Importance of POC in the C cycle 

2.2.1 Carbon in the dynamic riverine pipeline model 

Carbon in running freshwater mainly compose the particulate organic carbon 

(POC), dissolved organic carbon (DOC) fractions, and dissolved inorganic carbon 

(DIC) (Hope et al, 1994). Kirschbaum et al (2019) estimated that the total amount 

of carbon reaching the oceans compose the following annual fluxes: DIC (450 

MtC year–1), DOC (200 MtC year–1) and POC (250 MtC year–1). Of the organic 

components, DOC is readily transported in the water column, while POC is 

important because it has greater potential to be stored in the sediments of 

watercourses (Thurman, 1985). It has been suggested that POC make up 0.5–

0.6% of the riverine suspended sediment that reaches the oceans (Ittekot & Lane, 

1991). In world rivers concentrations of POC have been reported in the range 

0.5–40% of total suspended matter (TSM) (g L–1) and negatively correlated with 

suspended matter and positively correlated with stream discharge (Meybeck, 

1982). However, due to the ecological and geomorphological variety of riverine 

systems globally, when it comes to modelling POC concentrations, the average 

world river, in terms of water quality and suspended matter load, is ill-suited to be 

used as a baseline reference (Meybeck & Helmer, 1989).  

Cole et al (2007) introduced a dynamic riverine carbon transport model 

(Figure 2), in which considerations were taken to include CO2 evasion and carbon 

storage in freshwater sediments through burial. In their model, Cole et al (2007)  

estimated that at least 1.9 Pg C year–1 enters the riverine environment from land 

and from this, estimates of carbon being returned to the atmosphere or stored in 

sediments roughly results in 1 Pg C year–1. From available data, Cole et al (2007) 

also estimated that the CO2 evasion from manmade reservoirs amount to double 

that the natural emissions (0.28 Pg C year–1), noting that emissions from many 

small reservoirs are still occluded from available datasets. Despite its simplicity, 

the dynamic riverine pipeline model composes a “boundless carbon cycle” and 

highlights that in-stream processes of freshwater systems need to be considered 

when it comes to mitigating the perturbed carbon cycle and its impact on climate 

change (Battin et al, 2009). Another flux from freshwaters to the atmosphere 

compose the outgassing respired from secondary production by heterotrophs 

(about 1.2 Pg C year–1), when this additional flux was inputted into the dynamic 

river pipeline model  increased net ecosystem production and carbon input into 
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freshwaters amounting to 2.7 Pg C year–1 was required to balance the budget 

(Battin et al, 2009). 

 

 

Figure 2 Cole et al (2007) compared the previous pipeline-only model (a), to a 

preferred revised riverine pipeline model for carbon export (b) in the LOAC, 

including outgassing and sediment burial. From Cole et al (2007). 

 

Similar to the studies mentioned above, Aufdenkempe et al (2011) discussed how 

rivers comprise a dynamic pathway of carbon in the terrestrial delivery of carbon 

from land to ocean. They concluded that 1) the quantities of net ecosystem 

production (NEP) of carbon is delivered, transported and processed by river 

systems, 2) that burial of carbon in continental sediments is one order of 

magnitude higher than in oceanic sediments, and that 3) weathering of 

minerogenic species from the continental landscape promotes acidification of the 

coastal environment. Their dynamic riverine carbon transport model is based on 

data from Battin et al (2009) and includes more high-latitude freshwater data on 

CO2 evasion and C sequestration through burial, which results in changed 

numbers for these fluxes compared with the equivalent transport model by Cole 

et al (2007). Aufdenkempe et al (2011) also found that the anthropogenic impact 

on watersheds lead to increased rates of weathering of minerogenic material. 

They discussed the potential of the formation of organic-inorganic complexes and 
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the carbon imprint this leaves in different riverine environments, which is 

dependent on climate and human perturbation.  

Richey et al (2002) estimated an average CO2 evasion from wetlands in 

the Amazon basin of 0.5 Gt C year-1. Extrapolating from this to all areas covered 

by humid tropical forest globally, they estimated a global CO2 evasion flux of 0.9 

Gt C year–1. In their study, the source of the exported DIC was assumed to 

constitute mineralised organic matter from upstream sources, indicating the role 

of rivers as hydrological transport conduits of organic matter, with in-stream 

transformation (e.g. microbial mineralisation and fermentation) and outgassing of 

inorganic carbon products. From data on inland water surface area, pCO2 and 

gas transfer velocity, Raymond et al (2013) estimated that carbon dioxide evasion 

from freshwater amounts to 2.1 Pg C yr–1 and that, of this, rivers contribute 

1.8±0.25 Pg yr–1 while still water bodies (including reservoirs) contribute roughly 

0.32 Pg C yr–1. The combined CO2 evasion flux amounts to 2.1 Pg C year–1, which 

is higher than previous studies have shown. In their study supersaturation of CO2 

in watercourses was frequent, the median values for pCO2 exceeded 

atmospheric values for 95% of the observations, and pCO2 showed positive 

correlation with TOC concentrations and inverse relationship with lake size. 

Raymond et al (2013) highlighted potential problems that can arise when 

modelling pCO2, including overestimations that can occur in systems with varying 

concentrations of organic acids, as pCO2 is a calculated value from pH and 

alkalinity. Another potent greenhouse gas that is emitted from the LOAC is 

methane (CH4). About 25% of the apparent terrestrial GHG sink is linked to CH4 

emissions from inland freshwaters, which indicates a smaller total GHG land sink 

than previously considered (Bastviken et al, 2011). CH4 enters the atmosphere 

through numerous pathways of different emission rates, for instance through 

ebullition which is highly sporadic, via diffusion from the water column which is 

less episodic, and transport through emergent aquatic plants. Bastviken et al 

(2011) highlighted the need to incorporate this sink of DIC and subsequent source 

of CH4 into future studies on terrestrial GHG emissions from freshwaters.  

Historical anthropogenic impact has altered the global carbon cycle, 

mainly in terms of carbon export from soils into rivers (Stallard, 1998). Regnier et 

al (2013) found that the magnitude of this impact might amount to as much as 1 

Pg C year–1, since the industrial revolution. This anthropogenic impact on lateral 
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carbon fluxes composes change of land use, such as deforestation, intensified 

cultivation and degradation of soils. The realisation that freshwaters not only 

transport chemical species but that there are in-stream processes influencing the 

properties of these species is well-known, but has been highlighted in recent 

years, due to the increasing awareness of its importance to the sources and sinks 

of greenhouse gases. The carbon fluxes and pools in schematic models of the 

riverine pipeline model (Cole et al, 2007) have been improved with updated 

numbers in recent years, which successively has acknowledged more detail for 

each process (e.g. Tranvik et al, 2009; Aufdenkampe et al, 2011; Regnier et al, 

2013; Kirschbaum et al, 2019). Available data is insufficient to investigate the 

carbon cycle with respect to different soil types and types of inland and coastal 

waters, and therefore future studies will contribute to more robust databases and 

improved estimates. The land net GHG sink might be smaller than previously 

thought, as improved numbers on inland water emissions of CO2 and CH4 are 

included in the budgets (Bastviken et al, 2011). As the carbon cycle has a main 

influence on the Earth’s global energy budget, it is of general concern to identify 

the various constraints that control carbon fluxes in the environment and to 

promote sampling campaigns to validate carbon budget models (Raymond et al, 

2013). While erosion modelling is becoming a more common practice, extensive 

field experiments are still necessary to obtain reasonable time-series data (Lal, 

2005), which would serve as validation data for existing Earth system models and 

increase the reliability of the results from these. 

The input of global POC to the coastal oceans has been modelled from 

datasets. For instance, Beusen et al (2005) reported a global average POC flux 

of 226 Tg year–1. A re-estimation by Li et a (2017) who reported a value of 

modelled POC export from riverine discharge into the ocean amounting to 0.24 

Pg year-1, included in a revised number of the total amount of C exported from 

land to ocean by discharge of 1.06 Pg year-1. In comparison, Kandasamy & Nath 

(2016) estimated global mean riverine POC export of 203 Tg C year–1 (sd=41) 

after 1990. 

 

2.2.2 Human perturbations on the LOAC and C cycle 

The human impact on the C cycle along the LOAC is dominated by land use 

change (LUC) and the construction of dams and reservoirs. Regnier et al (2013) 
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estimated that an increase of carbon flux into inland waters of 1.0 Pg C year–1 

could be attributed to human perturbation, out of which, after mineralisation and 

sequestration processes along the LOAC, c. 0.1 Pg C year–1 reaches the open 

ocean. Most of this additional C input into the aquatic system can be connected 

to soil sources (further discussed in 2.4.1). 

The number of manmade reservoirs and dams has been increasing 

worldwide over the course of human history, summing to over 45,000 dams 

worldwide by year 2000 (WCD, 2000). Reservoirs comprise artificial sediment 

traps that influence the natural carbon transport along the LOAC (Tranvik et al, 

2009). The artificial control on water flow, residence time and storage affect the 

natural water cycle, water quality and transport of chemical species (e.g. nutrients 

and trace metals) for the influenced drainage area. The global surface area taken 

up by hydroelectric reservoirs amount to 3.4×105 km2 (Barros et al, 2011) but the 

magnitude of vertical emission of carbon from these artificial water bodies has 

been sparsely investigated. Existing flux estimations of CO2 and CH4 amount 48 

Tg C and 3 Tg C per year respectively, which deliver 4% of the worldwide total 

carbon emissions from terrestrial water bodies, and  16% carbon emissions of all 

manmade dams (other purpose-built reservoirs) (Barros et al, 2011). Despite 

these numbers being rather modest, they imply that energy obtained from 

hydropower is not carbon neutral, and that these fluxes must be considered when 

evaluating hydropower energy as an alternative to fossil fuels. Greenhouse gas 

emissions from reservoirs are constrained partly by dam age and by geographic 

location, e.g. emissions from tropical regions such as the Amazon are greater 

than from other regions (Barros et al, 2011). The effect of carbon sequestration 

through sediment accumulation and burial can lead to less net mineralisation 

rates and greenhouse gas emissions, if environmental parameters change, for 

instance a decrease in temperature leading to slower reaction rates (Gudasz et 

al, 2010), and subsequently reservoirs in colder regions can act as net sinks of 

carbon while reservoirs located in warmer climatic regions might act as net 

sources (Mendonça et al, 2012). Accumulation of organic carbon in reservoir 

sediments comprise c. 75% material of allochthonous origin (Maavara et al, 

2017). Land use change such as agricultural practices that increases soil erosion 

contribute to relocating this allochthonous carbon into human made dams. By 

adding trapping efficiency of reservoirs and dams to their model, Beusen et al 
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(2005) estimated that the average global input of POC from the continents to 

coastal oceans was reduced to 197 Tg year–1, compared to their estimated 

natural input of 226 Tg year–1. This highlights some of the importance of POC in 

the C cycle, as it functions as a readily sequestered carbon species in 

depositional environments. 

 

2.3 Sources of POC 

Previous studies have divided freshwater organic carbon in the LOAC into three 

pools, based on the original source: 1) terrestrial (allochthonous), 2) in-situ NPP 

(autochthonous), and 3) anthropogenic sources (Thurman, 1985). Because 

human perturbation affect both allochthonous and autochthonous sources, for 

this work, anthropogenic sources have been considered as integrated parts and 

thus only allochthonous and autochthonous POC have been considered. 

 

2.3.1 Soil organic carbon (SOC) – a terrestrial source of potential POC 

POC from the terrestrial environment comprise carbon compounds from different 

sources, e.g. soil organic carbon (SOC) from soils; litterfall from vegetation; 

petrogenic organic carbon from weathered carbonates in the rock cycle; black 

carbon (BC) consisting of wholly or partially combusted organic matter (e.g. from 

forest fires), soot particles, aerosols, and other organic complexes; other 

anthropogenic sources like fertilizers and pesticides (Bianchi, 2011). Of the main 

terrestrial C pools, the phytomass pool holds 26.0% and soils 74.0% of the total 

terrestrial C pool (Scharlemann et al, 2014). The C pool of land plants amount to 

560 Pg, with a dynamic yearly exchange of 60 Pg between land vegetation and 

the atmosphere (Lal, 2003). The exchange of these pools with the atmosphere 

are highly dependent on land use, vegetation and climate. Even though litterfall 

plays a role as a direct allochthonous source of POC in the LOAC, most litterfall 

components are either readily decomposed in the aquatic column or fall to the 

ground and subsequently become part of the organic soil horizon where it is 

decomposed and transformed into soil organic matter. This work is primarily 

focused on soil derived POC, and more emphasis in this literature review will be 

given to this source of POC in the LOAC. 
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2.3.1.1 Soil organic carbon – global inventories 

Soils contain the largest pool of terrestrial carbon (Stockmann et al, 2013; 

Doetterl et al, 2015), which amounts to about 1500 Pg C (Scharlemann et al, 

2014). Batjes et al (2014) similarly reported total C stocks of 2157–2293 Pg for 

the upper 1 m of global soil, out of which 1462–1548 Pg compose SOC. Soils 

store ca. 75% of the terrestrial total organic carbon (TOC) (Edmondson et al, 

2015), a store that compose the largest OC pool on land (Jobbagy & Jackson, 

2000). Several studies on the global and regional distribution of carbon stocks 

and latitudinal spread have utilized spatial soil databases, including: 

- Köchy et al (2015) calculated a global mean SOC value 2476 Pg for the 

top 100 cm of the soil column from Harmonized World Soil Database 

(HWSD); 

- Batjes (2005) utilized Soil and Terrain Database (SOTER)1 for estimating 

total SOC of Brazilian soils (65.9–67.5 Pg C);  

- Jobbagy & Jackson (2000) estimated a global mean SOC of 1502 Pg for 

the top 100 cm from National Soil Characterisation Database (NSCD)2 and 

World Inventory of Soil Emission Potential Database (WISE)3 among 

others.  

Other older databases include the Soil Map of the World (SMW)4 and Harmonized 

continental SOTER-derived database SOTWIS. Among the available databases 

HSWD version 1.2 (FAO) compiles one of the most detailed datasets available 

on soil characteristics and properties (Figure 3) (Köchy et al, 2015). Being an 

aggregation of existing global soil information on regional and national scale, 

HSWD composes 15,000 different soil units combined in a harmonized structure 

that uses standard classification (FAO)5. 

                                            
1 Developed by ISRIC World Soil Information and Food and Agricultural Organization (FAO) 
2 Developed by U.S. Department of Agriculture (USDA) 
3 Developed by International Soil Reference and Information Centre 
4 Food and Agricultural Organization (FAO) 
5 http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-
database-v12/en/  

http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
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Figure 3 Map showing a) global SOC stocks for the top 1 m and b) mass for every 

5-degree latitudinal band, of terrestrial soils, derived from Harmonized World Soil 

Database v.1.1-adjusted. From Köchy et al (2015). 

 

2.3.1.2 Soil organic carbon – characteristics and quality  

The carbon content in soils originate from a range of sources, where the main 

source of SOC derive from the local vegetation (Schlesinger, 1984). Litterfall, 

roots, microbial biomass and fungi constitute the main sources of SOC, which is 

subject to translocation in the soil profile. The main SOC mass appears in the 

upper A horizon, onto which litterfall accumulates. Erosive agents like water and 

wind preferentially erode this upper low-density OC-concentrated soil layer and 

deposit SOC-rich sediment at sites of accumulation, e.g. in geomorphological 

depressions in the landscape, for instance as accumulated sediment in lakes (Lal, 

2005), in colluvium at footslopes of hills and in alluvium of floodplains and 

wetlands (Aufdenkampe et al, 2011).  

Fulvic acids, humic acids and humins percolate through the soil column 

from top soils but with depth carbonic acid commonly becomes increasingly 

important for the soil solution in gradually more minerogenic subsoils 

(Schlesinger, 1997). Large parts of the abundant dissolved organic matter are 

mineralised or stabilized in the soil profile, while only a part is drained into local 

watercourses (Kaiser & Kalbitz, 2012), e.g. leaching composes the main 

transport of soil-derived DOC into the LOAC (Lal, 2003).  Humic substances (HS) 

comprise microbially processed organic matter (Stockmann et al, 2013) and are 
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reactive aggregates with pH- and salinity-dependent sorptive properties (Millour 

& Gagné, 2012). The solubility of humic substances increase at higher pH and 

are present as either long chains or coiled molecules at high and low pH 

respectively, with correspondingly low and high ionic strength (Schäfer et al, 

2000). As a result, these properties increase and decrease the mobility of humic 

substances in soil solution. 

The turnover for organic carbon in soils ranges from 3 years to thousands 

of years, for fresh, readily decomposed plant litter and recalcitrant humus, 

respectively (Schlesinger, 2013). Carvalhais et al (2014) estimated a global mean 

residence time of 23±4
7 years that was calculated through a simple relationship 

between plant and soil storage of OC and gross primary production (GPP). 

However, the heterogeneity of soils, vegetation and climate makes it difficult to 

estimate a representative turnover time for specific sites without validating field 

measurements. 

Carbon mineralisation in soils is inhibited by stabilization, the interaction 

(binding and occlusion) of organic matter with the minerogenic fraction, which 

increases carbon storage in soils and reduces GHG emissions (Saidy et al, 

2012). Chemical stabilization, through intermolecular binding mechanics between 

organic matter (OM) and mineral surfaces, renders OM unavailable as 

consumable substrates for microorganisms, while physical stabilization 

preserves intra-aggregate OM found in-between minerogenic particles 

(Guggenberger & Kaiser, 2003). Organic matter that is adsorbed to mineral 

surfaces (e.g. by ligand exchange, cation bridging, ion exchange, van der Waals 

interaction etc.) comprise a large part of the stabilized SOM pool and adsorption 

is affected by pH and ionic strength (Feng et al, 2005).  

SOC aggregates are stabilized by inorganic, organomineral or organic 

binding agents (Tisdall & Oades, 1982). Inorganic agents comprise for instance 

sesquioxides and oxy-/hydroxides containing multivalent cations such as 

aluminium (Al3+) and iron (Fe2+ and Fe3+) which form water-stable aggregates, 

while clay-based aggregates are water-soluble and less stable (Tisdall & Oades, 

1982). Soil aggregates that are redistributed through erosion by water are prone 

to physical breakdown, which releases the organic carbon that was previously 

trapped within the aggregate and renders it available for mineralisation or 

oxidation. Six et al (2002) defined SOC within soil aggregates of sizes >53 µm as 
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not occluded or unprotected, while SOC occluded within the <53 µm fraction was 

considered protected. Mikutta et al (2007), who investigated the effects of binding 

mechanisms of organic matter to mineral surfaces, found that the adsorption 

capacity of the organic matter controls its degradation. For instance, 

biomineralisation of organic matter is controlled by desorbability, itself being 

dependent on solution chemistry, binding forces at the mineral surfaces and the 

reactivity of these, where increased pH levels promote desorption. The 

recalcitrant lignin-derived DOM fraction has more sorption and desorption 

potential than the labile DOM fraction, which readily leads to accumulation of the 

former in soils (Kaiser & Guggenberger, 2000). Wang et al (2014) investigated 

the burial efficiency in colluvial soils by stable isotopes and found that soil organic 

matter is more stable in colluvial deposits compared with SOC present at the 

equivalent soil depth in uphill soils at reference sites. Soil redistribution into 

colluvium amount to about 50–80% (Wang et al, 2010), which progressively 

buries SOC in the process. Eroded SOC is subject to mineralisation and 

atmospheric evasion, re-deposition in terrestrial sediments such as colluvium, or 

exported from the watershed (Wang et al, 2014). 

While many previous studies assume that top soil and subsoil layers 

respond similarly to disruptions with the mere difference that subsoils are less 

concentrated in organic carbon, Salomé et al (2010) found that disturbed (sieved) 

subsoils can undergo up to 75% increased mineralisation, and that priming 

effects are restrained to top soil layers (where fresh organic matter is readily 

introduced compared to sparsely in subsoil layers). The priming effect occurs 

when the rate of mineralisation in old SOC is affected by input of fresh organic 

matter (Kuzyakov, 2002). Salomé et al (2010) suggested that the main factor 

controlling OM degradability and mineralisation is the substrate availability to 

exoenzymes of decomposers. Since priming is regulated by organic matter input 

(e.g. litterfall, root exudates) to top soil layers, accumulation of soil organic matter 

dominates in subsoils. This conclusion contradicts the findings of Fontaine et al 

(2007) who reported that the SOC stability in the soil profile mainly is controlled 

by priming. Rumpel & Kögel-Knabner (2011) emphasized the importance of 

accounting for subsoil carbon stocks in the global carbon cycle and that 

stabilisation of organic matter by occlusion into mineral protected aggregates 

differ in top soil (where biological processes might dominate) compared to subsoil 
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(where physical processes like compaction may be more important for the 

protection and occlusion of organic matter). Soil properties such as texture, 

temperature, and biological activity differ in different types of soils and therefore 

these parameters also need to be interpreted when studying soil organic carbon 

storage and its fluxes. Jobbagy & Jackson (2000) suggested that plant functional 

types contribute to regulating SOC with depth in the soil profile. In their study, 

they found that mean SOC concentrations in the upper 20 cm of the first 100 cm 

soil depth were 33% for shrublands, 42% for grasslands and 50% for forest, and 

that relative SOC depth distribution in soils on a global scale was more linked to 

vegetation than climate, however climate showed a stronger relationship with 

absolute concentrations of SOC. 

 

2.3.2 Aquatic sources of POC 

Aquatic autochthonous organic matter is mainly produced by algae and 

macrophytes (Bertilsson & Jones, 2003), which both photosynthetically fix carbon 

in watercourses. During growth, these provide dissolved organic matter of low 

molecular weight (LMW) to the water column (Bertilsson & Jones, 2003). Growth 

of phytoplankton is highly dependent on the availability of nutrients in the 

watershed, e.g. nitrogen, phosphorous (Silva et al, 2014). Organic polymers of 

phytoplankton compose mainly proteins, sugars and lipids; organic matter which 

upon cell death can be utilized by heterotrophs or be transformed by chemical 

processes (Bertilsson & Jones, 2003). Biofilms contribute to the biomass of 

watercourses and compose stationary colonies of microorganisms that have 

attached to any submerged surface with suitable habitat conditions (Fischer, 

2003). Part of this OM pool includes transparent exopolymer particles (TEP) (de 

Vicente et al, 2009), which are sticky gel-like acidic polysaccharides that promote 

aggregation of particles (e.g. mineral grains and organic species) in the water 

column (Passow, 2002). TEP are products with high carbon contents formed from 

phytoplankton DOM exudates. Their sticky nature acts as matrices of aggregation 

of non-adhesive particulates, and to a degree provides surface areas for microbial 

growth, which can contribute to production of particulate organic matter and 

carbon in the water column, by for instance flocculation and POC production 

through biomass growth.  
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2.4 Input and transport of POC in the LOAC 

Figure 4 illustrates the transport and dynamics of POC in the LOAC that is 

influenced by sources (section 2.4), imports (section 2.4), mineralisation 

pathways (section 2.5), transformation reactions (section 2.5), sediment burial 

(section 2.6) and exports (section 2.6). Whilst DOC is readily transported as a 

solute in waters of the LOAC, POC is influenced by gravitational settling in the 

water column dependent on stream discharge, which can disrupt its lateral 

transfer along the LOAC (Battin et al, 2008).   

 

Figure 4 Basic imports and exports of organic matter into and out of a 

watercourse within the LOAC. 

 

2.4.1 Soil erosion 

Soil erosion is the displacement process of soil particles from the site of formation 

to depositional environments in the landscape (Figure 5) (Lal, 2003). Common 

weathering processes are connected to temperature and moisture content of 

soils, as well as biochemical action (Starr et al, 2000). Geological soil erosion can 

be divided into water erosion, e.g. rain-drop splash/interrill, sheet, gully, mass 

movement, and rill erosion where runoff erodes the soil surface and transport 

particles downstream, and wind erosion that has the ability to displace fine soil 

particles both uphill and downhill (Blanco & Lal, 2008; Segura et al, 2014). Where 
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water channels cut through the soil layers more collapse-like bank erosion can 

occur, e.g. in stream channels. 

Relative to soil formation rates, soil erosion is often a rapid destructive 

process (Paroissien et al., 2014), comprising the detachment and movement of 

soil particles by erosive agents. Global gross water erosion of soils can amount 

up to 75 Gigatonnes (Gt), with 15–20 Gt being delivered to watercourses (Lal, 

2003). It has also been reported that on a global scale soil erosion by water 

affects 1094 mega-hectares (Mha) and wind erosion affects 549 Mha, with areas 

of 751 Mha and 296 being critically degraded by water and wind erosion 

respectively (Lal, 2003). Acceleration of natural soil erosion has been induced by 

human activities in the form of e.g. agricultural practices, deforestation, and 

overgrazing (Ritchie & McHenry, 1990; Porto et al, 2012). This mobilized soil is 

the effect of degradation and downwasting of a valuable resource that can further 

cause problems downstream when sediment is deposited in fields, floodplains 

and lakes and dams (Zapata et al, 2003).  Since soil erosion impact both the 

sustainability of agriculture in managed lands and environmental conservation of 

protected areas, quantification of soil erosion is a primary step towards soil 

conservation (Gaspar et al, 2013), and as part of effective environmental 

management to control soil degradation in productive landscapes there is the 

need to quantify soil erosion and deposition rates (Porto et al, 2012; Gaspar et 

al, 2013). Reliable data on soil erosion is sparse in many regions globally despite 

the general acceptance that net soil loss from the landscape composes a major 

problem (Zapata, 2003). Although soil erosion is a primary cause of input of 

carbon into the LOAC, only 5–25% of eroded soil matter is transported to the 

ocean (Aufdenkampe et al, 2011). Most of the soil is redistributed as sediment in 

colluvium, alluvium or lake sediment, where it stores carbon by burial.  
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Figure 5 Typical stepwise redistribution patterns of soil organic carbon in the 

eroding landscape, with subsequent SOC mineralisation leading to greenhouse 

gas emissions. From Lal (2003). 

 

2.4.2 SOC erosion – a source or sink of GHG? 

Whether soil erosion creates a net source or sink of carbon at the terrestrial–

atmospheric interface has been widely debated (e.g. Stallard, 1998; Lal, 2005; 

Van Oost et al., 2007; Berhe et al., 2007). Recent estimates show likely SOC 

losses of 25–50% when natural vegetation is converted into cropland 

(Scharlemann et al, 2014). Lal (2005) emphasized that the soil–atmospheric 

carbon flux depends on scale and perspective; soil erosion is a process divided 

into four stages: detachment, transport, redistribution, deposition – all of which 

need their own unique mass balance models – and combined, these make up a 

realistic total mass balance model for general SOC erosion. Organic carbon burial 

on land has been suggested to amount up to 1015 g C year–1 (Stallard, 1998), but 

the minerogenic and organic heterogeneity of soils, and the wide range of 

ongoing physicochemical processes that vary spatiotemporally in these, make 

modelling of the contribution of greenhouse emissions by soil respiration complex 

(Fang et al, 1999). Van Oost et al (2007) estimated a global sink of up to 0.12 Pg 

C year–1 in agricultural soils, accounting for long-term soil redistribution by tillage, 

water and wind erosion. Agricultural practices can decrease carbon residence 

time in a soil profile by increased top soil erosion (Quinton et al, 2010), attributed 

to increased physical aggregate breakdown that exposes intra-aggregate organic 

carbon which then becomes available to decomposers and subsequent net 
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respiration, and contribute to physical redistribution of soil organic carbon. Six et 

al (1998) studied the influence of tillage practices on different types of particulate 

organic matter (POM) fractions (free light fraction, and intra-aggregate particulate 

organic matter) and concluded that while physically protected organic matter is 

released by tillage (leading to regular aggregate breakdown and subsequent 

exposure of previously protected SOC), the turnover of the labile (unprotected) 

free light fraction is influenced by other factors such as soil temperature and 

moisture. For instance, a field study on arable fields by van Hemelryck et al 

(2010) showed that mineralisation rates were controlled by porosity, moisture and 

temperature of the studied soils, with most prominent CO2-efflux over a time span 

of weeks after a soil redistribution event by erosion. Poirier et al (2005) found that 

the chemical composition differs between aggregate-bound and free SOM 

fractions, and that the order of reactivity corresponds to SOM fractions with 

increased physical protection in mineral aggregates, namely free>intra-

aggregate>organomineral.   

For comparison, the 2013 report by Intergovernmental Panel on Climate 

Change (IPCC, 2013) accounted for 1.7 Pg (Gt) C year–1 being exported from 

soils to the aquatic system annually. As discussed above, only c. 0.9 Pg C year–

1 reaches the coastal ocean, while the rest goes into limnic storage or is 

mineralised. 

 

2.4.3 Riverine POC fluxes 

Other studies have modelled global riverine POC fluxes (Beusen et al, 2005; 

Kandasamy & Nath, 2016; Li et al, 2017). Li et al (2017) based their model on 

published data up to 2015 and suggested that the largest riverine POC fluxes 

were present at latitudinal bands 30–60ºN, with modelled continental scale fluxes 

of POC (0.24 Pg), DOC (0.24 Pg), DIC (0.41 Pg) and PIC (0.17 Pg). Kirschbaum 

et al (2019) arrived at similar numbers for the riverine carbon fluxes (Figure 6) 

and added more detail to the riverine pipeline model introduced by Cole et al 

(2007). As POC is mainly derived from soil organic carbon stocks, soil erosion is 

one of the key contributors to riverine POC, however the fate of the majority of 

remobilized soil particles remain on land in terrestrial and freshwater storage. 
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Figure 6 A more detailed riverine pipeline model of primary carbon fluxes (MtC 
year-1). From Kirschbaum et al, 2019. 

 

Main sinks of POC in the water column comprise physical breakage of POC into 

the dissolved phase, mineralisation, transformation processes, such as 

photooxidation, and sediment burial, which will be discussed below.  

 

2.5 Transformation dynamics of POC in the LOAC 

2.5.1 Carbon species in the LOAC 

Three main sources account for the occurrence of riverine POC: 1) OM from 

terrestrial and aquatic NPP, 2) aged SOC input from subsoils, and 3) fossil or 

kerogen OM from sedimentary rocks (Blair & Aller, 2012). Physicochemical 

characteristics of organic matter that influence its reactivity in the environment 

compose e.g. molecular weight, aromaticity, functional groups (Pullin et al, 2004). 

Soil derived POC that enters the aquatic continuum vary in qualitative properties 

(e.g. age, state of decomposition, aromaticity, solubility, ionic strength etc.) which 

affect its capacity to be mineralised or oxidised in the water column. Fresh litterfall 

from the canopy (often considered labile POC) is readily decomposed compared 

to organo-mineral aggregate-bound POC (considered stabilized and recalcitrant) 

and therefore, along with geology and climate, erosion and weathering processes 

which deliver top soil and subsoil POC into watercourses, play a role in the input 

and fate of POC along the LOAC. Furthermore, the transport capacity of POC in 

the aquatic continuum will depend on the size, density and chemistry of the POC. 
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In for instance stratified watercourses these properties affect the turnover time of 

POC above the hypolimnion, which will reduce oxidation of POC and 

subsequently increase the input into limnic carbon storage. In relation to 

identifying labile and recalcitrant soil organic matter, Adams et al (2015) 

investigated riverine PO14C from rural low erosion rate catchments in the United 

Kingdom and found that top soil erosion is a major contributor of POC into river 

systems. However, the apparent 14C-ages obtained in their study represent POC 

from a range of mixed upstream sources which characterize both aquatic POC 

inputs from top soils, due to surface soil erosion, and material from subsoils, 

where bank erosion has been prominent. In their global study, Marwick et al 

(2014) found that riverine DOC in general is of younger age than POC. An 

increase in age of riverine POC corresponded with increased sediment loads 

(Marwick et al, 2014), which is in line with a soil derived origin.   

DOM composes a mixture of aliphatic and aromatic organic compounds 

that, depending on residence time in the water column and exposure rates, have 

been transformed by decay processes (Stedmon et al, 2003).  While fulvic acids 

commonly compose aliphatic organic compounds and carboxyl groups, humic 

acids contain more aromatic groups e.g. methoxyls and phenolics (Aitkenhead et 

al, 2003).  DOC contributes to the staining of surface waters, so called “browning” 

(Köhler et al, 2013), which is typically found in surface waters with low alkalinity 

and arise from the solution of woody tissue debris and/or soil organic matter 

(Bratby, 2006). In natural waters humic substances (HS) comprise 30–50% of 

total organic matter (Thurman et al, 1982) and the potential interaction with other 

aqueous species can be substantial due to humic substances acting as 

polyelectrolytes that decrease the electrostatic repulsion between colloids in the 

water column, which allows for POC aggradation through processes like 

coagulation, complexation and flocculation.  

The nature of the carbon compounds which enter the aquatic environment 

is of significance as it either provides a nutrient proxy for net primary production 

(NPP) or serves to acidify the water column (Sun et al, 2015). The terrestrial 

sources of aquatic POC primarily derive from litterfall and soil organic carbon 

(SOC), while lacustrine sources compose e.g. in-stream growth of biomass in 

watercourses, which make use of available dissolved organic and inorganic 
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carbon (DOC and DIC), and flocculation products from the processes that 

transform DOC into POC.  

 

2.5.2 Water chemistry and quality 

Sources of dissolved aquatic substances in natural surface waters compose rock 

weathering, input from terrestrial organic matter, and atmospheric deposition 

(Meybeck & Helmer, 1989) and the resulting water quality is a product of 

interactions between aquatic species from each of these sources together with 

present conditions of e.g. geology, climate, aquatic biota (Manahan, 2001). 

Anthropogenic impact that influence natural water chemistry is often pollution, 

such as dispersion of agricultural pesticides, wastewater drainage, and acid mine 

drainage (Neubecker et al, 1983). Especially in non-buffered systems, such as 

freshwaters in environments of alkaline rock type, acidification of freshwaters can 

contribute to flocculation processes and increase the burial rate of organic 

sediments. 

One of the challenges in measuring the chemistry of streams transporting 

aquatic species from land to ocean is to identify baseline geochemistry from 

natural imprint on the water quality from the input of pollutants from anthropogenic 

sources (Meybeck & Helmer, 1989). Metals can be defined as three size fractions 

in the aquatic environment: dissolved (<1 kDa), colloidal (1 kDa–0.45 µm), and 

particulate (>0.45 µm) which exhibit generally decreasing mobility and 

bioavailability respectively (Nystrand et al, 2012). In the freshwater environment 

metals are commonly present in the form of complexes with humic and fulvic 

acids because of the high complexing capacity of these organic compounds with 

metal cations (Niessner et al, 1998). The properties of metals in complexed and 

ionic forms differ and therefore humic substances control the geochemical 

dispersion and bioavailability of metals in the aquatic system (Neubecker et al, 

1983). The composition of humic substances determine their complexing 

capacity and therefore the geochemical imprint is an artefact of the HS properties. 

Thurman et al (1985) found that high-molecular weight (HMW) fraction of aquatic 

humic matter likely is colloidal and only comprise 5-10% of the total aquatic load. 
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2.5.3 Transformation of OC in the water column 

Processes that transform organic carbon in the aquatic system can either reduce 

or produce POM and POC. In freshwaters, abiotic photochemical flocculation has 

the potential to remove DOM of terrestrial origin from the dissolved phase before 

reaching the estuarine environment (Helms et al, 2012). For instance, flocculation 

of allochthonous DOC can produce POC that is subject to sequestration into lake 

and reservoir sediments (von Wachenfeldt & Tranvik, 2008), which contributes to 

OC burial. On the other hand, degradation processes such as photo-dissolution 

transforms aquatic POC into the dissolved species of carbon. Transformation 

processes of OM in the aquatic environment affect the local ecosystem functions 

(Porcal et al, 2009), as DOM play a role in controlling surface water 

characteristics e.g. light attenuation, substrate availability for NPP, and metal 

complexation (Mulholland, 2003, pg.140). Flocs can also influence water quality 

through physical, chemical and biological functions (Droppo et al, 1997), e.g. 

through the ability to bind to aquatic species, such as contaminants, and transport 

them along the LOAC.   

 

2.5.3.1 Coagulation 

Coagulation is the irreversible process where colloids aggregate due to charge 

neutralization (Atkins & de Paula, 2005) by reducing the repulsion potential of 

electrical double layers in colloids (Matilainen et al, 2010). Particles between 10–

3–1 µm are colloids, which do not settle under gravity due to Brownian motion, 

and in urban waters comprise e.g. fine silts, clay particles, bacteria, viruses 

(Manahan, 2001; Scholz 2016) and in natural waters e.g. humic substances, 

mono- and multivalent ions, micro-organisms, metals and carbonates (Schäfer et 

al, 2000).  Organic colloids can amount to 20% of the dissolved aquatic species 

in rivers (Hope et al, 1994). Colloid stability in suspension is directly influenced 

by the sign and degree of surface charge (Koopal, 2005). In a stable suspension 

the surface charge of colloids is balanced by solution counter-ions of opposite 

charge (Dukhin, 2006). Adsorption and precipitation occur when ions are 

removed from a solution to accumulate on a solid to form either two-dimensional 

or three-dimensional structures, respectively (Goldberg, 2004).  Coagulation is 

the process where the electrical charge in the suspension is changed by the 

introduction of e.g. chemical coagulants (multivalent ions or colloids) of an 
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opposite charge to that of the particles in suspension; commonly, the greater the 

valence is, the greater the coagulation effect becomes in the suspension (Scholz, 

2016). The main types of coagulation mechanisms are adsorption with 

subsequent destabilization, a typically fast process (0.1–1s), and sweep 

coagulation (3–17s), which are effective at different alkalinities and turbidity 

(Scholz, 2016). Adsorption induces particle destabilization by either charge 

neutralisation or interparticle bridging (Edzwald et al, 1974). Sweep coagulation 

results in the colloid settling inside a metal hydroxide precipitate (Edzwald et al, 

1974; Schloz, 2016), while double layer compression is an effect of the increased 

concentrations of counter-ions in e.g. saline environments, where the degree of 

compression is determined by the valence; colloidal destabilization increases 

with ionic strength (Edzwald et al, 1974). Similarly, Ramos & McBride (1996) 

found that reactions which increased the surface charge (negative or positive) 

contributed to dispersion and charge neutralization promoted flocculation effects. 

Organic compounds of neutral charge can also provide sites of attachment 

(Larsen et al, 2009). 

The behaviour of colloids present at close proximities of each other (<1 

µm) can also be influenced by van der Waals forces (Scholz, 2016 pg. 41). A 

higher electrokinetic potential, or zeta potential, will keep the colloid suspension 

stable (in general >25, either negative or positive), while destabilisation occurs at 

lower zeta potential. The pH level also influences coagulation processes, for 

instance oxidation by dissolved oxygen (DO) will occur at pH levels >8.5 (Schloz, 

2016).  

Cationic and anionic polyelectrolytes, which are long-chained polymers 

that produce ions of positive and negative charges when dissolved, can be used 

as coagulants to remove colloids of opposite charges respectively (Scholz, 2016), 

however charge neutralization by electrolytes is not the only coagulation and 

agglomeration process (Bratby, 2006). 

 

2.5.3.2 Clay particles in suspension 

The commonly net negative charge of inorganic clay particles influence the 

behaviour of these in the water column, in particular for freshwaters which lack 

saline ions where this net negative charge leads to stable suspensions in which 

coagulation is prevented, either by charge balance through the mutual repulsion 
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between hydrophobic colloids or by the attraction of (hydrophilic) colloids to 

counter-charged ions in the solution itself (Edzwald et al, 1974; Scholz 2016 pg. 

40–41). The common reason for a net negative charge of clay particles is due to 

isomorphous substitution, where cations of a higher positive charge have been 

replaced in the crystal lattice by cations of lower positive charge, e.g. Si4+ by Al+3 

etc. (Scholz, 2016 pg. 41). The inorganic particle acts as an electrode in the 

solution, in which electrostatic attraction influences the behaviour of particle and 

counter-ions. Edzwald et al (1974) used three clay standards (kaolinite, illite and 

montmorillonite), to perform coagulation experiments in artificial seawater 

mixtures and found that for all clay standards higher ionic strength of the seawater 

standard increased coagulation rates in the suspensions. Their experiment 

included a field study where they found that upstream sediments retain a higher 

stability factor (α), indicating that upstream sediment are less stable than 

downstream and estuarine sediments.  

 

2.5.3.3 Flocculation 

Flocculation is the process where particle cohesion forms larger aggregates from 

smaller ones and the process can be reversible. It is affected by collision 

efficiency through steps of transport and attachment (Dukhin et al, 2006). 

Electrochemical flocculation happens due to increased concentrations of 

dissolved ions in the water column (van Olphen, 1964), where high valence 

cations, such as Ca2+ and Mg2+ which are common in clay minerals, rather than 

monovalent cations, are the more important ions in the process (Tsai et al, 1987; 

Droppo & Ongley, 1994; Ramos & McBride, 1996) and can form agglomerates 

together with negatively charged organic matter. Since produced organic flocs 

retain higher density and achieve higher settling velocities (Tsai et al, 1987), 

these are more prone to sink and accumulate on the lakebed, which subsequently 

removes this fraction of organic matter from the water column and mineralisation 

processes further downstream.  

Microflocs (<125 µm) often consist of stable organomineral complexes and 

serve as building blocks for larger but less stable macroflocs (3–4 mm) that are 

more sensitive to physical breakdown, with a maximum size constrained by 

turbulent shear in the water column (Eisma, 1986). Verney et al (2009) also 

reported that maximum floc size is highly dependent on intensity of turbulence 
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and found that in their estuarine samples maximum floc size was attained in 

systems with concentrations of suspended particulates >9.1 g L–1. In a study by 

Droppo & Ongley (1994) the parameters that showed the strongest relationship 

with floc size were suspended solids, POC and bacterial colonies, while pH, 

conductivity and major ions were less important.  

Collisions between particles despite the existence of intermolecular 

repulsive forces can be induced by Brownian motion (perikinetic flocculation) 

(Edzwald et al, 1974) or hydrodynamic effects, like turbulence (or fluid shear) 

(Stechemesser, 2005; Scholz, 2016), known as shear or orthokinetic flocculation 

(Gregory, 1981).  

The physicochemical and biological nature of flocs is connected to their 

structure and composition, which further alters their mode of transport and settling 

behaviour as sediment particles (Droppo et al, 1997). A study on light-dependent 

flocculation by von Wachenfeldt et al (2008) showed positive correlation between 

the DOC concentration and the sedimentation rates of allochthonous organic 

carbon in a boreal lake, leading to significant DOC losses in the water column. 

The increased sediment load contributes to carbon sequestration by burial, and 

therefore flocculation not only removes organic carbon from the DOC pool and 

transfers it into the POC pool, but also influences both the mineralisation rates 

(and subsequently the local evasion of CO2 and CH4) and the net storage through 

burial in basins with sediment accumulation.  

Neto et al (2006) showed that the biochemistry of flocs is mainly 

determined by input of litterfall from local catchment vegetation together with 

diagenesis. In a study by Helms et al (2012) organic matter with carbohydrate 

properties showed low photochemical transformation and flocculation potential, 

while produced flocs showed more aliphatic properties compared with the 

residual dissolved fraction. 

 

2.5.3.4 Photochemical transformation of organic matter in the water 

column 

Solar radiation contributes to photodegradation of DOC in the water column, 

which in the process produces building blocks for POC formation (substrates for 

microbial growth) or oxidizes DOC into DIC through photomineralisation (Porcal 

et al, 2015). Kieber et al (2006) found that high-energy UV light is most effective 
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for DOC and POC degradation, while photosynthetically active radiation, or 

photosynthetically available radiation, (PAR) has a lower effect.  

Molot & Dillon (1997) described the effect of solar radiation on DOC of 

different ages in the water column of a peatland stream; suggesting that recently 

eroded DOC (which has just entered a stream system) is more susceptible to 

photodecay than aged DOC that has been in suspension in the water column 

over a longer period of time. This was also one of the suggested conclusions in 

a study by von Wachenfeldt et al (2008), who through a light-mediated 

flocculation experiment found that up to 25–60% DOC loss accounted for 

produced POC in water from a mire outlet compared with a corresponding 

experiment with lake water (8–22%). This suggests that the labile fraction is being 

readily transformed upon entering a watercourse, while the recalcitrant organic 

matter remains as suspended matter in the water column. 

Photodissolution also contributes to the breakdown of POC and deliver 

this carbon into the DOC pool (Estapa & Mayer, 2010, Pisani et al, 2011). 

Photoproducts may be reactive and subjected to metabolism, and therefore 

contribute to the DIC pool after mineralisation by microbial activity (Estapa et al, 

2010). Pisani et al (2011) conducted time series experiments on POC samples 

by exposing flocs to artificial irradiation, and observed that most contribution to 

chromophoric DOM (cDOM; the fraction absorbing UV and visible light) came 

from the photodissolution of terrestrial humic-like species rather than protein-like 

species, and that the concentrations of both dissolved nitrogen and soluble 

phosphorous increased in the process, implicating that photodissolution not only 

transforms POC into DOC but also releases nutrients important for the biological 

food supply. Through flocculation experiments Asmala et al (2014) simulated 

estuarine mixing and found that both quantitative and qualitative properties of the 

remaining DOC (post-flocculation) changed significantly in terms of molecular 

weight, cDOM, fluorescence, and iron content, in boreal freshwater DOC samples 

subjected to saline conditions. Vähätalo et al (2008) performed long-term 

incubation experiments where they exposed water DOC samples to solar 

irradiation (459 days) and microbial mineralisation (898 days) and found that both 

processes were able to completely mineralise metabolically unavailable 

allochthonous DOC derived from wetlands, if the residence time of this DOC in 

surface waters is sufficiently long.  
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In a case study in Alaska, Cory et al (2015) found that increased light 

absorbance and attenuation due to photodissolution and subsequent production 

of cDOM in the top layers of the water column was connected to thermal 

stratification, concluding that important controls on photodegradation rates in this 

system was UV irradiation intensity and residence time of cDOM in the upper 

water column. Since both stratification and residence times were influenced by 

turbulence in the water column, stream flow affected photo-dissolution rates. 

Porcal et al (2015) found that temperature is a main controlling factor for 

photochemical degradation, i.e. at lower temperatures the DOC–DIC 

transformation dominates while DOC–POC transformation dominates at higher 

temperatures. Mayer et al (2006) found temperature and light limitation (intensity) 

to be the main constraining factors of photodegradation, while Pisani et al (2011) 

found that fluorescence characteristics of mainly terrestrial humic-like 

components, and to a lesser degree protein-like components, increased with 

exposure in released DOC from degraded floc samples. 

Photoirradiation experiments conducted by Pullin et al (2004) showed that 

while the irradiation reduced HMW-OM, formed LMW-OM compounds such as 

carboxylic acids contributed to adsorbed DOM onto goethite mineral with reduced 

UV-Vis absorptivity.  

 

2.5.3.5 Fate of flocs in the LOAC 

From headwaters to estuary, different environments in the LOAC promote and 

reduce transformation processes. Climatic conditions, geochemistry (lithology, 

soils), vegetation, all influence the water chemistry of the LOAC.  

In the estuarine environment, saline mixing promotes aggregation of DOC 

(Ertel et al, 1991).  In their experimental study, Verney et al (2009) found that 

flocculation in estuarine systems appeared to be more dependent on the 

properties of the suspended sediment and initial OM content, rather than salinity. 

Similarly, Forsgren et al (1996) studied the aggregation of iron, phosphorous and 

DOC in saline environments and found that <10% of DOC aggregated, mainly 

the high molecular weight fraction. Ertel et al (1991) found that the C/N ratio of 

flocs formed due to saline mixing was higher for flocs formed by OM in filtered 

samples, than for OM adsorbed onto existing particulates in non-filtered samples, 

which indicates that different OM species were removed by the two different 
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processes studied. Repeta et al (2002) found that while humic acids for 

freshwater and seawater are clearly separated by properties of C-isotopic 

composition, C/N ratios, adsorption potential in UV-light, and molecular structure, 

the bulk chemical properties of high molecular weight (HMW) DOM (>1kDa) from 

freshwater and seawater were indistinguishable, suggesting that biogeochemical 

cycling of these compounds are comparable in different aquatic environments 

from freshwater to sea.  

Several studies have investigated the nature of suspended sediment loads 

in rivers with emphasis on controls on organic floc production (Droppo & Ongley, 

1994), but it has been emphasized that further studies are needed in this area 

(Neto et al, 2006), to identify the fate of particulate phase of OM produced from 

these processes. Especially interesting is identifying sections along the LOAC 

where riverine OM is affected by naturally occurring coagulants and where POC 

is prone to form, which affects downstream C burial and mineralisation pathways.  

 Transformation processes of organic matter and their residual effects in 

the LOAC are poorly understood (Sleighter & Hatcher, 2008). While coagulation 

science has roots in the water treatment industry and numerous chemically 

produced coagulants have been studied for their residual effects on freshwater, 

understanding natural agglomeration processes in the LOAC can contribute with 

insights regarding C pathways and fate – both natural and anthropogenic. As 

flocs change the hydrodynamic conditions for suspended particle transport 

(Droppo et al, 1998), increased POC loads into the riverine system due to 

changed land use practices can affect the resulting OC burial and GHG emission 

downstream. Because the characteristics of natural OM in the LOAC have impact 

on molecular to global scale processes (Kim et al, 2003), there is a need to study 

effects of flocculation to identify selective sorption of more or less recalcitrant 

carbon species, to elucidate fractionation of OM components along the LOAC, 

which can have implications for aquatic biota downstream and in the ocean, and 

to determine the effects of different natural flocculation boundaries on riverine 

OM.  
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2.6 Fate of POC 

2.6.1 Sediment records 

Inputs of carbon into lakes consist mainly of the dissolved species (DOC, DIC) 

while particulate phases (POC, PIC) occur with lower concentrations – 

differences of their relative concentrations in surface waters and fate vary with 

climate, geochemical characteristics of the landscape, and land use (Hope et al, 

1994; Tranvik et al, 2009). Sedimentation of organic matter in natural low energy 

environments, such as freshwater lakes, deltas, floodplains and brackish 

estuaries, contribute to deposits of POC. Manmade reservoirs compose artificial 

lakes that similar to natural lakes can hold semi-permanent limnic storage of 

organic matter over the lifetime of the reservoir. Lake and reservoir sediment 

compose accumulated material from terrestrial and aquatic sources. If 

resuspension is sparse, annual sediment layers that accumulate on the reservoir 

floor compose minerogenic material previously eroded from soils of the 

catchment (Figure 7). The volume of post-flooding sediment reveals the net 

deposit of accumulated material from soil erosion, and exhibits net storage of 

accumulated POC. 

The chemistry of surface sediments is influenced by diagenetic effects 

(Callender et al, 2000) which constrains the mineralisation and oxidation 

reactions. The sediment accumulation rate is also important for the preservation 

of settling material – faster burial of sediments limits the exposure time of 

substrates to depth-specific microbial metabolism and oxidation reactions. 

Another complication is hiatus in the sediment record. This can be important in 

manmade reservoirs where resuspension during events such as dam discharge 

is likely to impact the sedimentation, by for instance physical disturbances such 

as stream turbulence, oxygenation and temperature changes due to controlled 

alteration of the water table.  

 



48 
 

 

Figure 7 Sources of organic matter into lacustrine sediments. From Engel & 

Macko, 1993. 

 

2.6.2 Early diagenesis of lacustrine sediments 

On a geological time scale, many early diagenetic processes in surface 

sediments are considered fast processes occurring within 1000 years of particle 

deposition (Engel & Macko, 1993). The selective transformation, decomposition 

and reworking of reactive organic matter that is water-soluble and readily 

available for microbial consumption (e.g. proteins and carbohydrates), leads to 

sediment profiles showing relatively increased concentrations of non-reactive 

recalcitrant components of organic matter (e.g. humic substances and lipids) with 

sediment depth (Meyers & Ishiwatari, 1993). During the reworking process 

synthesized products further become part of the sediment biomass, either as new 

reactive substrates for consumption or as recalcitrant persisting artefacts (Meyers 

& Ishiwatari, 1993).  

 

2.6.3 Vertical and lateral limnic OC exports 

OC burial is the process where carbon is sequestered into semi-permanent 

sediment storage. Burial of organic carbon composes one of the terrestrial C 

sinks, with main pathways being the settling of aquatic biota at sites of 
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accumulation, deposition of litterfall and minerogenic particles, and POC 

production from the DOC pool (de Vicente et al, 2009). Sobek et al (2009), found 

that OC burial efficiency mainly is influenced by the input of allochthonous organic 

matter into limnic sediments together with the degree of oxygenation. In their 

study, Sobek et al (2009) found that as much as 66% of the allochthonous 

sediment input is buried into lakebed sediments (while mineralisation processes 

produce CO2 and CH4 which evades to the atmosphere) concluding that the main 

drivers determining the proportion which is buried compose a product of 

environmental conditions (e.g. trophic state of the catchment, temperature, 

oxygenation) along with the qualitative characteristics of the inputted organic 

carbon itself, and residence time in the particular part of the water column that is 

affected by these factors. The volumes of carbon burial in freshwater bodies 

exceed burial in oceanic environments by one order of magnitude globally 

(Aufdenkempe et al, 2011). Better understanding of this pathway would improve 

estimates of the global organic carbon sink on land.   

About 0.2–1.6 Pg C is buried in freshwater sediments annually and 

Regnier et al (2013) estimated that out of this roughly 20% comprise 

autochthonous carbon. In a study by Cole et al (2007) carbon burial was 

equivalent to 0.2 Pg C year–1, while at least 0.8 Pg C year–1 is released through 

CO2 evasion. Raymond et al (2013) estimated that CO2 evasion from freshwater 

amount to 2.1 Pg C yr–1, and that out of this, rivers contribute 1.8±0.25 Pg yr–1 

while still water bodies (including reservoirs) contribute roughly 0.32 Pg C yr–1. 

 

2.6.4 Organic matter quality and sources 

One way to distinguish the quality and sources of particulate organic matter in 

soil and sediments is the use of geochemical bulk parameters such as carbon-

nitrogen ratios (Meyers & Ishiwatari, 1993). C/N ratios of organic matter is 

commonly preserved in lake sediments despite early diagenetic effects in the 

sediment column (Meyers, 1994). C/N ratios for algae and aquatic macrophytes 

that lack cellulose range between 4–10, while terrestrial vascular plants with 

supportive cellulose walls show C/N values >20 (Meyers & Ishiwatari, 1993; 

Meyers, 1994). These differences in C/N have often been interpreted in 

conjunction with C-isotopes, to distinguish terrestrial and limnic sources of 

organic matter (Figure 8).  
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Figure 8 C/N ratios interpreted in conjunction with C-isotopic values of various 

organic matter sources (Meyers, 1994). 

 
Lake sediments with contributing sources of plant litter from both vascular and 

non-vascular plants show typical C/N ratios of 13–14 (Meyers & Ishiwatari, 1993). 

In soils, C/N ratios depend on the degradation state of organic matter which has 

been subject to biogeochemical processing (e.g. biomineralisation) which has 

altered the stoichiometric relationship between macronutrients in SOM (Tipping 

et al, 2016). For instance, fresh plant litter typically has higher C/N-ratios than 

humic acids (Schlesinger, 2013). The method is a useful qualitative tool to 

determine sources of organic matter in aquatic sediments. For instance, at their 

study sites in Upper Paraná River basin, South Eastern Brazil, Albuquerque & 

Mozeto (1997) observed higher C/N ratios in riverine POM (6.5–11) compared to 

lacustrine POM (3.5–5.9), indicating the presence of refractory autochthonous 

organic matter in the river water compared to allochthonous organic matter in 

lakes. The C/N ratio further showed seasonal variation, connected to increased 

flow and transport of suspended sediment, which suggested a possible change 

in quality of suspended particulate matter throughout the hydrologic year.  

 There are a number of other specific molecular biomarkers used for tracing 

sources and discrimination of organic matter in sediments, such as stable 

isotopes, lignin polymers, n-alkanes, lipids and branched glycerol dialkyl glycerol 
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tetraethers (GDGT) among others. The use of stable isotopes has been widely 

implemented to determine the sources and mixing of organic matter in aquatic 

systems (Schindler Wildhaber et al, 2012). Isotopic composition of C in riverine 

organic matter can be used to determine the composition of POC, for instance to 

determine the relative contribution of C3 and C4 plants or to determine the fate 

of labile and refractory organic carbon. For example Nagao et al (2010) used 

stable isotopic composition together with lignin phenols to determine the 

composition of riverine POC from terrigenous origin, while in a study of isotopic 

composition of organic matter from the Amazon River system, Mayorga et al 

(2005) proposed that young riverine organic matter (less than five years old) 

compose a primary source for CO2 outgassing in the tropics. In three tributaries 

of the vast Amazon River, Bouchez et al (2014) further utilized radioactive and 

stable carbon isotopes (14C and 13C) to determine the qualitative properties and 

sources of POC in sediments. In their study, it was determined that up to 10% of 

POC exported by the Amazon River may be rock-derived and that C3 plants 

contribute as a main terrestrial biospheric POC source. Furthermore, higher detail 

of organic matter sources can be achieved with compound specific stable isotope 

analysis (CSIA), e.g. with these methods Alewell et al (2015) quantified relative 

contributions of suspended sediments from agricultural and forested land use 

during various flow rates in a Swiss lowland river, showing the power of 

biomarkers in identifying sediment sources.  

 Other biomarkers are used especially to determine the original plant type, 

for instance phenolic compounds derived from lignin polymers are indicative of 

vascular plants and have been used to discriminate between sources of plant 

organic matter in sediments (Hu et al, 1999). In general, distinctive chain lengths 

of n-alkanes reveal the provenance of the plant matter, terrestrial or aquatic, and 

stable isotope analysis of n-alkanes can be used to distinguish organic matter 

from C3, C4 and CAM plants (Maioli et al, 2012).  

Molecule specific lipid biomarkers have been extensively used to 

determine original sources of organic matter in sediments, for instance van 

Dongen et al (2008) analysed an array of molecular properties to discriminate the 

terrestrial and marine OM sources of estuarine sediment in the Siberian Arctic. 

Other studies have also made use of branched glycerol dialkyl glycerol 

tetraethers (GDGT) as complementary tracers to conventional biomarkers such 
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as stable carbon isotopes and carbon-nitrogen ratio (Kim et al, 2012). GDGT are 

thought to be products by heterotrophic bacteria found in anaerobic soil 

(Sinninghe Damsté et al, 2011) and can be used to trace terrigenous input into 

the aquatic POC pool (Lopes dos Santos & Vane, 2016). For instance in a study 

by Kim et al (2012) it was found that 70-80% of the riverine POC at Óbidos in the 

Amazon River originated from soil sources, emphasising the importance of 

erosion as a source of organic matter in the Amazon River. 

Biomarkers are often interpreted with statistical modelling methods. For 

instance, Cooper et al (2015) utilized a Bayesian mixing model to interpret CSIA 

of long-chain leaf wax n-alkane biomarkers to determine sources of organic 

matter in stream bed sediment, while other studies have used mass balance 

mixing models to trace sediment-associated POC (e.g. Collins et al, 2009). 

In this study, the method to determine qualitative properties of organic 

matter was limited to C/N ratio analysis.  

 

2.7 Methods to determine erosion and sedimentation of soils and 

sediment 

2.7.1 FRNs as soil erosion tracers 

Fallout radionuclides (FRN) are radioactive isotopes that readily fix onto mineral 

surfaces and primarily follow the physical processes which relocate soil particles 

(Quine & Van Oost, 2007). Assuming that the distribution of FRN follow soil 

mobilization, these therefore serve as good indicators of erosion and deposition 

by water, wind and tillage (Mabit et al, 2008). Radioactivity measured in field 

samples are compared for unique sampling sites in eroding and depositional 

environments against a local reference site, which compose a sample from a non-

disturbed setting where no net loss nor gain is observed (Gaspar et al, 2013). 

The FRN inventory at the time of sampling represents the net accumulation of 

tracer over the time from fallout deposition, including all processes that have 

contributed to the inventory in-between (Dercon et al, 2012).  

The use of fallout radionuclides, such as 137Cs, 210Pbex, and 7Be, as tracers 

of soil loss and sedimentation in both managed and non-managed landscapes 

allows for improved estimates on soil erosion over different spatiotemporal scales 

(Gaspar et al, 2013).  In a field study in north-eastern Spain, using 137Cs and 
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210Pb, Gaspar et al (2013) found that the highest soil losses occurred in mid-slope 

areas of cultivated fields, whilst the highest deposition occurred in depressions of 

tilled fields. Different radionuclides have different half-lives and elemental 

properties, which provide information relating to their respective dispersion and 

decay in the soil profile (Porto et al, 2012). While artificial 137Cs and geogenic 

210Pbex can be used to study past annual erosion rates dating back to ca 50 and 

100 years respectively, cosmogenic 7B has a shorter half-life (t½=53 days) and 

provides short-term information up to only days–months into the past (Porto et al, 

2012).  

When using this methodology the following assumptions about the surficial 

FRN distribution in the landscape are 1) the atmospheric fallout has been 

relatively uniform across the terrestrial environment which is being used as a field 

site (Ritchie & McHenry, 1990; Dercon et al, 2012), that 2) the surface particles 

of FRN enriched soil layers will exhibit a steadily decaying radionuclide footprint 

regardless of redistribution, and therefore 3) erosion processes dilute or 

concentrate the radioisotope-bearing particles (Walling, 1998). Practical 

applications of FRN properties can be implemented when measuring soil erosion 

across a landscape; by using a set reference point with neither erosion nor 

deposition, sampling sites with erosion and deposition relative to the reference 

site can be identified (Figure 9) (Ritchie & McHenry, 1990; Rodway-Dyer & 

Walling, 2010). For instance, dated sediment profiles showing the concentrations 

of the radioactive isotope can be used to estimate sediment accumulation rates, 

former sediment horizons can be identified in a vertical soil profile, and erosion 

sites identified due to the correlation between radionuclide loss and erosion 

(Ritchie & McHenry, 1990). Lake sediments undergo both physical and chemical 

processes that lead to redistribution of radionuclides within the sediment column, 

e.g. bioturbation and mixing near the water–sediment boundary and porewater 

transport, e.g. diffusion (Appleby, 1998). 
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Figure 9 Illustration of 137Cs distribution in the landscape with typical profiles of 

eroding, stable and depositional sites. From Walling & Quine (1991).  

 

2.7.1.1 Caesium-137 (137Cs) 

Caesium (atomic number 55) is an alkali metal that readily forms ionic bonds with 

a 1+ charge with non-metals. The unstable radionuclide caesium-137 (137Cs) with 

a half-life of 30.2 years readily adsorbs onto clay particles and absorbs to organic 

complexes after atmospheric deposition (fallout) and therefore exhibits limited 

movement in soils (Staunton & Roubaud, 1997). Caesium behaves similar to 

rubidium (Ru) and potassium (K) in the biosphere (Anke, 2004) and when it 

comes to adsorption to biological matter and has higher solubility in marine water 

than freshwater (Eisenbud & Gesell, 1997). Among the alkali metals Cs is the 

most electropositive and alkaline element (Guzmán et al, 2013), and among the 

isotopes only one, 133Cs, occurs naturally in the environment (Anke, 2004). The 

element occurs with an average of only 0.65 ppm in the Earth’s crust (Anke, 

2004). 

The isotope 137Cs is a fission product from 137I decay and is a man-made 

fallout radionuclide which does not appear naturally. It was released into the 

atmosphere during bomb tests in the period 1950–1970 (Nouira et al, 2003), and 
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in particular in the Northern Hemisphere from the Chernobyl accident in 1986 

(Tang et al, 2006) and Fukushima (Teppei et al, 2011).  Despite the Chernobyl 

incident, main fallout of 137Cs occurred in years 1962–1964 (>50%), and 80% of 

deposition had occurred by 1964 (Quine & Van Oost, 2007).  The radioactive 

fallout is considered uniform, and despite some delivery being through local 

dryfall in the vicinity of key sources, the main deposition is via rainfall precipitation 

(Ritchie & McHenry, 1990; Mabit et al, 2008; Dercon et al, 2012). The amount 

that sorbed by vegetation also plays some role in the concentration of 137Cs on 

surface soils, since there is delay before this deposition is delivered to the soil 

surface (Ritchie & McHenry, 1990). 

137Cs serves as a useful tracer for physically relocated soil particles and 

has therefore been widely used for soil erosion measurements (Ritchie & 

McHenry, 1990; Quine, 1999). The 137Cs radionuclide has successfully been 

used to study medium-term (up to c. 50 years) soil erosion rates in managed and 

non-cultivated soils in the past (Ritchie & McHenry, 2007). The 137Cs method for 

measuring soil erosion is a straightforward method to identify the relocation of 

soil particles by physical processes. Random variation in 137Cs concentrations in 

samples due to mixing is unavoidable and therefore the method is more robust 

with increasing reference and sample numbers (Zhang et al, 2015).  As one of 

the most common radionuclides used within FRN research, 137Cs has been used 

extensively in studies worldwide. 

 

2.7.1.2 Lead-210 (210Pb) 

Lead (Pb) is a heavy metal with atomic number 82 and a mean abundance in 

Earth’s crust of 14 ppm (Enghag, 2004). Six natural isotopes of Pb exist, of which 

three are stable and three are radioactive. Activity measurements of excess 

(unsupported) lead-210 (210Pbex) with a half-life of 22.26 years in soil samples 

can be complementary to present-day 137Cs studies, and will become important 

in the future in replacing the 137Cs-method altogether as the man-made 137Cs 

signal has decayed in the environment (Matishof, 2014). Especially in the 

Southern Hemisphere, where the fallout of 137Cs has been less prominent, there 

is scope in using 210Pb as a nuclear tracer (Mabit et al, 2008). The redistribution 

of 210Pbex in the landscape is, similar to the 137Cs distribution, mainly connected 
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to physical relocation of soil particles, as it readily adsorbs to mineral surfaces as 

well as organic matter. The continuous fallout, however, provides 210Pbex activity 

profiles in soil and sediment that are highest at the surface with declining activities 

with depth (Walling et al, 1995). 

The fallout of 210Pb from the atmosphere is relatively continuous due to its 

geogenic source and therefore the soil profiles obtained from undisturbed soils 

will show the highest activity of 210Pbex near the surface (Figure 10). The in-situ 

component 210Pb (“supported”) derives from 222Rn decay, which itself is a 

radioactive daughter of naturally occurring 226Ra from the 238U decay series 

(Appleby, 2008; Gaspar et al, 2013). This product is the supported 210Pb that is 

in equilibrium with 226Ra. As gaseous 222Rn diffuse through the soil column, 

atmospheric fallout deposit 210Pb onto surface soils. This atmospheric fallout 

decay product composes “unsupported” lead-210 (210Pbex), which can be 

calculated as the difference of measured 210Pb and 226Ra (Zapata, 2003; Gaspar 

et al, 2013). Because the 210Pbex inventory is continuously replaced, historic 

records of erosion rates up to ca 100 years are obtainable, compared with 137Cs 

which fallout is associated with bomb tests in 1950–1960 (Gaspar et al, 2013).  

Mabit et al (2014) describe assumptions about 210Pbex behaviour that are 

important to consider when using this radionuclide as a tracer of soil and 

sediment redistribution – for instance it is assumed that 210Pbex is readily 

deposited from the atmosphere over time and the radionuclide is fixed in the soil 

layer after fallout, there is no downward migration, and the concentrations of 

activity are not dependent on sediment or soil depth. 

Potential disadvantages compose high analytical uncertainty along with 

very low activities in natural samples which might lead to measurements below 

the detection limit, however this has been shown to be controllable in several 

successful studies (Mabit et al, 2008).  

 



57 
 

 

Figure 10 Illustration of 210Pbex fallout, from Mabit et al (2014). 

 

Even though 210Pbex has been used less than 137Cs for soil erosion studies in the 

past, the interest for this radionuclide as a tracer is increasing (Porto et al, 2012), 

partly because compared to 137Cs, for which the substantial fallout ended in the 

1970’s, the 210Pb inventory is being continuously replenished in soils (Gaspar et 

al, 2013). 

 

2.7.1.3 Advantages and disadvantages of FRN methods 

There are a number of assumptions being made when using FRN methods to 

study soil redistribution. The radioactive fallout of 137Cs is considered to have 

been uniform, and despite some delivery being through dryfall the main 

deposition is considered to be via rainfall precipitation (Ritchie & McHenry, 1990; 

Mabit et al, 2008). Some main advantages of the use of FRN as indicators of soil 

redistribution are the following: 

1) quick and direct sampling campaigns of new areas without the need to 

establish long-term and costly monitoring programmes,  

2) the samples obtained from the field can be readily measured for 

radionuclide activities that reveal the erosion and sedimentation history, without 
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the need to revisit the site under investigation (Zapata, 2003) with no need to 

install monitoring equipment (Porto et al, 2012),  

3) 137Cs measurements can be used to study records of erosion and 

deposition rates over the past 30–40 years, progressed as mean rates less 

susceptible to influence by erosion and deposition anomalies,  

4) the field derived data from FRN studies can be used to validate erosion 

models,  

5) the data represent all effects from erosive processes influencing soil 

redistribution (Nouria et al, 2003),  

6) both erosion and deposition rates can be obtained, together calculated 

into a net flux of soil erosion. 

Some limitations comprise the following:  

1) FRN samples are obtained from point sampling and the quality of 

extrapolation is thus influenced by site and sample numbers (Zapata, 2003) 

2) there is a need for equipment with sufficient analytical precision, which 

in cases can comprise an economic limitation (Zapata, 2003)   

3) a number of different conversion models add to the uncertainty when 

estimating soil redistribution from FRN activity (Zapata, 2003)   

4) the measurements provide mean soil redistribution rates for the past 

30–40 years without high-resolution details of single anomalies within this time 

span (Zapata, 2003) 

5) global standardisation of protocols for the technique are lacking 

(Zapata, 2003)  

6) It is assumed that FRN follow the mobilization of soil particles, however 

some FRN might adsorb to organic matter which may then depend more on OM 

redistribution processes, e.g. chemical and biological (Gaspar et al, 2013). For 

instance microbial activity appears to contribute to the migration of radio-caesium 

in soils (Parsons & Foster, 2011).   

Other limitations of the technique have been carefully described (Walling, 

1998; Mabit et al, 2008), for instance, there is a simplification through the 

assumption of proportionality – i.e. for some conversion models it is assumed that 

if there is a certain decrease in percentage FRN, the same number will reflect the 

percentage soil loss since the fallout event.  Since radionuclides readily adsorb 

to finer fractions there might be over- or underestimation of soil loss, if there is a 
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preferential particle size connected to the soil erosion process. Grain size 

therefore play an important role when it comes to selective mobilisation of FRNs. 

The adsorption capacity of FRNs in relation to grain size has been debated, e.g. 

He & Walling (1996) highlighted the problems with biased results which arise 

when analysing the mean grain size in connection with FRN activity, which from 

experimental results appears to be more closely related to specific surface area, 

and from analysis of natural samples seem to have higher absorbance to finer 

soil fractions. Effectively, the FRN redistribution in the landscape will be related 

to the selective erosion of sediment due to particle size. This fractionation would 

be connected to erosion processes which fractionate soil by particle size and 

therefore results in a dilution issue. However, this is less likely when soil 

aggregates of mixed particle sizes are eroded, for instance when mass 

movement cause episodic erosion. 

 

2.7.1.4 FRN activities in South-eastern Brazil 

Fallout of 137Cs has been more prominent in the Northern Hemisphere than in the 

Southern Hemisphere and show higher concentrations in the environment around 

for instance centres of nuclear tests and the Chernobyl power plant (Tang et al, 

2006; Dercon et al, 2012). Earlier studies have shown that the 137Cs activities 

obtained in Brazilian soils of the Southern Hemisphere generally occur at levels 

c. 10 times lower compared to data from the Northern Hemisphere (Bacchi et al, 

2000). The generally low activities of 137Cs in the Southern Hemisphere cannot 

be overcome, however, analysis of complementary radionuclides, such as 

geogenic 210Pbex, provides additional detail about the soil redistribution record at 

the site of investigation. Despite the relatively low activities of 137Cs in soils of the 

Southern Hemisphere, in a long-term runoff monitoring study to evaluate the use 

of 137Cs in Brazilian soils, Correchel et al (2006) found that where this 

radioisotope is detectable in soils it provides confident results. At their reference 

site (Campinas, SP, Brazil) 98% of the 137Cs activity was concentrated to the 

upper 20 cm of the soil profiles and corresponded to an average inventory of 

272±20 Bq m–2. Similarly, Bacchi et al (2000) reported an average 137Cs 

reference inventory of 422±14 Bq m-2 from five profiles in Piracicaba river basin, 

which has a climate classified as Cwa according to the Köppen classification 

system, representing a humid sub-tropical climate. Correchel et al (2005) 
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investigated the spatial variability of four reference sites in sub-tropical 

Piracicaba, Brazil, and reported total inventories of their reference sites were 314, 

250, 253, and 242 Bq m-2.  

Few studies have reported the spatial variability of 137Cs reference sites in 

South America, e.g. Correchel et al, 2005 found that the random spatial variability 

typically exceeded the systematic spatial variability, however the causes for this 

variability remain unidentified but were suggested to be influenced by “chemical, 

physical, mineralogical and biological differences” relating to adsorption 

dynamics in the tropical environment. Similarly, for sediments, Wilken et al (1986) 

studied estuarine sediment cores from Guanabara Bay in Brazil and found that 

while 137Cs signal were measured under the detection limit (<0.8 mBq), 210Pbex 

could be successfully used to determine the average sedimentation rate (2 cm 

year–1) in the bay. 

 

2.7.1.5 Summary FRN 

Nuclear tracers, such as fallout radionuclides (FRNs) like artificial caesium-137 

(137Cs) and geogenic excess lead-210 (210Pbex), compose an alternative to 

models and monitoring schemes as these serve as useful tools for soil erosion 

studies that reveal the historical average erosion and deposition rates at a 

specific site (Zapata, 2003). Fallout radionuclides provide empirical spatial 

information on soil erosion and sedimentation that uniquely describes annual soil 

redistribution, which cannot be measured by other methods (Porto et al, 2012). 

Since the novel development in the 1960’s, FRN methods have become well 

established and gained successful recognition as empirical techniques to 

measure soil erosion worldwide (Zapata et al, 2003).  

 

2.7.2 Modelling surface erosion processes with soil erosion models 

There are several techniques available to estimate soil erosion, each method 

being used for a specific research purpose (Zapata, 2003). Traditional monitoring 

techniques, with erosion plots and terrestrial laser scanning (TLS) techniques, 

which continuously or frequently measure a certain ground surface over a period 

of time, provide measurements of modern changes to the ground surface but are 

limited when it comes to investigating historical soil redistribution to the site 
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unless monitoring scheme has been long-term. These survey data lay ground for 

modelling approaches, which comprise predictive simulations that utilize 

interpretation and extrapolation methods. A number of existing soil erosion 

models are used to evaluate and determine conservation practices and land 

management today: for instance empirical models such as EPIC, USLE 

(including MUSLE, RUSLE (Renard et al., 1994)), WATEM, and physically-based 

Water Erosion Prediction Project (WEPP) (Nearing et al. 1989), EUROSEM 

(Morgan et al., 1998), ANSWERS (Beasley et al, 1980), and LISEM models (De 

Roo et al., 1996) among others. Databases with field data on e.g. topographic 

parameters, precipitation, satellite imagery, soil properties and geology, make it 

possible to model soil erosion at the catchment scale. Many models have been 

developed in the past century due to increased computer resources 

complemented by growing and increasingly accessible databases that provide 

digital resources on satellite imagery, DEM, precipitation, landscape 

characteristics and geology etc. (Pandey et al, 2016). Pandey et al (2016) 

suggested that a “desirable model” acquires universal acceptance when it fulfils 

the following criteria: it is reliable, robust, requires minimum data, and accounts 

for varying environmental inputs of land use, climate and conservation practices. 

The many approaches and motivations to determine soil erosion and landscape 

evolution have led to a range of models that are purpose specific and show 

variation in results. Different models are also dependent on the input data quality 

of each input factor (e.g. precipitation, topography, soil type, land management) 

used for that particular model, and due to their differences in complexity these 

are capable of delivering outputs of varying quality, scale, practical applicability 

(Pandey et al, 2016). While models comprise good alternatives for geographical 

areas which are inaccessible and remote, there is a need for field surveys in order 

to obtain validation data for these models (Porto et al, 2012) and to develop 

understanding of possibilities and limitations of these models. Over the past 20 

years, fallout radionuclides (e.g. 137Cs, 210Pbex, and 7Be) have been increasingly 

used as soil erosion traces in field studies of spatial soil redistribution (Gaspar et 

al, 2013). Monitoring enclosed erosion plots yield spatially limited results and only 

give gross soil loss without context to for instance sedimentation rates in nearby 

geomorphological depressions (Porto et al, 2012). Long-term monitoring 

schemes are necessary to achieve representative measurements of river 
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discharge and transported eroded material, to avoid bias due to extreme 

precipitation and, oppositely, the lack there of during dry seasons (Pandey et al, 

2016). Physically based models are readily validated and calibrated by field 

measurements.  Karydas et al (2014) described the spatiotemporal relationship 

between different erosion parameters and their recognized overlap (Figure 11).  

 

 

Figure 11 Spatiotemporal scale of overlapping erosion parameters. From 

Karydas et al (2014). 

 

2.8 Summary of literature review 

In this literature review an overview of the current understanding about POC 

transport and dynamics in the global carbon cycle has been introduced. The 

transportation processes are dependent on physical erosion and water retention 

time in catchments and streams. Transformation processes are complex and 

highly dependent on environmental factors such as biogeochemistry (water 

quality, biology) and physical processes (photodegradation, water discharge).  

This literature review has identified the importance of POC in the carbon 

cycle, its sources, transformation processes, and related species of carbon. 

Although the literature on organic carbon is extensive, several authors have 
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emphasized the importance of further research in the field of POC research, in 

particular quantification of POC in the LOAC and on transformation dynamics.   

One of the gaps that exist in the field compose understanding of POC fate from 

various sources in the LOAC. How much SOC enters the LOAC from the 

terrestrial environment and what is the fate of this often mineral associated 

allochthonous POC – is it preserved in lake and reservoir sediments due to its 

recalcitrant properties or is it mineralised. Another research question is related to 

how flocculation processes change the DOC quality of streams along the LOAC.  

In this work current research questions address the challenge of 

quantifying the mass export, transformation and quality of the riverine carbon 

load, which in turn affect in-stream sources and sinks of organic carbon; the 

understanding of how flocculation processes and rates are influenced by organic 

matter quality and coagulants present along the LOAC; and how anthropogenic 

impact influences soil erosion and the export of organic carbon from the terrestrial 

environment into the aquatic continuum.  

 

2.9 Hypotheses 

This project aims are to test the following hypotheses: 

 

1. The fate of catchment-derived POC in the LOAC is determined by physical 

and chemical protection in soil aggregates and flocs. Therefore, stabilized 

soil-derived allochthonous POC composes the main source of buried OC 

in reservoir and lake sediments in catchments where soil erosion is 

prominent, whilst readily mineralised OC of autochthonous sources has a 

shorter turnover. 

2. Clay and saline mixing are flocculation boundaries in the landscape which 

increase POC formation and removal of DOC in freshwaters. Therefore, 

increased erosion due land use change (LUC), e.g. increased agriculture, 

increases flocculation of riverine transported natural OC and removes OC 

from the dissolved phase. 

 

These hypotheses are tested by the following studies: 
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2.9.1 Modelling and measuring terrestrial soil erosion input into a tropical 

freshwater reservoir, Brazil, with RUSLE and fallout radionuclides 137Cs and 

210Pb 

In this study, the spatial redistribution of soil particles from a catchment into a 

dammed reservoir was quantified. Soil organic carbon (SOC) compose an 

allochthonous input of POC into the LOAC and adequate methods to study 

erosion rates are essential to determine transport rates of this POC contribution 

into the aquatic system. An empirical soil erosion model, RUSLE, was tested for 

its suitability in this study catchment, which represents an increasingly common 

deforested Brazilian landscape. The model was validated by field observations of 

fallout radionuclides.  

 

2.9.2 Importance of terrestrial particulate organic carbon (POC) for organic 

carbon burial in a tropical reservoir, Brazil 

This study aims to quantify the relative distributions of POC from allochthonous 

and autochthonous sources in reservoir sediments (Figure 12). This was 

acquired by studying transport and settling rates of POC in a dammed catchment, 

along with analysis of chemical composition to determine POC provenance. 

Hypothetically, allochthonous mineral-associated POC remain stabilized while 

autochthonous in-stream derived POC to a higher degree is subject to 

mineralisation processes, therefore soil-derived POC should be the more 

important component for OC storage. At the end of this study, the importance of 

mineral-associated POC for OC burial in relation to in-stream sources of POC will 

be evaluated. 
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Figure 12 Simplified process diagram describing the fate of POC in a 

reservoir/lake system. 

 

2.9.3 Flocculation boundaries in the landscape - an experimental study on 

transformation processes of organic matter in eight coastal moorland 

streams, UK 

POC that forms in streams by transformation processes such as flocculation 

compose the fraction of organic carbon that can settle on lakebeds and contribute 

to sediment OC storage. In this study, processes which control flocculation rates 

of riverine organic matter were investigated to determine the impact of coagulants 

on dissolved organic matter in rural streams draining Exmoor. By experimental 

methods two flocculation boundaries in the landscape were simulated: scenario 

1) depicts soil erosion input from agricultural activities by the addition of an 

inorganic clay standard, while scenario 2) compose saline mixing at the estuary 

by addition of an artificial sea salt standard. Finally a mixed scenario 3) clay and 

saline mixing which is plausible in the estuarine environment was simulated. The 

qualitative properties of residual DOM was investigated to determine which 

organic matter that is preferentially withdrawn from solution during flocculation 

processes. The importance of these flocculation boundaries on the formation of 

POC was qualitatively evaluated. 
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Chapter 3. Methods João Penido study, Brazil 

This study focused on the transport of POC in a semi-closed tropical catchment 

impacted by human perturbation through land use change and damming. 

Transport of soil organic matter and associated POC was determined from soil 

erosion measurements by fallout radionuclides, which were also used to validate 

a soil erosion model, RUSLE, for its suitability in this type of landscape. The 

distribution and quality of POC in soils and sediments of the catchment were 

determined from physical properties and analysis of carbon and nitrogen, which 

could be used to evaluate the fate of POC in this tropical reservoir. Along with 

erosion and sedimentation rates, POC transport and fate could be interpreted. 

This chapter introduces the methods used to study POC transport and fate in 

João Penido reservoir catchment. 

 

3.1 Field site João Penido reservoir, Minas Gerais, Brazil 

João Penido reservoir (LAT: –21.675459, LONG: –43.394960) was constructed 

to provide a drinking water supply for the city Juiz de Fora in state Minas Gerais, 

Brazil (Figure 13). The watershed composes a minor drainage basin contributing 

to the 56,000 km–2 large Paraíba do Sul River watershed (Bucci et al, 2015: 

Pacheco et al, 2017). The reservoir composes a mesotrophic system with a 

medium level of water quality, which likely has been negatively affected by land 

use change in the watershed (Bucci et al, 2015). Catchment analysis showed that 

c. 17.7% of the total catchment area is forested and 4.0% compose deltaic areas. 

Deforested land is used for residential purposes (built-up areas compose 1.9% 

of the catchment land use) and grasslands (72.5% of the catchment) which are 

partly being used as pasture for cattle. Land in direct connection with the reservoir 

compose residential properties with a managed beachline and deforested 

shrubland exhibiting bank erosion (Figure 14).  
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Figure 13 Location of João Penido reservoir and catchment, Brazil. 

 

The reservoir was built in 1934 and its sediments have accumulated on top of 

inundated soils over a period inclusive of the bomb tests in the 1960s, which 

provides radioactive caesium-137 (137Cs) signals in the sediment column that can 

be used to calculate sediment accumulation rates. When the latter rates are 

combined with erosion rates calculated from 137Cs signals in soils in the 

catchment, the overall local soil erosion rates for the reservoir catchment can be 

estimated. The organic carbon content and quality of the soils and sediments 

provide additional information about organic matter sources and decomposition 

states. The results can be used to express estimates of input and burial rates, C 

storage and turnover for POC in the reservoir sediments of João Penido.  
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Figure 14 Most of the catchment is deforested. View looking West towards the 

reservoir João Penido c. 100 m south of sampling location A. 

 

3.1.1 Climate and vegetation 

The Köppen classification system categorizes the region as Cwa, which 

composes a sub-tropical climate with two distinct seasons composed of dry 

winters in May–September and rainy hot summers in October–April (Bucci et al, 

2015), with the hottest months having mean temperatures >22◦C. The annual 

rainfall on a regional scale for south-eastern Brazil range between 1200–1600 

mm year–1 (da Silva, 2004), and for Juiz de Fora, the city located closest to the 

study site at c. 3.8 km distance, the mean annual rainfall amounted to 1949 mm 

year–1 between 1979–2013, with a minimum and maximum ranging between 

1347–2949 mm year–1 (Global Weather Data for SWAT). The vegetation of the 

watershed is mapped as semi-deciduous forest belonging to the Atlantic forest 

biome6, however most of the catchment area comprises deforested grasslands. 

Atlantic forest composes a main hotspot for biodiversity conservation that has 

been reduced to less than 12% of its original extent of 1.5 million km2 on the 

South American continent (Ribeiro et al, 2011). In Brazil, deforestation practices 

over the past 500 years have reduced the area of Brazilian Atlantic forest (Mata 

                                            
6 Mapa de Vegetacão do Brasil (1992) 
http://mapas.mma.gov.br/mostratema.php?temas=vegetacao  

http://mapas.mma.gov.br/mostratema.php?temas=vegetacao
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Atlântica) to 7.6% of its original extent, historically replaced by plantations of 

sugarcane, coffee, cocoa, and eucalyptus, as well as pasture for livestock and 

the expanding infrastructure of urban areas, since the European colonization 

began in the 16th century (Colombo & Joly, 2010; Ribeiro et al, 2011). This history 

of land use change has not only led to severe habitat loss for indigenous species 

but also impacts the geomorphological landscape in areas where exposed soil 

which was previously stabilized by vegetation is readily degraded and lost 

through soil erosion.  

 

3.1.2 Geology and soils 

The lithology of the catchment comprises metamorphic rocks, such as 

Neoproterozoic schist and Rhyacian orthogneiss (CPRM 1:1M, 2018)7. The 

dominating soil type in the area is mapped as orthic ferralsol or ultisol (CPRM, 

2016; DSMW 2003) (Figure 15), characterized by deep, highly weathered acid 

soil units that have undergone leaching and are mainly composed of SiO2–Al2O3–

Fe2O3–H2O (Chesworth, 2008 pg.7). The solum of ferralsols are typically red or 

yellow colour due to the ferric state of iron (Fe) in minerals hematite and goethite, 

and kaolinite and gibbsite usually compose the main clay minerals in ferralsols 

(Chesworth, 2008 pg.7). Occurrences of mass movement of soil on the hillslopes 

were visible in the study area, which had caused scarring in the vegetation and 

provided unprotected patches of ground with higher erosion potential than 

protected soil covered by vegetation. 

 

                                            
7 URL: http://portal.onegeology.org/OnegeologyGlobal/ 
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Figure 15 FAO soil unit classifications of the south-western region of Brazil, 

derived from Digital Soil Map of the World (DSMW, version 2.3, 2003). João 

Penido reservoir is located in a soil unit classified as Fo4-3b, orthic ferralsol. 

Source: Land and Water Development Division, FAO, Rome.  

 

3.1.3 Terrain 

The watershed covers an area of ca 772 km2 and the elevation of the terrain 

ranges between ca 684–1061 m.a.s.l. (DEM analysis) with the main water body 

being located at ca 746 m.a.s.l. From DEM analysis catchment slope values could 

be calculated, ranging between 0–36.7 degrees with a mean of 10.8 degrees. 

 

3.1.4 Catchment analysis by GIS and selection of sampling sites 

By GIS-analysis several possible sites to study soil erosion were found in the 

study catchment. The basic criteria to find appropriate sampling sites for the 

fallout radionuclide study were the following: 1) non-forested soil that is subject 

to erosion due to rainfall erosivity, and 2) by categorisation of slope classes.  

A total of 35 soil profile sites were studied at the three soil sampling 

locations (A, B, C) of this study, along with 20 reservoir sites selected for sediment 

core sampling (Figure 16). Sample sites were chosen to represent the range of 

topographic classes in the watershed, from floodplain and wetland sites to 

eroding hill sites.  
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Figure 16 Soil sampling locations A, B, and C, and sediment sites of 2016 and 

2017 sampling campaigns in João Penido watershed and reservoir. Elevation 

lines show 25 m contours. EPSG: 3857. 

 
Figure 17 shows a slope map of the catchment divided into 4 classes: flat (0 

degrees), near-flat (0–5 degrees), lightly undulating (5–20 degrees), moderate to 

strongly undulating (>20 degrees) (Table 1). 
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Figure 17 Slope analysis of the catchment of reservoir João Penido.  

EPSG: 3857. 
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The sampling method chosen was stratified random sampling where sites were 

selected in each class by random point allocation with the built-in QGIS-tool 

Random points inside polygons (variable) in QGIS. Two topographic groups, 

areas subjected to 1) erosion and 2) deposition, were each further divided into 

three subclasses; erosion sites (>5 degrees) composed areas with flat, 

moderately undulating, and steep slope, and deposition sites (<5 degrees) were 

divided into seasonally drained sediments (colluvium), permanently waterlogged 

delta environment, and lakebed sediments (Table 1). The sites selected for FRN 

analysis compose downstream transects, which reflect the erosion from highest 

peak into the valley from the ridges between drainage sub basins (ridge transect), 

as well as from peak to the centre of drainage sub basins (through transect) 

(Figure 18, Figure 19). The number of sites comprise 22 profiles, summing up to 

286 top soil samples for radionuclide analysis. The shrubland sites at location A 

were: JP2, JP4, JP7, JP11, JP15 (ridge) and JP8, JP9, JP13, JP14 (trough) 

(Figure 18); and for pasture sites at location B: JP22, JP24, JP36, JP35, JP34, 

JP32, JP30 (through) and JP17, JP18, JP19, JP20, JP21 (ridge) (Figure 19). 

Additionally, terrestrial sedimentation sites (colluvium) JP25, JP26 and JP28 at 

location B were sampled. For comparison 4 soil profiles from another site of 

pasture at sampling location C were investigated. 

 

 

Sampling classes of soil and sediment sites   

Groups Classes 

1) Erosion A) Near-flat slope (<5 degrees) 
 B) Moderate slope (5–20 degrees) 
 C) Steep slope (>20 degrees) 

2) Deposition A) Seasonally drained sediments/colluvium (<5 degrees) 
 B) Permanently waterlogged wetlands (0 degrees) 
 C) Lakebed sediments (0 degrees) 

Table 1 Groups of sampling areas and site classes for João Penido reservoir.  
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Figure 18 Location A sampling sites of shrublands. 

 

 

Figure 19 Location B sampling sites of pasture and colluvium. 
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Historical imagery (Google Earth Pro version 7.3.2) shows that soil sampling 

location B (pasture) was previously covered by forest, until it was deforested in 

years c. 1994–1995. Soil sampling location A (shrubland) appears to have been 

deforested before available imagery, which goes back to 1984.  

 

3.2 Field sampling methods 

Soil, sediment and water samples were collected during a field campaign in June 

2016. Additional sediment cores were acquired in 2017. 

 

3.2.1 Soil sampling 

Sampling was conducted during the dry season in June 2016. A total of 560 soil 

samples from hand-dug pits were collected from the surface up to 80 cm depth. 

Custom-made samplers were used to obtain a vertical soil profile in 20 cm 

segments from which subsections were extracted by large spatula from every 2 

cm sections in the top soils (<20 cm) and for subsoils (>20 cm) from every 5 cm 

section (Figure 20). Samples were stored in plastic zip-bags, after removal of 

larger particulates (e.g. stones, pebbles, roots). The samples were initially 

weighed, air dried and stored in room temperature before transport to University 

of Exeter laboratories, UK.  
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Figure 20 Soil survey and samplers. 

 

3.2.2 Hydroacoustic sub bottom profiling 

Sediment properties (e.g. thickness, texture and heterogeneity) and depth in 

lakes and reservoirs can be measured effectively with hydroacoustic survey 

methods, allowing for detailed lakebed analysis prior to field sampling of discrete 

sediment cores that provide spatially limited data, for instance when assessing 

contaminated watersheds (Anderson et al, 2013). Hydroacoustic measurements 

have been used to determine burial rates of OC in accumulation basins such as 

hydropower reservoirs through sub-bottom profiling (Figure 21), by investigation 

of post-flooding sediments that accumulate on top of pre-flood material 

(Mendonҫa et al, 2014). Since gases in sediment dilute backscatter signals, the 

precision of hydroacoustic techniques is limited where sediments and the water 

column have high gas content and, therefore, the approach is limited to 

watersheds that are mesotrophic or oligotrophic. However, the method is 

advantageous as a quick and non-invasive survey method, as hydroacoustic 

measurements provide physical sediment properties without any disturbance of 

the sediment column (Anderson & Pacheco, 2011).  

Bathymetric survey lines were sampled in João Penido reservoir June 

2016, with a parametric sub-bottom profiler (Innomar SES-2000) which detects 
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the lakebed at 100 kHz frequency. Transects were measured in lines zig-zagging 

across the reservoir surface along the entire length at a speed of 10 km h–1 (Fig). 

An onboard GPS receiver was used to geo-reference output data. Echograms 

were interpreted with Innomar ISE software (version 2.95). Sites of representative 

sedimentation in the reservoir were selected after visual inspection of these 

echograms. 

 

 

Figure 21 A typical sub-bottom profile sample. The distance between the 

sediment surface and the surface of the pre-flooding material gives the 

thickness of inputted sediment since damming, which can be used to calculate 

the volumes of post-flooding sediment. From Mendonça et al (2014). 

 

 The post-flooding layer composes a “fluffy” layer of sediment with high porosity 

and water content, and overlies pre-flood material, typically inundated catchment 

soils. This layer is representative of net deposition since the dam was created 

and contains trapped sediments that would otherwise have been transported 

downstream. Because of its porosity and low compaction, the surface layer is 

readily affected by resuspension, wave action and discharge from the reservoir 

outlet. Sampling of physical cores disturb the true post-flooding sediment surface 

and acquired cores might therefore suffer from some compaction. A comparison 

with acquired sub-bottom data help reveal the true thickness of these sediments 

in mesotrophic–oligotrophic systems. For João Penido reservoir, the method was 
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not sufficient to determine post-flooding sediment thickness, however it revealed 

the bathymetric trends and from the obtained survey lines, sediment core 

locations were selected for physical core sampling. The thickness of post-flooding 

sediment was then determined from these collected cores. 

 

3.2.3 Sediment sampling 

Reservoir sediment cores were retrieved from five selected locations in 2016 

(Figure 22). Three field duplicate cores were retrieved at each sampling site with 

a gravity corer deployed by boat. The cores were subsampled by 2 cm sections, 

which were then weighed and air dried before transport and further analysis at 

University of Exeter. The lakebed sediment sampling sites were selected from 

initial studies of the sub-bottom profile of the reservoir. The sites were located at 

the delta outlet progressing towards the deepest sedimentation basin within the 

south-western part of the main water body, where sediment accumulation was 

considered regular. Additional sediment cores were sampled in 2017 (Figure 22). 

The reservoir outlet is located in the small bay south-west of SEDJP17. A total of 

512 sediment subsamples were retrieved. 
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Figure 22 Sediment sites for sampling years 2016 and 2017. 

 

3.3. Analytical methods 

3.3.1 Bulk density, porosity and water content (WC%) 

The particle density of minerogenic sediment particles is assumed to have a value 

of 2.65 g cm–3 (Avnimelech et al, 2001). In this study observations of the 

boundaries of low–high bulk density and the high–low bulk porosity between the 

post-flooding sediment overlying pre-flood material were used to determine the 

thickness of post-flooding sediment. Dry bulk density indirectly takes porosity into 

account and was determined by: 

 

𝜌𝑏 = 𝑊𝑑/𝑉𝑡 
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Where ρb is the bulk density, Wd is the dry weight, and Vt is the total volume. The 

OM density in samples was determined as the product of OM% and sample total 

bulk density. Bulk density was determined for soil and sediment samples, while 

porosity and water content was determined for sediment samples only, as soils 

showed varying field moisture. 

 

3.3.2 Particle size analysis 

Particle size analysis (PSA) was performed on the <2000 µm fractions of 3 

sediment cores and 3 soil cores, totalling 90 samples. Along with manual sieving, 

an automatic dry shaker sieving system was used to separate fractions: >2000 

µm, 2000–250 µm, 250–63 µm, and <63 µm. Larger mineral fractions and plant 

fragments such as roots in soils and wood artefacts in sediments, were discarded 

in the field. 

 

3.3.3 Total Carbon, Total Nitrogen and C/N analysis 

Total organic carbon and total nitrogen analysis and C/N ratio analysis was 

undertaken using a ThermoScientific Flash 2000 Organic Elemental Analyzer. 

C/N ratios were used to determine the provenance of organic matter in soils and 

sediments on duplicates of 100 sediment and 50 soil samples.  

To determine the organic carbon content of the samples it is necessary to 

remove inorganic carbon from the samples. Different methods have been used 

to remove carbonates from soil and sediment samples as a pre-treatment for 

TOC analysis, for instance wet oxidation (Walkley-Black method) which consists 

of step-wise addition of acid washing. Dhillon et al (2015) evaluated two pre-

treatment methods with HCl (acid addition and acid fumigation), and while their 

results were similar for both methods, greater accuracy and precision were 

reached with the acid fumigation pre-treatment. Therefore, acid fumigation was 

used as a pre-treatment for 24 hours on duplicate samples before C/N analysis. 

The soil and sediment samples were subsampled to 15–20 mg into tin 

capsules on a Sartorius MC5 balance with 3-digit accuracy. Samples that 

required pre-treatment were initially weighed into silver capsules, treated for 24 

hours by HCl acid fumigation in a desiccator and after pre-treatment 
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encapsulated into larger tin capsules. Between weighing and analysis, the 

samples were stored in a desiccator. Ethylenediaminetetraacetic acid (EDTA) 

standard (BDH AnalaR, assay 99.0%) was similarly weighed to 2.8–3.2 mg 

standards, three occurring at the beginning of each sample batch as initial control 

standards, and 2.5–3.5 mg control standards, occurring at every 10th sample slot 

as in-between-sample controls within the batch. Blanks (empty capsules) were 

run at the beginning and end of each batch, together with one empty slot at 

position 62. The calculated error derived from EDTA standards for TC analysis 

was 0.24%. 

 

3.3.4 Fractionation by size and density 

To understand the geochemical imprint of the aggregate-bound soil organic 

matter with respect to OM from other sources in the sediments, density 

fractionation was done on 15 soil and sediment samples. These samples were 

selected from four soil cores and four sediment cores, where 2 samples from the 

top layer (2–4 cm) and sub layers (18–20 cm) were selected from each core 

respectively. For two sediment cores, samples of sub bottom pre-flooding 

material were selected to determine the characteristics of soils underlying the 

post-flooding sediment. Two soil cores were from land used as pasture and two 

cores from non-managed shrubland. The sediment cores were from the deepest 

part of the reservoir and from a site in the central part of the main water body. 

Density separation of particles was done with sodium-polytungstate (SPT) 

(CAS#12141-67-2) with a density of 1.85 g cm–1 into a light fraction (LF) and 

heavy fraction (HF) for three size groups (2000>250 µm, 250>53 µm, 53 µm) 

previously separated by wet sieving, following the method by Six et al (1998) in 

Figure 23. The separated fractions were weighed and analysed for C/N, as 

described above.  
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Figure 23 Wet-sieving and density fractionation method. From Six et al (1998). 

 

3.3.5 Loss on ignition (LOI) 

Loss on ignition (LOI) was done on 401 soil (N=219) and sediment (N=182) 

samples from the catchment slopes and the reservoir of João Penido watershed. 

The samples were oven-dried at 100°C in pre-weighed crucibles overnight, 

before initial sample weighing. The samples were then combusted at 550°C for 4 

hours, before weighing to account for weight loss of the organic matter. The 

weight difference was noted on a 4-decimal balance. The carbonates were 

determined similarly by the gravimetric method after further combustion at 925°C 

for an additional (1) hour, for 305 of the samples. In a study by Pribyl (2010) it 

was concluded that a conversion factor of 58% assumed OC in OM (e.g. Brady 

et al, 1984) compose an overestimation, and should be reduced to 50%. In this 

study the relationship between OC from loss on ignition (LOI) analysis and C/N 

data from 115 samples were used to find a suitable conversion factor. By 

comparing the ratio of OC concentrations from C/N analysis and the OM content 

from LOI analysis, mean conversion factors of 25% (N=65, sd=0.11) for sediment 

samples and 20% (N=50, sd=0.07)  for soil samples were found suitable (Figure 

24). Very low sediment OC concentrations are common for the region and biome, 
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for instance Mendonça et al (2016) found average reservoir sediment OC 

concentrations of 1.2–3.1% in pelagic sediment and 1.8–2.5% for reservoir 

margin sites.  

For this study the OC content derived from LOI data in soils and sediments 

was calculated according to: 

 

𝑆𝑂𝐶 = 𝑐𝑓 × 𝑆𝑂𝑀 

 

Where the conversion factor cf was set to 20% and 25% for soil and sediment 

samples, respectively.  

 

 

Figure 24 TOC% in (particulate) organic matter content of a) sediments and b) 
soils. 
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Figure 25 shows the sites of LOI samples of soil profiles dug on the hillslopes of 

João Penido at sampling locations A, B, and C. These concentrations of SOC 

were used to estimate a carbon budget for the terrestrial SOC in the catchment. 

The budget was used to estimate transport rates of soil derived POC from slopes 

to sites of deposition. 

  

 

Figure 25 Sampling sites of loss on ignition (LOI) samples in João Penido 

catchment. 

For interpretation purposes gap-filling was required for some reservoir sediment 

cores where POC% data was incomplete, the mean of values from the one 

sample directly above and the sample directly below this missing sample in the 

core profile were used for interpolation. This gap-filling data is clearly marked with 

bold font in the data tables, and SAR and OC burial values calculated from these 

artificially gap-filled data are marked with an asterisk (*). 

 Soil POC inventories POCinv (g m-2) were calculated for the <2 mm fraction 

according to the following modified equation (this study is not taking the rock 

fraction into account because the samples were sieved to <2 mm) from Berhe et 

al (2008): 
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𝑃𝑂𝐶𝑖𝑛𝑣 = ∑ ∆𝑍𝑖 × 𝜌 × (%𝑃𝑂𝐶𝑖 × 100) 

 

Where ∆Zi is the depth increment in the profile, ρ is the bulk density (g/cm3), 

%POC is the concentration of organic carbon in the <2mm fraction in each 

sample increment.  

 

3.3.5.1 Sediment accumulation rates and organic carbon accumulation  

The sediment accumulation rate (SAR) was estimated using 1) post-flooding 

sediment thickness and 2) fallout radionuclides. The first method was based on 

direct observations at each site where sediment cores were retrieved and it was 

possible to distinguish between pre- and post-flooding material. SAR determined 

from sediment thickness, where the sediment is assumed to have accumulated 

continuously over the period from reservoir completion (flooding) to sampling 

date, can only provide an average linear SAR value (cm year–1). By using the 

radionuclide 210Pbex, the average SAR for each slice of sediment (2 cm thickness) 

can provide more in-depth information on how SAR has varied over time from 

flooding to sampling date, by using an appropriate conversion model. SAR rates 

from 210Pbex conversion models give mass accumulation per area unit per year 

(kg m–2 year–1). 

 

3.3.5.2 Sediment accumulation rate from sediment thickness 

The sediment thickness was determined by the presence of pre-flooding material 

with depth, SAR (cm year–1) was then calculated by the following: 

 

𝑆𝐴𝑅 =
𝑑

𝑡𝑟
 

 

Where d is the depth of the pre-flooding material and tr is the reservoir age, which 

was 82 years for the 2016 campaign and 83 years for the additional 2017 

sediment core collection.  

SAR was also calculated from 137Cs and 210Pbex activities and inventories 

of the sediment cores, using the CRS (3.3.7.18) and CIC models (3.3.7.19). 
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3.3.5.3 Organic carbon accumulation rates 

The OC accumulation rate (g cm–2 year–1) was calculated for sediment cores 

where OC data had been obtained, by the following adapted OC burial expression 

(Mendonça et al, 2015): 

 

𝐵𝑢𝑟𝑖𝑎𝑙𝑂𝐶 =
𝑚𝐶

𝐴
/𝑡𝑟 

 

Where mC is the sum of C mass (g) in the post-flooding sediment samples down 

to the pre-flooding material, A is the sediment core surface area (2.8 x 10–3 m2), 

and tr is the reservoir age (defined in 3.3.5.2 Sediment accumulation rate from 

sediment thickness).  

 

3.3.6 Fallout radionuclides (FRN) study in João Penido catchment 

3.3.6.1 Measurement 

Soil and sediment samples, that had been previously air- and oven-dried, ground, 

and sieved to <2 mm fraction, were stored in plastic containers with screw caps 

for radionuclide analysis. To obtain the 210Pbex concentration, the sample 

containers were sealed with electric tape for a minimum of 21 days before 

measurement, to provide an isolated environment in which the gaseous 222Rn 

decay product 210Pbex would be preserved (Mabit et al, 2014). FRN activities were 

measured with shielded ORTEC coaxial high-purity germanium (HPGe) detectors 

with multi-channel buffers for γ-ray spectrometry. The sample weight ranged 

between 50–100 g for HPGe–detector soil samples, and between 2–7 g for 

smaller well–detector sediment samples. The counting time was set to 86400 s 

for all measurements.  

The spectral photopeak for 137Cs occurs at 662 keV, while the spectral 

photopeaks for 210Pb and 226Ra (or in fact its daughter 214Pb (Mabit et al, 2014)) 

occur at 46.5 keV and 352 keV respectively. Gamma emissions of 137Cs were 

measured on a total of 336 soil samples and 76 sediment samples, while 

photopeaks for 210Pbex calculation were measured on 254 soil samples and 76 

sediment samples. 210Pbex was calculated as the difference between total 210Pb 

and supported 210Pb, according to: 
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210Pbex = 210Pbtot – 210Pbsupp 

 

Where 210Pbsupp
 is the 226Ra-supported 210Pb concentration of individual samples 

(Porto et al, 2014). Typically, 210Pb is not in equilibrium with 226Ra, due to upward 

diffusion and escape of 222Rn in soils, a loss is normalized for by multiplying the 

activity of 226Ra by a reduction factor (Porto et al, 2014). The reduction factor can 

be calculated from the ratio of 210Pbtot
 and 226Ra activities from subsoil samples 

(assuming no addition of unsupported 210Pb to subsoil). In this work, the reduction 

factor was calculated to a value of 0.8, which was used for all sample profiles in 

João Penido catchment.    

In principal, the activities of the two radionuclides 210Pb and 226Ra are 

necessary to calculate the activity of 210Pbex (Mabit et al, 2014), by simple 

subtraction of radionuclide activities: 

 

210Pbex = 210Pbtot – 226Ra 

 

The concentrations of each element were calculated separately before 

subtraction to achieve 210Pbex concentrations. Photopeaks recorded by a 

multichannel buffer (MCB) were interpreted by ORTEC Maestro® software. 

 

3.3.6.2 Activity calculation 

The equation used to calculate the activity of a sample follows the expression 

(Mabit et al, 2014): 

 

𝐴 =
𝑁𝜆𝑡𝑐𝑒𝜆𝑡0

𝜀𝐼𝑦𝑀𝑡𝑐(1 − 𝑒𝜆𝑡𝑐)
 

 

where A is the concentration of activity (activity per mass) of the radionuclide (Bq 

kg–1), N is the net peak area, 𝜆 is the decay constant (ln2/t1/2)*, tc is the counting 

time, t0 is the difference in time between sampling and measurement (years), M 

is the mass of the sample (kg), 𝜀 is the absolute efficiency, and Iy is the gamma 

intensity or probability of emission. This equation can be simplified to: 
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𝐴 =
𝑁𝑒𝜆𝑡0

𝜀𝐼𝑦𝑀𝑡𝑐
 

 

which is the equation used for the 137Cs and 210Pbex measurements in this study. 

Each calculated activity was corrected (“corrected activity”) by the number of days 

between sampling and analysis. 

 

3.3.6.3 Areal activity 

The areal activity was calculated by the following equation: 

 

𝐴𝑆 = Σ𝐶𝑖𝜌𝑖𝐻𝑖 

 

Where AS has the unit (Bq m-2), and Ci is the activity of the ith sample depth 

increment (Bq kg–1), 𝜌𝑖 is the bulk density of the ith sample increment (kg m–3), 

and Hi is the depth of the ith sample increment (m). 

 

3.3.6.4 Reference sites 

Soil cores from reference sites should have the following characteristics: 1) a 

pronounced decreasing concentration of 137Cs activity with increasing core depth, 

with 80–90% of the total activity present in the top 20 cm of soil, and 2) low 

coefficient of variation (<30%) (Mabit et al, 2014).  

Reference inventories were derived for one chosen soil profile, the pasture 

site JP17, which was a site assumed to 1) undergo neither net erosion nor net 

deposition, 2) displayed a continuously decreasing 137Cs inventory with depth and 

3) had 80% of the total activity of 137Cs in the top 20 cm of the sampled soil profile. 

For comparison, the reference value was compared with the average 137Cs 

inventory from all measured profiles in each land use category, as an alternative 

reference inventory calculation, following a study by Aldana Jague et al (2016). 

 

3.3.6.5 Inventory calculations 

The redistribution of soil is calculated on the basis that an eroding site has an 

inventory lower than the reference site, whilst a site of sediment accumulation is 

characterised by higher inventories.  
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The inventory, 137Csinv, was calculated by: 

 

𝐶𝑠137
𝑖𝑛𝑣 = 𝐴 × 𝜌 × 𝑑 

 

Where A is the concentration of activity (Bq kg-1) in a sample, ρ is the soil bulk 

density (kg m-3), and d is the depth (m) of the sample. The inventory is reported 

in units of Bq m–2. The total inventory of the soil profile is the sum of the sample 

inventories of that profile. Inventories for 210Pbex were calculated by the same 

procedure. 

 

3.3.6.6 Quality control 

Four main sources of error commonly influence the determined 137Cs inventory 

for a site: 1) sampling technique, 2) pre–analytical sample fractionation, 3) 

quantifying randomness in radioactive decay, and 4) methods to determine the 

limit of detection (LOD) (Parsons & Foster, 2011). 

In-house standards were used to determine detector efficiencies and 

potential instrumental drift. The in-house standards used in this study for 

detectors 1 and 16 (soil samples) and well-detector 11 (sediment), previously 

prepared from reference materials, are listed in Table 2.  

 

Radionuclide standards    
Radionuclide Activity (Bq) Standard ID Weight (g) Detector 

137Cs 6.75 SH2 50 1, 16 
137Cs 13.5 SH1 100 1, 16 

210Pb 423.904 CA13 100 1, 16 
226Ra 20.08 CA38 100 1, 16 

137Cs 0.79 SH4 5.8208 11 
210Pb 52.988 CA19 10.2 11 
226Ra 10.4 CA42 5.6 11 

Table 2 In-house radionuclide standards used at University of Exeter 

laboratories. 

 

3.3.6.7 Efficiency calibration 

Various parameters need to be considered when determining the detector 

efficiency: counting geometry, sample matrix, detector type and properties, 
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among others (Mabit et al, 2014). The equation used to calculate the detector 

efficiency (%) is: 

  

ε = N/(AtcIy) 

 

where ε is the absolute efficiency, N is the net peak area, A is the activity of the 

sample (Bq), tc is the counting time (s), and Iy is the gamma intensity or probability 

of emission (Table 3) (Mabit et al, 2014).   

 

Radionuclide properties    

Radionuclide Half-life (years) Level energy, Ey 
(keV), photopeak 

Iy, Probability of emission 
(photons decay-1) 

137Cs 30.17 661.66 0.85 

210Pb 22.26 46.539 0.0425 

226Ra 1600 352  

Table 3 Radionuclide properties.  

 
Calibration of the detectors was done by direct calibration with prepared 

standards that had similar counting geometry (volume and area) and matrix to 

those of the samples, for each measured radionuclide (137Cs, 210Pb, 226Ra) (Table 

2). Detector efficiencies were determined from in-house standards for the three 

radionuclides and are summarized in Table 4. 

 

Average detector efficiency (%)     

  Radionuclide In-house standard Detector efficiency % 

Detector 1 
137Cs SH1 1.3 

  
210Pb CA13 0.2 

  
226Ra CA38 0.7 

Detector 16 
137Cs SH1 2.1 

  
210Pb CA13 0.3 

  
226Ra CA38 1.0 

Well-detector 11 
137Cs SH4 10.5 

  
210Pb CA19 1.2 

  
226Ra CA42 5.6 

Table 4 Average detector efficiencies for detectors used in this study. 

3.4.9.8 Uncertainties 

Relative uncertainty was calculated using the quadratic sum of uncertainties of 

the input parameters N, 𝜀, while assuming that the uncertainties of M, Iy were 
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sufficiently low to be neglected (IAEA, 2014). The background noise can be 

divided into two main sources: 1) internal signals from the material of the detector 

itself, and 2) external signatures from natural radioactivity of for instance radon 

and cosmic radiation (Mabit et al, 2014). 

The lower limit of detection (LLD) can be calculated by: 

 

𝐿𝐿𝐷 = 4.66
√𝐵

𝜀𝐼𝑦√𝑇
 

Where B is the background count rate (counts s–1), T is the counting time (s), 𝜀 is 

the absolute efficiency, and Iy is the gamma intensity or probability of emission 

for the radionuclide. This expression assumes a 95% degree of confidence to 

detect activity in excess of the background signal. 

The minimum detection activity (MDA), also the concentration of activity 

in a sample mass, similarly corresponds to: 

 

𝑀𝐷𝐴 = 4.66
√𝐵

𝜀𝐼𝑦𝑀√𝑇
 

 

where M, the mass of the sample, is added to the previous equation for LLD.  

 

3.3.6.9 Measurement precision 

Measurement precision depends on the activity of a sample, the detector 

efficiency and counting time (Owens et al, 1996). In this study, the method to 

determine measurement of precision followed:  

 

𝑀𝑒(%) = 1.96
√𝐴

𝐴
× 100 

 

Where A is the net area of the activity of the radionuclide and 1.96 representing 

the 95% confidence level. Average sample Me for detectors is summarized in 

Table 5. 
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Sample Me% per detector   

 Radionuclide Me% 

Detector 1 137Cs 8.40 

 
210Pb 9.21 

 
226Ra 5.20 

Detector 16 137Cs 8.11 

 
210Pb 8.77 

 
226Ra 5.99 

Well-detector 11 137Cs 8.47 

 
210Pb 14.98 

 
226Ra 7.32 

Table 5 Average sample measurement precision (Me%) per detector. 

 

3.3.6.10 Conversion models for 137Cs and 210Pbex 

Conversion models are used as mass balance calibration to provide rates of 

erosion and accumulation of sediments from radionuclide inventories, as 

radionuclide inventories alone only describe current distribution (Parsons & 

Foster, 2011). Conversion models that are applicable to 137Cs in uncultivated soils 

and colluvium are the profile distribution model (PDM) and the diffusion and 

migration model (DMM) (Walling et al, 2002; Guzmán et al, 2013; Mabit et al, 

2014). The theoretical conversion models used in this study are profile distribution 

model for uncultivated soils for 137Cs inventories, and the diffusion and migration 

model for both 137Cs and 210Pbex inventories in terrestrial soils and colluvium. For 

reservoir sediments the constant rate of supply (CRS) for 210Pbex was used 

(described 3.3.6.16). In any of the following conversions, it was assumed that the 

majority of 137Cs fallout occurred in 1963 due to bomb testing, hence this is the 

only source accounted for in the interpretation of 137Cs-data for Brazilian soils. It 

was also assumed that 210Pb fallout is continuous over time, displaying a 

reference inventory that is in steady state balance (Mabit et al, 2014). Factors 

required for conversion models are summarized in Table 6. 

 

Factors for conversion models     

Model Radionuclide Variable Parameter input Unit 

Profile distribution 
model 

137Cs h0  relaxation depth kg m–2 

Diffusion and 
migration model 

210Pbex D diffusion coefficient kg2 m–4 year–1 

    H relaxation mass depth kg m–2 

    V migration coefficient kg m–2 year–1 

Table 6 Factors needed for conversion models used in this study. 
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3.3.6.11 Relaxation depth (h0) 

h0 is the profile shape factor, commonly known as the relaxation depth, that 

describes the exponential decline of radionuclide concentration with depth in a 

soil or sediment profile. The deeper any radionuclide activity occurs, the higher 

the value for h0 is. An exponential function fitted to radionuclide concentrations 

with depth using a least-squares curve, gives the depth of fallout radionuclide 

penetration into the soil profile at the reference site (Porto et al, 2001; Zapata, 

2002). h0 was determined from linear regression of calculated values of mass 

depth and mass activity density. In this work, h0 for reference site JP17 was 

calculated to 95.2 kg m–2, ignoring layers in the soil profile with no detectable 

137Cs activity. 

 

3.3.6.12 Particle size correction factor (Pcf)  

P is the particle size correction factor that describes the grain size selectivity 

potential during erosion and sedimentation processes, to account for preferential 

adsorption of radionuclides to finer mineral fractions and the under- and 

overestimations of soil redistribution that occur due to the property of this 

radionuclide (Mabit et al, 2014). The difficulties of deriving the P factor arise from 

complicating factors such as the nature of soil type, behaviour of the studied 

radionuclide, preferential removal of fine fractions due to erosion process etc. The 

concept of P has been explained for the purpose of introducing this factor. In this 

study P was set to a constant of 1. 

 

3.3.6.13 Diffusion coefficient (D) and downward migration rate (V) 

The diffusion coefficient can be approximated from the depth distribution of 

radionuclide concentrations by the following expression (Walling et al, 2002):   

 

𝐷 ≈
(𝑁𝑝 − 𝑊𝑝)2

2(𝑡 − 1963)
 

 

Where t is the year of soil collection, Np is the mass depth where the 

concentration of the measured radionuclide has been reduced to 1/e compared 

to its maximum concentration in the soil core (kg m–2), and Wp is the mass depth 
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of the maximum radionuclide concentration (kg m–2). D is commonly in the range 

of 20–50 (Zapata, 2002).  Similarly, the downward migration rate (V) is 

approximated by (Walling et al, 2002): 

 

𝑉 =
𝑊𝑝

𝑡 − 1963
 

 

V typically composes a number 0.2–1 (Zapata, 2002). For 137Cs profiles D was 

calculated to 22.56 for JP17, while V was calculated to 1.08. For 210Pb D was 

calculated to 0.88, and V was calculated to 0 (Table 7). 

 

Diffusion coefficients and downward migration rate   

Reference core D 137Cs V 137Cs D 210Pbex V 210Pbex 

JP17 22.56 1.08 0.88 0 

Table 7 Diffusion and migration constants for reference soil cores. 

 

3.3.6.14 Profile distribution model (PDM) 

The profile distribution model uses an exponential relationship for the vertical 

inventory of 137Cs in an undisturbed soil profile, which is calculated by the 

following equation (Zhang, 1990; Rodway-Dyer et al, 2010): 

 

𝐴′(𝑥) = 𝐴𝑟𝑒𝑓(1 − 𝑒
−

𝑥
ℎ0) 

 

Where A’(x) is the concentration 137Cs above depth x (Bq m–2), Aref is the 

reference inventory of 137Cs (Bq m–2), x is the depth from the soil surface (kg m–

2), and h0 is the profile shape coefficient or relaxation depth (kg m–2). h0 is 

calculated by least squares regression between the variables ln A(x) and the 

cumulative mass depth (kg m–2), as described in e.g. Porto et al (2001) and 

Martinez et al (2009). 

For an eroding site, the following expression describes soil loss as a 

negative value (Porto et al, 2001; Walling et al, 2004): 

 

𝑌 =
10

(𝑡−1963)𝑃
ln (1 −

𝑋

100
) ℎ0  
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Where Y is the yearly soil loss (kg m–2 year–1), t is the sampling year, P is the 

particle size correction factor, and h0 is the relaxation depth (kg m–2), and X is the 

percentage of reduction of total 137Cs inventory (%) which is calculated by: 

 

𝑋 = (𝐴𝑟𝑒𝑓 × 𝐴)/(𝐴𝑟𝑒𝑓 × 100) 

 

Where Aref is the reference inventory of 137Cs (Bq m-2), and A is the total 137Cs 

inventory (Bq m–2) for a sampling point.  

For an accumulating site, the following equation describes deposition 

(Rodway–Dyer et al, 2010; 2013): 

 

𝑅′ =
𝐴𝑒𝑥

∫ 𝐴(0)(𝑡′)𝑒−𝜆(𝑡−𝑡′)𝑑𝑡′𝑡

0

=
𝐴𝑢 − 𝐴𝑟𝑒𝑓

1

∫ 𝑅𝑑𝑆
𝑆

∫ 𝐴𝑟𝑒𝑓(1 − 𝑒−𝑅/ℎ0)𝑑𝑆
𝑆

 

 

Where R’ is the yearly increase of soil (kg m–2 year–1), Aex is Au–Aref  (where Au is 

the  radionuclide inventory of the site of the soil core), A(0)(t´) is the concentration 

of 137Cs activity in accumulated soil for the year t´, λ  is the decay constant for 

137Cs (0.023 year–1), and S comprises the area of upslope erosion (m2) (Porto et 

al, 2004; Rodway–Dyer et al, 2010).  

 

3.3.6.15 Diffusion and migration model (DMM) 

The diffusion and migration model was used to interpret 137Cs and 210Pbex 

inventories in terrestrial soil and sediment samples. This model requires input 

parameters such as the diffusion coefficient (D) with a unit of kg2 m–4 year–1, the 

downward migration rate (V) with a unit of kg m–2 year–1, and the relaxation depth 

(h0) with the unit kg m–2.  

 The radionuclide concentration at the soil surface can be approximated as 

(Walling et al, 2008): 

  

𝐶𝑢(𝑡) ≈
𝐼(𝑡)

𝐻
+ ∫

𝐼(𝑡′)𝑒−𝑅/𝐻

√𝐷𝜋(𝑡 − 𝑡′)
𝑒−

𝑉2(𝑡−𝑡′)
4𝐷

−𝜆(𝑡−𝑡′)𝑑𝑡′
𝑡−1

0

 

 



96 
 

Where I(t) is the yearly flux of deposited radionuclide (Bq m–2 year–1). 

For sites of erosion an erosion rate R can be determined from reduction of 

the radionuclide inventory Als(t) (Bq m–2), which is (Aref–Au), together with the 

surface soil concentration Cu(t’), according to: 

 

∫ 𝑃𝑅𝐶𝑢(𝑡′)𝑒−𝜆(𝑡−𝑡′)
𝑡

0

𝑑𝑡′ = 𝐴𝑙𝑠(𝑡𝑠) 

 

For sites of deposition, the deposition rate R’ is estimated from concentrations of 

the measured radionuclide in sediment Cd(t’) by the excess inventory of the core 

Aex(t), by (Walling et al, 2008): 

 

𝑅′ =
𝐴𝑒𝑥

∫ 𝐶𝑑(𝑡′)𝑒−𝜆(𝑡−𝑡′)𝑑𝑡′
𝑡

0

=
𝐴𝑢 − 𝐴𝑟𝑒𝑓

∫ 𝐶𝑑(𝑡′)𝑒−𝜆(𝑡−𝑡′)𝑑𝑡′
𝑡

0

 

 

Where radionuclide concentrations in deposited sediment Cd(t’) is determined 

from: 

 

𝐶𝑑(𝑡′) =
1

∫ 𝑅𝑑𝑆
𝑆

∫ 𝑃′𝑃𝐶𝑢(𝑡′)𝑅𝑑𝑆
𝑆

 

 

3.3.6.16 Conversion models for 210Pbex
 in reservoir sedimentation settings 

Several conversion models have been developed specifically for 210Pbex that are 

typically used for depositional settings, e.g. constant rate of supply (CRS) model, 

constant initial concentration (CIC) model, and constant flux and constant 

sedimentation (CFCS) (Appleby, 2001). In this study, outputs from the CRS and 

CIC models were compared. While the CIC model requires assumptions of 

constant initial concentrations at the sediment surface and that sedimentation 

rates are roughly proportional to 210Pb fluxes, the CRS model only assumes 

constant supply rates but requires no assumption of proportional sedimentation, 

and therefore it can be used for less homogenic sedimentation settings (Wren et 

al, 2016). A list of input variables required for the two models is shown in Table 

8.   
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Input variables used for CRS and CIC models 

Variable Description Unit 

A(0) Activity 210Pbex at top sediment Bq kg–1 

A(z) Activity 210Pbex at depth z Bq kg–1 

I(z) Inventory 210Pbex at depth z Bq m–1 

 λPb 210Pb decay constant 0.03114 s–1 

SAR Sediment accumulation rate kg m–2 yr–1 

t Age years 

z Depth m 

Table 8 List of variables for 210Pbex conversion models for sedimentation.  

 

3.3.6.17  210Pb fluxes 

The Pb flux (Bq m–2 yr–1) from atmosphere to sediment is calculated by (Appleby, 

1998): 

  

𝑃 = 𝜆𝑃𝑏  𝐴(0) 

 

where λPb is the decay constant for 210Pb and A(0) represents the inventory of 

210Pbex.  

 

3.3.6.18 210Pbex: CRS model 

The constant rate of supply (CRS) model assumes that 210Pbex fallout is 

continuous (Du & Walling, 2012) regardless of variations in sedimentation rates 

(Appleby, 2008). The CRS model used for 210Pbex gives the sediment age by 

(Appleby, 1998): 

 

𝑡 =
1

𝜆𝑃𝑏
𝑙𝑛

𝐴(0)

𝐴
 

 

Where λPb is the decay constant of 210Pbex, A(0) is the core inventory of 210Pbex, 

and A is the sample inventory of 210Pbex for the sample increment directly beneath 

the dated sample increment. The sediment accumulation rate (SAR) then 

becomes (Appleby & Oldfield, 1978):  

 

𝑆𝐴𝑅 =
𝜆𝑃𝑏𝐼(𝑧)

𝐴(𝑧)
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Where λPb is the 210Pb decay constant, I(z) is the inventory at depth z, and A(z) 

is the activity of 210Pbex at depth z.  The unit for SAR is kg m–2 year–1.  

Uncertainties of the CRS method compose under-estimation of inventories 

resulting in too old 210Pb dates in sample above equilibrium depth, and the lack 

of accounting for any gaps in the sediment record (Appleby, 1998). 

 

3.3.6.19  210Pbex: CIC model 

The constant initial concentration (CIC) model assumes a constant supply of the 

radionuclide with deposited sediment particles and the input of 210Pb varies with 

sedimentation rates (Appleby, 2008), i.e. there is no redistribution of sediment 

(Du et al, 2012). The equation (Appleby & Oldfield, 1983) assumes decreasing 

concentrations of 210Pbex activity with depth: 

  

𝐴(𝑧) = 𝐴(0)𝑒– 𝜆𝑃𝑏𝑡 

 

Where A(z) is the activity of 210Pbex (Bq kg–1) at depth z, A(0) is the activity at the 

top sediment, λPb is the Pb decay constant, and t is the age calculated as follows: 

 

𝑡 =  
1

𝜆𝑃𝑏
ln (

𝐴(0)

𝐴(𝑧)
) 

 

The sedimentation rate is further calculated by (Angeli et al, 2016): 

 

𝑣 =
𝜆𝑃𝑏𝐷

ln (
( 𝑃𝑏𝑒𝑥

210 )𝑡

( 𝑃𝑏𝑒𝑥
210 )𝑏

)

 

 

Where v is the average sedimentation rate (cm year-1), D is the core length of the 

sediment profile (cm), ( 𝑃𝑏𝑒𝑥
210 )𝑏 is the bottom sediment layer 210Pbex activity, 

and ( 𝑃𝑏𝑒𝑥
210 )𝑡 is the top sediment 210Pbex activity.   
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3.3.6.20 Data interpretation 

The soil and colluvium radionuclide inventories were converted into erosion and 

sedimentation rates by conversion models PDM and DMM (described in sections 

3.3.6.14 Profile distribution model (PDM) and 3.3.6.15 Diffusion and migration 

model (DMM)) with the Excel Add-In radiocalc (Walling et al, 2007) downloaded 

in 2018 from the Joint FAO/IAEA Programme website8. Results from CRS and 

CIC models (described in sections 3.3.6.18 and 3.3.6.19) were calculated in 

Microsoft Excel®. Software used for data interpretation and statistics were 

RStudio 1.1.463, Microsoft Excel 2016 and IBM SPSS Statistics 25. For map 

production and raster statistics, QGIS 2.18.27 Las Palmas was used. 

 

3.4 Modelling methods 

Soil erosion and sediment volume were estimated by RUSLE model and GIS 

analysis. The methods used are described in this section. 

 

3.4.1 Hydrological analysis 

3.4.1.1 Preparation procedure hydrological analysis 

Unidentified sinks or artificial depressions occur when contour lines from remote 

approach survey data is based on gridded input data9. Depressions occur due to 

e.g. low resolution of survey lines, which may cause error in hydrological 

modelling, as the digital topography is misinterpreted (Lindsay & Creed, 2005). 

However, newer DEM, e.g. SRTM in the 21st century, provide better depression 

accuracy than traditional survey lines, and is recommended for usage before the 

latter10. Lindsay & Creed (2005) investigated the impact of methods developed 

for removal of artificial depressions created in DEMs, finding that the methods 

least influencing terrain attributes were depression breaching and the impact 

reduction approach (IRA), the latter built-in within QGIS-packages r.hydrodem 

and the SAGA (System for Automated Geoscientific Analyses) tool Fill Sinks 

(Wang & Liu) with B-spline interpolation, which were used prior to further 

watershed analysis in GIS.  

  

                                            
8 http://www-naweb.iaea.org/nafa/swmn/models-tool-kits.html  
9 https://grasswiki.osgeo.org/wiki/Hydrological_Sciences 
10 https://grasswiki.osgeo.org/wiki/Hydrological_Sciences 

http://www-naweb.iaea.org/nafa/swmn/models-tool-kits.html
https://grasswiki.osgeo.org/wiki/Hydrological_Sciences
https://grasswiki.osgeo.org/wiki/Hydrological_Sciences
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3.4.1.2 Terrain analysis 

A DEM was created from 30 m resolution Shuttle Radar Topography Mission data 

(SRTM s22w044 1arc-second v3), downloaded in 2016 from USGS Eros Data 

Center11. This DEM had a 30 m resolution and was carefully clipped to a smaller 

raster layer by delineation of HydroBASIN12 (Lehner et al, 2013) shape files, 

covering the catchment in which João Penido reservoir is located. Slope was 

derived from the raster file by using the GRASS tool r.slope and ranged between 

0–36.7 degrees, with a standard deviation of 6.8 degrees (Figure 26). The SRTM 

image was processed with the GRASS tool r.watershed to create sub basins. The 

input parameters were set to the following: minimum size of exterior watershed 

basin: 1000 (m), maximum length of surface flow, for USLE: 10 (m). The GRASS 

tool r.to.vect was used to build drainage basins of vector format. Selected 

drainage basins were then saved to create a vector shape-file that represented 

the whole catchment area for João Penido watershed. These selected features 

were merged by using the QGIS built-in geoprocessing tool Dissolve. The 

catchment properties derived from GIS-analysis are summarized in Table 9. 

                                            
11 https://earthexplorer.usgs.gov/, downloaded in 2016 
12 http://www.hydrosheds.org/page/hydrobasins 

https://earthexplorer.usgs.gov/
http://www.hydrosheds.org/page/hydrobasins
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Figure 26 Slope of João Penido reservoir catchment. EPSG: 3857. 

 

 João Penido reservoir catchment properties from GIS-analysis 

    Value Unit 

Catchment area  72.14 km2 

Reservoir surface area 3.72* km2 

Range elevation 677–1061 m.a.s.l. 

Average slope 10.8 degrees 

*Bucci et al 2015     

Table 9 Basic catchment characteristics of João Penido reservoir, determined 

by GIS-analysis. 

 

3.4.1.3 Topographic wetness index (TWI) 

The topographic wetness index (TWI), also known as compound topographic 

index (CTI), is often used to determine the topographic control on hydrology 

(Sørensen et al, 2006). TWI is defined by: 

 

𝑇𝑊𝐼 = ln (
𝛼

tan 𝛽
) 



102 
 

where α is the upslope contributing catchment area (m2) per unit width orthogonal 

to flow direction and β represent slope angle (Gessler et al, 1995; Pei et al, 2010).  

Practically, TWI is highly correlated with soil attributes (e.g. OM%, silt content, 

phosphorous). TWI was created for the João Penido catchment in QGIS, by the 

tool SAGA Wetness Index (Boehner et al, 2002) to determine likely areas of POC 

accumulation (Figure 27). 

 

 

Figure 27 Compound topographic index (CTI) or Topographic wetness index 

(TWI) for João Penido catchment. EPSG: 3857. 

 

3.4.2 RUSLE model 

Revised Universal Soil Loss equation (RUSLE) is an upgraded empirical soil loss 

model based on the original Universal Soil Loss equation (USLE) model 

developed originally by United States Department of Agriculture (USDA), defined 

by the following equation with six factors: 

 



103 
 

𝐴 = 𝑅𝐾𝐿𝑆𝐶𝑃 

 

where A is the calculated yearly average soil loss (tonnes ha–1 year–1), R is the 

annual rainfall erosivity factor, K is the soil erodibility factor, S is slope steepness, 

L is slope length, C is the vegetation cover and crop management factor, and P 

represents the specific erosion control practice. The RUSLE model has been 

successfully implemented in local to global scale studies. Together, L and S 

factors compose the topographic factor, LS, which can be derived from 

topographic data. Oliviera et al (2013) found that the topographic factor derived 

from digital elevation models (DEM) can also be calculated from shuttle radar 

topography mission (SRTM) data, which is the input dataset for this study. The 

LS and C factors compose the more important factors in the soil erosion model 

(Panagos et al, 2015) and on its own the combined LS factor can be used to 

evaluate potential sites of erosion, whilst the product of factors R, K, LS can be 

used to determine the natural potential of erosion (NEP) of an area. The spatial 

scale of RUSLE composes field–hillslope range (Terranova et al, 2009), although 

a number of studies have applied this model on a global scale (e.g. Yang et al, 

2003; Naipal et al, 2015). The input data from database sources used in this work 

is summarized below (Table 10). Erosion rates were calculated in the unit tonnes 

ha–1 year–1, to convert this value into kg m2 year–1, the value was divided by 10. 
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RUSLE input parameters   

Type Factor Unit Source 

Rainfall erosivity R MJ mm ha–1 year–1 Environmental Prediction (NCEP) 
Climate Forecast System Reanalysis 
(CFSR) (Global Weather Data for 
SWAT) 

Soil erodibility K tonnnes ha h ha–1 
MJ–1 mm–1 

1. Harmonized World Soil Database 
(HWSD), FAO 
2. Observations from catchment soil 
profiles. 

Length-slope LS dimensionless Derived from 30 m resolution SRTM 
with SAGA tool LS factor, field based; 
method Desmet & Govers (1996). 

Cover and 
management 

C dimensionless 1. GlobCover V2.3 (ESA) with 
literature C-values from Panagos et al 
(2015). 
2. Digitized land cover map by Google 
Satellite data (2018) at scale 1:2000. 

Support practices P dimensionless Set to 1. 

Table 10 RUSLE input factors and sources.  

 

3.4.2.1 Rainfall erosivity factor (R) 

The rainfall erosivity maps by Da Silva (2004) indicate an annual range of 6000–

8000 MJ mm ha–1 year–1 in the SE region of Brazil, where the study catchment is 

located. Similarly, Oliveira et al (2013) approximated the same range of R factor 

for the region, of 6000–8000 MJ mm ha–1 year–1 (Figure 28). 
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Figure 28 R-factor and Köppen map derived from Oliveira et al (2013) – the 

study catchment João Penido is located near the south-eastern coast, within in 

the R factor range of 6000–8000 (left) and within the Köppen climate class Cwa 

(right). 

 

The expression to calculate the R factor by Renard & Freimund (1994) was used: 

 

𝑅 = 0.0483 × 𝑃1.610 

 

Where P is the annual average rainfall in mm year–1, estimated from the database 

PSD South America Daily Gridded Precipitation (Liebmann & Allured, 2005), 

which temporal range is 1940–2012, obtained from South American Precipitation 

data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their 

Web site13 (downloaded 2017-10-30). By plotting the values as a raster in GIS, 

the yearly average precipitation values for the raster pixel which incorporates the 

catchment area of João Penido, could be analysed by the QGIS plugin Value 

Tool. Data was extracted from the raster point (LAT, LONG: –4832176.366, –

2471825.954) to calculate the annual average precipitation for an area that 

includes the João Penido catchment. The resulting annual average precipitation 

                                            
13 https://www.esrl.noaa.gov/psd/data/gridded/data.south_america_precip.html 

https://www.esrl.noaa.gov/psd/data/gridded/data.south_america_precip.html
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(between 1940–2012) equalled 1540.69 mm year–1, which gave an R factor value 

of 6548.90 MJ mm ha–1 year–1 which falls within the range of the above-

mentioned studies on rainfall erosivity. Even though this R factor value is based 

on historical precipitation data, in this study it was assumed that it gave a realistic 

estimate of the general precipitation trend in this region.  

 

3.4.2.2 Soil erodibility factor (K) 

The soil erodibility factor could be derived from soil properties data. For this work 

the regional soil database (2005) “A National Soil Profile Database for Brazil 

Available to International Scientists”, by Cooper et al (2005) was used14, in 

conjunction with the Digital Soil Map of the World (DSMW) database by FAO. 

Extracted values from the attribute table of the FAO DSMW database15 were used 

as input parameters in the K factor equation used (Table 11). In the João Penido 

watershed the dominating soil code was: DOMSOIL:fo and the FAO code: Fo4-

3b, which corresponds to orthic ferralsol or ultisol. 

 

João Penido soil properties    

FAO code sand % topsoil silt % topsoil clay % topsoil OC % topsoil 

fo4-3b 15.7 16.5 67.8 2.21 

Table 11 Soil properties derived from FAO DSMW attribute table. 

To calculate the K factor, the following equation from Stewart et al (1975) was 

used, as it is suitable for soils with a silt fraction <70% (Renard et al, 1978): 

 

𝐾 = [2.1 × 10−4(12 − 𝑂𝑀)𝑀1.14 + 3.25(𝑠 − 2) + 2.5(𝑝 − 3)]/100 

 

Where M is defined as (Wischmeier & Smith, 1978): 

 

𝑀 = 𝑠𝑖𝑙𝑡% × (100 − 𝑐𝑙𝑎𝑦%) 

In the K factor equation above, M is the product of particle structure, based on 

clay, silt, and sand content, p is the permeability class, and s is the structure code. 

The value of K can be converted from U.S. customary units into S.I. units (Mg ha 

                                            
14 http://www.esalq.usp.br/gerd/  
15 http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/HWSD_Data.html?sb=4  

http://www.esalq.usp.br/gerd/
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/HWSD_Data.html?sb=4
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h ha–1 MJ–1 mm–1 or t ha h ha–1 MJ–1 mm–1) by multiplying it with a conversion 

factor 0.1317 (Wang et al, 2016). For this unit, hectares in the numerator and 

denominator are left shown to represent soil loss per unit area per unit EI (Foster 

et al, 1981). For João Penido reservoir, a permeability class of 3 (moderate) and 

structure code of 3 (medium–coarse and granular) were used after field 

observations (Renard et al, 1997; Table 3-3). The dominating soil type in João 

Penido catchment was orthic ferralsol (latosol) which has been identified with a 

typically low K value, e.g. Medeiros et al (2015) reported 0.0162 Mg ha h ha–1 

MJ–1 mm–1 for this type of soil. Similarly, Beskow et al (2009) reported a value of 

0.010 t ha h ha–1 MJ−1 mm−1 from a study by Silva (1997)16.  

In S.I. units, the K factor for the FAO database soil covering the watershed 

of João Penido reservoir corresponded to: 0.0077 tonnes ha h ha–1 MJ–1 mm–1.  

This value is similar to the K values found in another South American regional 

study of Uruguay catchments using USLE/RUSLE by Carrasco-Letelier & 

Beretta-Blanco (2017) who obtained 0.0073–0.0088 tonnes ha h ha–1 MJ–1 mm–

1, and a study by Galdino et al (2016) who found a K factor range of 0.0047–

0.0551 tonnes ha h ha–1 MJ–1mm–1 in cultivated pasturelands of Goiás State and 

the Federal District in central Brazil. Specifically, Galdino et al (2016) reported K 

factor values of 0.0145 and 0.0193 tonnes ha h ha–1 MJ–1mm–1 exhibited by the 

two classes of ferralsols found in their study region. Similarly, da Cunha et al 

(2017) reported a K factor range 0.001–0.2122 tonnes ha h ha–1 MJ–1mm–1, 

however, these soils were not strict ferralsols. 

 For comparison, the K factor was also calculated from observations of soil 

properties from field samples. Input data from field observations compose an 

average OM value of 13.09% (N=125) and grain size data from 26 samples with 

a mean of 3.71% silt and 96.28% sand in the upper 20 cm of the available soil 

profiles that were used (Table 12). Since clay was not separated from the <53 

µm fraction in this study, it was set to zero in the observation based calculation 

of K. The resulting K value 0.0040 tonnes ha h ha–1 MJ–1 mm–1 was used in the 

RUSLE model. 

 

  

                                            
16 PhD Thesis. 
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João Penido soil properties (observations in the field)   

 sand % topsoil silt % topsoil clay % topsoil OC % topsoil 

N 26 26 26 125 

Mean 96.28 3.71 NA 13.09 

Table 12 Soil properties to calculate soil erodibility factor from observations in 

João Penido catchment. Because the clay fraction (<0.002 mm) was not 

measured in this study, it was set to 0 in this calculation.  

 

3.4.2.3 Length-slope factor (LS) 

The L (slope length) and S (slope steepness) factors within the USLE equations 

are commonly combined and known as the LS-factor (Zhang et al, 2017). This 

parameter composes a dimensionless value that characterises the erosion effect 

of topography and numerous mathematical methods to calculate the L and S 

factors exist (Van Remortel et al, 2001). In this work, equations for LS are derived 

from Desmet & Govers (1996) that are implemented through the SAGA tool LS-

factor, field based, where input composes the SRTM-derived DEM with Rill/Interill 

Erosivity set to 1. The resulting LS-factor map display dimensionless values 

ranging between 0.03–103.6, with a mean of 6.85 (Figure 29). To assess whether 

LS-factor values produced for the João Penido catchment were reasonable, 

these were compared to other studies using RUSLE/USLE in the South American 

region, e.g. Galdino et al (2016) who found a similar min–max range of 0–104 

and a mean of 1.80 in their regional study of catchments with similar topography 

in central Brazil.  
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Figure 29 LS-factor for João Penido watershed, method by Desmet & Govers 

(1996) by SAGA tool LS-factor, field based. Classes are based on quantiles. 

CRS: WGS84/Pseudo-Mercator. EPSG: 

 

3.4.2.4 NPE Map 

The product of factors R, K, LS compose the natural potential of erosion (NPE) 

of soils in the catchment, expressed in tonnes ha–1 year–1. This is a value that 

does not consider any influence of vegetation or management practices on the 

soil. 
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3.4.2.5 Cover factor (C) 

The cover and management (C) factor composes a dimensionless factor with 

values ranging between 0–1, that describes the influence of cultivated and natural 

vegetation cover on erosivity in the landscape (Kouli et al, 2008). It is one of the 

factors of soil erosion which can most readily be controlled by land owners to 

reduce soil erosion risk (Panagos et al, 2015). Satellite imagery can be used to 

derive vegetation cover, from indices such as Normalized Difference Vegetation 

Index (NDVI), which is a measure of the spectral reflectance of vegetation in the 

red and near-infrared regions and is helpful in determining vegetation cover using 

remote sensing data.  

Literature C-values can also be assigned to existing database land cover 

maps which can serve as C factor input for the RUSLE equation, e.g. Panagos 

et al (2015) used the CORINE land cover map17 for soil erosion modelling on 

European scale. In this study, C factor input for the study catchment were derived 

from 1) literature C-values assigned to mapped land use classes of the 

GlobCover V2.318 map from European Space Agency (ESA), and 2) in this study 

manually digitized land cover classes at a scale of 1:2,000 using satellite images 

(Google). The land cover map GlobCover V2.3 from European Space Agency 

(ESA) features 22 land cover types at 300 m resolution. The data were assigned 

C-values from the literature (Table 13) and reclassified to provide a C-factor map 

for the watershed (Figure 30). Literature C-values were used to reclassify the land 

cover map were compared to values in other studies from the South American 

continent, e.g. Carrasco-Letelier & Beretta-Blanco (2017) and da Cunha et al 

(2017). 

Land use was also manually digitized in QGIS (version 2.18.24) to create 

a detailed C-factor map, based on Google Satellite data utilizing the open layers 

plugin, at a scale of c. 1:2,000. The digitized land cover features (Figure 31) were 

designated C-factor values from the literature, summarized in Table 14. From this 

manual classification of land cover data, it was observed that main land cover in 

the catchment composes tree-less grassland, making up 72.5% of the catchment, 

while c. 17.7% of the catchment is wooded. The digitized C factor map was 

rasterized and used as input for RUSLE calculation.   

                                            
17 https://land.copernicus.eu/pan-european/corine-land-cover  
18 http://due.esrin.esa.int/page_globcover.php  

https://land.copernicus.eu/pan-european/corine-land-cover
http://due.esrin.esa.int/page_globcover.php
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Figure 30 C factor map based on land cover classes from GlobCover V2.3 data. 

The assigned literature C values are from Panagos et al, 2015. EPSG: 4326. 

C factor values conversion table for GlobCover data   

GlobCover 
raster value 

GlobCover label C-values from 
Panagos et al 2015 

Detailed class 

14 Rainfed croplands 0.2 Complex cultivation 
patterns 

20 Mosaic cropland (50-70%) / 
vegetation 
(grassland/shrubland/forest) 
(20-50%) 

0.15 Pasture 

30 Mosaic vegetation 
(grassland/shrubland/forest) 
(50-70%) / cropland (20-50%) 

0.08 Natural grassland 

40 Closed to open (>15%) 
broadleaved evergreen or semi-
deciduous forest (>5m) 

0.003 Broad-leaved forest 

50 Closed (>40%) broadleaved 
deciduous forest (>5m) 

0.003 Broad-leaved forest 

120 Mosaic grassland (50-70%) / 
forest or shrubland (20-50%) 

0.05 Shrubland 

130 Closed to open (>15%) 
(broadleaved or needle-leaved, 
evergreen or deciduous) 
shrubland (<5m) 

0.05 Shrubland 

210 Water bodies 0 Water 

Table 13 C factor values, description and source for conversion labels in 

GlobCover dataset.  
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Figure 31 Detailed C-factor map of João Penido reservoir, digitized at scale 

1:2000. EPSG: 4326. 

 
C factor values conversion table for digitized map     

Digitized land 
cover 

Area 
(km2) 

Area% of 
catchment 

C Detailed class Source 

Wood 12.8 17.7 0.003 Broad-leaved forest Panagos et 
al, 2015 

Grassland 53.2 72.5 0.08 Natural grassland Panagos et 
al, 2015 

Delta 2.9 4.0 0.038 Swampy grassland da Cunha et 
al, 2017 

Built up 1.4 1.9 0 Built-up area   
Water 2.8 3.8 0 Water   

Table 14 C-factor values for digitized map of João Penido catchment.  

 

Each land use class was designated its own C-value, derived from literature 

(Panagos et al, 2015) and correspondingly, C-factor values from the literature 

were used to simulate extreme scenarios for which C-factor maps were created 

for 3 alternative scenarios: 1) “forested”, where the watershed is fully covered by 

broadleaved forest (C=0.003), 2) “deforested” where the vegetation cover is 

assumed to be constricted to low-growing grassland and shrubland species 
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(C=0.1), and 3) “bare”, where land is assumed to be of such degraded state that 

very sparse vegetation is dominating the land cover (C=0.45). For these 

scenarios, it was assumed that areas covered by water and built-up areas (C=0) 

were still present in the catchment. 

 

3.4.2.6 Support practices factor (P) 

The support practices factor, P, represents the ratio of erosion associated with 

the conservation measures that control runoff erosion in tilled and managed soils 

(Renard et al, 1978). In the studied watershed, no known conservation practices 

are applied, and the P factor was therefore set to 1 for the whole catchment. 

 

3.4.2.7 Calculation of RUSLE in GIS 

RUSLE values could be calculated manually for the watershed by built-in Raster 

calculator in QGIS, resulting in a raster map of the catchment with RUSLE erosion 

rates. Raster maps of factors C and LS for the catchment were used as input 

together with constant values of factors R and K for the equation (see 3.4.2 

RUSLE model). An NPE map was derived from factors R, K, LS, while the RUSLE 

map was derived from factors R, K, LS, and C, with P set to 1. 

 

3.4.3 Post-flooding sediment volume in the reservoir 

A reservoir outline shape-file was carefully delineated from generated slope data 

of the catchment and was checked against Google Satellite data in QGIS with 

the open layers plugin, at a scale of 1:2,000. The water surface area of the 

reservoir has been reported as 3.72 km2, e.g. Bucci et al (2015). Vector 

calculations done in QGIS gave a reservoir water surface area of 2.66 km2 for the 

dry season of 2016. The maximum area (m2) of sediment accumulation in João 

Penido reservoir was for simplicity assumed to equal the areal extent of the 

watershed, and the thickness of post-flood sediment was derived from sediment 

core point observations (N=15) which were interpolated by creating a triangular 

irregular network (TIN). Water depth was measured in the field by sub-bottom 

survey and the point observations (N=85,882) of transects were combined with 

water depth data observed in the field during core sampling (N=21) (Figure 32).  
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Figure 32 Sub-bottom tracks from survey of João Penido reservoir, 2016, and 

sediment core water depth observations from 2016 and 2017 campaigns. 

EPSG: 3857.  

 

A shape-file created from the beachline was used to delineate the water surface 

extent. TIN interpolation was used to interpolate the water depth in the reservoir 

with QGIS software. The bathymetric map produced from sub-bottom data 

showed that the reservoir was deepest in the south-west part close to the 

reservoir outlet (Figure 33). 
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Figure 33 Bathymetric map of João Penido reservoir, from TIN interpolation of 

sub-bottom data. EPSG: 3857. 

 

3.4.4 Sediment yield from reservoir sediments 

Sediment yield (%) was calculated as the ratio of sedimentation in the reservoir 

over the gross erosion in the catchment. It was calculated from the average 

accumulation of sediment in the dam since 1934 (kg year-1) divided by the mass 

of eroded sediment from the eroding catchment area (kg year-1), according to: 

 

𝑆𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑦𝑖𝑒𝑙𝑑 =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 × 1000

𝑒𝑟𝑜𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 × (𝑐𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡 𝑎𝑟𝑒𝑎 − 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑎𝑟𝑒𝑎)
× 100 

 

Where the average accumulated sediment was the calculated total mass of 

sediment (1,031,690.6 tonnes) by the reservoir age (82 years), erosion rate was 

the average erosion rate calculated by RUSLE (1.09 kg m–2 year–1 ) and 

catchment area (68,420,000 m2). 
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3.5 Summary of Chapter 3 

This chapter summarized the field sites and methods of the study of POC 

transport and fate in a tropical catchment. This chapter explained and 

summarized: methods to determine input factors for the RUSLE model; GIS-

analyses that were made to estimate total post-flooding sediment volume in the 

reservoir; analytical methods to determine bulk density, organic matter and 

carbon content, and C/N ratios; sieving procedures to separate fractions of soils 

and sediment. The results of this study are presented in Chapter 5. 
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Chapter 4. Methods Exmoor study, UK 

This study focuses on the transformation dynamics of organic matter and carbon 

being transported from land to ocean. POC and DOC were measured in eight 

streams in northern Devon and north-western Somerset, which all drain waters 

of a typical coastal moorland landscape in the UK. Flocculation experiments were 

conducted to understand the effects of inorganic coagulants, which are present 

at various flocculation boundaries in the landscape, on formation of particulate 

organic matter and POC and the subsequent residual DOM quality. The change 

in DOM was measured to determine the influence of flocculation on water quality. 

The field, experimental and analytical methods of this study are presented in this 

chapter.  

 

4.1 Field sites of Exmoor streams, Devon 

Eight parallel running streams in catchments with headwater sources in Exmoor 

were chosen due to their similar geology, terrain, soils, vegetation and climate 

(Figure 34). Exmoor is an area of protected moor in the northern part of Devon 

and western part of Somerset in SW England. In Devon 90% of the land surface 

compose rural areas19. The north-running streams of the studied catchments 

drain moorland and soil of non-agricultural grade in Exmoor National Park, which 

gradually transition downstream along the river gradient into managed soils of 

higher agricultural grade (EPA maps, agricultural grade)20, before entering the 

South-Central Bristol Channel of the outer Severn Estuary. Some of the gullies, 

through which the streams drain, are covered by forest classified as ancient 

woodlands21, while others remain deforested for agricultural purposes. The land 

use in Exmoor national park (which partly overlaps the study catchments) 

comprise 55.8% farmland, 27.5% moorland, 12.2% woodland, 0.9% urban areas, 

and 0.2% ponds and reservoirs22. The site coordinates were noted in OSGB 1936 

British National Grid (EPSG: 27700 with transformation: 1314) and in WGS 84 

Pseudo-Mercator (EPSG: 3857).  

 

                                            
19 Waste Development Plan Documents, Strategic Flood Risk Assessment, Devon City Council, Minerals and Waste 

Development Framework, October 2011 
20 Dataset or shapefile reference 
21 Dataset © Natural England copyright. Contains Ordnance Survey data © Crown copyright and database right [2017]. 
22 Exmoor national park authority, factsheet 2004. 
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Figure 34 Sampling sites (A–I) in eight catchments (A–H) with Exmoor 

headwaters. The basemap, derived from SRTM arc-1-second, shows average 

elevation above sea level (m.a.s.l.). EPSG: 3857. 

 

4.1.1 Climate 

The Köppen climate classification system classifies Devon as Cfb, i.e. a warm 

temperate oceanic climate with warm summers. The average annual rainfall on 

Exmoor and northern coast amount to between c. 1000–2500 mm annually23. In 

SW England precipitation is in general highest during December–January and 

lowest in April–July (Devon City Council report24). Historical data from Horner 

Water gauge station at West Luccombe (LAT:459560, LON: 5672291) show that 

daily rainfall between 1961–2015 (20,088 observations) ranged between 0–110 

mm day–1, with a mean 4.25 mm day–1 (NRFA, 201825). Daily flow rates from the 

same station, show an average daily river flow rate of 0.47 m3 s–1 day–1, with a 

min–max range of 0.018–10.4 m3 s–1 day–1 on 14,169 measurement days over 

the years 1961–2017 (NRFA, 201826). Similarly, Glendell et al (2014) reported 

                                            
23 www.metoffice.co.uk Publications and Factsheets: 

https://www.metoffice.gov.uk/binaries/content/assets/mohippo/pdf/C:N/metlib_13_013_factsheet_7_final.pdf 
24 Waste Development Plan Documents, Strategic Flood Risk Assessment, Devon City Council, Minerals and Waste 

Development Framework, October 2011 
25 National River Flow Archive, data downloaded 2018-09-24. 
26 National River Flow Archive, data downloaded 2018-09-24. 

http://www.metoffice.co.uk/
https://www.metoffice.gov.uk/binaries/content/assets/mohippo/pdf/c/n/metlib_13_013_factsheet_7_final.pdf
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total rainfall min–max range of 13.4–53.60 mm from 2010-08-21 to 2012-01-03. 

Average yearly temperatures at climate station Chivenor near Barnstaple range 

between 7.9–14.5 degrees C over years 1951–2017 (EPA, UK). 

 

4.1.2 Terrain 

The maximum elevation above sea level in the study area is c. 516 m.a.s.l. The 

area is characterized by rounded convex hills, where steep valley sides with up 

to 20–30% slope angles cut the bulging landscape (Miller & Miles, 1984). The 

headwaters drain the acidic moorland landscape of Exmoor (Figure 35). 

 

 

Figure 35 Overview of landscape from moor to sea, facing north-east on 

Exmoor.  

4.1.3 Geology and soils 

The geology of the northern uplands of Devon comprises Middle and Upper 

Devonian rocks, which are minor aquifers with low permeability and therefore 

have low holding capacity for groundwater. The soil type overlying these rocks 

typically compose podzol or surface water gley soil (NRA, 1995). The study area 

is dominated by sandstones of the Hangman Sandstone Formation, slaty 

mudstone, siltstone and sandstone of the Lynton Formation near Lynmouth and 
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Lynton, and slaty metamudstones in the south-west of the study area belonging 

to the Ilfracombe Mudstone Formation (Whittaker & Leveridge, 2011) occurring 

in the area of study catchments F, G, and H. In the gorges, alluvial deposits of 

Quaternary sediments are present. Simplified lithology of the catchments is 

summarized in Table 15, Figure 36 and Figure 39a. The soil texture in the study 

area is dominated by silty loam to sandy loam (Figure 37). 

 

 

Figure 36 Simplified lithology of soil parent material of Exmoor catchments. 

Data source: DiGMapGB-50 LEX-RCS system, 1:50,000 scale Geological Map 

of Great Britain (British Geological Survey, 2011). EPSG: 3857. 

 

Simplified lithology (%) of Exmoor catchments     

    
A B C D E F G H All 

Breccia-Sandstone 0.5 - - - - - - - 0.11 

Clay-Silt-Sand-Gravel 4.04 5.75 4.03 1.02 15.65 9.19 9.35 7.64 6.75 

Conglomerate 0.04 - - - - - - - 0.01 

Gravel - - - - - - - 0.13 0.02 

Metamudstone - - - - - 10.54 16.05 24.17 6.71 

Metamudstone-
sandstone 

- - 2.68 - 2.24 5.53 3.9 7.44 2.98 

Mudstone 0.5 - - - - - - - 0.11 

Sand-Gravel 0.79 - - - - - - - 0.17 

Peat - - 6.04 - 10.62 14.05 1.35 - 3.73 

Sandstone 94.13 94.25 87.25 98.98 71.49 60.7 69.34 60.63 79.41 

Table 15 Mapped land area (%) of parent material lithology in Exmoor 

catchments, derived from DiGMapGB-50 LEX-RCS system, 1:50,000 scale 

Geological Map of Great Britain (British Geological Survey, 2011).  
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Figure 37 Soil texture map, 1 km resolution. Data source: UK Soil Observatory. 

Contains British Geological Survey materials © NERC [2018]. EPSG: 3857. 

 

4.1.4 Land cover classes 

Land cover classes were derived from Land Cover Map 2015 by Rowland et al 

(2017) (Figure 38). The land cover classes (area %) for each study catchment 

are summarized in Table 16 and Figure 39b. The four main land cover 

components in the eight study catchments comprise acid grassland (51.1%), 

improved grassland (27.4%), heather (10.5%) and broadleaf woodland (9.4%). 

According to this dataset 0.2% compose suburban areas in the total area of 

studied catchments. 

 

 

Figure 38 Land cover classes of the Exmoor stream catchments (highlighted). 

Data source: Rowland et al (2017). EPSG: 3857. 
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Land cover classes (%) of Exmoor catchments      

  A B C D E F G H All 

Acid grassland 38.7 56.1 83.2 10.1 59.8 70.2 44 6.9 51.1 

Arable and horticulture 0.1 - - - - - 0.1 0.2 0.1 

Broadleaf woodland 20.3 3.1 1 - 6.9 7.5 5.1 17.3 9.4 

Coniferous woodland 1.3 5.5 0.5 - - - 0.3 0.1 0.8 

Freshwater 0.2 - - - - - - - - 

Heather 19.9 26.2 9.2 65.1 14.8 0.2 1.8 - 10.5 

Heather grassland 1.2 0.1 - - - - - 1.1 0.4 

Improved grassland 18.1 9 6 24.8 18.2 22.1 48.3 73.9 27.4 

Inland rock - - - - - - 0.1 - - 

Suburban 0.2 - 0.1 - 0.3 - 0.4 0.4 0.2 

Table 16 Land cover classes of the Exmoor catchments, derived from Land 

Cover Map 2015 (Rowland et al, 2017). 

 

 

Figure 39 Distribution of a) lithology and b) land use of study catchments. 
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4.1.5 Water quality in streams of Exmoor  

The waters of the study sites enter the Bristol South-Central Channel in the outer 

parts of the Severn Estuary, into which Owens (1984) reported an annual input 

of POC of 1.6% and DOC of 6.5% from freshwater streams. In Horner Water 

Glendell et al (2014) reported peak total suspended sediment amounting to 

16.09–1642.54 mg L–1, peak DOC concentrations of 4.67–7.59 mg L–1, and POC 

concentrations between 2.60–199.49 mg L–1 between years 2010–2012. 

 

4.1.6 Stream sites 

A) Horner Water (–3.579655022, 51.19853524) 

Horner Water drains a mixture of land cover classes and eventually enters the 

sea by Bossington Beach in Porlock Bay (Figure 40). The catchment area is 21.4 

km2 and upstream of the sampling site, which is located at c. 70 m.a.sl., the land 

cover mainly comprises acid grassland (38.7%), broadleaf forest (20.3%), and 

heather (20.0%). Most of the watershed is located on a sandstone formation 

(Hangman’s Sandstone). 

Glendell & Brazier (2014) reported a range of 2.60–20.86 mg L–1 of total 

particulate C (TPC) in Horner Water. They also showed that the concentrations 

of TPC was higher during base flow in an agricultural catchment neighbouring 

Horner catchment, which in contrast is a mixed land use catchment.  

 

 

Figure 40 Sampling site A, Horner Water. 
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B) Weir Water (–3.685306968, 51.20484971) 

Weir Water is a tributary to East Lyn River and has a catchment area of 7.0 km2 

which drains mainly acid grassland (56.1%), heather (26.2%) and improved 

grassland (9.0%). The sampling point is located underneath a small bridge at c. 

300 m.a.s.l.  

 

C) Badgworthy Water (–3.731420769, 51.21574435) 

Badgworthy Water is a tributary to East Lyn River and the catchment area 

amounts to 25.2 km2, making up the largest of the catchments in this study 

(Figure 41). The sampling point is located upstream of a weir at c. 240 m.a.s.l. 

and the main land cover classes constitute acid grassland (83.2%), heather 

(9.2%) and improved grassland (6.0%).  

 

D) Slocombeslade stream (–3.755958119, 51.20941233) 

This stream by Slocombeslade Wood is a small tributary to East Lyn River. The 

upslope catchment area of the sampling site amounts to roughly (0.9 km2), 

making up the smallest catchment in the study. This small catchment is 

dominated by land cover classes heather (65.1%), improved grassland (24.8%) 

and acid grassland (10.1%). The sampling point is located at c. 300 m.a.s.l.  

 

 

Figure 41 Sampling site C, Badgworthy Water, upstream of weir. 
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E) Farley Water (–3.803025297, 51.20786778) 

Farley is a tributary to East Lyn River, and joins Hoaroak water coming from the 

west at Watersmeet before entering East Lyn River. The sampling site at Farley 

water is a direct runoff site from site I, which represents a headwater moor site 

for all catchments in this study. Main land cover classes compose acid grassland 

(59.8%), improved grassland (18.2%) and heather (14.8%). The catchment area 

amounts to 8.0 km2. The sampling site is located at c. 230 m.a.s.l. 

 

F) Hoaroak Water (–3.816252557, 51.2082984) 

Hoaroak is a tributary to East Lyn River, and joins Farley water at Watersmeet 

before entering East Lyn River. The catchment area is 8.1 km2 and drains land 

cover classes acid grassland (70.2%), improved grassland (22.1%) and broadleaf 

woodland (7.5%). The sampling site is located at c. 210 m.a.s.l. 

 

G) Barbrook (–3.843015296, 51.21360397) 

Barbrook runs into West Lyn River that enters Bristol Channel by the estuary at 

Lynmouth. The catchment area amounts to 12.9 km2 upstream of the sampling 

point and the main land cover classes comprise improved grassland (48.3%), 

acid grassland 44.0%) and broadleaf woodland (5.1%). The sampling site is 

located at c. 200 m.a.s.l. 

 

H) River Heddon (–3.927516072, 51.21602592) 

River Heddon is a semi-wooded catchment with an area of 15.3 km2 that flows 

into the estuary at Heddon’s Mouth. The area upslope of the sampling point at c. 

70 m.a.s.l. largely consists of land cover classes improved grassland (73.9%), 

broadleaf woodland (17.3%) and acid grassland (6.9%). Different to the other 

catchments, a large area of bedrock of catchment H compose metamudstones 

(24.17%).  

 

I) Exmoor Pool (–3.77475500, 51.17675100) 

Sampling site I, Exmoor Pool, is a semi-permanent water puddle at an elevation 

of c. 385 m.a.s.l. located in the same catchment as site E and composes a 
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headwater source to Farley Water (Figure 42). In this study, it is assumed that 

most groundwater water on Exmoor is similar in quality and chemical composition 

and site I therefore represents “headwater” and is compared to all sites in this 

study. This peaty site is classified as acid grassland cover underlain by 

sandstone. 

 

 

Figure 42 Sampling site I, Exmoor Pool, the most elevated semi-permanent 

pool of running water at the mire headwater source. 

 

4.2 Hydrological analysis 

A DEM constructed from SRTM arc-1-second with 30 m resolution 

(Earthexplorer, downloaded 2018-09-11) of the study area was used as input for 

hydrological analysis. The DEM was transformed by the Fill sinks (Wang & Liu) 

tool and then Strahler stream order was calculated by SAGA tool Strahler order 

using b-spline interpolation as the resampling method (Table 17). The minimum 

slope in degrees was set to 0.01. A channel network as created by SAGA channel 

network and drainage basins module, using the SRTM-image as elevation input, 

with a threshold of 5, using b-spline interpolation. Catchment area was created 
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with multiple flow direction and b-spline interpolation. Watershed basins were 

then created with the tool SAGA Watershed.  

 

Field sites Exmoor     

Site Stream LAT LONG 
Watershed 
area (km2) 

Strahler 
order* 

A Horner Water -3.57965502 51.19853524 21.4 3 

B Weir Water -3.68530697 51.20484971 7 2 

C Badgworthy Water -3.73142077 51.21574435 25.2 4 

D 
Slocombeslade 

stream 
-3.75595812 51.20941233 0.9 2 

E Farley Water -3.8030253 51.20786778 8 3 

F Hoaroak Water -3.81625256 51.2082984 8.1 3 

G Barbrook -3.8430153 51.21360397 12.9 3 

H River Heddon -3.92751607 51.21602592 15.3 2 

I Exmoor pool -3.77115836 51.16730385 8 1** 

* Calculated from DEM 
** Field observation only 

     

Table 17 List of Exmoor water sampling sites. 

4.3 Field sampling Exmoor 

Surface water samples were collected bimonthly–monthly during 2017–2018 

from the 9 sampling sites (Table 17) described above, comprising eight sites in 

eight catchments, named by letters A–H, complemented by a moorland site 

situated in catchment E on Exmoor, site I, which represented a headwater site 

for all other catchments. Temperature, pH and conductivity were measured 

directly in the flowing water by a portable pH & EC reader which automatically 

compensated for temperature (Combo by Hanna, HI 98130). The samples were 

transported to University of Exeter laboratories on the sampling day and stored 

dark and refrigerated (c. 4–6  ̊ C) before further treatment, experiment and 

analysis.  

 

4.4 Experimental and analytical methods 

4.4.1 Sample preparation 

The raw stream samples were filtered with a vacuum pump to collect initial total 

suspended particulates (TSP) onto pre-combusted (100 ̊ C) >0.7 μm biologically 

inert 100% borosilicate microglass fibre filters (FisherbrandTM). The filters were 
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dried at 40°C for 24 hours before being weighed for TSP. The filtrates were stored 

dark and cold (4–6°C) before division into experimental replicates. 

 

4.4.2 Experimental design of flocculation study 

The experiment was set up at the laboratory facilities at the Department of 

Geography, University of Exeter. Each of the filtered stream site water samples 

were divided into four treatment groups: T1) control (no additives), T2) clay mixing 

(0.5 g added ITP32 plastic clay standard), T3) saline mixing (10 mL added saline 

mixture of deionized water and Tropic Marin® PRO-REEF salt standard), T4) 

combined saline and clay mixing, according to description above. The certified 

reference material used as a clay standard composed of IPT32 (CRM 1763-103, 

Brazil) which served as an anionic polyelectrolyte coagulant to remove colloids in 

treatments T2 and T4. The artificial saltwater standard comprised Tropic Marin® 

PRO-REEF with a salinity of 32.64 ppt27. Within the four treatment groups there 

were four replicates, each experiment was further complemented by four 

replicates of control blanks comprising deionized water treated according to the 

same procedure.  

The treated samples were allowed to flocculate in acid-washed beakers 

with lids on magnetic stirrer boards for 22 hours before secondary filtration. Each 

flocculation experiment was conducted at room temperature (20–25°C) and 

inside a reflective container to avoid influence from insolation (Figure 43). The 

beaker magnets were set to moderate mixing at the bottom of the beakers, to 

induce moderate turbulence.  

 

 

                                            
27 compared to real average seawater with a salinity of 35 ppt (Atkinson & Bingman, 1998) 
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Figure 43 Flocculation experiment, experimental light-reflective igloo and closed 

sample jars. 

In total 144 samples were analysed from the experimental study, accompanied 

by 16 blanks. The samples were filtered and stored in acid washed glass vials 

with silicone PTFE septa lids (FisherbrandTM EPA) before further analysis. 

 

4.4.3 Treatment groups 

Treatment T1 compose the control group, where no additives have been reacted 

with the subgroup replicates, and the results from this group represent the colloid 

heterogeneity of the replicates. 

Treatment T2 clay mixing, composed a 0.5 g additive of IPT 32 kaolinite 

standard to each of the subsample replicates. T2 aimed to mimic the input of 

minerogenic particles due to soil erosion. The clay standard was added as a dry 

powder, unlike the additives of treatments T3 and T4. 

Treatment T3 saline mixing, composed an additive of 10 mL artificial 

seawater solution. The resulting salinity of treated samples was 32 ppt, compared 

to actual seawater salinity, commonly 35 ppt. T3 mimics the mixing of riverine 

water with marine seawater in estuaries. For T3 an additional study on the effect 

of salt water concentration was conducted on headwater samples from site I, to 

investigate the relationship of coagulation and flocculation with salinity. 

Treatment T4 combined saline and clay mixing, composed of a mixture of 

0.5 g plastic clay standard (IPT32) and 10 mL artificial seawater (same mixture 
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as in T3, mimicking the mixing of riverine water containing high total suspended 

particles (TSP) loads with marine seawater in estuaries. 

 

4.4.4 Post-experimental analysis 

Post-experimental analyses were undertaken partly at University of Exeter 

(dissolved organic carbon by liquid total carbon analyzer (TOC), particulate 

matter by loss on ignition) and partly with collaborators at Uppsala University, 

Sweden (mass spectrometry, absorbance, and fluorescence).  

 

4.4.4.1 TOC analysis 

Filtrates of raw stream samples and post-experimental samples were analysed 

for DOC by Shimadzu TOC-liquid analyzer for resulting organic carbon 

concentration at University of Exeter. The calculated standard error of the mean 

for standards and blanks were 4% (standard 50 mg L-1), 2% (5 mg L-1 standard) 

and 1% (analytical blanks). For comparison, selected replicate samples were also 

analysed for DOC at Uppsala University, Sweden, with a Shimadzu TOC-liquid 

analyzer.  

 

4.4.4.2 Organic matter in stream TSP 

Loss on ignition (LOI) was done at University of Exeter to determine the OM% of 

TSP in 110 sample filters that were oven-dried at 100°C in pre-weighed crucibles, 

before combustion at 500°C for 4 hours. The loss in weight corresponds to the 

weight of organic matter in the TSP noted on a 4-decimal balance. 

 

4.4.4.3 Mass spectrometry 

Mass spectrometry was used to determine the composition of DOM by direct 

infusion electrospray ionisation (ESI) Orbitrap mass spectrometry (Fleury et al, 

2017) at Uppsala University, Sweden. The method utilizes solid phase extraction, 

using 100 mg Bond Elut PPL cartridges (Agilent Technologies) that were cleaned 

in a methanol bath overnight followed by rinsing with formic acid (0.1%). Due to 

the low concentrations of DOC in the stream water samples, replicates were 

combined into a single 160 mL sample per site and treatment.  
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Sample results were corrected against treatment blanks; peaks in samples 

that were present at three times or above the corresponding peak in the treatment 

blank were considered and corrected by subtracting the peak intensity of the 

blank from the peak intensity of the sample, before normalisation against total 

sample intensity. Compounds of raw and experimental treatment filtrate samples 

were grouped by black carbon, polyphenols, highly unsaturated hydrocarbons, 

aliphatics, peptides, and sugars, by formulae for weighted average H/C and O/C 

ratios, after Seidel et al (2014). While van Krevelen diagrams can be readily used 

to plot and relate specific clusters of similar compound structures derived from 

high-resolution mass spectra (Kim et al, 2003), it needs to be emphasized that 

this assignment of organic species into compound groups provides a very 

simplified overview of which molecular structures may be present in a DOM 

sample, and that the identified molecular formulae rather represent mixtures of 

isomers than any individual structural entity (Seidel et al, 2014). However, van 

Krevelen diagrams have been used extensively and successfully to visualize and 

assign these compound groups in studies on DOM characteristics, and provides 

a useful tool in tracking for instance diagenetic and decay effects in natural 

organic matter (Kim et al, 2003). In this study, the identified molecular formulae 

in residual DOM filtrates were inspected by principal coordinate analysis (PCoA) 

to identify effects of experimental treatments T2, T3 and T4 by pair-wise 

comparison to the control samples of T1. 

 

4.4.4.4 Absorbance and fluorescence 

Pre-filtered water samples were measured for UV-Vis absorbance in wavelengths 

250–600 nm by Lambda35 UV-Vis Spectrometer (PerkinElmer Lambda 25, 

Perkin Elmer, Waltham, USA) at Uppsala University, Sweden.  

Fluorescence excitation-emission matrix (EEM) spectroscopy is a 

common technique that performs detailed mapping of fluorophores and can be 

used to determine qualitative properties of residual dissolved organic matter in 

natural waters (Bauer & Bianchi, 2012; Bieroza et al, 2012). Synchronous 

fluorescence was measured on selected raw and experimental filtrate samples 

by a FluoroMax-4 Spectrofluorometer (FluoroMax-4, Jobin Yvon, Horiba, Kyoto, 

Japan) at Uppsala University, Sweden. Measurements were done with excitation-

emission matrices (EEMs) at wavelength 250–445 nm by 5 nm increments and 
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300–600 nm by 4 nm increments, using daily Milli-Q water as blanks to correct 

for instrumental drift. Fluorophore components were identified by Parallel Factor 

(PARAFAC) analysis, discussed below. 

 

4.4.4.5 PARAFAC analysis 

A well-suited chemometric multi-way technique to identify DOM characteristics 

from fluorescence EEM spectra is PARAllel FACtor (PARAFAC, also known as 

canonical decomposition; CANDECOMP) analysis (Bro, 1997), which is a 

decomposition method in chemical sciences used to identify primary components 

of trilinear multi-way data (Stedmon & Bro, 2008, Murphy et al, 2014). One 

advantage of PARAFAC is that it utilizes threeway analysis and therefore does 

not suffer from rotational ambiguity, compared to other twoway analysis 

techniques where for instance spectral overlap complicate interpretation of 

results (Murphy et al, 2014). PARAFAC is a commonly used method for spectral 

decomposition and quantification of fluorescence EEMs into primary components 

(Murphy et al, 2013), for instance to characterise chromophoric components of 

organic matter to identify its various sources in the aquatic continuum (Stedmon 

et al, 2003). PARAFAC analysis was used to identify the components of cDOM 

in raw and experimental stream filtrate samples. 

 

4.4.4.6 Freshness index (FRESH), fluorescence index (FI), and 

humification index (HIX) 

The fluorescence index (FI) is a ratio between emission wavelengths 470–520 

nm at excitation wavelength 37 and serves as an indicator of terrestrial and 

microbial sources where a higher FI (c. 1.8) indicates microbial origin, while a 

lower (c. 1.2) FI represent a terrestrial DOM (Fellman et al, 2010). Similarly, the 

freshness index (FRESH) is the ratio between the emission intensity at 380 nm 

and maximum intensity found between 420–435 nm at excitation wavelength 310 

nm. FRESH is an indicator of how recently produced the DOM is. The 

humification index (HIX) is calculated from the area under 435–480 nm divided 

by the sum of peak areas from 300–345 and 435–480 nm at excitation 

wavelength 254 nm. Higher values of HIX indicate an increased degree of 
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humification (Hansen et al, 2016). FI, FRESH and HIX ratios were determined for 

cDOM in raw and experimental stream filtrate samples. 

 

4.5 Summary of Chapter 4 

In this chapter, the Exmoor field sites and methods were presented for the 

flocculation study. The sites were chosen for their similar drainage settings, land 

use and geology and represent a group that is well-suited for field replication. The 

results from this study are presented in Chapter 6.  
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Chapter 5. Results Brazilian reservoir catchment study 

This study focused on the transport of POC in a semi-closed tropical headwater 

catchment which has been impacted by human perturbation through land use 

change and damming. Quantification of soil and organic carbon export from 

catchment slopes to the reservoir through zones of autochthonous organic matter 

production was undertaken to understand the fate of terrestrial (allochthonous) 

and aquatic (autochthonous) organic matter in this catchment. The results 

presented in this chapter summarize 1) the POC distribution and quality in the 

soils and sediments, 2) the erosion and sedimentation rates in the catchment and 

reservoir estimated by the RUSLE model and measured by field observations 

through fallout radionuclides, and 3) an estimate of the POC redistribution rates 

which reveals the fate of POC in the catchment.  

 

5.1 POC inventories and quality in João Penido watershed 

5.1.1 Soil and sediment properties 

In this section basic properties (bulk density, particle size) for the samples 

collected in the field are presented.  

 

5.1.1.1 Bulk density of soil and sediment samples 

Mean bulk density for João Penido soils and sediments are summarized in Table 

18. The mean bulk density of top soils was 1.03 g cm–3. For top soils down to 20 

cm depth, the mean bulk density amounted to 1.00 and 1.05 g cm–3 for shrubland 

soils and pasture soils respectively. This low soil bulk density is likely connected 

to high porosity and relatively coarse texture, as it is poor in organic matter. For 

reservoir sediments the average bulk density amounted to 1.37 g cm–3, which is 

indicative of high porosity, but compared to catchment soils the sediments in 

general composed finer textures and contained relatively higher organic matter 

content. Pre-flooding material had an average bulk density of 1.61 g cm–3.  The 

standard deviation is high for these soils and sediment samples in the João 

Penido catchment, suggesting there is a high variability in factors influencing 

density in these soils and sediments, such as porosity, grain size, organic matter 

content and moisture (%). Maximum bulk density occurrerd in colluvium samples, 

which also showed the highest standard deviation (0.62-0.68). 
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Bulk density (g cm-3) of soil and sediment samples from João Penido      

Sample type Selection N Mean Min Max StDev 

Sediment <20 cm depth All 242 1.43 0.48 2.85 0.41 

Deltaic  15 1.47 0.97 2.07 0.26 

Reservoir sediments  175 1.37 0.48 2.85 0.40 

Pre-flood sediment  53 1.61 0.94 2.41 0.44 

Soils <20 cm depth All 323 1.03 0.31 4.09 0.40 

Soil shrubland  116 1.00 0.53 1.69 0.23 

Soil pasture (incl. colluvium site)  207 1.05 0.31 4.09 0.47 

Colluvium <20 cm depth  27 1.33 0.67 4.09 0.68 

Colluvium  43 1.11 0.44 4.09 0.62 

Table 18 Bulk density of soil and sediment samples in João Penido watershed.  

 

5.1.1.2 Particle size analysis (PSA) 

90 samples from three soil profiles (eroding–stable–colluvium) and three 

reservoir sediment cores were analysed for grain sizes 2000>250 µm, 250>63 

µm, and <63 µm separated by dry sieving (Figure 44, Figure 45). The texture of 

the soil and sediment samples was calculated to range from sandy-clay-loam to 

sand, with mean sand texture being 95.96% for soil and 93.79% for reservoir 

sediment. While the soil sites JP02 (shrubland) and JP17 (pasture) showed 

moderate variation in grain size with profile depth, sediment cores SED2, SED3 

and SED5  displayed layers with coarser grain size which would be indicative of 

historical erosion events in the catchment or resuspension within the reservoir. 

The colluvium site JP28 showed some differences compared to the soil sites, with 

low content of the <63 µm faction in the surface of the profile and with increasingly 

finer fraction present at subsoil levels (>20 cm). Mean particle size of samples 

(N=26) in the upper 20 cm top soil sections of soil profiles were used to calculate 

K factor for RUSLE analysis using field observations (see section 3.4.2.2). The 

results of grain size analysis are summarized in Table 19. Soil (sd=1.56) showed 

lower variability in grain size than sediments (sd=4.16), which contained a higher 

amount of finer textures. 
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Average particle size % distribution       

  N   Mean Min Max StDev 

Sediment 56 Sand 93.79 74.42 100 4.16 

    Silt-clay 6.21 0 25.58 4.16 

Soil 34 Sand 95.96 91.82 99.54 1.56 

    Silt-clay 4.044 0.46 8.18 1.56 

Table 19 Particle size analysis summary results. 

 
 

 

Figure 44 Grain size fraction (mass %) of classes: 2000>250 µm, 250>63 µm, 

<63 µm for soil cores JP02 (eroding site), JP17 (reference site) and JP28 

(aggradation site), and sediment cores SED2, SED3, and SED5 from João 

Penido catchment. 
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Figure 45 Boxplot showing grain size distribution of six soil and sediment cores. 

 

5.1.2 Carbon, nitrogen and C/N ratio 

100 sediment samples and 50 soil samples were analysed for total carbon (Ctot), 

totalt organic carbon (TOC), total nitrogen (Ntot) by a ThermoScientific Flash 2000 

Organic Elemental Analyzer. An additional 401 soil and sediment samples were 

analysed for organic matter (OM%), organic carbon (OC%) and particulate 

inorganic carbon (PIC%) by loss on ignition (LOI), with results described in 

section 5.1.3. This section only presents results from samples analysed by the 

C/N-method (3.3.3). While OM% is readily determined by the LOI method, results 

of OC% from the C/N method were used to determine a conversion value which 

was used to calculate reasonable OC% for soil and sediment samples analysed 

by the LOI method (described in 3.3.5 Loss on ignition (LOI)). 

TOC samples required pre-treatment by acid fumigation to remove 

carbonates, while Ctot duplicates were left untreated prior to analysis. Carbonate 

content was estimated from the difference Ctot and TOC. Additionally, 9 delta 

sediment samples, 16 sediment samples, and 25 soil samples were analysed for 

TOC and Ntot, by wet-sieved and density separated fractions (see section 3.3.4 

for details). Particulate inorganic carbon (PIC) was calculated as the difference 

between non-fumigated samples (containing total carbon) and acid fumigated 

(containing organic carbon only) duplicate samples. The results revealed that 
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very little PIC% is present in João Penido samples, between 0–0.39% for soils 

and sediment (Figure 46). 

 

 

 

Figure 46 Comparison of Ctot% in acid fumigated (PIC removed) and non-

treated (PIC present) samples from João Penido reservoir. 

 

5.1.2.1 Organic carbon distribution 

Acid fumigated samples showed varying OC% distribution in delta sediments, 

reservoir sediments and soils (Figures 47a, 47b, 47c, Table 20). The highest 

concentrations with a range of 0.83–27.41% and a mean of 11% occurred in delta 

sediments, for which a bimodal distribution was observed, which represents a 

mixture of allochthonous and autochthonous sources. For reservoir sediments 

the concentrations ranged between 0.83–12.51%, with a mean of 4.53%, also 

displaying two OC groups. Soil OC% ranged between 0.73–6.30% with a mean 

of 2.37%. OC content typically decreased with depth in soil profiles, while 

sediment sites showed varying content depending on sediment depth. Where the 

observed boundary between post-flooding sediment and pre-flood material 

occurs, OC concentrations typically decreased to levels of terrestrial soils. This 

suggests that pre-flood material compose inundated catchment soils. The highest 

OC concentrations (15–20%) were present in top sediment layers (<20 cm). 
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5.1.2.2 Total nitrogen distribution 

The distribution of Ntot in the catchment showed highest concentrations in delta 

sediments, followed by reservoir sediments and relatively low concentrations in 

soils (Figure 48, Table 20). The bimodal distribution of Ntot in delta sediments is 

indicative of two organic matter sources, one with lower concentrations similar to 

terrestrial soils and one with higher concentrations assumed to originate from 

aquatic organic matter (Figure 48a). The concentrations of Ntot ranged between 

0–1.71% and showed more variation with depth sediment cores compared to soil 

profiles (Figure 48b, 48c). The varying pattern with sediment layers is indicative 

of mixed organic matter input, which can be connected to historical growth 

patterns of macrophytes and input of soil organic matter.  
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Figure 47 Distribution of OC% in delta, reservoir sediment and soil, displayed by 

a) histograms, b) boxplot, and c) depth profiles. 
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Figure 48 Distribution of Ntot% in delta, reservoir sediment and soil, displayed by 

a) histograms, b) boxplot, and c) depth profiles. 
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5.1.2.3 C/N distribution 

The delta sediment cores showed C/N values of 8.04–29.90, with a mean of 

15.34 (Table 20), indicating that the delta sediments (profiles 4A and 4B) 

contained organic matter of more autochthonous aquatic origin rather than 

allochthonous. Histograms (Figure 49a) and boxplots (Figure 49b) showed that 

C/N ratios were lowest for delta sediments and reservoir sediments, while highest 

for soils. Lake sediments in the deeper parts of the reservoir showed C/N ratios 

ranging 3.41–66.70, with a mean of 13.58, while soil samples displayed the 

highest C/N ratios of the catchment samples, ranging 2.52–116.43 with a mean 

of 40.28. Very high soil C/N ratios (>50) occurred in 10 samples, but these could 

not be explained by observations in the field. The mean C/N ratio of post-flooding 

sediments (excluding pre-flood material) from 5 cores was 13.49 (N=5, sd=1.65).  

 
Descriptive statistics of C/N data of João Penido watershed   

    N Minimum Maximum Mean StDev 

Delta 
sediment 

N% 33 0.04 1.71 0.73 0.5 

  OC% 33 0.83 27.41 11 7.4 

  C/N 33 8.04 29.9 15.3 4.7 
Reservoir 
sediment 

N% 68 0.01 0.89 0.38 0.3 

  OC% 68 0.83 12.51 4.53 4.8 

  C/N 68 3.41 66.7 13.58 14.6 

Soil N% 50 0.13 0.59 0.08 0.4 

  OC% 50 0.73 6.3 2.37 4.9 

  C/N 43 2.52 116.43 40.28 21.4 

Table 20 Descriptive statistics of C/N data.  

 

Samples of soil profiles (JP02, JP06, JP14, JP17, and JP28) typically showed 

C/N ratios above 20 (Figure 50). The top sediments of delta samples from profiles 

SED4A and SED4B showed mixed towards slightly more terrestrial C/N ratios, 

while the deeper sediments of SED4B indicated mixed source to a more aquatic 

origin with lower C/N values. Reservoir sediment showed the largest variability in 

C/N ratios (sd=14.6), which was expected due to its mixed sources of 

allochthonous and autochthonous POC. 
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Figure 49 Distribution of C/N in delta, reservoir sediment and soil, 

displayed by a) histograms and b) boxplot. 
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The sediment sites showed mainly low C/N values typical of lake sediments with 

aquatic origin, although a few outliers of SED2A and SED3C appear to have 

sediment layers indicative of terrestrial input. The differences in C/N signatures 

were distinct for the terrestrial and aquatic samples, and delta sediment showed 

similar trends to soil suggesting that some of the delta POC is of terrestrial origin. 

 

5.2.3.4 C/N of samples from density fractionation 

Wet-sieved samples separated into fractions 2000>250 µm, 250>53 µm and <53 

µm showed maximum C/N values (17.22–126.15) in fine fraction soil samples 

from pasture sites (Figure 51). All fractions from samples of pasture soils showed 

more enriched OC% and N% content compared to shrubland, while the highest 

concentrations occurred in reservoir sediments (Figure 52). 

 

 

Figure 51 C/N ratios in density wet-sieved fractions of soil (pasture, shrubland) 

and sediment (reservoir) samples. The finer soil fractions show the maximum 

C/N ratios. 
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Figure 52 Density-separated samples showing C% and N% of the heavy 

fraction (>1.65 g cm–3). 

 
Only 6 samples provided enough light inter-aggregate organic material from 

density fractionation for analysis. These light samples appear to follow a separate 

mixing line compared to the heavy fractions (Figure 53). 

 

 

Figure 53 Relationship of carbon and nitrogen in light (red crosses) and heavy 
(blue circles) density-separated fractions (light<1.65 g cm–3<heavy). 
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5.1.3 Loss on ignition analysis of organic matter (OM), organic carbon 

(OC%) and carbonates (PIC%)  

Basic statistics of particulate OM, OC and PIC content of soils (upper 20 cm), 

delta sediments, reservoir sediments, pre-flood material and terrestrial colluvium 

are summarized in Table 21. The highest concentrations of organic matter were 

present in delta (30.76%) and reservoir sediments (22.51%), while soils 

(13.99%), colluvium (9.29%) and pre-flood soils (11.46%) showed similar low 

mean concentrations.  

 

Descriptive statistics loss on ignition (LOI) data      

    N Mean SE 
mean 

StdDev Min Max Range Variance 

OM% Soil (top 20 
cm) 

169 13.99 0.35 4.5 7.21 63.83 56.62 20.24 

  Colluvium 49 9.29 0.49 3.43 4.12 16.13 12.02 11.78 

  Delta 
sediment 

17 30.76 4.59 18.92 1.66 62.79 61.13 357.89 

  Reservoir 
sediment 

133 22.52 0.9 10.32 8 72.09 64.09 106.56 

  Pre-flood 32 11.46 0.88 5 4.38 28.1 23.72 25.04 

OC% Soil (top 50 
cm) 

169 2.8 0.07 0.9 1.44 12.77 11.32 0.81 

  Colluvium 49 1.86 0.1 0.69 0.82 3.23 2.4 0.47 

  Delta 
sediment 

17 7.69 1.15 4.73 0.41 15.7 15.28 22.37 

  Reservoir 
sediment 

133 5.63 0.22 2.58 2 18.02 16.02 6.66 

  Pre-flood 32 2.86 0.22 1.25 1.09 7.02 5.93 1.57 

PIC% Soil (top 50 
cm) 

129 0.92 0.13 1.52 0 16.7 16.7 2.3 

  Colluvium 32 0.5 0.03 0.17 0.3 0.9 0.6 0.03 

  Delta 
sediment 

16 1.19 0.19 0.75 0.1 2.5 2.4 0.56 

  Reservoir 
sediment 

110 1.5 0.09 0.9 0.4 7.7 7.3 0.81 

  Pre-flood 18 0.52 0.07 0.3 0.2 1.1 0.9 0.09 

Table 21 Descriptive statistics of OM%, OC% and PIC% in upper 20 cm soil 

and sediment layers João Penido catchment.  

 

5.1.3.1 Organic matter (OM) % 

The distribution of OM% showed highest concentrations in delta sediments 

(1.66–62.79%) and reservoir sediments (8.0–72.09%) compared to top soils 

(7.21–63.83%), colluvium (4.12–16.13%) and pre-flood material (4.38–28.1%) 

which showed similar trends in OM content (Figure 54). In general, top soils and 

sediments displayed higher contents of organic matter, compared to subsoils and 

deeper sediments (Figure 55b). Some shallow pre-flood material samples 
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occurred in top sediments (upper 20 cm) where the post-flooding sediment layer 

was thin, but did not display markedly higher concentrations that sublayers. 

 

 

Figure 54 Distribution of OM% in João Penido catchment soils and sediments 

from LOI analysis, displayed as a) histograms, and b) boxplots. Top soil (upper 

20 cm) and sub-soil (below 20 cm) show similar distribution for the chosen 

classes. 
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The carbonate vs. OM% showed different trends for sediments and soils with 

slightly elevated PIC% in deltaic and reservoir sediments. Reservoir sediments, 

especially waterlogged delta sediments, showed up to ca 4 times higher OM 

content compared to colluvium. The inundated soils below the post-flooding 

sediment showed a mean value of 2.86% for OC and 11.46% OM, which is more 

similar to values of catchment soils.  

 

5.1.3.2 Organic carbon (OC) % 

Organic carbon (OC) was calculated from by a conversion factor of 20% for soils 

and 25% for sediments, derived from C/N analysis (3.3.5). The results showed 

OC% ranging between 0.82–12.77% for soils, where non-managed shrubland 

had a mean of 2.93% and pasture soil had a mean of 3.32%. Sediments showed 

OC% between 0.41–18.02%, where deltaic sediments had a mean of 7.69% and 

reservoir sediments a mean of 5.09%. The pre-flood material showed OC content 

between 3.02–5.67%, with a mean of 4.14%. The delta samples contained the 

widest range of OC% values, whilst eroding soils rarely exceeded values above 

10%. Plotting organic matter against organic carbon showed that different media 

varied in organic carbon content relative to organic matter content (Figure 55).  

 

 

Figure 55 Relationship of TOC% and OM% in soil, delta sediment, post-flooding 
reservoir sediment and pre-flood material. 
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5.1.3.3 Carbonates % 

Carbonates were abundant in low concentrations in the study area, with a mean 

of 0.8% for soils and 1.3% for sediments. In general, the lowest mean 

concentrations were present in colluvium, while higher mean values were found 

in delta sediments and reservoir sediments (Figure 56). These results differ from 

the results of TC analysis, where PIC was determined as the difference between 

the non-fumigated (TC) and fumigated (TOC) samples. The differences arise 

partly from the uncertainties of the loss on ignition method, and partly from the 

differences in sample size, where LOI samples (0.8-11.0 g) were larger than for 

TC analysis (14.8–19.7 mg). 
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Figure 56 Distribution of PIC% in João Penido catchment soils and sediments 

from LOI analysis, displayed as a) histograms, and b) boxplots.  
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5.2 Erosion in João Penido watershed 

This section summarizes the output of fallout radionuclides and RUSLE model to 

assess the soil erosion rates and sedimentation in João Penido watershed, using 

database and field observations.  

 

5.2.1 Fallout radionuclide results  

The concentrations and inventories of 137Cs and 210Pbex in soils and sediments 

are presented in this section. 

 

5.2.1.1 Radionuclide concentrations and inventories 

336 samples were analysed for 137Cs concentrations, out of which 174 samples 

provided a positive 137Cs-signal. For 210Pb, 254 soil samples were measured. 

From sediment sites, 76 sediment samples were analysed for 137Cs and 210Pbex. 

Radionuclide inventories used for soil erosion modelling are summarized in Table 

22 (complete cores) and in Table 23 (samples of soil profiles). Shapiro-Wilks 

normality test showed that radionuclide sample concentrations (mBq g–1) were 

not normally distributed: 137Cs (W=0.46, p<0.005) and 210Pbex (W=0.45, p<0.05). 

Spearman correlation between 137Cs and 210Pbex concentrations (mBq kg–1) was 

weakly positive (rS = 0.198, p = 0.045), while the correlation between 137Cs and 

210Pbex site inventories (Bq m–2) was higher (rS = 0.50, p = 0.015).  
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Summary table fallout radionuclides    

Core 
depth 
(cm) 

Core 

137Cs N 
positive 
samples 

/total 

137Cs 
activity 
(mBq g-

1) 

Inventory 
137Cs (Bq 

m–2) 
E/A 

210Pbex N 
positive 
samples 

/total 

210Pbex 
activity 

(mBq g-1) 

Inventory 
210Pbex 

(Bq m–2) 
E/A 

30 JP02 7/10 8.2 129.3 E 10/10 247.5 12611.3 A 

30 JP03 6/10 1.6 282.1 A 10/10 201.8 16701.1 E 

30 JP06 6/10 10.0 183.5 E 10/10 313.9 6769.6 E 

30 JP11 6/11 5.5 479.1 A 10/10 260.2 22551.2 E 

30 JP12*** 2/11 79.7 / A 11/11 204.7 18678.3 E 

30 JP14 7/12 25.8 554.7 A 12/12 169.8 17348.8 E 

30 JP15 10/14 5.7 124.9 E 14/14 128.4 17560.6 A 

30 JP17* 6/10 6.3 219.8 Ref 10/10 316.1 8924.5 E 

30 JP18 7/10 6.2 108.5 E 10/10 581.1 47881.1 A 

30 JP19** 8/10 8.8 192.3 E 10/10 253.2 11892.3 E 

50 JP21 13/16 19.1 410.5 A 16/16 831.6 48014.3 A 

20 JP23 6/10 11.1 177.0 E 10/10 370.9 21980.4 E 

25 JP24 4/11 8.5 921.1 A 11/11 503.4 45485.7 E 

30 JP25 11/12 7.9 119.1 E 12/12 157.2 7268.6 E 

30 JP26 6/12 12.6 189.9 E 12/12 361.5 26722.3 E 

45 JP28 7/15 8.5 136.3 E 15/15 481.3 43000.2 E 

25 JP29** 7/10 19.3 313.8 A 10/10 318.7 29297.6 A 

30 JP30 6/11 2.1 30.9 E 11/11 228.4 14393.7 A 

18 SED1 7/9 9.8 24.8   9/9 2847.8# 46815.2#  

42 SED2 11/21 46.9 132.4   20/21 1479.4# 46533.7#  

30 SED3 10/15 17.3 1756.5   15/15 761.0# 92681.0#  

22 SED4 5/10 6.2 240.1   11/11 956.0# 22571.4#  

40 SED5 15/20 96.6 21855.3   20/20 2236.5# 77954.5#  

  Total 173/281       279/280      

*Reference site **Only 210Pbex ***Sample missing #Extreme values   

 Table 22 Analysed sample activities and inventories for complete FRN profiles 

in João Penido catchment and reservoir, where 137Cs erosion/deposition is E = 

erosion and A = aggradation, respectively. 
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Radionuclide inventories of soil and sediment cores         

  N 
Mean 137Cs 

inventory (Bq m–2) 
Median 137Cs 

inventory (Bq m–2) 
N 

Mean 210Pbex 
inventory (Bq m–2) 

Median 210Pbex 
inventory (Bq m–2) 

Reservoir 
sediment 

5 4801.8 240.1 5 57311.2* 46815.2* 

Pasture 
1
1 

256.3 189.6 11 27669.1 26722.3 

Shrubland 6 292.3 232.8 6 16031.6 17348.8 

Table 23 Summary of 137Cs and 210Pb data for soil and sediment profiles in 

João Penido catchment. * denotes the extreme 210Pbex values.  

 

137Cs activities showed irregular concentrations in shrubland and pasture soil 

profiles ranging between 1.6–79.7 mBq g–1 , with most of the activities 

concentrated in top soil (<20 cm) (Figure 57, Figure 58). The 137Cs inventory for 

the reference core (site JP17) was 219.83 Bq m–2, which was similar to both the 

median 137Cs inventories of all shrubland sites of sampling location A (232.8 Bq 

m–2) and the median of all pasture sites of sampling location B (189.9 Bq m–2).  

The mean inventory of all soil sites amounted to 269.0 Bq m–2, with a mean value 

for all shrubland sites of 292.3 Bq m–2 and pasture sites correspondingly was 

256.3 Bq m–2, which was substantially higher than the reference inventory and 

indicated that the mean inventories were less representative for these sites. 
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Figure 57 137Cs activities (mBq g–1) in shrubland soil profiles. Red line 

delineates top and sub soil boundary (20 cm). 

 

 

Figure 58 137Cs activities (mBq g–1) in pasture soil profiles. Red line delineates 

top and sub soil boundary (20 cm). 
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The 210Pbex concentrations in the soil cores of João Penido mainly showed the 

typical declining profiles that are characteristic for continuous fallout (Figure 59, 

Figure 60). The activities ranged between 128.4–831.6 mBq g–1
.
 210Pbex 

inventories in soil profiles ranged between 6769.6–48014.3 Bq m–2, with the 

reference site (JP17) 210Pbex inventory being 8924.5 Bq m–2 and the mean 

inventory of all soil sites was 23171.2 Bq m–2.  

 

 

Figure 59 210Pbex activities (mBq g–1) in shrubland soil profiles. Red line 

delineates top and sub soil boundary (20 cm). 
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Figure 60 210Pbex activities (mBq g–1) of pasture soil profiles. Red line delineates 

top and sub soil boundary (20 cm). 

 

The mean pasture and shrubland inventories amounted to 27714.6 and 16031.6 

Bq m–2, respectively. Supported 210Pbsupp occurred with continuous 

concentrations along the depth-profile throughout the measured cores, with a 

mean of 28.8 mBq g–1 for shrubland soils, and 45.2 mBq g–1 for pasture soils.  

 

5.2.1.2 Radionuclide distributions in soil and colluvium profiles 

Examples of a soil profile with typically declining 137Cs and 210Pbex activities of 

soil increments with depth from the pasture reference site JP17 are displayed 

below (Figure 61, Figure 62).  
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Figure 61 137Cs activities (mBq g–1) of reference core (site JP17). 

 

Figure 62 210Pb activities (mBq g–1) of pasture reference core (site JP17). The 

total inventory of 210Pbex is 8924.5 Bq m21, showing a typical 210Pbex profile with 

higher activities in the top soil decreasing with soil depth. The concentrations of 

supplemental 210Pb (210Pbsupp) in the soil profile samples average 49.4 Bq kg–1 

throughout the profile, showing continues concentrations with depth.  

 
Maps of 137Cs and 210Pbex radionuclide inventories show the distribution of 

inventories for the sampling sites, presented in Figure 63, Figure 64, Figure 65, 

and Figure 66. Generally 210Pbex inventories showed somewhat higher 

inventories compared to corresponding 137Cs inventories relative to the chosen 
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reference site (JP17) in the field. As expected, the inventories were typically 

lowest at eroding areas with steeper slope angle, whilst highest in depositional 

environments in troughs and depressions, as shown for inventories at site 

location A (Figure 64). Contradictory, at site location B lower inventories of 137Cs 

were found at depositional sampling sites, e.g. colluvium profile JP28 and JP25, 

which could be connected to low abundance of 137Cs-sorptive clay fractions (<63 

µm) in these profiles, however this does not appear to fully explain these low 

inventories.   

 

 

 

Figure 63 137Cs-inventories at shrubland sampling location A, in João Penido 

reservoir catchment. Scale is set for both sampling locations A and B. EPSG: 

3857. 
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Figure 64 210Pbex-inventories at pasture site A, in João Penido catchment. The 

reference site JP17 is located at sampling location B. Scale is set for both 

sampling locations A and B. EPSG: 3857. 

 

Figure 65 137Cs-inventories at pasture site B, in João Penido catchment. EPSG: 

3857. 
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Figure 66 210Pbex-inventories at pasture site B, in João Penido catchment. 

EPSG: 3857. 

 

5.2.1.3 Radionuclide inventories of sediment profiles 

In sediment cores 137Cs concentrations ranged between 6.2–96.6 mBq g–1 

(Figure 67). In comparison, others have reported 137Cs activities of 0.47–5.31 

mBq g–1 in Brazilian estuarine sediments of Bahia state (Angeli et al, 2016). 137Cs 

inventories in sediment cores ranged between 24.8–21855.3 Bq m–2, with a mean 

137Cs inventory of the measured lake sediment sites of 4801.8 Bq m–2, while the 

median inventory amounted to 240.1 Bq m–2 (Figure 68). A 137Cs peak was found 

in core SED5 at depth 30–32 cm, which is below the boundary of post-flooding 

sediment and observed pre-flood material. In this case, either resuspension of 

sediment has occurred to deposit coarser material on top of the sediment layer 

representing year 1963 (with the 137Cs peak) or the determined depth of the pre-

flood boundary from core observations was subject to error. By the simple 

assumption that 1963 represents the year of maximum fallout of 137Cs, the peak 

of activity (29.9 mBq g–1) in reservoir sediment core SED5, which was sampled 

in the deepest part of the reservoir, was used to determine the average 

sedimentation rate for that core by dividing the sediment depth (cm) with the 
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difference in years between sampling and year 1963. From 137Cs data, the 

average sedimentation rate for the site of reservoir sediment core SED5 was 

calculated to 0.6 cm year–1.   

 

 

Figure 67 137Cs activities in sediment samples of João Penido reservoir. Vertical 

red dotted line denotes zero concentrations and inventory. Horizontal red 

dashed line denotes observed pre-flood boundary. The blue dashed line 

denotes a peak in 137Cs. 
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Figure 68 137Cs profiles of reservoir sediments. Vertical red dotted line denotes 

zero 137Cs inventory. Horizontal red dotted line denotes pre-flood material, while 

the blue dashed line represents 137Cs peak, representing year 1963. Scales are 

set to free. 

For sediment profiles, 210Pbex concentrations ranged between 761.0–2847.8 mBq 

g–1. Other studies have reported 210Pbex values for lake sediments of 23.28-95.91 

mBq g–1 (Angeli et al, 2016) and estuarine sediments of 1586.04–1845.11 mBq 

g–1 (Lubis et al, 2006). The inventories ranged between 22571.4–92681 Bq m–2, 

with a mean 210Pbex inventory of 57311.2 Bq m–2 and a median inventory of 

46815.2 Bq m–2. These inventories are very high, compared to other studies. Both 

137Cs and 210Pbex concentrations of the reservoir sediments are presented in 

Figure 69. 
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Figure 69 Radionuclide concentrations (mBq g-1) in João Penido reservoir 

sediments. 

 

5.2.2 Conversion model results 

The results from conversion model calculations of erosion rates in João Penido 

catchment are presented here. 

 

5.2.2.1 Profile distribution model (PDM) erosion output 

The mean erosion rate for all eroding sites calculated by the profile distribution 

model corresponds to 0.45 kg m–2 year–1, or correspondingly 4.5 tonnes ha–1 

year–1. The mean erosion rate for the shrubland site was 0.41 kg m–2 year–1 and 

the mean erosion rate for the pasture site was 0.47 kg m–2 year–1. PDM-output is 

summarized in Table 24. 

 

PDM-137Cs soil erosion rate (kg m–2 year–1)     

Land cover N Mean Min Max 

Shrubland 6 0.42 0.04 1.03 

Pasture 10 0.47 0.06 1.74 

All 8 0.45     

Table 24 Erosion rates calculated by the Profile distribution model (PDM) for 

137Cs. 
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5.2.2.2 Diffusion and migration model (DMM) erosion output  

The diffusion and migration coefficients for 137Cs and 210Pbex were calculated for 

the reference site JP17, using D=22.56, V=1.08 for 137Cs, and D=0.88, V=0 for 

210Pbex. The model requires a value for relaxation mass depth that represents 

penetration of fresh fallout (not to be confused with h0 which relates to the profile 

distribution, used for PDM-137Cs calculation of erosion rates) and a value of 4 kg 

m–2 was chosen for all samples. Diffusion and migration model (DMM) output is 

summarized in Table 25. Results suggests that erosion rates based on DMM-

137Cs range between 4.95–6.01 kg m–2 year–1
 for shrubland sites and 3.95–6.94 

kg m–2 year–1
 for pasture sites, with a mean of 5.71 kg m–2 year–1

 for all sites, 

corresponding to 57.1 tonnes ha–1 year–1. For 210Pbex data, erosion rates obtained 

by DMM range between 1.61–2.03 kg m–2 year–1 for shrubland sites, and between 

1.00–1.98 kg m–2 year–1
 for pasture sites, with an overall mean of 1.63 kg m–2 

year–1 which corresponds to 16.3 tonnes ha–1 year–1. These erosion rates are 

closer to PDM output for 137Cs. The erosion output from DMM showed similar 

trends for both 137Cs and 210Pbex with some exceptions (Figure 70, Figure 71, 

Figure 72, Figure 73). 

 

DMM soil erosion rates (kg m–2 year–1)           

    137Cs     210Pbex     

Land cover N Mean Min Max Mean Min Max 

Shrubland 7 5.56 4.95 6.01 1.79 1.61 2.03 

Pasture 10 5.80 3.95 6.94 1.53 1.00 1.98 

All 17 5.71     1.63     

Table 25 Diffusion and Migration Model (DMM) erosion results by 137Cs and 

210Pbex for João Penido catchment. 
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Figure 70 DMM erosion by 137Cs at site A. 

 

 

Figure 71 DMM by 210Pbex at site A.  
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Figure 72 DMM erosion rates by 137Cs at site B. 

 

Figure 73 DMM erosion rates by 210Pbex at site B. 
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5.2.2.3 SAR from radionuclide data 

SAR from sedimentation rates derived from 210Pbex models CIC and CRS are 

summarized in Table 26. Initially SAR from 210Pbex models are reported in the unit 

kg m–2 year–1, which gives a sediment mass input rate per area unit rather than 

an annual linear thickness increase (cm year-1) which is achieved from 

observations of post-flooding sediment thickness (see section 3.3.5.1). Linear 

SAR were calculated from CRS-age for each depth increment (2 cm) and an 

annual average accumulation in mass could be directly translated into a yearly 

sediment flux so that variation in SAR could be analysed. The results are 

presented in Figure 74. 

 

Average sedimentation rates (cm year-1)    

Core CIC model CRS model based on 137Cs peak 

SED1 8.01 0.03 
 

SED2 4.83 0.07 
 

SED3 4.34 0.00004 0.07 

SED4 3.71 0.03 
 

SED5 2.22 0.53 0.5 

Table 26 Summary of 210Pb SAR based on CIC and CRS models. 

 

The 210Pb ages obtained from CRS model results for five sediment cores showed 

consistent age chronology, whereof two of the cores, sites SED3 and SED5 

contained material older (pre-flood material) than the year the reservoir was 

established (1934). In general, sedimentation rates appeared to have increased 

for sites SED1 and SED2, while it showed variable rates for SED4 and SED5, 

and the sedimentation rates for SED3 showed negligible variation with depth. The 

CRS model showed results which agreed with the maximum 137Cs concentrations 

found in sediment cores, out of which only sites SED3 and SED5 were found to 

contain the specific bomb peak (assumed year 1963). The calculated CRS ages 

showed that sediment profiles SED1, SED2 and SED4 contained younger 

sediments. Results from the CIC model gave SAR values that were higher than 

both SAR derived from core thickness of post-flooding sediment and from 137Cs 

observations.  
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Figure 74 Sedimentation rates (cm year–1) for João Penido sediment sites. Pre-

flood material appears at 32 cm depth for SED2, and at 28 cm depth for SED5, 

where SAR is either zero or lower than in the rest of the core profiles. Pre-flood 

material was observed at a depth of 6 cm for SED3, and affirming CRS-

calculated SAR showed negligible variation in this profile. 

 

5.2.2.4 Post-flooding sediment volume and mass 

Sediment volume was interpolated from post-flooding thickness observations 

(N=15) by IDW. The resulting interpolated map (Figure 75) showed sediment 

thickness ranging between 0.06–0.52 m across the reservoir reach. The 

interpolated average sediment thickness equalled 0.27 m. Total post-flooding 

sediment volume was then calculated with the SAGA tool Raster volume, 

resulting in 753058.8 m3. This equalled roughly an average sediment 

accumulation of 9183 m3 year–1 in the reservoir since it was built in 1934, with an 

average linear sediment accumulation rate of 0.3 cm year–1. The average 

sediment density was assumed to be 1.37 g cm–3, and the mass of sediment in 

the reservoir was then calculated to 1031690.56 tonnes. 



170 
 

 

 

Figure 75 Post-flooding sediment thickness (m) map of João Penido reservoir. 

EPSG: 3857.  

 

5.2.3 RUSLE output 

The RUSLE model was used estimate soil erosion in the João Penido catchment, 

from five factors representing: rainfall erosivity, R; soil erodibility, K; length–slope 

factor LS; land use and cover factor, C; and management practices, P (described 

in section 3.3.2). The results present natural potential of erosion (NPE), current 

state of erosion (S_fieldCK), and simulated forested and deforested states with 

C factor inputs from database and digitized values. The various simulations are 

summarized in Figure 76. 
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5.2.3.1 Natural potential of erosion (NPE) 

For João Penido reservoir the natural potential of erosion (NPE) was calculated 

for catchment raster cells from factors derived from databases (NPE_DB) and 

with K from field observations (NPE_K). NPE_DB ranged between 1.52–6812.60 

tonnes ha–1 year–1 (Figure 77, Table 27), with a mean erosion rate of 324.86 

tonnes ha–2 year–1 and a standard deviation of 356.67 tonnes ha–1 year–1. When 

K was derived from field observations (this study) the simulated NPE_K output 

ranged between 0.79–3541.29 tonnes ha–1 year–1, with a mean of 168.87 tonnes 

ha–1 year–1 and a standard deviation of 185.41 tonnes ha–1 year–1. NPE from 

S_fieldK was ca 52% lower than for NPE_DB output. This difference indicates 

the importance of accurate assessment of the value for the soil erodibility factor 

K.  

 

5.2.3.2 Model outputs for current state of erosion in João Penido 

catchment 

RUSLE output using database input only (S_DB) showed that current erosion 

ranged between 0–1259.16 tonnes ha–1 year–1, with a mean erosion rate of 37.78 

and a standard deviation of 53.96 tonnes ha–1 year–1 (Figure 78, Table 27). This 

gave a mean database derived erosion rate of 14.78 g m–2 day–1 or 3.78 kg m–2 

year–1 from terrestrial soils in the catchment. The highest erosion rates were 

found on hillslopes as a result of steepness, while low slope crests and 

depressions showed lower erosion rates. Low C factor values clearly decreased 

the simulated erosion rates from land cover classified as wooded and built-up 

areas. For S_DB, low C factor values from the land cover map decreased soil 

erosion even in elevated areas with high LS factor values.  
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Figure 77 Natural potential of erosion (NPE) of the João Penido catchment, 

based on database values (R, LS) and field observations (K). The reservoir 

area is delineated. EPSG: 3857. 
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Figure 78 RUSLE output S_DB, based on database input only for current state 

of erosion in the João Penido catchment. The reservoir area is delineated. 

EPSG: 3857. 
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Database derived factors K and C could be replaced by observations from the 

field to improve the RUSLE output. Soil observations were used to calculate the 

K factor and digitizing of satellite data was done to produce a more detailed land 

cover map, which was assigned literature C values.  With observed input data for 

the K factor (S_fieldK), the resulting average erosion rate from the catchment was 

19.64 tonnes ha–1 year–1, corresponding to 1.96 kg m–2 year–1,  5.38 g m–2 day–1 

(Table 27). RUSLE output with a digitized C factor (S_fieldC) gave a mean 

erosion value of 20.88 tonnes ha–1 year–1 (sd=28.00). When both field 

observations of K and C were used as input data, the simulation (S_fieldKC) 

resulted in a mean erosion rate was 10.85 tonnes ha–1 year–1 (corresponding to 

1.09 kg m–2 year–1, or 2.99 g m–2 day–1) with a standard deviation of 14.55 tonnes 

ha–1 year–1 (Figure 79). For S_fieldCK the improved land cover map reduced 

erosion in wooded and built-up areas of the catchment and the highest erosion 

rates were confined to the steeper slopes of hills.  

The resulting RUSLE output from analysis with various input data, derived 

from databases and observations, are summarized in Table 27; S_fieldCK was 

expected to be the result closest to the actual contemporary erosion state of the 

catchment.  

 

 

RUSLE output (tonnes ha–1 year–1) 

  

S_DB 
(database 

input) 

NPE_DB 
(database 

input) 

S_fieldC 
(digitized 

C) 

S_fieldK 
(observed 

K) 

NPE_fieldK 
(observed K) 

S_fieldCK 
(observed K 
and digitized 

C factor)  

Mean 37.8 324.9 20.88 19.64 168.9 10.85 

Min 0 1.5 0 0 0.8 0 

Max 1259.2 6812.6 545.01 654.53 3541.3 283.3 

SD 54 356.7 28 28.04 185.4 14.5 5 

Table 27 Comparison of RUSLE output using factors derived from database 

information, field observations, and digitized land cover. 
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Figure 79 RUSLE output S_fieldCK, from database input, observed K factor and 

digitized C factor map. This is the closest approximation to actual erosion in 

João Penido catchment. The reservoir area is delineated. EPSG: 3857. 
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5.2.3.3 Simulated scenarios: forested state and deforested states 

The RUSLE model was used to determine the current state of erosion in the João 

Penido watershed, and to simulate three erosion scenarios of the watershed 

being completely forested and similarly deforested at two levels by using literature 

C values as input for the C factor; a completely forested state was attained by 

setting the C factor to 0.003, which is representative of broad-leaved forest; the 

two deforested states were given C factors of 0.1 and 0.45, representing the lower 

and upper range of sparsely vegetated areas (Panagos et al, 2015). In the 

simulations built-up areas as well as standing water (the main reservoir and other 

larger ponds in the catchment) were unchanged (set to a C factor value of 0).  

When using database input (S_DB) the scenarios showed higher erosion 

rates than when using S_fieldKC utilizing observations from the field. Reclassified 

land cover values from the GlobCover dataset were used as input for the C-factor, 

together with the HSWD database derived value of K. The completely forested 

state showed erosion rates ranging between 0–20.51 tonnes ha–1 year–1 

(sd=1.19). The deforested state with assumed grassland showed erosion rates 

between 0–683.72 tonnes ha–1 year–1 (sd=39.17). The extremely bare state 

showed erosion rates between 0–2076.73 tonnes ha–1 year–1 (sd=176.3). The 

results are summarized in Table 28. 

 

RUSLE simulations (tonnes ha–1 year–1) from database input (S_DB)     

  
Forested  

state 
(C=0.003) 

S_DB  
(C=0–0.2) 

Deforested 
state (C=0.1) 

Deforested 
state 

(C=0.45) 
NPE_DB  

Mean 1.03 37.8 34.1 153.39 324.86 

Min 0 0 0 0 1.52 

Max 20.51 1259.2 683.72 2076.73 6812.6 

SD 1.19 53.96 39.17 176.26 356.69 

Table 28 Results of simulated RUSLE erosion rates in João Penido watershed 

for current state, simulated completely forested state, deforested state and 

extremely deforested state by using S_DB (database input). 

 

Simulated scenarios based on factor input from S_fieldCK yielded lower erosion 

values for the João Penido catchment. The forested state (C=0.003) based on 

S_fieldCK showed erosion rates ranging between 0–10.66 tonnes ha–1 year–1, 
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with a standard deviation of 0.63 tonnes ha–1 year–1. The S_fieldCK deforested 

state (C=0.1) with assumed grassland showed erosion rates between 0–355.4 

tonnes ha–1 year–1 (sd=20.9). The second, more extreme, deforested S_fieldCK 

scenario (C=0.45) showed erosion rates between 0–3541.3 tonnes ha–1 year–1 

(sd=185.4). The results are summarized in Table 29. 

 

RUSLE simulations (tonnes ha–1 year–1) from database and field 
observations (S_fieldCK)     

  
Forested  state 

(C=0.003) 
S_fieldCK 
(C=0–0.2) 

Deforested 
state (C=0.1) 

Deforested state 
(C=0.45) 

NPE_fieldCK 
(observed C 

and K) 

Mean 0.52 10.85 17.47 78.62 168.87 

Min 0 0 0 0 0.79 

Max 10.66 283.3 355.4 1599.34 3541.29 

SD 0.63 14.55 20.94 94.22 185.41 

Table 29 Results of simulated RUSLE erosion rates in João Penido watershed 

for current state, simulated completely forested state, deforested state and 

extremely deforested state by using S_fieldCK (combined field and database 

input).  

 

5.2.3.4 RUSLE erosion of deforested grasslands 

Maps were generated for the field sampling locations A and B from RUSLE 

outputs showing current state of erosion (S_fieldCK). For visual interpretation, 

discrete interpolation divided by quantiles (10 classes) was used (Figure 80, 

Figure 81). In addition to the colour scale of S_fieldCK, point values of field 

sampling sites were extracted to be compared with radionuclide data. The unit is 

tonnes ha–1 year–1. When only the deforested grasslands in the catchment were 

considered for RUSLE analysis, the resulting erosion rates ranged between 0–

283.30 tonnes ha–1 year–1, with a mean of 10.64 tonnes ha–1 year–1. These values 

were very similar to the S_fieldCK, which indicated that erosion was important 

mainly in the deforested grasslands of the catchment.  
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Figure 80 RUSLE output S_fieldCK and field observations (points) for site A, 

João Penido catchment. Black delineation shows 100 m buffer area from field 

sampling sites. Notice that in the map the delineated beachline does not take 

into account the pixel size of each raster point of S_fieldCK, which is why some 

areas of <=0 erosion appear on land by the edge of the reservoir. EPSG: 3857.  
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Figure 81 RUSLE output S_fieldCK and field observations (points) for site B, 

João Penido catchment. Note that <=0 indicates negative erosion, or 

deposition. Black delineation shows 300 m buffer area from field sampling sites. 

EPSG: 3857. 

 
Soil erosion rates simulated by the RUSLE model showed improvement with 

increased detail in input factors, going from database to field observations. 

Simulations of the presence of vegetation cover in the catchment established that 

the current state of erosion (S_fieldCK) composed a state between a completely 

forested and a completely deforested catchment, where grasslands composed 

the land cover class most susceptible to erosion and allochthonous POC export.  

 

5.3 POC transport and fate in João Penido watershed 

5.3.1 POC concentrations in soils and sediment 

POC inventories POCinv (g m–3) for soil are summarized in Table 30. Point data 

of average POC concentrations of the top 10 cm soil were compared to TWI and 

showed Pearson correlation of –0.69. The POC% soil profiles showed that many 
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of the shrubland sites had low variability in POC content with depth, compared to 

pasture sites which were more enriched in top soils (Figure 82). POC of terrestrial 

sites showed typically declining concentrations with depth in colluvium profiles, 

whilst more or less uniform concentrations with depth in soil profiles. The average 

SOC stock for catchment soils was calculated to c. 58 t ha–1. 

 

POC inventories of uppermost top soil (10 cm) 

Site JP02 JP03 JP06 JP11 JP14 JP15 JP17** JP19 JP25 JP28 JP29* 
POC (kg 
m-3) 50.4 53.8 56.1 62.1 81.8 95.1 38.5 76.2 62.2 119.6 57.3 
*Reference 
**Top 8 cm              

Table 30 POC inventories of surface soil (10 cm).  

 

 

Figure 82 POC% in soil profiles of João Penido catchment. JP42 and JP44 are 

complementary sites at sampling location C, located further up one of the 

deltaic arms of the reservoir. 

 
The sediment profiles presented in Figure 83 showed that POC concentrations 

tend to be lower in pre-flood material beneath the post-flooding sediment. As 

expected, POC% also tends to be higher in sediment profiles of reservoir arms 
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and at the deltaic site (SED4, SEDJP01, SEDJP05, SEDJP07, SEDJP08, 

SEDJP09, SEDJP10, SEDJP13, SEDJP16), due to the shallower waters being 

abundant in growing macrophytes and algae in these parts of the reservoir. Most 

of the deeper open water sites of the main reservoir body (SED1, SED2, SED3) 

lack the declining POC% profile typical of the shallow reservoir arm sites, 

although the accumulation sites at SED5C and SEDJP17 showed a distinct 

difference in POC% of post-flooding sediment and sub-bottom pre-flooding 

material. The IDW interpolated POC distribution in the reservoir is presented in 

Figure 84. 

 

 

Figure 83 POC% profiles of sediment cores in João Penido reservoir. Dotted 

line indicates observed pre-flood material. 
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Figure 84 Reservoir sediment POC inventory (kg m-2). The interpolation is 

presented by quantiles in 10 classes. EPSG: 3857.  

 

5.3.2 POC erosion of catchment soils 

Soil POC erosion in the catchment was calculated as the product of POC 

inventory and soil erosion rates, according to: 

 

𝑃𝑂𝐶𝑒𝑟𝑜𝑠𝑖𝑜𝑛 = 𝐴𝑦𝑒𝑎𝑟𝑙𝑦 × %𝑃𝑂𝐶 

 

Where Ayearly is the annual erosion rate (kg m–2 year–1) obtained from RUSLE, 

PDM-137Cs and DMM-210Pbex data presented in this study and %POC was the 

average POC concentration (2.8%) of top soils (upper 20 cm). The results are 

summarized in Table 31 and show that the RUSLE output based on database 

input only is 72% higher than for erosion methods based partly or wholly on field 

observations.  
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Average POC erosion from various methods  

POC erosion (tonnes ha-1 year-1) Mean value 

Calculated from RUSLE (database) 1.1 

Calculated from RUSLE (database and observed C & K) 0.3 

Calculated from RUSLE (database and observed C & K, of soil sites)  0.3 

Calculated from PDM-137Cs 0.1 

Calculated from DMM-210Pbex 0.5 

Table 31 Average soil POC erosion of top soils (upper 20 cm) in João Penido 

catchment. 

 
The results from all model outputs indicated that average POC erosion from top 

soils ranged between 0.1–1.1 tonnes ha–1 year–1. From top soils located on 

deforested grassland (52,297,820.9 m2) this would amount to a potential of 

522.9–5,752.8 tonnes year–1 of remobilised soil POC in the catchment. POC 

erosion based on the RUSLE output utilizing database input and observations of 

K with digitized C factor gave a mean rate of 0.3 tonnes ha–1 year–1, ranging 

between 0–8 tonnes ha–1 year–1 (Figure 85). 
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Figure 85 RUSLE-based POC erosion (tonnes ha–1 year–1) of surface soils 

(upper 20 cm) in João Penido catchment. The RUSLE output based on 

database and digitized C & observed K was used, resulting in POC erosion 

ranging 0–7.96 tonnes ha–1 year–1. EPSG: 3857. 
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5.3.3 SAR and POC accumulation 

The average sediment depth (N=15) in João Penido reservoir was 0.254 m. 

Calculated SAR (cm year–1) and accumulation of POC (g m–2 year–1) from OC 

data for sediment core samples in João Penido reservoir are summarized in 

Table 32. From field observations the sedimentation rate was calculated by 

dividing the thickness (cm) of the accumulated post-flooding sediment layer by 

the age of the reservoir (82–83 years depending on the year of sampling: 2016 

or 2017), which gave SAR values between 0.07–0.44 cm year–1 in the reservoir. 

The POC accumulation rates were calculated by quantifying the inventory of POC 

(g) in the post-flooding sediment divided by the area of the sample corer (0.0028 

m2) and the age of the reservoir (years). Figure 86 shows calculated SAR in the 

reservoir by inverse distance weighting interpolation.  

 

Summary table SAR in reservoir João Penido           

Site 
Sampling 

date 
Total C 

(g) 

Yearly C 
input (g 
year–1) 

Sedimentatio
n rate (cm 

year–1) 

OC 
accumulati
on (g m–2 

year-1) 

Depth pre-
flood 

material 
(cm) 

SED3C 20160609 2.19 0.03 0.07 9.57 6 

RM13 20170714 3.35 0.04 0.07 14.6 6 

RM10* 20170714 4.83 0.06 0.1 21.03 8 

RM01 20170714 5.81 0.07 0.22 24.99 20 

RM16 20170714 6.55 0.08 0.22 28.55 18 

SED4A*** 20160609 8.61 0.11 0.26 37.5 - 

SED5C 20160609 9.39 0.11 0.32 40.89 28 

RM17* 20170714 10.86 0.13 0.44 47.31 36 

RM09* 20170714 12.76 0.15 0.4 54.9 30 

RM06 20170714 16.11 0.19 0.29 69.34 27 

SED2A 20160609 16.38 0.2 0.39 71.35 32 

SED4B* 20160609 21.46 0.26 0.41 93.46 36 

RM07** 20170714 - - 0.07 - 52 

RM08** 20170714 - - 0.24 - 20 

RM12** 20170714 - - 0.31 - 26 

RM11** 20170714 - - 0.43 - 36 

Min   2.19 0.03 0.07 9.57 6 

Max   21.46 0.26 0.44 93.46 52 

Mean   9.86 0.12 0.27 42.79 25.4 

Median   9 0.11 0.27 39.19 27 

Standard 
Deviation 

  5.89 0.07 0.13 25.54 12.78 

*gap-filling has been implemented **only SAR available ***no pre-flood material 
detected in core 

    

Table 32 SAR and POC accumulation rates from OC data. 
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While SAR vary across the reservoir gradient, the OC data showed OC 

accumulation with a minimum and maximum OC accumulation rate of 5.99 and 

93.46 g POC m–2 year–1, respectively.  

Average POC mass per volume (kg m–3) was calculated by: 

 

𝑃𝑂𝐶𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑃𝑂𝐶𝑡𝑜𝑡

𝑉
 

 

Where POCtot is the mean total mass of POC in the sediment cores (0.00986 kg) 

and V is the post-flooding volume of the core, derived from the core area (0.0028 

m2) and mean post-flooding sediment thickness (0.254 m). The average 

POCdensity was 13.86 kg m–3.  

An estimate of the total POC (kg) in the reservoir was then calculated as 

a product between the average POC mass per volume (13.86 kg m–3) and 

calculated total reservoir sediment volume (753058.8 m3). Based on these input 

factors the result gave a total POC inventory of 10440 tonnes in the reservoir 

post-flooding sediment. This would on average require a yearly net POC input of 

c. 127 tonnes year–1 into the reservoir storage since the year the dam was built 

(1934). 
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Figure 86 Maps showing sediment accumulation rate (cm year–1) in João Penido 

reservoir. EPSG: 3857. 

   

5.3.4 POC pathways and budget 

A summary of POC pathways and budgets are presented in Table 33. If it is 

assumed that soil derived POC is relatively recalcitrant and that the average 

value of 2.8% is universal for the catchment soils, the eroded input of terrestrial 

POC into the reservoir sediments since 1934 would amount to c. 2934 tonnes, or 

c. 28% of the total POC mass of the sediments, which indicates that 72% of the 

sediment POC is of autochthonous origin. If 2.8% of the total terrigenous 

sediment input representing POC would amount to 28,887 tonnes, out of which 

2934 tonnes was present in the reservoir, this suggests that an overall 90.2% has 

been exported from the reservoir as mineralisation products or by outlet 
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discharge. A schematic diagram with inventories and rates of POC erosion and 

sedimentation, visualizes the transport of POC in João Penido catchment (Figure 

87). 

 

 

POC pathways and budgets     

Erosion rates Mean value Unit 

RUSLE (database) 37.8 tonnes ha–1 year–1 

RUSLE (observations of C and K, complete watershed) 10.9 tonnes ha–1 year–1 

RUSLE (observations of C and K, point samples of 
pasture and shrubland sites A and B only) 

9.1 tonnes ha–1 year–1 

PDM-137Cs 4.5 tonnes ha–1 year–1 

DMM-210Pbex 16.1 tonnes ha–1 year–1 

      

POC erosion Mean value Unit 

Calculated from RUSLE (database) 1.1 tonnes ha–1 year–1 

Calculated from RUSLE (database and observed C and 
K) 

0.3 tonnes ha–1 year–1 

Calculated from RUSLE (database and observed C and 
K, of soil sites)  

0.3 tonnes ha–1 year–1 

Calculated from PDM-Cs 0.1 tonnes ha–1 year–1 

Calculated from DMM-Pb 0.5 tonnes ha–1 year–1 

      

Catchment properties Value Unit 

Catchment area 72140000 m2 

Area deforested grassland 52297821 m2 

% area deforested grassland in catchment 72 % 

Reservoir area 3720000 m2 

Reservoir perimeter 22584 m 

      

Total soil sediment remobilised in catchment 
deforested grasslands 

Mean value Unit 

Calculated from RUSLE (database) 197686 tonnes year–1 

Calculated from RUSLE (database and observed C & K) 56743 tonnes year–1 

Calculated from RUSLE (database and observed C & K, 
of soil sites)  

47486 tonnes year–1 

Calculated from PDM-137Cs 42884 tonnes year–1 

Calculated from DMM-210Pbex 84200 tonnes year–1 

      

Total soil POC remobilised in catchment deforested 
grasslands 

Mean value Unit 

Calculated from RUSLE (database) 5535 tonnes year–1 

Calculated from RUSLE (database and observed C & K) 1589 tonnes year–1 

Calculated from RUSLE (database and observed C & K, 
of soil sites)  

1330 tonnes year–1 

Calculated from PDM-137Cs 1201 tonnes year–1 

Calculated from DMM-210Pbex 2358 tonnes year–1 
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Reservoir sediment Value Unit 

Calculated total volume of sediment 753059 m3 

Calculated total mass of sediment  1031691 tonnes 

Average sediment density 1370 kg m–3 

Age reservoir postflooding sediment 82 years  

Average accumulation of sediment in dam since 1934 12582 tonnes year–1 

Accumulation of sediment in dam since 1934 for each m2 3.4 kg m–2 year–1 

      

Reservoir POC Value Unit 

Average total mass of POC in all sediment cores (post-
flooding) 

9.86 g 

Average core volume 0.0007112 m3 

Average total POC in sediment cores  13.86 kg m–3 

POC mass calculated from mean POC inventory 10440 tonnes 

Calculated POC mass of sediment 1.4 % 

      

Sedimentation rates Mean value Unit 

Core observations  0.27 cm year–1 

CRS-210Pbex for SED5 0.5  cm year–1  

SAR based on 137Cs peak in sediment core SED5 at 32 
cm depth 

0.6 cm year–1 

Calculated average SAR (QGIS) for the reservoir 0.3 cm year–1 

Accumulation of POC in dam since 1934 127 tonnes year–1 

Accumulation of POC in dam since 1934 for each m2 105 kg m–2 year–1 

Calculated sediment yield 20.3 % 

Table 33 Summary of erosion rates, sedimentation rates and inventories of 

POC. 
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Figure 87 Schematic diagram showing the net sediment and POC input into 

João Penido reservoir since the dam was built in 1934. 

 

5.4 Summary of Chapter 5 

This chapter summarized the results of: particle size analysis of selected 

samples; organic matter, organic carbon and inorganic carbon concentrations 

and inventories of soils and sediment by loss on ignition; C/N ratios of selected 

soil and sediment samples; fallout radionuclide activities and inventories; 

conversion model results of Profile Distribution Model and Diffusion and Migration 

Model; RUSLE model output; and POC export in the catchment. These results 

are further discussed in Chapter 9.1 Brazilian catchment study.  
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Chapter 6. Results Exmoor riverine POC study 

This study aimed to investigate the transformation effects of flocculation on 

natural organic matter in streams draining Exmoor. The results increase 

understanding on the effects of coagulants typical of flocculation boundaries in 

the landscape, such as clay particles inputted into streams by soil erosion, and 

saline mixing of freshwater at the estuarine boundary. The results presented in 

this chapter summarize 1) monitored characteristics of eight parallel draining 

stream and headwater moorland site, 2) initial results from the conducted 

flocculation experiment, and 3) residual DOM quality of post-experimental 

samples.  

 

6.1 Seasonal monitoring of riverine organic matter 

Seasonal trends in monthly–bi-monthly data of pH, EC, temperature, TSP and 

POM are summarized in this section.  

 

6.1.1 Characteristics of Exmoor stream water 

Figure 88 shows the seasonal change in stream pH, electrical conductivity and 

water temperature. pH ranged between 6.16–8.15, with a mean of 7.12 for stream 

sites while the moor headwater site I had an average pH of 4.94. The highest 

observed pH (8.15) was observed for site A. In the winter months the pH range 

appeared more similar (6–6.5) for all downstream sites, and could be connected 

to the winter precipitation discharge. Electrical conductivity ranged between 

0.00–0.11 mS cm–1, with a mean of 0.05 for all sites. Over the sampling period 

with the exception of 2017-12-01, site H showed higher electrical conductivity 

than the other sites, with an average of 0.09 mS cm–1, indicating a noticeable 

difference in background water quality which can be an influence from land use 

and lithology in this drainage basin. The average measured water temperature 

over the monitoring season ranged between 4.20–14.40 degrees C.  
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Figure 88 Seasonal change in stream water temperature, pH and electric 

conductivity of the studied Exmoor streams. 
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An estimate of total dissolved solids (TDS) in stream water can be made from 

measurements of electrical conductivity (EC) by the following expression (Taylor 

et al, 2018): 

 

TDS (mg L-1) = ke×EC (µS cm-1) 

 

Where ke is a constant, commonly between 0.55–0.85 (Walton, 1989) – the 

typically used average of 0.70 was used in this study (Figure 89). Although the 

TDS could only be crudely calculated, it gave an indication of the water quality at 

the various sites. The headwater site I showed low to absent TDS concentrations, 

while site H showed the highest concentrations, with one exception in December 

2017 possibly explained by dilution from high water discharge. 

 

 

Figure 89 Total dissolved solids (TDS) calculated from electrical conductivity 

measurements. 

 

6.1.2 Dissolved organic carbon (DOC) 

Stream samples from sampling rounds 1–4 analysed at University of Exeter 

showed total dissolved organic carbon (DOC) ranging between 0.09–22.6 mg L–

1, with a mean of 4.3 and a median of 2.1 mg L–1 (N=35). The highest DOC 

concentrations were found in samples from the headwater site I on Exmoor 

ranging 11.85–22.59 mg L–1, with a mean of 15.48 mg L–1 (N=3), while the stream 
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sites showed similar average DOC concentrations with a mean of 3.1 mg L–1 

(Figure 90). Samples from sampling round 1 (2017-04-24) analysed at Uppsala 

University showed DOC concentrations ranging between 0.31–8.91 mg L–1. The 

measured DOC concentrations are comparable to other studies in the South 

West of UK, e.g. Ritson et al (2019) found seasonal mean DOC of 2.14(±0.09)–

2.70(±0.08) mg L–1 at their monitoring sites in the Exe basin (Devon), and in a 

study of two other catchments in Exmoor National Park that had mean DOC 

concentrations of 9 and 13 mg L–1 (range of 4–21 mg L–1) (Grand-Clement et al, 

2014). DOC values of site A (Horner Water) ranged 1.36–4.81 mg L–1 (N=4) for 

sampling rounds 1–4. These values represent DOC concentrations at relatively 

low water levels. For comparison Glendell et al (2014) reported observed DOC 

concentrations of 4.67–7.59 mg L–1 (N=11) in Horner Water during high discharge 

events.  

 

 

 

Figure 90 Stream DOC concentrations of sites A-I for sampling rounds 1-4. 
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6.1.3 Total suspended particulates (TSP) 

Total suspended particulates (TSP) of stream samples from 9 sampling 

campaigns (N=69) are summarized in Table 34 and Figure 91. The maximum 

observed TSP content in stream water was 9.0 mg L–1 for site G, while the highest 

average TSP was found for site H (1.95 mg L–1). OM content of TSP ranged 

between 1.95–7.61%, with a mean of 3.3%, and most of the particulate 

suspended matter was minerogenic. Spearman correlation was 0.95 (p<0.001) 

for OM and TSP (Figure 92, 94).  

 

 

Figure 91 TSP (mg L-1) in Exmoor streams. 

 

Figure 92 TSP and OM (mg L-1) in stream samples.  
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6.1.4 Particulate organic carbon (POC) 

POC was calculated from the OM content of the TSP by a conversion factor of 

0.58, according to Pribyl et al (2010). Calculated stream water POC ranged 

between 0–0.38 mg L–1 (N=43) (Figure 93, Table 34), with the highest average 

POC content found in samples from site H. The average observed stream POC 

concentrations range between 0.01–0.1 mg L–1.  

  

 

Figure 93 POC in Exmoor streams for sampling round 1-5. 

 
 

Summary table of seasonal stream sampling between 2017-2018 

Site Sampling 
Rounds 

mean DOC 
(mg L–1) 

Sampling 
Rounds 

mean 
TSP (mg 

L–1) 

Sampling 
Rounds 

mean 
calculated 

POC (mg L–1) 

A 1-3 2.63 1-9 (excl.8) 0.92 2-5 0.03 

B 1-3 2.85 1-9 (excl.8) 1.3 1-5 0.06 

C 1-3 3.86 1-9 (excl.8) 0.7 1-5 0.02 

D 1-3 4.51 1-9 (excl.8) 1.15 1-5 0.04 

E 1-3 3.65 1-9 (excl.8) 0.85 1-5 0.02 

F 1-3 3.09 1-9 (excl.8) 0.35 1-4 0.03 

G 1-3 3.3 1-9 (excl.8) 1.94 1-5 0.1 

H 1-3 2.23 1-9 (excl.8) 1.67 1-5 0.09 

I 1-2 17.31 1-9 (excl.1&8) 0.29 1-5 0.01 

Table 34 Summary of mean DOC, TSP and POC mg L-1 for stream sites during 

the sampling year 2017-2018. 
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6.1.5 Stream water properties summary 

Spearman correlation (Figure 94) showed that DOC (mg L–1) samples was 

negatively correlated with EC (–0.56, p<0.001) and while positively correlated 

with water temperature (0.45, p<0.01). TSP correlated positively with EC (0.26, 

p<0.05). As electrical conductivity is influenced by dissolved ionic solutes, water 

quality plays a role in the resulting conductivity of a stream. Some studies of 

boreal systems have found negative relationship between DOC and conductivity 

(e.g. Oni et al, 2013), while other studies in tropical regions have found a strong 

positive correlation between EC and DOC (e.g. Monteiro et al, 2014). For stream 

site H which consistently had higher EC (except 2017-12-01) it is plausible that 

active ions were influential in the high background EC, e.g. ions from the bedrock 

The inverse relationship indicates that colloidal interactions between DOC and 

inorganic ions might reduce conductivity in the streams.  
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6.2 Flocculation experiment 

Flocculation experiments were undertaken to investigate the effect of flocculation 

on organic matter chemistry in stream water. Initial experiments were conducted 

on stream samples collected during sampling rounds 1, 2, 3, 4, 5. The treatments 

composed T1: control, T2: clay, T3: salt, and T4: mixture of clay and salt, where 

clay and salt standards were used as coagulants. Four replicates from each site 

were run in each experiment, together with four additional blanks. During this 

phase residual DOM filtrates were collected and stored for analysis of DOC, and 

absorbance and fluorescence spectra, and chemical analysis by mass 

spectrometry at Uppsala University, Sweden. However, the analytical results 

were erroneous due to suspected contamination from the storage sample tubes. 

As these results were considered non-representative they are not presented 

here. DOC was also measured in residual DOM samples from the flocculation 

experiment of sampling round 3 at University of Exeter. These samples were 

stored for a shorter time period between experiment and analysis and were 

considered less influenced by long-term contamination. Results showed that 

most of the residual filtrates of T1, T2, and T4 underwent small changes in DOC, 

compared to the raw stream DOM sample (Figure 95).  

 

 

Figure 95 DOC change in flocculation samples. DOC was not measured in 

treatment samples T4 of sites F-I. 
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For the replicate samples of sites A, B, F, G, and H, DOC analysis appeared to 

give results with relatively large error, showing higher DOC concentrations for 

treatment samples than the raw stream sample, while site I showed most 

decrease in DOC change for treatments T2 and T3. DOC was not measured in 

T4 samples for sites F–I, due to the indicated error. Sample tubes were changed 

from plastic centrifuge tubes to acid washed glass vials with silicone PTFE septa 

lids (FisherbrandTM EPA) for post-experimental filtrates of sampling round 9, and 

these samples were then used for the actual interpretation of flocculation effects 

on residual DOM chemistry, further discussed in 6.3 Case study on organic 

matter quality. 

An interesting observation during the flocculation experiments was the 

change in pH. Limited pH observations were made before and after flocculation 

experiments, and in general residual filtrates showed an increase in pH for T1, 

while decreasing pH was observed in samples with added coagulants of T2, T3, 

and T4 treatments (Figure 96).  

 

 

Figure 96 Average pH changes in flocculation experiment treatments (pH was 

not measured in all treatment samples). 
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6.3 Case study on organic matter quality 

For the flocculation experiment conducted in May 2018 (sampling round 9) 

organic matter quality was analysed by mass spectrometry, absorbance and 

fluorescence at the laboratory of the Department of Ecology and Genetics at 

Uppsala University, Sweden. The results showed that different coagulants had 

various effect on stream water DOC and preferentially removed organic 

compounds from residual DOC into produced flocs. Mass spectrometry and 

optical characterisation showed that compared to control samples (T1) 

treatments with coagulants (T2, T3, T4) influenced the composition and 

fluorescence spectra of the treated samples. 

 

6.3.1 Components from excitation-emission matrices (EEMs) 

Parallel Factor analysis (PARAFAC) was used to identify 4 main components 

(C1–C4) using the drEEM toolbox (Mathworks, Inc., Natick, MA) for Matlab (Table 

35). The components were ordered by intensity of samples and represented 

humic material (C1 and C2), protein like material (C4), and a non-classified 

component (C3).  

 

Components of PARAFAC model  

Component Representation 

C1 humic 

C2 humic 

C3 unidentified 

C4 protein-like 

Table 35 Four components of the PARAFAC model. 

For stream samples, a relative comparison to the control samples of treatment 

T1 showed that for treatments T2 and T4 (treatment with clay standard) C2 

appeared to have been lost during the experiment, indicating that DOM sorbed 

to the coagulating agent. C1 showed a similar pattern for treatment T2, but 

remained unchanged for treatment T4. For the mixed-coagulant treatment T4, an 

increase in components C3 and C4 was observed, which showed that these 

components were affected by desorption of OM from the clay standard when the 

salt standard was added to the solution. This suggests that there is counter-action 

between the salt and clay standards in this mixed treatment, resulting in overall 
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less net absorption of DOM compared with the T2 treatment which utilized the 

clay coagulant only. Additional tests of blanks showed the same pattern, that 

there was OM desorption from the clay in the saline solution of treatment T4. In 

general the effect of treatments on DOM sorption into flocs followed from high to 

low: T2>T4>T3. This showed that 1) clay was the most efficient coagulant in this 

experiment, 2) the efficiency of clay as a coagulant decreased by counter-acting 

salt ions in treatment T4, which lead to desorption of internal DOM from the clay 

standard, and 3) the salt treatment had a coagulation effect but was less efficient 

than any of the clay treatment and the combined clay and salt treatment.  

For the moorland site I components C1 and C2 decreased by up to 80% 

for clay treatments T2 and T4. One possible explanation is that the relatively 

higher DOM concentrations in samples from this site, compared to the low 

concentration stream samples, diluted the desorption effect in the mixed-

coagulant treatment.  

 

6.3.2 Freshness index (FRESH), fluorescence index (FI), and humification 

index (HIX) 

Clay treatments T2 and T4 showed strongest effect on the peak spectra and site 

I was clearly distinct from the other samples, reflecting higher concentrations of 

dissolved organic matter and carbon. Peak A, C and M reflect terrestrial sources 

of organic matter, where peak A and C typically reflect humic acids (Cory et al, 

2010). These were in general low for the T2 treatment for all stream sites except 

for site D. In treatment samples, protein-like components of peak T increased 

compared to the raw stream samples for all stream sites, but not for the 

headwater moor site I. Patterns for peak B were less clear and showed no 

obvious trends.  

The freshness index (FRESH) ranged between 0.6–0.7 for raw samples 

of stream sites and 0.43 for the headwater site I. FRESH increased in treatment 

samples compared to raw stream samples for clay treatments (T2 and T4) in 

samples from all sites, typically with highest values in T2 (Figure 97). The salt 

treatment (T3) did in some cases not lead to any relevant change in FRESH 

compared to the raw stream samples. For comparison, blank samples (which 

initially had a high FRESH index) displayed a decrease in FRESH with added 

salt. 
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Figure 97 Freshness index for raw and treatment samples of blanks and site 

samples. 

 
The fluorescence index (FI) ranged between for raw samples of stream sites 1.4–

1.6 and 1.3 for the headwater site. FI increased in most treatment samples with 

added coagulants (T2, T3, and T4) compared to the raw stream samples and T1 

(Figure 98). The highest increase was seen in clay treatments T2 and T4, typically 

with highest values for T4, while moderate change was observed for T3.  
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Figure 98 Fluorescence index for the blanks and treatment samples. 

 

For stream sites the humification index (HIX) ranged 3.8–8.5 and amounted to 

17.3 for the headwater site. In most cases the humification index decreased in 

treatment samples compared to the raw sample, suggesting that humic organic 

matter had been preferentially removed from the dissolved phase during 

flocculation experiment (Figure 99). The decrease was most extreme for clay 

treatments (T2 and T4), while the salt treatment only showed strong decrease for 

sites C and D. For sites E, F and H the humification index was higher for T3 than 

T1, suggesting that humified material had been reduced in the residual DOC.  
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Figure 99 Humification index for blanks and treatment samples. 

 
Analytical blanks (Milli-Q® water) were used to determine the effect of each 

treatment on the peak spectra. The coagulant that left a major signal in the blank 

spectra was clay (T2 and T4); the humification index was highest for the clay 

treatments, the freshness index was lowest for the salt treatment (T3) and most 

treatments with added coagulants showed higher fluorescence index compared 

to the control sample (T1) (Figure 100).  
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Figure 100 Analytical blanks (Milli-Q®) showed the effects of coagulants on 

optical spectra. Clay (T2 and T4) left major signatures. Negative values for 

Control samples are omitted. 
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6.3.3 Mass spectrometry 

Analysis by mass spectrometry revealed that treatments with coagulants showed 

change in relative peak intensity and percentage distribution of classified organic 

compound groups in post-experimental residual DOM (Figure 101). The mass 

spectra represents signal intensities of ions as a function of mass-to-charge ratio 

and the calculated percentage composes the abundance of each designated 

compound group (described in the Chapter 4) relative to all other compound 

groups in the sample (Figure 102). For most of the sites, clay treatments T2 and 

T4 decreased the abundance of residual black carbon and polyphenols by 

absorption of compounds structures within these groups, which were highest in 

site I samples (T1 and T3). An exception was site A, which to a degree showed 

the opposite patterns of absorbed compound groups compared to the other sites. 

An explanation for this exception could be the presence of structural isomers (with 

the same molecular formulae but other chemical structures), which were 

classified into the same compound group but possibly exhibit recalcitrant 

chemical behaviour. Peptides and sugars showed low to no presence in the 

stream samples with c. 1% for a few sites in treatments T2, T3, and T4.  
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Principal component analysis (PCA) visualized the association of organic 

compound groups per treatment. The PCA scree plot of eigenvalues (Figure 

103a) showed that the first two principal components (PCs) explained 98.7% of 

the total variance and a graph of variables (Figure 103b) displayed the correlation 

trend of the assigned compound groups for PC1 and PC2, where aliphatic 

compounds in general showed no association with the other compound groups. 

The contribution of the variables are summarized in Table 36 for the four main 

PCs. The treatment-grouped PCA biplot of PC1 (67.8%) and PC2 (30.9%) (Figure 

104a) showed that organic compound concentration trends were similar for T1 

and T3 while T2 distinctly deviated, and T4 showed a mixed T2-T3 trend. When 

displaying PC1 (67.8%) against PC3 (1.2%), concentration ellipses showed 

similar treatment effects for T2 and T4 with clear decline in polyphenols and black 

carbon, likely caused by the effect of clay in both of these treatments (Figure 

104b).  

 

PC variable contributions to total variance    

  Dimension 1 Dimension 2 Dimension 3 Dimension 4 

Black carbon 33.83 4.30 58.45 3.42 

Polyphenols 34.90 2.75 37.75 24.60 

Highly Unsaturated 31.20 12.23 2.31 54.26 

Aliphatics 0.07 80.72 1.50 17.71 

Table 36 PCA variable contribution to total variance for compound groups. 
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Figure 103 PCA visualization of organic compounds per treatments T1-T4, 
showing a) scree plot of PCA eigenvalues, and b) graph of variables. 
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Figure 104 PCA visualization of organic compounds per treatments T1-T4, 

showing a) biplot of PC1 and PC2, and b) biplot of PC1 and PC3. 
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Patterns of weighted average ratios of H/C and O/C (H/CWA and O/CWA, 

respectively) were useful to confirm patterns of treatments in residual DOM 

(Figure 105a, 105b). Both clay treatments T2 and T4 showed signals of increased 

H/CWA due to absorption of aromatic compounds (which exhibit low H/C ratios), 

while O/CWA ratios decreased compared to T1. For some sites, T4 increases less 

than T2, which could be caused by desorption of OM from the clay standard. T3 

also increased H/CWA except for sites F, H and I, whilst O/CWA patterns of T3 were 

similar to T1. O/CWA decreased for treatments compared to the control samples, 

due to adsorption of compounds containing oxygen. These results partly confirm 

that the DOM composition was similar for all stream sites, and that treatments 

appear to have consistent flocculation effects on stream DOM. Van Krevelen 

diagrams of principal component 1 (PCoA1) showed that for all stream samples 

(excluding the headwater site I) PCoA1 was associated with the treatment and 

HIX and FRESH fluorescence indices, explaining 75%, 28% and 57% for T2, T3, 

and T4 respectively, while PCoA2 was primarily associated with PCoA2 for T1–

T3 (Figure 106). Similar to trends shown by H/CWA and O/CWA, pairwise 

comparison with the plot of control samples of T1 revealed preferential removal 

of structures, where van Krevelen visualizations of differences between T1–T2 

(116b), T1–T3 (116c), and T1–T4 (116d) showed that in general high H/C (more 

aliphatic) and low O/C structures remained in residual DOM samples, while low 

H/C (more aromatic) and high O/C structures were sorbed to flocs. The effect 

appeared to be strongest for the clay treatment, weaker for the mixed treatment 

where salt had desorbed native organic compounds from the clay standard, and 

weakest for the salt treatment. 
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Figure 105 Weighted averages of H/C and O/C per stream site, showing the 
effect of treatments on residual DOM. 
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Figure 106 DOM composition compared between treatments. Left column: 
principal coordinate analysis (PCoA) loadings of treatments: control T1 (grey), 

clay T2 (red), T3 salt (blue) and clay-salt mixed T4 (purple) with sample 
characteristics as ordination drivers (arrows); middle column: Spearman rank 

correlation coefficients of individual molecules with PCoA1; right column: 
Spearman rank correlation coefficients of individual molecules with PCoA2. 

Figure courtesy M. Groeneveld, 2019. 
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6.4 Summary of Chapter 6 

This chapter summarized the results of a flocculation study investigating the 

seasonal variation in organic matter and carbon loads of stream water and the 

flocculation potential by clay and salt coagulants with respect to water quality in 

eight streams that drain parallel gradients of a coastal moorland. The results in 

this study showed that:  

 The studied streams exhibited low concentrations of riverine organic 

matter in dissolved and particulate phase during low discharge flow over 

monthly–bimonthly sampling, 

 that the efficiency of flocculation treatments to remove DOM from the 

dissolved phase followed T2>T4>T3, 

 although the most effective coagulant was clay, the overall effect was 

counteracted by desorption of OM native to the clay standard by mixing 

with salt,  

 flocculation processes preferentially removed humic substances with high 

aromaticity and terrestrial signature from samples during the experiment, 

indicating that coagulant characteristics control OM transformation in the 

LOAC despite small variations in natural water quality amongst the 

sampled streams.  

These results are further discussed in 9.2 Exmoor study.   



218 
 

Chapter 7. Discussion on particulate organic carbon dynamics along the 

land–ocean aquatic continuum (LOAC) 

This section discusses 1) the results of the two case studies of POC transport 

and dynamics in this work, and 2) incorporates the interpretation into the wider 

discussion of POC transport and dynamics along the LOAC.  

 

7.1 Brazilian catchment study  

This study focused on the transport of POC in a semi-closed tropical headwater 

catchment impacted by land use change and damming. Soil erosion was 

calculated from field observations of fallout radionuclides (FRN) 137Cs and 210Pbex 

and the results were used to validate a soil erosion model, RUSLE, with which 

overall soil erosion in the catchment was simulated. The results showed that the 

sole use of database-derived input factors in the model overall yielded a 52% 

higher average soil erosion rate in the catchment than the closer to real-world 

model results which utilized input factors partially derived from field observations 

and digitized land cover. The results from soil properties, TOC/TN and loss on 

ignition analysis further confirmed that the relative composition of allochthonous 

and autochthonous POC in reservoir post-flooding sediments changed with 

depth, where the autochthonous component decreased from surface sediments 

with depth. This indicates that there is a higher turnover rate for autochthonous 

sediments compared to allochthonous sediment in the reservoir. 

 

7.1.1 Soil erosion  

7.1.1.1 Fallout radionuclide inventories 

As expected, the radionuclide inventories of 137Cs showed low concentrations in 

the Brazilian soil profiles of the João Penido catchment, as 137Cs fallout on the 

South American continent has been less prominent than in e.g. Europe, North 

America and Oceania. For João Penido soils, the 137Cs inventories ranged 

between a minimum and maximum of 30.9–858 Bq m–2 and these values appear 

sensible when compared to other studies conducted in similar deforested lands 

and pasture in sub-tropical soils and climate (Cwa) of South-Central regions in 

Brazil, e.g. Correchel et al (2006) reported 137Cs inventories ranging between 0–

1038 Bq m–2, with an average reference inventory value of 422±14 Bq m–2; 
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Andrello et al (2004) reported sample inventories ranging between 90–403 Bq m–

2. Other studies in Brazil have reported similar 137Cs soil reference core values of 

314 Bq m–2 (Correchel et al, 2005), 422 Bq m–2 (Bacchi et al, 2005), 272±20 Bq 

m–2 (Correchel et al, 2006), 292 Bq m–2 (Andrello et al, 2014) for the 

corresponding years of their studies. In comparison, other studies on the South 

American continent have found reference inventories of 367 Bq m–2 in Uruguay 

(Alonso et al, 2012) and an average inventory of 1108 Bq m–2
 for a site in 

Argentina (Bujan et al, 2003).  

 While 137Cs concentrations in general are low or absent in soil samples 

from the João Penido catchment, the 210Pbex concentrations showed distinct 

inventories and potential as a soil erosion tracer. Little information on 210Pbex from 

soil data is available worldwide (Zheng et al, 2007), however some reported 

inventories of reference sites range from 3305 Bq m–2 in Morocco (Benmansour 

et al, 2013), 7598 Bq m–2 in Italy (Porto et al, 2012), and 18902.2 Bq m–2 in China 

(Zheng et al, 2007). For João Penido catchment, the 210Pbex inventory for 

reference site JP17 amounted to 8924.5 Bq m–2, which is within the expected 

range compared to other worldwide reference inventories. The soil 210Pbex 

inventories in this study (soil and sediment) ranged between 4887.3–48014.3 Bq 

m–2, and compared to other 210Pbex studies worldwide these values appear 

sensible, e.g. Porto et al (2104) reported ranges of 52–43801 Bq m–2 from a site 

in Italy, and Zheng et al (2007) found a range of 6184.87–20386.88 Bq m–2 in 

China. For João Penido catchment 210Pbex of soil profiles at sites of erosion and 

deposition showed correspondingly lower and higher inventories than the chosen 

reference site, which is in line with the method. Being a geogenic radionuclide 

that is constantly replenished in soils, for Brazilian soils 210Pbex showed better 

potential as a soil erosion tracer than the otherwise commonly used 137Cs. 

Additionally, 210Pbex could become one of the main medium-term tracers of soil 

redistribution worldwide in the future, as the usefulness of anthropogenic 137Cs 

inventories is being reduced with its decay in the environment. 

 

7.1.1.2 Erosion and deposition rates from radionuclide conversion models 

DMM results for 137Cs in João Penido catchment soils averaged 5.71 kg m–2 year–

1, several times higher than corresponding PDM-137Cs and DMM-210Pbex output 

which averaged 0.82 and 1.63 kg m–2 year–1 respectively. Another study using 
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the PDM-137Cs in other parts of Brazil with climate class Cwa have found average 

erosion rates of 23 tonnes ha–1 year–1 in South-Central Brazil (Bacchi et al, 2000). 

The DMM-210Pbex and PDM-137Cs results of this study were of the same order of 

magnitude as the studies mentioned above, while the DMM-137Cs appears to 

have overestimated erosion in the study catchment. 

The results suggest that the DMM method was less a robust method for 

137Cs inventories in this particular catchment, where fallout of 137Cs has been 

sparse. The discrepancy could possibly be explained partly by the low fallout and 

residual concentrations of 137Cs in the soils, but another potential explanation is 

the affinity of this radionuclide to organic matter. In general the 137Cs 

concentrations were lowest in terrestrial colluvium, which normally should show 

enrichment of 137Cs, indicating deposition of sediment. The low organic matter 

content of the colluvium profiles (which were lower than in the soil profiles of the 

hillslopes), suggested that 137Cs sorbed to organic matter had been depleted in 

the colluvium with the removal of the organic matter and redeposited elsewhere. 

PDM appears to be a model less sensitive to gaps in 137Cs increment 

concentrations within the soil profile, as the irregular presence of 137Cs in the 

profiles give less credible diffusion and migration coefficients used for soil erosion 

calculations by DMM.   

Compared to the 137Cs inventories, 210Pbex inventories in the colluvium 

samples showed typical profiles with the highest concentrations in the top soils 

and declining concentrations with depth, and higher inventories at accumulating 

soil and colluvium sites than in eroding hillslope soil profiles. Even with the affinity 

to organic matter, unlike for 137Cs, 210Pbex inventories showed consistent 

declining profile patterns despite the lower content of organic matter in colluvium.  

In areas with high fallout the diffusion and migration model (DMM) offer 

more robust results than the profile distribution model (PDM) (Porto et al, 2003), 

but for the João Penido soils the DMM-137Cs results did not agree well with results 

of PDM-137Cs and DMM-210Pbex. For this catchment 210Pbex appears to be a more 

reliable soil erosion tracer than 137Cs, when using the diffusion and migration 

model.  
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7.1.1.3 RUSLE results  

RUSLE model output showed that the current state of erosion (S_fieldCK) in João 

Penido catchment averaged 10.85 tonnes ha–1 year–1. This figure was derived 

partially from field observation of K and detailed land use digitization in the 

catchment for factor C. When solely database-derived input factors were used for 

the model, the output (S_DB) resulted in an average of 37.8 tonnes ha–1 year–1, 

or c. 52% higher erosion rates for the catchment. Both S_fieldCK and S_DB 

outputs were within the same order of magnitude as other RUSLE studies in 

Brazil have found, e.g. Medeiros et al (2016) who found erosion rates of 30 

tonnes ha–1 year–1, da Cunha (2017) who reported 48 tonnes ha–1 year–1, and 

similarly USLE results of 55.45 tonnes ha–1 year–1 in a study by Beskow et al 

(2009). In particular the database derived output showed close similarity to the 

other RUSLE studies mentioned. 

Although the S_DB output overestimated soil erosion compared to the 

S_fieldCK output, the current state of erosion can be considered related to current 

land use practices in this perturbed catchment and therefore higher than in a 

naturally forested environment. Results from simple simulations (which assumed 

a single C value for the whole catchment with the exception of water bodies and 

built up areas) showed that the modelled current state of erosion lies in-between 

those of a completely forested (C=0.003) and completely deforested states 

(C=0.1; C=0.45). As expected, all of the simulations indicated that developed 

vegetation cover decreases soil erosion in the catchment when these outputs are 

compared to the perturbed catchment scenarios. A forested state of the 

catchment would yield a mean erosion rate of 0.52 tonnes ha–1 year–1, which is 

c. 95% lower than that of the actual current state of erosion in the catchment 

(S_fieldCK: 10.85 tonnes ha–1 year–1), whilst the simulated mean erosion rate of 

a completely deforested state (17.47 tonnes ha–1 year–1) would yield a 61% 

higher average erosion rate than the current state of erosion in the João Penido 

watershed. Similar trends have been found by Juinor et al (2019) who studied 

perturbation of mainly sugar cane plantations in a catchment with similar soils, 

vegetation and climate in São Paolo state of Brazil, where net erosion amounted 

to 0.03 tonnes ha–1 year–1 for natural vegetation cover (savannah), 3.5 tonnes 

ha–1 year–1 for current perturbed land use and cover, and 12.6 tonnes ha–1 year–

1 for simulated expansion of sugar cane plantations in their studied catchment. 
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The LS factor of this catchment ranged between 0–29.54, which is lower than the 

values obtained for the João Penido catchment. 

The difference between RUSLE results S_DB and S_fieldCK showed that 

the database derived model output mainly underestimated and overestimated 

erosion rates in land use classified as deforested grasslands in the catchment 

(Figure 107). This is sensible as wooded and built up areas were assumed to 

experience negligible erosion and thus were assigned low C values, and 

therefore grasslands in particular were more sensitive to other influential factors 

inputted into the model, such as the terrain-controlled LS factor.  
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Figure 107 Difference between RUSLE output based on database input only 

(S_DB) and RUSLE output S_fieldCK partly field based (observed C and K 

factors). EPSG: 3857. 
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The RUSLE results showed that areas classified as grassland contributed to most 

soil loss in the catchment. In the field it was observed that large areas of these 

grasslands were used as pasture for cattle, and were likely to experience 

moderate soil erosion from reworking of the ground surface layer. Visible erosion 

scars and soil remobilisation were observed in the field both in grasslands with 

pasture and shrubland.  

The erosion rates obtained by the RUSLE model in the study catchment 

appeared sensible, both when compared to other RUSLE studies in the region 

and when compared to observed soil erosion from radionuclide data in the field, 

calculated sedimentation rates and the estimated sediment volume in the 

reservoir.  

 

7.1.1.4 Comparison of soil erosion by RUSLE modelled output and field 

observations from radionuclides 

The average erosion rate of top soils (upper 20 cm) obtained by the RUSLE 

output partially based on field observations (S_fieldCK) was within the same 

order of magnitude as the calculated erosion rates from fallout radionuclide field 

observations (Chapter 5, Table 33). The 137Cs and 210Pbex results appear to vary 

similarly for most of the FRN sites, despite the DMM-137Cs results being 

consistently higher than DMM-210Pbex and PDM-137Cs results. It appears that for 

this site in Brazil, the PDM method is less sensitive to irregular radionuclide 

concentrations in the soil profiles and therefore provides a more robust result than 

the DMM method when using 137Cs as a soil erosion tracer. Other studies that 

have compared output from RUSLE with fallout radionuclide theoretical models 

have found a varying agreement between the methods, e.g. in a study by 

Martinez et al (2009) it was found that RUSLE produced soil erosion rates c. 10 

times higher than the theoretical 137Cs models PDM and DMM for a catchment in 

temperate Australia, while Meusburger et al (2013) found that both methods 

(137Cs-PDM and RUSLE) gave results on the same order of magnitude for a 

catchment in temperate South Korea. The varying agreement is likely influenced 

partly by the accuracy of input factors for the RUSLE model, partly by the results 

obtained from radionuclide activities from the field sites. In this study, the results 

showed acceptable agreement between the RUSLE model and 137Cs-PDM and 
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210Pbex-DMM for the compared grassland sites (Figure 108) and RUSLE thus 

appears suitable for the deforested Atlantic rainforest biome. 
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7.1.2 Fate of POC 

7.1.2.1 POC redistribution in the catchment soils and sediments 

The soil samples in this study were retrieved from pasture and shrubland, which 

represents ca 70% of the catchment (digitized C factor map). Although these soils 

can be considered relatively poor in organic matter and carbon, the redistribution 

of existing SOC may be mineralised and released as inorganic C species when 

exposed to the atmosphere or enter the aquatic system to contribute to buried 

organic matter in the reservoir. Compared to SOC stocks from national surveys 

such as Batjes et al (2005) who summarized SOC distribution in different soil 

groups of Brazil and reported mean concentrations of 5.2 kg C m–2 for the upper 

30 cm and 9.6 kg C m–2 for the upper 100 cm of ferralsols of Brazil, the soil carbon 

inventories (with its low content of inorganic carbon) found in this study are within 

the same comparable range with an average of 5.6 kg C m–2 in the upper 20 cm 

of catchment top soil. 

 The resulting POC erosion map derived from RUSLE model output and 

average POC inventory in catchment grassland soils, indicate that a mean of 0.3 

tonnes ha–1 year–1 is mobilized annually in the surface soil layer. This assumes 

negligible erosion in land use classes such as built up areas and broadleaf woods 

of the catchment.  

The reservoir sediment characteristics showed that the average organic 

matter concentration in top sediments (2 cm) was 28.3%, while the remaining 

mass composed inorganic material (Figure 109) and that at 30 cm depth the 

average concentration was 10.7% lower. This low concentration (c. 17%) was 

maintained with depth. As pre-flood material have OM concentrations similar to 

terrestrial soils, it is likely that overlying layers of post-flooding sediment with low 

concentrations compose mainly terrestrial aggregate-bound SOC, and that 

surface sediments compose partly terrestrial allochthonous matter (equivalent of 

average soil OM%, c. 13.99%) and additional autochthonous OM. Simplified, the 

autochthonous part would compose the difference between total OM% and 

assumed allochthonous OM%, which when using the average concentrations 

amount to an average of 8.53% (22.55–13.99%). If these assumptions were valid 

the dominant source of OM in the reservoir sediments would be terrestrial. These 

estimations only consider matter-dry weight and therefore do not represent 

dissolved OM in e.g. pore space solution of these fluffy post-flooding sediments. 
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Post-flooding sediment bulk density was calculated to 1370 kg m–3 and this 

relatively low bulk density suggests that the porosity and water content are high 

in the post-flooding surface sediment, in which the concentrations of DOM 

become important, however this parameter was not specifically measured in this 

work. 
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Figure 109 All observations of organic matter content (%) in a) soil (excluding 

colluvium) and b) sediment (Reservoir (Post-flood)) of João Penido catchment, 

generally showing higher contents in the upper 20 cm of profiles. The fit is 

exponential. Equations and R2 for the exponential fit are shown on the right of 

109a and 109b, respectively. 
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In João Penido reservoir, POC contributions from allochthonous and 

autochthonous sources might be dependent on seasonal variation due to the 

local climate. In a study of reservoir Kentucky Lake, USA, by Yurista et al (2001), 

it was found that autochthonous POC was mainly inputted into the reservoir 

during the summer months while allochthonous POC dominated during winter. In 

contrast, a study on POC sedimentation in oligotrophic Loch Ness in Scotland, 

Jones et al (1997) showed that allochthonous sources composed the dominant 

form of POC, with peak inputs in late winter to spring explained by higher input 

from riverine discharge. Upstream allochthonous POC mainly consist of litter and 

soil organic carbon, and primarily rainfall erosion events control these terrestrial 

inputs. In summer autochthonous POC sources such as growing macrophytes, 

algae and biofilms are likely more important for POC production and 

sedimentation. For the eutrophic João Penido reservoir, POC mass of post-

flooding sediments were crudely estimated and any seasonal variability could not 

be determined from the samples collected and analysed, but it is probable that 

both growing biota and mobilized SOC from rainfed soil erosion processes 

contribute with POC into this reservoir.  

C/N ratio of sediment POC showed the typical mixed-source limnic 

signature of organic matter composition in João Penido reservoir, while pre-flood 

material had more terrestrial like signatures, which appears to confirm the 

boundary of post- and pre-flood material. Although the C/N data showed mixed 

terrestrial and aquatic signatures in post-flooding sediments, peaks in C/N 

indicate high input of terrestrial organic matter. These peak sediment layers are 

likely related to events of high erosion input. Particle size appears more varied 

with depth in sediment cores compared to soil cores, which likely is connected to 

varying particle size input from soil erosion into the reservoir due to high-energy 

runoff during rainfall events in the catchment, where higher energy has mobilized 

coarser grain fractions.   

 

7.1.2.2 Concentrations of organic matter and OC quality 

Comparison between the OC data obtained from C/N analysis and calculated 

from OM data obtained by LOI analysis, revealed that the commonly used 

conversion factor of 0.58 (Pribyl et al, 2010) is too high for soils of João Penido 

watershed, when converting OM concentrations obtained from LOI analysis to 
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OC concentrations. Soils showed varying OM% content with respect to land use, 

and soil samples from pasture in general displayed a wider range of OM% than 

samples from non-managed shrubland. For terrestrial soils the lowest C% values 

appeared in colluvium, mainly in subsoils at depths >15 cm. In general, POC% 

decreased with depth in most pasture and colluvium profiles, while shrubland 

soils often showed lower content in the surface layer with mostly consistent POC 

content with depth. An explanation for this is that pasture is being continuously 

fertilized which promotes plant growth and organic matter input, while shrubland 

soils remain nutrient poor and often compose sandy texture in the top layer. Soil 

organic matter inventories appeared to be of consistent concentrations for all the 

eroding soil sites, but lower for seasonally dry colluvium. Soil to sediment 

transects revealed that colluvium was depleted in organic matter compared to 

eroding soils. This OM has likely been washed out and accumulated in reservoir 

sediments together with autochthonous OM. In sediments the density separated 

samples showed that the C/N signature of post-flooding sediment showed 

increasingly more terrestrial like signatures with depth, suggesting that this SOC 

is preferentially preserved with depth.   

For the aquatic sediment sites, sites in the delta and shallow reservoir 

arms (depth c. 1 m)  showed the highest POC content, while they were depleted 

further out in deeper (c. 8–10 m) reservoir sediments. C/N ratios were typically 

lower in reservoir sediments compared to deltaic sediment and soils and the C/N 

data also showed that deeper sediments were characterized by lower 

concentrations of carbon and nitrogen compared to the surface sediments. A 

higher C/N ratio is associated with terrestrial soil organic matter, which agreed 

with the distribution in the João Penido sediments.  

 

7.1.2.3 OC accumulation in sediments 

The calculated OC accumulation rates appear to be sensible for João Penido 

catchment. The average POC content of terrestrial soils from LOI data (2.8%) in 

the João Penido catchment and pre-flood material (2.9%) beneath post-flooding 

sediment in the reservoir suggest that the mineral associated POC content is 

general for soil particles in the catchment. If it is assumed that the mean soil POC 

value of 2.8% in this study is recalcitrant both in terrestrial soils and in eroded 

soils that have entered and been redeposited in the reservoir, while the average 
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reservoir sediment POC value is 4.5%, this would suggest that the excess POC 

in the sediment is of aquatic origin. Most of the sediment cores in the shallower 

water profiles showed POC profiles with declining concentrations with depth, 

indicating that there had been vertical loss of organic carbon from the surface 

sediment to the pre-flood material. The similar POC content of terrestrial soil and 

pre-flood matter suggest that mineral aggregate bound POC is physically 

protected from processes which transform organic carbon (e.g. microbial 

mineralisation), and that the organic matter loss primarily is associated with 

autochthonous organic matter. If it was assumed that the average difference 

(2.1%) of the total POC  in the reservoir was of aquatic origin, this would be an 

equivalent of autochthonous POC amounting to c. 4883 tonnes of the total POC 

mass (10440 tonnes) in the reservoir post-flooding sediment, or almost 47% of 

the total POC in post-flooding sediment being autochthonous. 

 The other way of estimating the relative contributions of allochthonous and 

autochthonous POC was from SOC data. Assuming that the mean top soil value 

of 2.8% was universal for eroding catchment soils and the deposited 

allochthonous post-flooding sediment, the net allochthonous POC mass of total 

POC mass would amount to 2934 tonnes, or 28%, indicating that c. 72% of total 

POC mass was of autochthonous origin. This simplified estimate assumed that 

the allochthonous sediments were completely recalcitrant, which is unlikely. 

 

7.1.2.4 Correlation between soil and sediment parameters 

There have been numerous studies which have established that fallout 

radionuclides 137Cs and 210Pbex typically display the same redistribution pattern 

as SOC in the landscape (Martinez et al, 2010; Teramage et al, 2013). In this 

study, soil 210Pbex
 concentrations showed positive correlation with OC% 

(Spearman, rS =0.73, p<0.05) while soil 137Cs concentrations showed a weak 

positive relationship (Spearman, rS =0.31, p<0.05). For sediments the 210Pbex
 

concentrations showed a weaker positive correlation (Spearman, rS =0.47, 

p<0.05) and 137Cs concentrations remained similar to soil values (Spearman, rS 

=0.31, p<0.05). Correlation of soil and sediment parameters are summarized in 

Figure 110 and Figure 111, respectively. 
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137Cs concentrations showed low correlation with POM – the highest correlation 

was found for colluvium as visualized in Figures 112. Generally, POM showed 

weak negative correlation with 210Pbex (rS =–0.35, p<0.05). In colluvium and soil 

the pattern indicates that 210Pbex is associated with POM in the samples (Figure 

113).  
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Figure 112 POM (%) and and 137Cs concentrations (Bq kg–1) in João Penido 

catchment soil and sediment at depths a) 0<10 cm, b) 10<20 cm, and c) 20<40 

cm.  
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Figure 113 POM (%) and 210Pbex concentrations (Bq kg–1) in João Penido 

catchment soil and sediment at depths a) 0<10 cm, b) 10<20 cm, and c) 20<40 

cm.  
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For soil the <63 µm fraction showed strong negative correlation with C/N 

(Spearman: rS=–0.83, p<0.05) and positive correlation with 210Pbex 

concentrations (Spearman, rS =0.65, p<0.05). 210Pbex showed strong affinity to 

the fine fraction in the terrestrial environment compared to the aquatic sites, 

where correlation was weakly negative where organic matter appears to be more 

related to 210Pbex concentrations.  

In this study no significant correlation between radionuclide concentrations 

and the grain size fractions was found. While 137Cs concentrations did not 

correlate significantly with any grain size fraction in this study, 210Pbex 

concentrations showed weak negative correlation with >250 µm (–0.340), and 

weak positive correlation with >63 µm (0.278), and <63 µm (0.182). The lack of 

correlation of 137Cs in the samples appears to be connected to the largely low 

concentrations of this radionuclide in this landscape, which showed irregular or 

absent activities in profile samples in general, which reduces the motivation of 

using 137Cs as a soil tracer at this location. 

OC% and N% (determined from C/N analysis) showed strong positive 

correlation with the <63 µm fraction (rS =0.719 and rS =0.82 respectively, p<0.01) 

in the catchment soils, while these parameters showed weakly negative 

correlation with the coarser (>250 µm) fraction.  

 

7.1.3 Limitations of the Brazilian catchment study 

When comparing modelled RUSLE output in the João Penido catchment with 

other studies in Brazil and on the South American continent, it is important to 

clarify that there are differences in chosen input factors. It is expected that 

variance is evident depending on which databases or field observations that are 

being used for the modelling procedure, because sources, quality and resolution 

of input factor values differ amongst accessible information. A reasonable range 

of output for catchments with similar properties and climate, for instance 

achieving values of the same order of magnitude, should be considered 

acceptable yet all modelled output should be used with caution. Compared to 

other comparable studies which also mainly utilized database input, the results 

of this study was of the same order of magnitude. The more detailed RUSLE 
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output, which partly used field observations, resulted in erosion rates closer to 

radionuclide derived soil erosion, however the sites of comparison were restricted 

to the land cover type deforested grassland. In this study it was assumed that soil 

erosion from wooded and built-up areas would be negligible compared to the 

deforested areas, however this was not confirmed in the field.    

RUSLE output based on database data was of the same order of 

magnitude as output based partially on field observations, however database 

derived RUSLE output showed less agreement when comparing the modelled 

result with erosion rates based on radionuclide data. If field observations cannot 

be made for a specific catchment, database output would be the first available 

result for a researcher, but the non-validated results might over- or underestimate 

soil erosion in the studied catchment and need to be considered.  

The radionuclide data were limited partly by the irregular fallout (e.g. of 

137Cs) in the study area, but also partly by the conversion models used. The 

different conversion models showed differences in results for 137Cs, where the 

simpler PDM model provided erosion rates closer to erosion rates obtained by 

DMM-210Pbex, than the DMM-137Cs output which showed consistently higher 

erosion rates for the sites compared. One explanation could be that the PDM is 

less sensitive to the irregular fallout and provides a more robust conversion. All 

the conversion results were based on the assumption that the chosen reference 

site was accurately assigned, which in itself could be one of the reasons to why 

only erosion rates and no deposition rates were reflected in the results. The 

chosen reference site fulfilled the required criteria, however whilst showing a 

good 210Pbex profile it did suffer from some gaps in increment inventories with 

depth for 137Cs. In this study, the distribution of FRN profiles in the field was pre-

determined by random points in GIS, and selected transects were used to 

interpret the downslope trend of radionuclide inventories for sites in the João 

Penido catchment, as well as to compare point values of FRN derived erosion 

with the modelled RUSLE output. Other studies have utilized grid based 

approaches when sampling FRN profiles which provides neat interpretation of 

FRN inventories. A grid based approach requires an extensive number of 

sampling locations but provides efficient maps of inventories. In this study the aim 

was mainly to determine the downslope trend and to compare RUSLE output with 

validation points. 
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While the method to acquire 210Pbex data from soil sites was well 

established and showed that this radionuclide has good potential as an erosion 

tracer, the analytical method for samples from the aquatic sites in the reservoir 

was restricted. The samples showed unrealistically high concentrations of 

210Pbex, which likely was an effect from either sample preparation with insufficient 

sealing of the sample capsules or the use of an unsatisfactory standard to 

calibrate for 210Pb spectra in the well-detector used. Insufficient sealing of the 

sample capsules used for analysis in this well-detector could have led to radon 

escape from the sample tubes and thus equilibrium was not reached between 

226Ra and the gaseous daughter 222Rn before gamma analysis, which could have 

led to erroneous spectral photopeak at 352 keV. Alternatively, it is possible that 

the 210Pb standard used for calibration of the well-detector instrument was 

insufficient, as the calculated average detector efficiency from standards was 

partly based on old standard measurements for the instrument. These standards 

were of the right geometry and mass, similar to samples analysed in this 

instrument, but the results used were possibly outdated for the analytical batch 

of the João Penido samples. The standard that was used during the actual batch 

run was of other geometry and served mainly as a control for instrumental drift. 

The resulting Pb concentrations gave too high inventories of 210Pbex in the post-

flooding sediments, but when used in the CRS model would still indicate the 

relative relationship between shallow and deeper sediments and the sediment 

accumulation rates therefore appeared reasonable. However, the source of this 

error requires further attention and shows that appropriate quality control with 

adequate standards is important for validating results in order to discard possible 

erroneous output. 

Both methods of estimating the reservoir sediment volume gave similar 

results, which shows that the GIS method can be effective as an automated tool 

for this estimation. Even though the field point observations were not placed in a 

regular grid, they still gave a rough estimate of the amount of post-flooding 

sediment that have accumulated in the reservoir since it was built. The export of 

sediment at the reservoir outlet was not taken into account and the amount of 

sediment that has been exported downstream remains unknown. The estimate 

however gave net value of accumulated sediment in the reservoir. It needs to be 

noted that in this work the most south western part of the catchment was included 
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in the watershed analysis due to the method of initial basin delineation, however 

later elevation analysis showed that stream segments in this part of the 

catchment were unlikely to connect directly to the João Penido reservoir itself. 

The crude delineation composes a source of error in the sediment yield estimates 

in this work, where sedimentation to a degree was underestimated as a 

consequence of the erroneous total catchment area (by initial delineation) being 

used in the calculations.  

The estimated quantity of the allochthonous component of terrestrial POC 

in post-flooding sediments is based on many assumptions about the average 

SOC content in the catchment soils, the quantity of inputted soil mass into the 

reservoir over the years since the dam was built, and recalcitrance of the mineral-

associated organic carbon fraction. Because of all these assumptions, this output 

can only provide a simplified picture of the actual carbon transport and fate in this 

catchment, however the results appear to be within a plausible order of 

magnitude for such a system. 

 The results indicated that soil-derived aggregate-bound POC was an 

important source of organic carbon in the reservoir sediments of João Penido, 

but sample numbers from density fractionated C/N samples were insufficient to 

determine whether OC storage is controlled by allochthonous or autochthonous 

POC. Further analysis of a higher sample number, would statistically increase the 

confidence of the results. An overview of the OM and OC budget in the calculated 

mass of the reservoir sediments suggested that with depth heavy aggregate-

bound and therefore physically protected OM increased in relation to free light 

organic matter.  

 Some extreme values of soil C/N were observed in the results. Average 

C/N ratios of world soils range between 9.9–25.8 (Batjes et al, 2014) and in this 

study the average SOC value amounted to 48.08,  which was likely skewed by 

outliers in the dataset. Five samples had C/N ratio >100, mainly samples from 

the deeper layers of the soil profiles. Either the nitrogen content was depleted for 

these outlier samples, or something happened during the analytical processing. 

Other analyses of qualitative properties were not measured in this study, but 

would have contributed to the interpretation when discriminating between 

allochthonous and autochthonous POC in the post-flooding sediments.     
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7.1.4 Summary João Penido project 

In summary, the study in João Penido catchment showed that 

 POC erosion from surface soils calculated by RUSLE and SOC inventories 

amounted to an average rate of 0.02–0.11 kg m–2 year–1, 

 A large component of the POC in post-flooding sediments was 

autochthonous, but that in deeper layers organic carbon bound to soil-

aggregates from allochthonous sources composed a major component of 

POC, 

 Soil erosion measured in the field by empirical methods utilizing fallout 

radionuclides revealed that 137Cs was less useful, whilst 210Pbex showed 

more potential as a soil erosion tracer, 

 The RUSLE model worked adequately in this deforested environment, 

however the results varied greatly depending on which input factors were 

used. It was demonstrated that the RUSLE model was a useful tool to 

calculate average erosion rates in the catchment (validated by field 

observations) and that the accuracy of the modelled results increased with 

improved detail in input factors.  

 

7.2 Exmoor study 

In this study, streams draining the Exmoor area were monitored for riverine POC 

content and flocculation experiments were conducted to determine the effects of 

treatments by two coagulants on the qualitative properties of DOM in stream 

water. These coagulants were selected to imitate natural flocculation boundaries 

in the landscape: clay representing the soil erosion boundary in the freshwater 

landscape; salt representing the saline mixing boundary in the estuarine 

environment. An additional clay and salt treatment was added to investigate the 

effects of mixing. The results showed that whilst the streams varied in POC 

content and water quality parameters such as electrical conductivity, pH, and 

DOM content, the experimental output showed that organic components groups 

in general were reduced in residual DOM depending on which flocculation agent 

that was used.  
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7.2.1 Stream water quality of the individual catchments 

The calculated stream POC concentrations were only representative for the 

specific sampling occasions of this study, and therefore were likely to represent 

concentrations closer to the yearly minimum than maximum. Site H showed 

consistently higher electrical conductivity than the other streams over the 

measurement period, suggesting that the total dissolved ion load was in general 

higher for this stream. This might be derived from a combination of factors, e.g. it 

could be an effect of dissolved clay minerals in groundwater input from the 

metamudstone rocks in the drainage basin, or an effect of land use in the 

catchment which has been converted from natural to largely improved grassland. 

Another but less likely explanation is the location of the sampling site, with its low 

elevation and vicinity to the sea, making the surrounding area a possible recipient 

of airborne sea spray deposition near the coast. On sampling during round 5 at 

site H the EC was unusually low (0.01 µS cm–1), but showed the highest TSP 

load (4.15 mg L–1), which could be caused by a dilution effect due to high 

discharge.  

 

7.2.2 Qualitative properties of filtrate DOM 

The flocculation experiment initially showed that pH decreased in treatments with 

added coagulants, which implied that the residual filtrates had been acidified by 

chemical change. Results from mass spectrometry indicated that some assigned 

organic component groups were preferentially removed in post-experimental 

residual DOM as an effect of the experimental treatments. For clay treatments T2 

and T4, black carbon and polyphenols decreased in samples from all streams. 

Especially the headwater site I showed high abundance in black carbon and 

polyphenols. In general, components that remained in residual DOM after clay 

treatments T2 and T4 were highly unsaturated hydrocarbons, while aliphatics 

appeared to be more randomly affected by flocculation. Principal component 

analysis revealed trends for the organic compounds by treatment. Polyphenols 

and black carbon were highly correlated and in general showed negative 

correlation with highly unsaturated hydrocarbons. Sugars, peptides and aliphatic 

compounds were in general associated, but showed less correlation for T3 where 

peptides appeared negatively correlated with phenols and black carbon. Sugars 

and peptides were not present detectable concentrations for T1.  
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Preferential removal of humic substances was found for samples treated 

with coagulants, where molecular structures with low H/C and high O/C were 

absorbed, showing that for these stream samples more aromatic humic 

substances contributed to the POC pool during the flocculation experiment. 

These results also agree with other studies which have measured the effect of 

coagulants on DOM, for instance Lavonen et al (2015), who studied DOM 

removal in water treatment plants, found that fluorescent DOM which correlated 

with properties such as low H/C ratios and oxygen-containing groups were 

preferentially removed from residual DOM. Similarly, Sanchez et al (2014) used 

the PARAFAC model to study effects of aluminium based coagulants on DOM 

and found that humic substances were preferentially removed regardless of 

coagulant type, as well as Banaitis et al (2006) who studied changes in residual 

DOM composition after sorption to the natural minerals gibbsite and goethite. As 

a parallel, in their study Pisani et al (2011) demonstrated that photodissolution 

released primarily humic-like components and to a lesser degree protein-like 

structures, from samples which had been subjected to photoirradiation, which 

further demonstrates the presence of humic-like structures in floc products. Van 

Krevelen diagrams showed overlap between positively and negatively correlated 

molecular formulae, which could possibly be explained by the number of isomers 

present in each sample, which exhibit the same formulae but compose different 

chemical structures (Sleighter & Hatcher, 2008).   

The implications of the results is that erosion of aged soil organic matter 

with typically aromatic and humic-like properties would preferentially be sorbed 

to produce floc products in the LOAC. For instance leachates of DOM from soil 

solution which drain into streams, could therefore contribute to floc products in 

the presence of a coagulant. Depending on the chemical and physical protection 

in mineral aggregates in total suspended particulates in stream water, heavy 

mineral associated POC could also act to remove coagulants from the water 

column. Natural flocculation boundaries occur where flocculation agents mix with 

OM in the LOAC. In the estuarine environment competing coagulants may desorb 

OM from the flocs, and contribute to the marine food web. 

Fluorescence peak spectra showed the trend of preferential organic 

compound sorption into flocs, which has been observed in other studies (Asmala 

et al, 2014). Clay treatments T2 and T4 showed strongest effect on the peak 
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spectra and site I was clearly distinct from the other samples, which could be an 

effect of the higher concentrations of dissolved organic matter and carbon at this 

site. Peak A, C and M reflect terrestrial sources of organic matter, where peak A 

and C typically reflect humic acids (Cory et al, 2010). These were in general low 

for the T2 treatment for all stream sites except for site D. In treatment samples, 

protein-like components of peak T increased compared to the raw stream 

samples for all stream sites, but not for the headwater moor site I. Patterns for 

peak B were less clear and showed no obvious trends.  

Changes in fluorescence indices with treatments implied that preferential 

removal of humic-like terrestrial molecular structures were removed from residual 

samples. A higher freshness index (FRESH) suggests that material in the 

dissolved phase was relatively fresher than the organic matter that had been 

absorbed to the floc products during the experiment. FRESH was higher for 

downstream stream sites than for the headwater site, where a terrestrial signature 

of plant material of the mire vegetation would dominate. In treatment samples, 

FRESH increased especially for the clay treatments, further indicating that 

humified organic matter was preferentially absorbed to flocs. 

 A higher fluorescence index (FI) indicates a more microbial origin of the 

organic matter (e.g. leachates from bacteria and algae) while a lower FI is derived 

from terrestrial plant and soil organic matter (Fellman et al, 2010). For raw stream 

samples, a low FI was found for the mire site I of c. 1.3, while most of the stream 

sites showed a mixed signature between 1.4–1.6. The relatively high FI in the 

treatment samples indicated that terrestrial OM had been lost from the dissolved 

phase and taken up by floc products during the experiment, especially in clay 

treatments.  

The humification index (HIX) indicates the degree of humification. For 

treatment samples HIX mostly decreased in the residual DOM, which further 

indicated that preferential flocculation of humified matter during the flocculation 

experiment occurred.  

Both the mass spectrometry and the fluorescence data presented in this 

study showed that coagulants effectively reduced humic substances in residual 

DOM, which agrees with other studies (e.g. Lavonen et al, 2015) that have found 

that coagulants preferentially remove DOM with terrestrial characteristics from 

the dissolved phase. With the coagulant concentrations used in this study, the 
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clay coagulant contributed to more DOM loss, than salt treatments. A change in 

coagulant concentration and properties may play a role in how much DOM and 

which molecular structures that are susceptible to sorption. Similar molecular 

structures were preferentially removed from solution by both coagulants, 

suggesting that the type of coagulant was of less importance, and that instead 

the characteristics of the aromatic oxygen-rich compounds determine the 

susceptibility to sorption. This agrees with the studies mentioned above, where a 

range of different coagulants had the same effect on DOM removal (Banaitis et 

al, 2006; Sanchez et al, 2014; Lavonen et al, 2015).  

 

7.2.3 Downstream effects on riverine organic matter 

When comparing sites I (headwater) and the connected site E (downstream site) 

of catchment E, the fluorescence index increased, humification index decreased 

and the freshness index increased downstream. This result reflects that the 

organic matter properties in the stream water increased in relative freshness, 

attained more microbial origin and contained relatively less humified materials. In 

a “pipeline scenario” a possible explanation for these results could be dilution 

effects in the downstream water sample compared to the headwater sample, 

while in a “reactor scenario” additions of other terrestrial organic matter, in-stream 

organic matter production of microbial origin, physicochemical processes such as 

photolysis, and removal of organic matter from the dissolved phase into flocs 

through flocculation processes, could alter the signatures of the residual stream 

DOM. 

 In this study, results from the flocculation experiment showed that added 

coagulants changed the composition of the residual DOM. Representing mixing 

of stream DOM with minerogenic matter from soil erosion (clay treatment), saline 

mixing (salt treatment) and soil-saline mixing (clay and salt treatment), the results 

showed that while saline mixing (T3) alone had least flocculation effect, the 

addition of clay particles (T2) lead to sorption of organic matter, with a preference 

for humic substances. The overall DOM sorption in the mixed treatment (T4) was 

to a degree counteracted by salt ions, which desorbed clay-bound DOM from the 

clay standard. Variations in flocculation also depend on mineral composition, 

stream chemical composition and solution ionic strength, which affect the stability 
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factor (α) (Edzwald et al, 1974), however these are parameters that were not 

investigated in this work.  

While saline mixing at the estuaries is a natural process, flocculation due 

to increased soil erosion caused by land use change might further change the 

composition of downstream riverine organic matter. Not only is soil erosion 

increasing the net input of minerogenic aggregate-bound organic matter and 

charged clay minerals into streams, but the hydrological response to precipitation 

in a catchment is additionally affected by land use. In natural to semi-natural 

catchments peak discharge might be lower and less intense due to longer 

residence time of precipitation in heterogeneous vegetation and stable soils, 

compared to rapid discharge peaks in agricultural catchments affected by plant 

monoculture and tillage practices. Low discharge not only affect water retention 

time for suspended particulates and dissolved aquatic species in the streams, but 

also allows time for other transformation processes such as photodegradation 

and flocculation of organic matter to take place.  

 

7.2.4 The effect of salt mixing on minerogenic-bound organic matter 

When conducting the standard control run using only deionized (DI) water 

standards that were treated by T1–T4, results showed that the mixture of salt and 

clay standard (T4) lead to desorption of organic matter from the clay standard.  

In nature, this process could be important at the freshwater–ocean 

boundary, where freshwater transporting total suspended particulates (e.g. soil 

particles) interact with salt ions in estuaries and as a result desorption of 

aggregate bound SOC might provide substrates for biological consumption or 

contribute to other flocculation. The aggregate bound SOC is often more 

humidified than relatively fresh organic litter products and in the case of the clay 

and clay-salt treatments T2 and T4 of stream samples, the fluorescence data 

showed that humified matter was commonly more prone to sorb to coagulants, 

leaving relatively fresher DOM residue in suspension. The fluorescence index (FI) 

increased in residual DOM in the treated stream samples, which similarly indicate 

that terrestrial organic matter from litterfall and soil were preferentially sorbed. 

Implications of this sequestration is that formed flocs that are prone to sink and 

accumulate at sites of deposition could to a large degree consist of mainly 

terrestrial matter. Other studies have for instance found that downstream the 
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coastal mixing boundary, terrestrial POC becomes less abundant in the water 

column and instead composes a major contributor in sediments with increasing 

salinity (Wanatabe & Kuawe, 2015). Further, flocculation experiments that test 

the effect of a range of salinities simulating estuarine mixing have confirmed that 

flocculation of terrestrial DOM takes place even at low salinities, concluding that 

the residual DOM which reaches the sea after flocculation processes have taken 

place, substantially differ in compound properties compared to pre-flocculation 

DOM (Asmala et al, 2014). These alterations in DOM composition contribute to 

the discriminative processes that control which organic compounds reach the 

open sea (Asmala et al, 2014). Further, Kothawala et al (2012) showed that dark 

incubation of DOM reduced primarily the humic substances as a result of 

biological recycling and flocculation. As mineral aggregate bound soil organic 

matter typically compose these humified organic compounds, it is possible that 

desorption of soil organic matter from total suspended particulates could 

contribute to either the microbial food chain or successive flocculation at the 

estuarine boundary. Produced flocs remove organic matter from the dissolved 

phase and settle at sites of accumulation, which compose possible storage and 

burial sites of organic carbon. In the studied streams, most of the estuarine 

boundaries compose outlets directly connected to Bristol Channel, where aquatic 

species, dissolved and particulate, are redistributed by wave action instantly 

without much accumulation in a bay. Organic matter entering the sea at these 

outlets might therefore be transported far from the shore before sedimentation, 

or may be available as biological substrates already at the estuarine boundary. 

 

7.2.5 Limitations of the Exmoor stream study 

The monthly–bimonthly monitoring scheme compose a narrow window of 

observations from these streams. The concentration range of water quality 

parameters, pH, and EC presented in this study do therefore not necessarily 

represent average water quality of these streams, yet the information gathered 

suggest that in general these streams are poor in both dissolved and particulate 

organic matter over most of the year. Other studies have shown higher maximum 

concentrations of particulate carbon (e.g. Glendell et al, 2014). 

 In this study, the residual DOM composition was only measured for 

samples from one single sampling occasion in May 2018. Initially used sample 
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polypropylene sample tubes showed out to be inappropriate in storing post-

experimental filtrates, as contamination occurred. Therefore results from organic 

compound and component analysis were reduced to one sampling occasion, 

when glass vials were used for storage, however the composition of organic 

matter in these streams is likely connected to occasional–seasonal variation, 

influenced by e.g. soil erosion events, seasonal input of litterfall, and biological 

activity of microbial films. The results of this study implicates that depending on 

the coagulant there is preferential removal of specific carbon groups during 

flocculation, and therefore the quantity of DOM that flocculate in stream water 

might be limited due to the initial compound composition. This complicates 

quantification and modelling of flocculation in streams, perhaps more in those 

that are both of heterogeneous composition and are subject to seasonal variation 

at higher latitudes.  

 The post-experiment floc particulates that were captured on glass fibre 

filters and were analysed by loss on ignition were of such small quantities that 

high uncertainties lie in the gravimetric method, even with a 4-decimal balance. 

Small differences in absorbed moisture in the filters which were oven dried and 

weighed before and after filtration could have caused error in the measurement. 

 Another limitation compose the possible reactions between organic matter 

which desorbed from the clay standard in the mixed treatment (T4) that may have 

influenced the composition of the organic substances measured in the residual 

DOM. Although the influence might be of minor importance for the measured 

flocculation, it could still affect the results to some degree. 

 This experiment only tested the effects of two coagulants (salt and clay). 

In nature, the dissolved phase of organic matter is complex and the different types 

of coagulants that may be continuously, seasonally or occasionally present in 

stream waters are numerous (e.g. dissolved metal ions, clay minerals, organic 

coagulants). Water chemistry was not analysed in this study and therefore the 

effects of flocculation on stream samples shown by the results could have been 

influenced by sample heterogeneity of e.g. metal concentrations that were not 

taken into account. However the analytical blanks that were analysed composed 

homogenous samples and it could be assumed that the residual organic 

compound composition in these samples were representative of flocculation 

effects. It is still important to remember that the experimentally measured effects 
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might not be representative when mixed conditions exist, as those in natural 

stream waters.  

 

7.2.6 Summary Exmoor project 

In summary, the flocculation experiment showed 1) preferential removal of 

aromatic and oxygen-rich humic-like structures for treatments with coagulants, 

and 2) added salt standard had a desorption effect on the native OM of the clay 

standard, which diluted and reduced the overall flocculation effect.   

 In addition, this study developed a methodology which successfully 

investigate the effects of flocculation by coagulants on samples from DOM poor 

streams. While results from TOC-L analysis were less reliable due to the low 

initial OC content, mass spectrometry, absorbance and fluorescence analysis 

were of sufficient resolution to determine the molecular formulae for classified 

compound groups of the DOM. These methods have been shown to be a helpful 

tool for determining the chemical characteristics and of natural stream water and 

improves current understanding of DOM composition in various systems of the 

LOAC. More in-depth analysis could investigate the behaviour of DOM 

components at other concentrations of added coagulants.    

 

7.3 POC transport and dynamics along the LOAC 

In this study, the transport and nature of POC was investigated in soils and 

reservoir sediments of a tropical catchment. This semi-closed system allowed for 

quantification of reservoir net input of sediment from eroding catchment soils. 

With the results found it was possible to estimate total POC input and net 

inventories in post-flooding reservoir sediments, however further investigation 

and additional methods are required to improve these estimates, especially in 

order to determine the various sources of POC.  

 The main objective of the modelling study in João Penido catchment was 

to calculate POC erosion from catchment soils and deposition into the reservoir.  

The range of average soil erosion output for wholly database based input to 

partially field based input of RUSLE for grassland sites that were compared to 

radionuclide inventories fell within the range of radionuclide results, although the 

partially field based RUSLE output agreed best with PDM-137Cs and DMM-210Pbex 
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results, which were the FRN conversion models that showed best potential in the 

field. It was expected that the RUSLE model would work sufficiently well in the 

João Penido catchment, as it in other studies has been successfully implemented 

for catchments with various terrain, climate and land uses. In particular, the 

results from the database based RUSLE output agrees well with other studies in 

the region, which supports the motivation to use this model in this type of 

landscape. 

 The main objective of the POC study in João Penido catchment was to 

determine the net inventories and sources of POC in post-flooding sediments. 

While the total POC inventory could be estimated from sediment core 

observations and calculated sediment volume, the relative net contributions from 

allochthonous and autochthonous sources could only be approximated. This 

estimation is based on a number of assumptions that may be more or less 

realistic for the João Penido reservoir, such as the assumption that the average 

organic carbon content will be retained in soil particles entering the post-flooding 

sediment due to physical protection of organic matter in mineral-aggregates and 

that mineralisation of autochthonous and bioavailable organic matter has been 

continuous over time, which would result in a depth gradient with relatively more 

allochthonous POC with depth. The C/N results indicated that top sediments 

displayed mixed terrestrial–lacustrine signatures, while deeper sediments 

showed more separated signatures for sediment increments, however the 

number of samples were too few to determine any obvious patterns. Of the 

density fractionated sediment samples only one sample (SED4B, at 2–4 cm) had 

sufficient light fraction to be compared to the heavy fraction for the three 

separated particle sizes. Although the light fraction showed higher C/N ratios for 

the medium (250–53 µm) and fine fraction (<53 µm), the difference was too small 

to indicate a source other than “mixed” with certainty. Unanswered questions of 

this work compose the full comprehension of organic carbon sources in the 

reservoir post-flooding sediments, and the fate of the carbon currently in limnic 

storage. To answer those questions, studies on for instance recalcitrance of 

various forms of POC would continue to enhance the understanding of POC fate 

in reservoirs like João Penido, by studying the other parameters of source, state 

of decomposition and physical protection.  
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 For the POC transformation study in Exmoor, UK, the results indicated that 

the fraction of organic carbon in stream water is typically low for the studied 

streams. While other studies have detected higher concentrations during rainfall 

events, e.g. for Horner Water, the monitoring scheme in this study was not of 

enough resolution to catch the extremes of the seasonal variation. Any continued 

studies could possibly implement high discharge events to determine the OM 

quality and the flocculation rates of riverine organic matter of such events. Results 

from the flocculation experiment indicated that humic like substances were 

preferentially removed from the dissolved phase, which corroborates other 

studies that have linked carbon transformation dynamics in mainly the estuarine 

part of the LOAC to the properties of bioavailable substrates delivered by stream 

water discharge that become utilized by the marine food web. A change in POC 

properties in the upstream LOAC, e.g. as an effect of land use change, could 

therefore have implications for transformation processes further downstream. 

The resulting effects is outside the scope of this study, but has a part in future 

modelling of carbon transport and fate. This study focused on a narrow 

compartment of the wide range of transformation processes that occur in 

catchment streams, it investigated the change in organic properties of residual 

DOM as an effect of flocculation, which showed that aromatic oxygen-rich 

compounds were preferentially removed by both types of coagulants.  

Questions that remain to be answered are for instance what the effect of 

seasonal variation are on flocculation processes, what the connection between 

other transformation processes are and how these influence each other, e.g. 

photooxidation and biomineralisation, and to what degree flocculation products 

are recalcitrant or bioavailable.  

  

  

  



253 
 

Chapter 8 Conclusions 

This study investigated POC transport and fate in a tropical reservoir catchment 

and effects of flocculation on riverine dissolved organic matter. For the Brazilian 

reservoir study, it was found that:  

 RUSLE model output that utilized field observations from the study site 

showed closer relationship with fallout radionuclide field data, than did the 

RUSLE output which was entirely based on database input.  

 Simulations of land use change showed that the current state of erosion 

was in-between the two simulated extreme scenarios of a completely 

forested and a completely deforested state, which emphasized the 

importance of the factor of vegetation cover in this type of landscape. 

 Despite the 137Cs signal being sparse in Brazilian soils, the inventories 

showed some erosion and deposition patterns for the soil sites, however 

it seemed that 210Pbex is a more powerful erosion tracer present in this 

area. The continuous fallout of the natural radionuclide 210Pbex makes it an 

interesting tracer to use in the future, especially in the Southern 

hemisphere, as artificial 137Cs signals are diminishing in the environment.  

The results of this work are supported and support other studies in the field. 

Comparable studies using the RUSLE model in similar environments in South 

America have reported results of the same order of magnitude as those in this 

work (Medeiros et al, 2016; da Cunha et al, 2017; Beskow et al, 2009), and the 

137Cs inventories reported in this study are similar to inventories in other nearby 

regions of Brazil (Correchel et al, 2006; Bacchi et al, 2005; Andrello et al, 2004). 

In Brazil, few studies have focused on using 210Pbex as a soil erosion tracer and 

most have used it for aquatic sedimentation settings, however 210Pbex soil 

inventories in this work were comparable to other studies from worldwide sites.  

 Although uncertainties lie in the calculations of the net post-flooding 

sediment volume of João Penido reservoir, it was also found that: 

 For João Penido, the calculated sediment yield amounted to 20.3%, 

 the ratio of allochthonous and autochthonous POC of the post-flooding 

sediments was estimated to 2:5, indicating that the dominating source 

of POC in this eutrophic reservoir was of autochthonous origin. 
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The experimental study on flocculation dynamics of dissolved organic matter in 

stream water samples from Exmoor revealed the following: 

 The efficiency of flocculation agents in treatment order was clay, mixed 

clay and salt, and salt treatments, T2>T4>T3 respectively. 

 Preferential removal of humic substances was found for samples 

treated with coagulants, where molecular structure with low H/C and 

high O/C were absorbed, showing that more aromatic humic 

substances contribute to the POC pool during flocculation processes 

for these streams. 

 that the impact of treatments with coagulants primarily controlled 

residual DOM characteristics, despite small differences in water quality 

between the stream sites. 

This work led to development of a useful method to determine the effects of 

flocculation on stream water DOM, which provides insights into POC dynamics in 

the LOAC when it appears in the form of organic flocs. This method could further 

be used to investigate dissolved and particulate organic matter fractions in other 

systems belonging to the LOAC, where it is of importance to understand the 

transformation processes of POC.  
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Manuscript 1: Measuring and modelling terrestrial soil erosion input into a 
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Abstract 

Land use change (LUC), such as deforestation and agriculture, contribute to 

increased erosion and subsequent redistribution of soil particles in the landscape, 

while the increased number of artificial dams and reservoirs result in sediment 

traps in the landscape which can store much of this relocated soil. In Brazil, the 

Atlantic forest biome has been reduced to 8% of its original extent over the past 

c. 500 years, to be converted into agricultural land of plantations and pasture, 

which raises concerns not only about intense ecosystem degradation but also 

about increased soil degradation in the landscape. In this study, modelled soil 

erosion by Revised Universal Soil Loss Equation (RUSLE) was used to estimate 

soil erosion in a highly perturbed and largely deforested tropical catchment in 

Brazil. The modelled results were validated by field observations of fallout 

radionuclides (FRN) used to quantify soil erosion and sedimentation in the 

catchment. Further, simulated RUSLE scenarios of extreme cases of total 

deforestation and total forestation were compared to the current state of erosion. 

mailto:j.snoalv@gmail.com)
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The results show that modelled RUSLE output of soil erosion in this tropical 

catchment agrees with field observations, indicating that RUSLE is an adequate 

tool when addressing soil erosion in this type of increasingly common deforested 

Brazilian landscape. 

 

Plain Language Summary 

Soil erosion and sedimentation was modelled and measured in deforested soils 

of a reservoir catchment in south-eastern Brazil. The results indicate that land 

use change (LUC) severely impact soil erosion rates in this landscape and that 

RUSLE is a reliable tool for soil erosion assessment in this type of landscape. 

 

1 Introduction 

Soils are important. Being a historically vast resource utilized by humans for 

growing crops since the agricultural revolution of the Neolithic (Lev-Yadun et al, 

2000), with finite reserves soils have been degraded substantially worldwide. 

Land use change (LUC) and anthropogenic activities such as agricultural 

practices, deforestation, and overgrazing, accelerate natural soil erosion (Ritchie 

& McHenry, 1990; Porto et al, 2012). Globally, 25% of agricultural lands have 

been classified as highly degraded (FAO, 2011). Not only cultivated lands are 

under anthropogenic pressure, but deforestation and conversion of forested 

lands lead to increased losses and nutrient exhaustion of soils previously 

stabilized by roots and nourished with plant litter. Clear cutting has been 

attributed a major cause of soil erosion in many historical and present agricultural 

societies (Anselmetti et al, 2007).  

About 25% of the land area in Brazil is used for agriculture and total soil 

erosion rates from these cultivated soils (including pasture) amount to c. 800 

million tonnes year–1 (Merten and Minella, 2013). Clear cutting of forested land 

with subsequent conversion into cultivated fields or pasture not only increases 

land degradation, but also reduces natural ecosystem function and diversity. A 

highly impacted biome in South America is the Atlantic forest, which composes a 

biodiversity hotspot that mainly over the past c. 500 years has been reduced to 

less than 12% of its original extent of almost 1.5 million km2 on the South 

American continent (Ribeiro et al, 2011). Similarly, in Brazil, deforestation 
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practices have reduced corresponding Brazilian Atlantic forest (Mata Atlântica) to 

c. 8% of its original extent (Colombo & Joly, 2010). Atlantic forest contains 

exceptional biodiversity from a wide range of altitudes over coastal to inland areas 

that stretch from tropical to subtropical regions over the continent, but is 

threatened by severe habitat loss and increased fragmentation due to land use 

change (Ribeiro et al, 2009) and the increased land degradation which typically 

follows deforestation.   

Further, soil erosion not only compose a loss of an ecosystem or farming 

resource in which plants can grow, but increased mobilisation of soil particles can 

also lead to downstream problems when allochthonous sediment is deposited in 

fields, floodplains, and lakes and artificial dams (Zapata et al, 2003). Manmade 

dams and reservoirs are effective sediment traps in the landscape that contribute 

to the acreage of semi-permanent water bodies which may act as emission 

hotspots of greenhouse gases such as carbon dioxide (CO2) and methane (CH4) 

(Barros et al, 2011; Maeck et al, 2013). Reservoirs also act as containers holding 

limnic storage of eroded soil and organic matter. While human impact has 

increased global soil erosion input into the aquatic continuum with about 2.3±0.6 

Giga-tonnes year–1, there has been a reduction in sediment loads reaching the 

coastal oceans by 1.4±0.3 Giga-tonnes year–1 due to entrapment within 

reservoirs and dams (Syvitski et al, 2005). When accounting for the effect of 

sediment trapping modelled global average input of sediments from the 

continents to coastal oceans amount to about 19 Pg year–1 (Beusen et al, 2005) 

and globally over 100 Giga-tonnes of sediment is estimated to be retained within 

reservoir storage, containing 1–3 Giga-tonnes of carbon (Syvitski et al, 2005). 

Moreover, about 75% of the organic carbon (OC) that is deposited in reservoir 

sediments is derived from allochthonous sources (Maavara et al, 2017). Eroded 

soil particles that end up in reservoir storage remove organic carbon from 

terrestrial soils and contribute with soil organic matter (SOM) to either fuel 

mineralisation or add input of OC to semi-permanent reservoir storage. Human 

perturbation on the natural landscape that leads to this increased flux of soil 

particles into the aquatic continuum and reservoir storage results not only in 

geomorphic disturbance but also degradation of terrestrial soil carbon deposits 

which previously were stabilized by the original forested ecosystem. 
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In many regions of the world, reliable data on soil erosion is sparse despite 

the general acceptance that net soil loss from the landscape composes a major 

problem (Zapata, 2003). Since soil degradation impact both the sustainability of 

agriculture in cultivated landscapes, and the environmental conservation of 

protected areas, a primary step towards effective environmental management 

and soil conservation is quantification of soil erosion and deposition (Porto et al, 

2012; Gaspar et al, 2013). Several techniques have been developed to estimate 

soil erosion, e.g. field observations such as terrestrial laser scanning and 

radionuclide methods, and modelling approaches comprising three types of 

erosion models: 1) quantitative, 2) empirical, and 3) physically based models 

(Terranova et al, 2009). Revised Universal Soil Loss Equation (RUSLE) is an 

upgraded empirical soil loss model based on the original Universal Soil Loss 

equation (USLE) model developed originally by United States Department of 

Agriculture (USDA). The spatial scale of RUSLE composes field–hillslope range 

(Terranova et al, 2009), although numerous studies have applied this model on 

global scale (Yang et al, 2003; Naipal et al, 2015) and the model has been 

successfully applied in various regions, terrains and climate. 

Effective methods to measure soil erosion in the field include the use of 

fallout radionuclides (FRN) (Gaspar et al, 2013). FRNs are radioactive isotopes 

that readily fix onto mineral surfaces and primarily follow the physical processes 

which relocate soil particles (Quine & Van Oost, 2007). Assuming that the 

distribution of FRN follow soil mobilization, these therefore serve as good 

indicators of erosion and deposition by water, wind and tillage (Mabit et al, 2008). 

Two common radionuclide tracers compose 137-caesium (137Cs) and excess-

210-lead (210Pbex). The isotope 137Cs is a fission product from 137I decay, an 

anthropogenic fallout radionuclide which does not appear naturally. It was 

released into the atmosphere during bomb tests in the period 1950–1970 (Nouira 

et al, 2003), and, in particular, in the Northern Hemisphere from the Chernobyl 

accident in 1986 (Tang et al, 2006). Despite the Chernobyl incident, main fallout 

of 137Cs occurred in years 1962–1964 (>50%), and 80% of deposition had 

occurred by 1964 (Quine & Van Oost, 2007).  The radioactive fallout is considered 

uniform, and despite some deliverance being through local dryfall in the vicinity 

of key sources, the main deposition is via rainfall precipitation (Ritchie & 

McHenry, 1990; Mabit et al, 2008; Dercon et al, 2012). The 137Cs radionuclide 
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has successfully been used to study medium-term (up to c. 50 years) soil erosion 

rates in managed and non-cultivated soils in the past (Ritchie & McHenry, 2007) 

and composes a straightforward method to identify the relocation of soil particles 

by physical processes. As one of the most common radionuclides used within 

FRN research, 137Cs has been used in over 4000 studies worldwide (Mabit et al, 

2014). 

Fallout of 137Cs has been more prominent in the Northern Hemisphere than 

in the Southern Hemisphere and show higher concentrations in the environment 

around for instance centres of nuclear tests and the Chernobyl power plant (Tang 

et al, 2006; Dercon et al, 2012). Earlier studies have shown that the 137Cs 

activities obtained in Brazilian soils of the Southern Hemisphere generally occur 

at levels c. 10 times lower compared to data from the Northern Hemisphere 

(Bacchi et al, 2000). Despite the relatively low activities of 137Cs in soils of the 

Southern Hemisphere, in a long-term runoff monitoring study to evaluate the use 

of 137Cs in Brazilian soils, Correchel et al (2006) found that where this 

radioisotope is detectable it provides confident results. The generally low 

activities of 137Cs in the Southern Hemisphere cannot be overcome, however, 

activity measurements of excess (unsupported) 210Pbex with a half-life of 22.26 

years can be complementary to 137Cs studies (Mabit et al, 2008). The 

redistribution of 210Pbex in the landscape is, similar to the 137Cs distribution, mainly 

connected to physical relocation of soil particles, as it too readily adsorbs to 

mineral surfaces as well as organic matter. The continuous fallout additionally 

retain soil profiles with the highest 210Pbex activities at the surface and declining 

activities with depth (Walling et al, 1995). Because the 210Pbex inventory is 

continuously replaced, historic records of erosion rates up to ca 100 years are 

obtainable, compared with 137Cs which fallout is associated with bomb tests in 

1950–1960 (Gaspar et al, 2013). 

The objectives of this study were 1) to determine soil erosion rates and the 

amount of allochthonous sediment that goes into limnic storage of a small 

drinking water reservoir within a largely perturbed tropical watershed in Brazil, to 

assess the impact of LUC on soil and sediment redistribution in an Atlantic forest 

biome affected by deforestation and damming, and 2) to evaluate the 

performance of the RUSLE model to predict soil erosion in this type of landscape. 

The results of this study would reveal typical characteristics of soil redistribution 



260 
 

rates and fate in an increasingly common perturbed landscape of south-eastern 

Brazil. 

 

2 Materials and Methods 

2.1 Study area 

João Penido reservoir (LAT: –21.675459, LONG: –43.394960) supplies drinking 

water to the city Juiz de Fora in state Minas Gerais, Brazil (Figure 1). The 

watershed area amount to ca 772 km2 and is situated in terrain at ca 684–1061 

m.a.s.l. (DEM analysis) with the main water body being located at ca 746 m.a.s.l. 

DEM analysis displayed catchment slope values ranging between 0–36.7 

degrees. The watershed composes a minor contributing sub basin to the large 

Paraíba do Sul River watershed.  João Penido composes a mesotrophic system 

having a medium level of water quality which has likely degraded in quality due 

to land use change in the watershed (Bucci et al, 2015). The land surrounding 

the reservoir in the catchment is mainly used for residential purposes and as 

pasture for cattle. Main parts of the land in direct connection with the reservoir 

beachline compose deforested shrubland. 

 

Figure1 Field site 

 

The region is classified by the Köppen classification system as Cwa, with a sub-

tropical climate having dry winters and rainy summers, with the hottest months 

having mean temperatures >22◦C. Annual regional rainfall for south-eastern 

Brazil range between 1200–1600 mm year–1 (da Silva, 2004). Metamorphic rocks, 

such as Neoproterozoic schist and Rhyacian orthogneiss (CPRM 1:1M, 2018)28 

dominate the catchment lithology. The main soil type composes orthic ferralsol 

or ultisol (CPRM, 2016), characterized by highly weathered soil units. Mass 

movement of soil on the hillslopes, which cause scarring in vegetation and 

provide unprotected patches of ground with higher erosion potential than 

protected soil covered by vegetation was observed in the field. Deforested 

                                            
28 URL: http://portal.onegeology.org/OnegeologyGlobal/ 
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grasslands dominate in the catchment, which is mapped as semi-deciduous 

forest belonging to the Atlantic forest biome29.  

 

2.2 Soil and sediment sampling 

Field work was conducted in the dry season of 2016. Soil samples from hand dug 

pits were collected with soil profile samplers (Figure 3). The top 20 cm in the soil 

profile was subsampled by 2 cm increments (100 cm3), while the 20–60 cm 

section of the soil profile was subsampled by 5 cm (2500 cm3) intervals. Sites 

with terrestrial sediments were sampled in the flat (<1 degree slope) seasonally 

inundated soils. Larger particulates (pebbles, stones, roots) were removed and 

samples were packaged into plastic zip-bags. The samples were weighed, air 

dried, and shipped to University of Exeter laboratories. 

 

Figure 3 

 

Sediment core were retrieved with a gravity corer from a boat from the delta and 

various sites of the reservoir (Figure4). The cores were sub sectioned into 2 cm 

increments, air dried, and transported to the laboratory at University of Exeter. 

Additional sediment cores were sampled in 2017. 

 

Figure4 

 

2.3 Bathymetric measurements by sub-bottom profiler 

The bathymetric survey in João Penido reservoir was performed in June 2016, 

with a parametric sub-bottom profiler (Innomar SES-2000) which detects the 

sediment-water interface at 100 kHz frequency. Shore-to-shore zigzag transects 

were made at 10 km h−1 along the entire length of the reservoir, and the output 

data were geo-referenced using an on-board GPS receiver. The echograms were 

interpreted using the Innomar ISE software (version 2.95). 

 

                                            
29 Mapa de Vegetacão do Brasil (1992) 
http://mapas.mma.gov.br/mostratema.php?temas=vegetacao  

http://mapas.mma.gov.br/mostratema.php?temas=vegetacao
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2.4 Analytical methods 

Samples were oven-dried at 40 ̊ C for 24–48 hours, weighed, ground, and passed 

through a <2mm sieve, and stored in enclosed containers for a minimum of 20 

days to reach equilibrium between 210Pb fallout from 222Rn decay, before γ 

detection of fallout radionuclides in high purity germanium (HPGe) coaxial 

detectors (ORTEC). Photopeaks of 137Cs (662 keV), 210Pb (46 keV) and 226Ra 

(352 keV) were recorded with GammaSpec® software for soil samples (c. 50) 

and sediment samples (c. 4–6 g) with a set detection time of 86400 s.  

 

2.5.1 Bulk density, porosity and grain size analysis 

Dry bulk density was determined by: 

 

𝜌𝑏 = 𝑊𝑑/𝑉𝑡 

 

 

Where ρb is the bulk density, Wd is the dry weight, and Vt is the total volume. 

Grain size was analysed on the <2000 µm fractions of 90 samples from 3 

sediment cores and 3 soil cores. The fractions that were separated were >2000 

µm, 2000–250 µm, 250–63 µm, and <63 µm.  

 

2.5.2 Fallout radionuclide inventories 

Soil samples were analysed for 137Cs (N=350) and 210Pbex (N=296). From 

sediment sites, 76 samples were analysed for 137Cs and 210Pbex. Activity of a 

sample was calculated by (Mabit et al, 2014): 

 

𝐴 =
𝑁𝑒𝜆𝑡0

𝜀𝐼𝑦𝑀𝑡𝑐
 

 

where A is the concentration of activity (activity per mass) of the radionuclide (Bq 

kg–1), N is the net peak area, 𝜆 is the decay constant (ln2/t1/2)*, tc is the counting 

time, t0 is the difference in time between sampling and measurement, M is the 

mass of the sample (kg), 𝜀 is the absolute efficiency, and Iy is the gamma intensity 
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or probability of emission.  The calculated activities were corrected by the number 

of days between sampling and analysis. 

The areal activity (Bq m–2) was calculated by: 

 

𝐴𝑆 = Σ𝐶𝑖𝜌𝑖𝐻𝑖 

 

Where Ci is the activity of the ith sample depth section (Bq kg–1), 𝜌𝑖 is the bulk 

density of the ith sample increment (kg m–3), and Hi is the depth of the ith sample 

increment (m). The basis of soil redistribution by fallout radionuclides assumes 

that the inventory of an eroding site is lower than the reference site inventory, 

whilst an accumulation site has a higher inventory. The inventory, 137Csinv, was 

calculated by: 

 

𝐶𝑠137
𝑖𝑛𝑣 = 𝐴 × 𝜌 × 𝑑 

 

Where A is the concentration of activity (Bq kg–1) in a sample, ρ is the soil bulk 

density (kg m–3), and d is the depth (m) of the sample. The inventory is reported 

in units of Bq m–2.  

Soil site JP17 was the chosen reference inventory for all soil cores in the 

study area. This site was assumed to undergo neither net erosion nor net 

deposition, showed continuously decreasing 137Cs activities with profile depth, 

and 80% of the total 137Cs inventory was found in the top 20 cm.  

 

2.5.3 Conversion models 

The conversion models that were used for soil sites in this study are the Profile 

distribution model (PDM) for 137Cs, and the Diffusion and migration model (DMM) 

for 137Cs and 210Pbex. The constant rate of supply (CRS) model was used for delta 

and reservoir sediments. It was assumed that the main atmospheric fallout of 

137Cs occurred in 1963 due to bomb testing, and composes the only source 

accounted for in the interpretation of 137Cs-data for these Brazilian soils. It was 

also presumed that 210Pb fallout is continuous over time, which would yield 

reference inventories in steady state balance. 
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The profile distribution model uses an exponential relationship for the 

vertical inventory of 137Cs at an undisturbed site, and was calculated by (Zhang, 

1990): 

 

𝐴′(𝑥) = 𝐴𝑟𝑒𝑓(1 − 𝑒
−

𝑥
ℎ0) 

 

Where A’(x) is the concentration 137Cs above depth x (Bq m–2), Aref is the 

reference inventory of 137Cs (Bq m–2), x is the depth from the soil surface (kg m–

2), and h0 is the profile shape coefficient (kg m–2) or relaxation depth of the profile. 

h0 is calculated by least squares regression between the variables ln A(x) and the 

cumulative mass depth (kg m–2), according to e.g. Porto et al (2001). 

For an eroding site, soil loss was calculated by (Rodway-Dyer et al, 

2010): 

 

𝑌 =
1

(𝑡−1963)
ℎ0 (1 −

𝑋

100
)  

 

Where Y is the yearly soil loss (t ha–1 year–1), t is the sampling year, h0 is the 

relaxation depth (kg m–2), and X represents the percentage of reduction of total 

137Cs inventory (%) described by: 

 

𝑋 = (𝐴𝑟𝑒𝑓 × 𝐴)/(𝐴𝑟𝑒𝑓 × 100) 

 

Where Aref is the reference inventory of 137Cs (Bq m-2), and A is the total 137Cs 

inventory (Bq m–2).  

The diffusion and migration model was used to interpret 210Pbex inventories 

in terrestrial soil samples, by an Excel add-in presented in Walling et al (2007). It 

requires input parameters such as the diffusion coefficient (D) with a unit of kg2 

m–4 year–1, the downward migration rate (V) with a unit of kg m–2 year–1, and the 

relaxation depth (h0) with the unit kg m–2. The calculations of the DMM method 

have been thoroughly described by others (Walling et al., 2002: Porto et al, 2014). 

The diffusion and migration coefficients for 137Cs and 210Pbex were calculated for 

reference site JP17, using D=22.56, V=1.08 for 137Cs, and D=0.88, V=0 for 

210Pbex. The model requires a value for relaxation mass depth that represents 
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penetration of fresh fallout (not to be confused with h0 which relates to the profile 

distribution, used for PDM-137Cs calculation of erosion rates) and a value of 4 kg 

m–2 was chosen for all samples. 

 

2.5 Modelling soil erosion rates with RUSLE 

The upgraded empirical soil loss model Revised Universal Soil Loss Equation 

(RUSLE) is based on the original Universal Soil Loss equation (USLE) model, 

initially developed by United States Department of Agriculture (USDA). It 

composes a product of the following six factors: 

 

𝐴 = 𝑅𝐾𝐿𝑆𝐶𝑃 

 

where A is the calculated yearly mean soil erosion (metric tonnes ha–1 year–1), R 

composes the yearly rainfall erosivity factor, K is the soil erodibility factor, S and 

L compose the slope steepness and slope length factors respectively, C is the 

vegetation and crop management factor, and P represents specific erosion 

control practices. The combined product of L and S factors compose the 

topographic factor, LS, which can be derived from DEM data. The input data 

sources are summarized below. 

A DEM was created from 30 m resolution Shuttle Radar Topography 

Mission data (SRTM s22w044 1arc-second v3), downloaded in 2016 from USGS 

Eros Data Center30. Slope values range between 0–36 degrees in the João 

Penido catchment (Figure). 

The R factor was calculated by the expression by Renard & Freimund 

(1994) was used: 

𝑅 = 0.0483 × 𝑃1.610 

 

Where P is the annual average rainfall in mm year–1, estimated from the database 

PSD South America Daily Gridded Precipitation (Liebmann & Allured, 2005), 

which temporal range is 1940–2012, obtained from South American Precipitation 

data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their 

                                            
30 https://earthexplorer.usgs.gov/, downloaded in 2016 

https://earthexplorer.usgs.gov/


266 
 

Web site31 at http://www.esrl.noaa.gov/psd/ (downloaded 2017-10-30). Data was 

extracted from raster point (LAT, LONG: –4832176.366, –2471825.954) to 

calculate the annual average precipitation for an area that includes the João 

Penido catchment.  

The soil erodibility factor (K) can be derived from database soil properties 

data or be derived from field observations. The dominating soil type in João 

Penido catchment is orthic ferralsol (latosol) which has been identified with a 

typically low K value, e.g. 0.0162 Mg ha h ha–1 MJ–1 mm–1 (Medeiros et al, 2015).  

In this study, the K factor was calculated from soil properties of field samples by 

utilizing the equation from Stewart et al (1975):  

 

𝐾 = [2.1 × 10−4(12 − 𝑂𝑀)𝑀1.14 + 3.25(𝑠 − 2) + 2.5(𝑝 − 3)]/100 

 

Where p is the permeability class, and s is the structure code, and M is the 

product of particle structure, based on clay, silt, and sand content, defined as 

(Wischmeier & Smith, 1978): 

𝑀 = 𝑠𝑖𝑙𝑡% × (100 − 𝑐𝑙𝑎𝑦%) 

Further, the K value is converted from U.S. customary units into S.I. units (Mg ha 

h ha–1 MJ–1 mm–1 or t ha h ha–1 MJ–1 mm–1) by a conversion factor of 0.1317 

(Wang et al, 2016). For João Penido reservoir, p was set to 3 (moderate) and s 

was set to 3 (medium-coarse and granular). Input data from observations showed 

an average soil OM value of 13.09% (N=125) and grain size data from 26 

samples displayed a mean of 3.71% for silt and 96.28% for sand in the upper 20 

cm of available soil profiles. Since clay was not separated from the <53 µm 

fraction in this study, it was set to zero.  

The LS-factor is a dimensionless value which represents erosion effect of 

topography. An SRTM-derived DEM was implemented through the SAGA tool 

LS-factor, field based, to calculate the LS factor by equations from Desmet & 

Govers (1996). 

The cover and management (C) factor describes the effect of vegetation 

cover on erosivity in the landscape and its unitless value ranges from 0–1 (Kouli 

                                            
31 https://www.esrl.noaa.gov/psd/data/gridded/data.south_america_precip.html 

http://www.esrl.noaa.gov/psd/
https://www.esrl.noaa.gov/psd/data/gridded/data.south_america_precip.html
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et al, 2008). For João Penido watershed, literature C-values from Panagos et al 

(2015) and da Cunha et al (2017) were assigned to a land cover map digitized in 

QGIS using Google Satellite data through the open layers plugin, at a scale of c. 

1:2,000. Five land cover classes (built up areas, delta, grassland, water, wood) 

were identified in the studied catchment and the digitized features were assigned 

literature C factor values. 

The support factor (P) composes a ratio of erosion related to conservation 

practices that control runoff erosion in cultivated soils (Renard et al, 1978). In 

João Penido catchment, the P factor was set to 1, as conservation practices are 

unknown. 

 

3 Data 

3.1 RUSLE modelling results 

The resulting annual average precipitation (years 1940–2012) equalled 1540.69 

mm year–1, which gave an R factor value of 6535.34 MJ mm ha–1 year–1. This fell 

within the range of the above-mentioned studies on rainfall erosivity. 

The K factor for João Penido reservoir catchment corresponded to 0.0040 

tonnes ha h ha–1 MJ–1 mm–1. This value was similar to K values found in other 

South American studies using USLE and RUSLE, e.g. Carrasco-Letelier & 

Beretta-Blanco (2017) who obtained K factor values ranging 0.0073–0.0088 

tonnes ha h ha–1 MJ–1 mm–1, and Galdino et al (2016) who found a K factor range 

of 0.0047–0.0551 tonnes ha h ha–1 MJ–1mm–1 in their study of cultivated 

pasturelands in central Brazil. For two classes of ferralsols specifically, Galdino 

et al (2016) reported specifically K factor values of 0.0145 and 0.0193 tonnes ha 

h ha–1 MJ–1mm–1. 

The resulting LS-factor map display dimensionless values ranging 

between 0.03–104, with a mean of 6.85. Similar results have been found in other 

studies, e.g. Galdino et al (2016) obtained a min–max range of 0–104 and a mean 

of 1.80 in their regional study of cultivated catchments in central Brazil of similar 

topography.  

The digitized land cover features (Figure 116) were designated C-factor 

values from the literature. The main land cover composed tree-less grassland, 

making up 72.5% of the catchment, while c. 17.7% of the catchment was wooded.  
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3.1.5 Natural potential of erosion (NPE) 

For João Penido reservoir the natural potential of erosion (NPE) was calculated 

for catchment raster cells from factors derived from databases (NPE_DB) and 

with K from field observations (NPE_K). NPE_DB ranged between 1.52–6812.60 

tonnes ha–1 year–1 (Figure 77, Table 27), with a mean erosion rate of 324.86 

tonnes ha–2 year–1 and a standard deviation of 356.67 tonnes ha–1 year–1. When 

K was derived from field observations (this study) the simulated NPE_K output 

ranged between 0.79–3541.29 tonnes ha–1 year–1, with a mean of 168.87 tonnes 

ha–1 year–1 and a standard deviation of 185.41 tonnes ha–1 year–1. NPE from 

S_fieldK was ca 52% lower than for NPE_DB output. This difference indicates 

the importance of accurate assessment of the value for the soil erodibility factor 

K.  

 

3.1.6 RUSLE output 

Soil observations were used to calculate the K factor and digitizing of satellite 

data was done to produce a more detailed land cover map, which was assigned 

literature C values.  With observed input data for the K factor (S_fieldK), the 

resulting average erosion rate from the catchment was 19.64 tonnes ha–1 year–1, 

corresponding to 1.96 kg m–2 year–1,  5.38 g m–2 day–1 (Table 27). RUSLE output 

with a digitized C factor (S_fieldC) gave a mean erosion value of 20.88 tonnes 

ha–1 year–1 (sd=28.00). When both field observations of K and C were used as 

input data, the simulation (S_fieldKC) resulted in a mean erosion rate was 10.85 

tonnes ha–1 year–1 (corresponding to 1.09 kg m–2 year–1, or 2.99 g m–2 day–1) with 

a standard deviation of 14.55 tonnes ha–1 year–1 (Figure 79). For S_fieldCK the 

improved land cover map reduced erosion in wooded and built-up areas of the 

catchment and the highest erosion rates were confined to the steeper slopes of 

hills.  

The resulting RUSLE output from analysis with various input data, derived 

from databases and observations, are summarized in Table 27; S_fieldCK was 

expected to be the result closest to the actual contemporary erosion state of the 

catchment.  
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3.1.7 Simulations of a forested and deforested watershed 

The RUSLE model was used to determine the current state of erosion in the João 

Penido watershed, and to simulate three erosion scenarios of the watershed 

being completely forested and similarly deforested at two levels by using literature 

C values as input for the C factor; a completely forested state was attained by 

setting the C factor to 0.003, which is representative of broad-leaved forest; the 

two deforested states were given C factors of 0.1 and 0.45, representing the lower 

and upper range of sparsely vegetated areas (Panagos et al, 2015). In the 

simulations built-up areas as well as standing water (the main reservoir and other 

larger ponds in the catchment) were unchanged (set to a C factor value of 0).  

When using database input (S_DB) the scenarios showed higher erosion rates 

than when using S_fieldKC utilizing observations from the field. Reclassified land 

cover values from the GlobCover dataset were used as input for the C-factor, 

together with the HSWD database derived value of K. The completely forested 

state showed erosion rates ranging between 0–20.51 tonnes ha–1 year–1 

(sd=1.19). The deforested state with assumed grassland showed erosion rates 

between 0–683.72 tonnes ha–1 year–1 (sd=39.17). The extremely bare state 

showed erosion rates between 0–2076.73 tonnes ha–1 year–1 (sd=176.3). 

Simulated scenarios based on factor input from S_fieldCK yielded lower erosion 

values for the João Penido catchment. The forested state (C=0.003) based on 

S_fieldCK showed erosion rates ranging between 0–10.66 tonnes ha–1 year–1, 

with a standard deviation of 0.63 tonnes ha–1 year–1. The S_fieldCK deforested 

state (C=0.1) with assumed grassland showed erosion rates between 0–355.4 

tonnes ha–1 year–1 (sd=20.9). The second, more extreme, deforested S_fieldCK 

scenario (C=0.45) showed erosion rates between 0–3541.3 tonnes ha–1 year–1 

(sd=185.4).  

 

3.2 Post-flooding sediment volume and mass 

Pre-flood observations (N=15) were used to interpolate sediment thickness by 

inverse distance weighting (IDW). Sediment thickness ranged between 0.06–

0.52 m across the reservoir for the cores sampled in years 2016–2017 (Figure 

118). Total post-flooding sediment volume was then calculated with the SAGA 

tool Raster volume. The resulting post-flooding sediment volume was calculated 
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to 753,058.8 m3. The mass was estimated from the calculated sediment volume 

and average density of post-flooding sediment (1370 kg m–3). The resulting mass 

was 1031690.6 tonnes. 

 

3.3 Fallout radionuclide (FRN) results   

The 137Cs inventory for the pasture reference core (site JP17) was 219.8 Bq m–2. 

The mean inventory of all soil sites was 248.9 Bq m–2 and for all pasture sites 

correspondingly 269.0 Bq m–2. The mean 137Cs inventory for the pasture sites 

amounted to 256.3 Bq m–2, and the mean value for all shrubland sites was 292.3 

Bq m–2. The mean 137Cs inventory for the measured lake sediment sites was 

4801.8 Bq m–2, while the median inventory amounted to 240.1 Bq m–2.  

 

3.3.1 Profile distribution model output 

The mean erosion rate for all eroding sites calculated by the profile distribution 

model by 137Cs corresponded to 0.82 kg m–2 year–1, or 8.2 tonnes ha–1 year–1. 

The mean erosion rate for the shrubland site was 0.85 kg m–2 year–1 and the 

mean erosion rate for the pasture site was 0.79 kg m–2 year–1.  

 

3.3.2 Diffusion and migration model output for 137Cs and 210Pbex 

Diffusion and migration model (DMM) output suggests that erosion rates based 

on DMM-137Cs range between 4.95–6.01 kg m–2 year–1
 for shrubland sites and 

3.95–6.94 kg m–2 year–1
 for pasture sites, with a mean of 5.71 kg m–2 year–1

 for 

all sites, corresponding to 57.1 tonnes ha–1 year–1. For 210Pbex data, erosion rates 

obtained by DMM range between 1.61–2.03 kg m–2 year–1 for shrubland sites, 

and between 1.00–1.98 kg m–2 year–1
 for pasture sites, with an overall mean of 

1.63 kg m–2 year–1 which corresponds to 16.3 tonnes ha–1 year–1. These erosion 

rates were closer to PDM output for 137Cs. The 137Cs-DMM results did not agree 

with the other conversion model results, which appeared to be an effect of the 

irregular fallout giving inaccurate migration and diffusion coefficients. 

 

3.3.3 Sediment accumulation rates  

The average sediment depth (N=15) in João Penido reservoir was 0.25 m. 

Calculated SAR (cm year–1) and accumulation of POC (g m–2 year–1) from OC 
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data for sediment core samples in João Penido reservoir are summarized in 

Table 42, Figure 119. From field observations the sedimentation rate was 

calculated by dividing the thickness (cm) of the accumulated post-flooding 

sediment layer by the age of the reservoir (82–83 years depending on the year 

of sampling: 2016 or 2017), which gave SAR values between 0.07–0.44 cm year–

1 in the reservoir. The POC accumulation rates were calculated by quantifying the 

inventory of POC (g) in the post-flooding sediment divided by the area of the 

sample corer (0.0028 m2) and the age of the reservoir (years). 

Average POC mass per volume (kg m-3) was calculated by: 

 

𝑃𝑂𝐶𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑃𝑂𝐶𝑡𝑜𝑡

𝑉
 

 

Where POCtot is the mean total mass of POC in the sediment cores (0.00986 kg) 

and V is the post-flooding volume of the core, derived from the core area (0.0028 

m2) and mean post-flooding sediment thickness (0.254 m). The average 

POCdensity was 13.86 kg m–3.  

An estimate of the total POC (kg) in the reservoir was then calculated as 

a product between the average POC mass per volume (13.86 kg m–3) and 

calculated total reservoir sediment volume (753058.8 m3). Based on these input 

factors the result gave a total POC inventory of 10196.41 tonnes in the reservoir 

post-flooding sediment. This would on average require a yearly net POC input of 

c. 127.29 tonnes year–1 into the reservoir storage since the year the dam was 

built (1934). 

  

3.4 POC pathways and budget 

A summary of POC pathways and budgets are presented in Table 42. Depending 

on which method that was used to calculate POC pathways and budget, slightly 

different results were achieved.  

 

POC pathways and budgets     

Erosion rates Mean value Unit 

RUSLE (database) 37.8 tonnes ha–1 year–1 

RUSLE (observations of C and K, complete watershed) 10.9 tonnes ha–1 year–1 

RUSLE (observations of C and K, point samples of 
pasture and shrubland sites A and B only) 

9.1 tonnes ha–1 year–1 
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PDM-137Cs 4.5 tonnes ha–1 year–1 

DMM-210Pbex 16.1 tonnes ha–1 year–1 

      

POC erosion Mean value Unit 

Calculated from RUSLE (database) 1.1 tonnes ha–1 year–1 

Calculated from RUSLE (database and observed C and 
K) 

0.3 tonnes ha–1 year–1 

Calculated from RUSLE (database and observed C and 
K, of soil sites)  

0.3 tonnes ha–1 year–1 

Calculated from PDM-Cs 0.1 tonnes ha–1 year–1 

Calculated from DMM-Pb 0.5 tonnes ha–1 year–1 

      

Catchment properties Value Unit 

Catchment area 72140000 m2 

Area deforested grassland 52297821 m2 

% area deforested grassland in catchment 72 % 

Reservoir area 3720000 m2 

Reservoir perimeter 22584 m 

      

Total soil sediment remobilised in catchment 
deforested grasslands 

Mean value Unit 

Calculated from RUSLE (database) 197686 tonnes year–1 

Calculated from RUSLE (database and observed C & K) 56743 tonnes year–1 

Calculated from RUSLE (database and observed C & K, 
of soil sites)  

47486 tonnes year–1 

Calculated from PDM-137Cs 42884 tonnes year–1 

Calculated from DMM-210Pbex 84200 tonnes year–1 

      

Total soil POC remobilised in catchment deforested 
grasslands 

Mean value Unit 

Calculated from RUSLE (database) 5535 tonnes year–1 

Calculated from RUSLE (database and observed C & K) 1589 tonnes year–1 

Calculated from RUSLE (database and observed C & K, 
of soil sites)  

1330 tonnes year–1 

Calculated from PDM-137Cs 1201 tonnes year–1 

Calculated from DMM-210Pbex 2358 tonnes year–1 

      

Reservoir sediment Value Unit 

Calculated total volume of sediment 753059 m3 

Calculated total mass of sediment  1031691 tonnes 

Average sediment density 1370 kg m–3 

Age reservoir postflooding sediment 82 years  

Average accumulation of sediment in dam since 1934 12582 tonnes year–1 

Accumulation of sediment in dam since 1934 for each m2 3.4 kg m–2 year–1 

      

Reservoir POC Value Unit 

Average total mass of POC in all sediment cores (post-
flooding) 

9.86 g 

Average core volume 0.0007112 m3 

Average total POC in sediment cores  13.86 kg m–3 
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POC mass calculated from mean POC inventory 10440 tonnes 

Calculated POC mass of sediment 1.4 % 

      

Sedimentation rates Mean value Unit 

Core observations  0.27 cm year–1 

CRS-210Pbex for SED5 0.5  cm year–1  

SAR based on 137Cs peak in sediment core SED5 at 32 
cm depth 

0.6 cm year–1 

Calculated average SAR (QGIS) for the reservoir 0.3 cm year–1 

Accumulation of POC in dam since 1934 127 tonnes year–1 

Accumulation of POC in dam since 1934 for each m2 105 kg m–2 year–1 

Calculated sediment yield 20.3 % 

 Table 37 Table of erosion rates, sedimentation rates and inventories of POC. 

 

 

Figure 114 Sediment and POC transport in João Penido catchment and 

reservoir. 
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4 Conclusions 

Soil erosion in the catchment of João Penido reservoir was modelled and 

measured by RUSLE and fallout radionuclides, and sediment volume and 

sedimentation rates were calculated from sediment cores from the reservoir. 

RUSLE output based partly on database data (R and LS) and partly on field 

observations (C and K) was considered the result closest to reality and averaged 

10.9 tonnes ha–1 year–1, which compared to other studies of similar systems in 

Brazil was deemed acceptable. RUSLE output based on database data only 

showed erosion rates up to 4 times higher than for partly field based output, 

indicating that field observations are important for validation of modelled results. 

Even though RUSLE results partly based on field observations indicate that 

erosion rates are lower than what would be achieved with available databases, 

the results still highlight that erosion is more extensive in perturbed deforested 

areas than in forested areas. 72% of the total catchment area comprised 

deforested grazing land which showed the highest erosion potential in the 

catchment. Erosion rates based on fallout radionuclide data were on the same 

order of magnitude as the model results and averaged 16.1 tonnes ha-1 year-1 for 

DMM-210Pbex and 8.2 tonnes ha–1 year–1 for PDM-137Cs.  These radionuclide 

erosion rates from field observations showed that the application of RUSLE was 

satisfactory as a method of soil erosion assessment in this type of impacted 

landscape.  

 The study catchment in this work is representative of a typical deforested 

Atlantic forest biome in Brazil and composes a representative study site to 

validate calculated soil erosion rates derived from the RUSLE model by field 

observations of fallout radionuclide inventories. Promising results provide 

confidence in the RUSLE model for upscaling and use of the model in other 

catchments with similar terrain, soils, climate and vegetation where the need to 

quantify soil erosion for ecosystem services and functioning are becoming 

increasingly necessary, for instance to motivate and mitigate restoration projects 

that reintroduce and preserve the precious biome of Atlantic Forest. 
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Key Points: 

 

 Soil organic carbon (SOC) composes an important contributor of POC to 

C burial and limnic storage in this Brazilian reservoir. 

 Sources of sediment C indicate that soil erosion due to land use change 

(LUC) has contributed with significant input of soil organic matter during 

the presence of the reservoir since 1934. 

 

Abstract 

Particulate organic carbon (POC), commonly defined as the organic carbon (OC) 

fraction >0.45 μm, is a component of the carbon cycle that contributes to limnic 

storage of carbon in local to regional sediment traps in the landscape, e.g. 

wetlands, deltas, lakes and manmade reservoirs. POC originates from 

allochthonous sources, e.g. inputted by soil erosion and litterfall, and from 

autochthonous sources, e.g. in-stream growing macrophytes, biofilm and algae. 

Deposited POC can be buried or mineralized and emitted as greenhouse gases 

such as carbon dioxide (CO2) and methane (CH4) into the atmosphere. In the 

land-ocean aquatic continuum (LOAC), physical and chemical protection of 

organo-mineral aggregates and flocs determine the fate of catchment-derived 

POC. This study investigated whether allochthonous POC derived from terrestrial 

soils is more important than autochthonous POC from watershed sources for 

limnic storage in post-flooding sediments of a tropical reservoir. The input and 

sedimentation of allocthonous POC in the studied reservoir was estimated from 

mailto:j.snoalv@gmail.com)


277 
 

results of the Revised Universal Soil Loss Equation (RUSLE) soil erosion model, 

GIS analysis and from soil and sediment core observations. POC was calculated 

from C inventories of reservoir sediment cores collected along the delta–reservoir 

gradient and linked to organic matter content by loss on ignition (LOI). POC 

sources were determined by carbon-nitrogen ratio (C/N) analysis. Finally a POC 

budget was calculated for the post-flooding reservoir sediments. The results 

showed that soil derived allochthonous POC sources contributed with OM is an 

important source for limnic storage of organic carbon in this Brazilian reservoir. 

 

Plain Language Summary 

Particulate organic carbon (POC) content of post-flooding sediments was 

quantified for a small tropical reservoir in Brazil. The relative net input of 

allochthonous and autochthonous organic matter was assessed through soil 

erosion studies and field observations and C:N analysis. The post-flooding 

sediments composed on average   

 

1 Introduction 

About 25% of the land area in Brazil is used for agriculture and total soil erosion 

rates from these cultivated soils (including pasture) amount to c. 800 million 

tonnes year–1 (Merten and Minella, 2013). Clear cutting of forested land with 

subsequent conversion into cultivated fields or pasture not only increases land 

degradation, but also reduces natural ecosystem function and diversity. A highly 

impacted biome in South America is the Atlantic forest, which composes a 

biodiversity hotspot that mainly over the past c. 500 years has been reduced to 

less than 12% of its original extent of almost 1.5 million km2 on the South 

American continent (Ribeiro et al, 2011). Similarly, in Brazil, deforestation 

practices have reduced corresponding Brazilian Atlantic forest (Mata Atlântica) 

to c. 8% of its original extent (Colombo & Joly, 2010). Atlantic forest contains 

exceptional biodiversity from a wide range of altitudes over coastal to inland 

areas that stretch from tropical to subtropical regions over the continent, but is 

threatened by severe habitat loss and increased fragmentation due to land use 

change (Ribeiro et al, 2009) and the increased land degradation which typically 

follows deforestation.   
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Manmade dams and reservoirs are effective sediment traps in the 

landscape that contribute to the acreage of semi-permanent water bodies which 

may act as emission hotspots of greenhouse gases such as carbon dioxide 

(CO2) and methane (CH4) (Barros et al, 2011; Maeck et al, 2013). Reservoirs 

also act as containers holding limnic storage of eroded soil and organic matter. 

While human impact has increased global soil erosion input into the aquatic 

continuum with about 2.3±0.6 Giga-tonnes year–1, there has been a reduction 

in sediment loads reaching the coastal oceans by 1.4±0.3 Giga-tonnes year–1 

due to entrapment within reservoirs and dams (Syvitski et al, 2005). When 

accounting for the effect of sediment trapping modelled global average input of 

sediments from the continents to coastal oceans amount to about 19 Pg year–1 

(Beusen et al, 2005) and globally over 100 Giga-tonnes of sediment is estimated 

to be retained within reservoir storage, containing 1–3 Giga-tonnes of carbon 

(Syvitski et al, 2005). Moreover, about 75% of the organic carbon (OC) that is 

deposited in reservoir sediments is derived from allochthonous sources 

(Maavara et al, 2017). Eroded soil particles that end up in reservoir storage 

remove organic carbon from terrestrial soils and contribute with soil organic 

matter (SOM) to either fuel mineralisation or add input of POC to semi-

permanent reservoir storage. Human perturbation on the natural landscape that 

leads to this increased flux of soil particles into the aquatic continuum and 

reservoir storage results not only in geomorphic disturbance but also 

degradation of terrestrial soil carbon deposits which previously were stabilized 

by the original forested ecosystem.  

The objective of this work was to quantify the relative inputs of 

allochthonous and autochthonous organic matter into limnic storage and 

determine the fate of organic carbon in post-flooding sediments of a tropical 

reservoir 

 

2 Materials and Methods 

2.1 Field site 

João Penido reservoir (LAT: –21.675459, LONG: –43.394960) is a drinking 

water reservoir built in 1934 for the city Juiz de Fora in state Minas Gerais, 

Brazil. The lithology of the catchment comprises metamorphic rocks, such as 
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Neoproterozoic schist and Rhyacian orthogneiss (CPRM 1:1M, 2018)32. The 

dominating soil type in the area is mapped as orthic ferralsol/ultisol (CPRM, 

2016), characterized by highly weathered soil. The regional landscape is 

dominated by an undulating topography with mean slope values of 16% (Bacchi 

et al, 2003). The catchment which drains into João Penido reservoir has slope 

values ranging between 0–27 degrees (DEM analysis). The terrain of the João 

Penido reservoir catchment ranges between 684–1061 m.a.s.l. (DEM analysis) 

while the main water body is located at ca 457 m.a.s.l. The Köppen classification 

system categorizes the region as Cwa, which composes a sub-tropical climate 

with two distinct seasons composed of dry winters in May–September and rainy 

hot summers in October–April (Bucci et al, 2015), with the hottest months having 

mean temperatures >22◦C. The annual rainfall on a regional scale for south-

eastern Brazil range between 1200–1600 mm year–1 (da Silva, 2004), and for 

Juiz de Fora, the city located closest to the study site at c. 3.8 km distance, the 

mean annual rainfall amounted to 1949 mm year–1 between 1979–2013, with a 

minimum and maximum ranging between 1347–2949 mm year–1 (Global 

Weather Data for SWAT). The vegetation of the watershed is mapped as semi-

deciduous forest belonging to the Atlantic forest biome33, however most of the 

catchment area comprises deforested grasslands used for pasture. The local 

land use in the catchment compose mainly pasture and more sparse agriculture.  

Main parts of the land in direct connection to the reservoir compose deforested 

shrubland owned by the reservoir owner or local residence. The catchment of 

João Penido was and adequate site to study the effect of human perturbation 

where LUC in the form of deforestation and agricultural practices have taken 

place over the past century, and in addition, a manmade hydrological barrier 

built in 1934 to establish a drinking water reservoir, affect the natural inventories 

and redistribution of POC.  

 

2.2 Soil erosion modelling with RUSLE 

The upgraded empirical soil loss model Revised Universal Soil Loss equation 

(RUSLE) is based on the original Universal Soil Loss equation (USLE) model, 

                                            
32 URL: http://portal.onegeology.org/OnegeologyGlobal/ 
33 Mapa de Vegetacão do Brasil (1992) http://mapas.mma.gov.br/mostratema.php?temas=vegetacao  

http://mapas.mma.gov.br/mostratema.php?temas=vegetacao
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initially developed by United States Department of Agriculture (USDA). It 

composes a product of the following six factors: 

 

𝐴 = 𝑅𝐾𝐿𝑆𝐶𝑃 

 

where A is the calculated yearly mean soil erosion (metric tonnes ha–1 year–1), 

R composes the yearly rainfall erosivity factor, K is the soil erodibility factor, S 

and L compose the slope steepness and slope length factors respectively, C is 

the vegetation and crop management factor, and P represents specific erosion 

control practices. The RUSLE model was used to quantify soil erosion in the 

catchment of João Penido and is described in previous work. 

 

2.3 Field sampling 

Sampling sites of soil and sediment were prepared by DEM analysis of the 

catchment with QGIS 2.14 Essen, using random allocation (Random Points 

inside Polygon tool).  

 

2.3.1 Sampling 

The soil sampling was conducted in dry conditions in May–June 2016, with 

additional sediment sampling in 2017. Soil samples from hand-dug pits were 

collected from the surface down to a maximum of 80 cm depth. Custom-made 

samplers were used to obtain a vertical soil profile in 20 cm segments from 

which increments were extracted with a spatula from every 2 cm sections in the 

top soils (<20 cm) and for subsoils (>20 cm) by 5 cm increments. Samples were 

stored in plastic zip-bags, after removal of larger particulates (e.g. stones, 

pebbles, roots). The samples were initially weighed, air dried and stored in room 

temperature before transport to University of Exeter, UK. Sediment samples 

were collected by a gravity corer from a boat within the main water body and in 

some of the reservoir arms (Figure 121). The cores were transported on the 

sampling day from the field to the laboratories at Federal University of Juiz de 

Fora and subdivided into 2 cm increments before being air dried. The samples 

were stored in sealed plastic zip-bags, before analysis at University of Exeter, 

UK.  
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2.4 Analytical methods 

2.4.1 Bulk density and loss on ignition 

The previously air-dried soil and sediment samples were oven-dried at 40 ̊ C for 

24–48 hours, and weighed, ground, and sieved by hand to <2 mm fraction. 182 

sediment and 219 soil samples from the João Penido reservoir were analysed 

for loss on ignition (LOI). Previously oven-dried (40°C) were subsampled and 

oven-dried at 100°C in pre-weighed crucibles overnight, before initial sample 

weighing and combustion at 550°C for 4 hours, before re-weighing.  

 

2.4.2 C/N ratio  

100 sediment samples and 50 soil samples were subsampled (15–20 mg) into 

silver capsules and pre-treated by acid fumigation with HCl (37% HCl, Sigma-

Aldrich) using 10 mL per 50 samples for 24 hours in a desiccator to remove 

carbonates. The samples were stored in a desiccator, before encapsulated into 

larger tin capsules and analysed by a Flash 2000 Organic Elemental analyzer 

(CE Instruments Ltd). 90 subsamples fractionated by size and density were also 

analysed for C/N. Ethylenediaminetetraacetic acid (EDTA) standard (BDH 

AnalaR, assay 99.0%) was used as an internal standard and the percent error 

of the instrument was calculated to 0.65%. 

 

2.4.3 Size and density fractionation 

To understand the geochemical imprint of the aggregate-bound soil derived 

organic matter with respect to other sources in the sediments, density 

fractionation was done on 8 soil samples and 7 sediment samples. These 

samples were selected from four soil cores and four sediment cores, where 2 

samples from the top layer (appropriate sample from the top 10 cm) and sub 

layers (appropriate samples from between 20–30 cm depth) were selected from 

each core respectively. Additionally, two samples from two sediment cores were 

selected from pre-flooding material. Two of the soil sites were from land used 

as pasture and two sites from non-managed shrubland. The sediment sites were 

located in deepest part of the reservoir (accumulation site) and from a site in the 

central part of the main water body. The previously dry-sieved samples (<2 mm) 
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were wet-sieved into 3 fractions each: >250 µm, 250>53 µm, and <53 µm. The 

samples were flushed with deionized water until a clear solution was visible, 

indicating sufficient loss of the finest fraction from the two coarser fractions. In 

samples where a floating fraction occurred, this material was separated from 

the 2000>250 µm fraction to remove inter-aggregate organic material, which is 

not considered SOM, e.g. roots. In samples where the <53 µm fraction appeared 

to be superfluous, a sample was retrieved from a maximum of 200 mL sieved 

solution, however to make sure the larger fractions were free of excess fine 

fractions the flushing continued until the sieving solution was clear. The solution 

with the <53 µm fraction was centrifuged (Thermo Scientific Multifuge 4KR) for 

20 minutes at 1200 rpm before decantation and sampling. The samples were 

then oven-dried for 24 hours in aluminium beakers at 50 degrees C. Density 

separation of particles was then done with aqueous sodium polytungstate (SPT) 

liquid (CAS#12141-67-2) diluted with deionized water to achieve a density of 

1.85 g cm–1, to separate the inter-aggregate and intra-aggregate OM fractions 

respectively, following the method by Six et al (2002). Subsamples of up to 2 

mL volume (where sufficient material had been obtained from wet-sieving) were 

added to centrifuge tubes containing 3 mL of the SPT solution. The samples 

were thoroughly mixed by a Vortex Mixer, and then centrifuged at 1200 rpm 

(Thermo Scientific SL 16, acceleration 9, deceleration 6), for 20 minutes, which 

separated the samples into a light fraction (LF) and a heavy fraction (HF). The 

light fraction was retrieved by either careful decanting of the surface solution or 

by using a spatula to scoop up the floating LF, and the clear solution between 

LF and HF was reclaimed before the heavy fraction could be recovered. The 

sample fractions were then freeze-dried at –42 degrees C for 36 hours, and 

prepared for C/N analysis (see above). 

 

2.4.4 Sediment thickness 

The sediment thickness was determined by the presence of pre-flooding 

material with depth, sediment accumulation rate (SAR) (cm year–1) was simply 

calculated by the following: 

 

𝑆𝐴𝑅 =
𝑑

𝑡𝑟
 



283 
 

 

Where d is the depth of the pre-flooding material and tr is the reservoir age, 

which was 82 years for the 2016 sampling campaign and 83 years for the 

additional 2017 sediment core collection.  

 

2.4.5 Data interpretation 

The statistical software used for data interpretation was Microsoft Excel (2013) 

and RStudio version 1.1.453 (2016).  

 

3 Results and discussion 

3.1 Bulk density 

The mean bulk density of soils from João Penido was 1.03 g cm–3. For top soils 

down to 20 cm depth, the mean bulk density amounted to 1.00 and 1.05 g cm–

3 for shrubland soils and pasture soils respectively. This low soil bulk density is 

likely due to high porosity and compared to sediment relatively coarse grain 

size. For sediment the average bulk density amounts to 1.37 g cm–3 (which 

indicates high porosity and organic matter content), and for observed pre-

flooding material the average density is 1.61 g cm–3 (Table 43). 

 

3.2 Loss on ignition 

The highest concentrations of organic matter were present in samples from 

delta (30.76%) and reservoir post-flooding sediments (22.51%), while samples 

from soils (13.99%), colluvium (9.29%) and pre-flood soils (11.46%) exhibited 

low mean concentrations (Table 44, Figure 122). The low mean organic matter 

content in the post-flooding sediments showed that the minerogenic fraction was 

dominating. This minerogenic fraction originates from a terrestrial soil source 

and represents various inputs of soil erosion over the lifetime of the reservoir. 
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3.3 C/N ratios  

The delta sediment cores showed C/N values of 8.07–29.56, with a mean of 

15.34 (Table 45), indicating that most of the organic matter in the delta 

sediments (profiles 4A and 4B) in general contained organic matter of more 

allochthonous origin. Lake sediments in the deeper parts of the reservoir 

showed C/N ratios ranging between 3.42–65.37 with a mean of 13.56, while in 

soil samples displayed the highest C/N ratios of the catchment samples, 

ranging 2.53–386.36 with a mean of 48.08. The mean C/N ratio of post-flooding 

sediments (excluding pre-flood material) from 5 cores was 13.49 (N=5, 

sd=1.65). Samples of soil profiles (JP02, JP06, JP14, JP17, and JP28) typically 

showed C/N ratios above 20. The top sediments of delta samples from profiles 

SED4A and SED4B showed mixed towards slightly more terrestrial C/N ratios, 

while the deeper sediments of SED4B indicated mixed source to a more aquatic 

origin with lower C/N values. The sediment sites showed mainly low C/N values 

typical of lake sediments with aquatic origin, although a few outliers of SED2A 

and SED3C appear to have sediment layers indicative of terrestrial input. Non-

fumigated samples show somewhat different C/N ratios, with less extreme 

values. Especially for sediments these samples showed less variation.  

The relationship of C/N and concentrations of POC% (OC%) showed 

positive correlation in reservoir sediment, and negative correlation with the 

much higher ratios in soils, and weakly negative relationship with samples of 

delta sediments. The differences in C/N signatures are distinct for the terrestrial 

and aquatic samples. 

 

3.4 Size and density fractionation 

Samples separated by wet-sieving into fractions >250 µm, 250>53 µm and <53 

µm showed maximum C/N values (17.22–126.15) in fine fraction soil samples 

from pasture sites (Figure 51). All fractions from samples of pasture soils 

showed more enriched OC% and N% content compared to shrubland, while the 

highest concentrations occurred in reservoir sediments (Figure 52). 

 

3.5 Postflooding volume 

Sediment volume was interpolated from sediment pre-flood depth observations 

(N=15) by IDW. The resulting interpolated map (Figure 75) showed sediment 
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thickness ranging between 0.06–0.52 m across the reservoir reach. The 

interpolated average sediment thickness equalled 0.27 m. Total post-flooding 

sediment volume was then calculated with the SAGA tool Raster volume, 

resulting in 753058.8 m3. This equalled roughly an average sediment 

accumulation of 9183 m3 year–1 in the reservoir since it was built in 1934, with 

an average linear sediment accumulation rates of 0.3 cm year–1. The average 

sediment density was assumed to be 1.37 g cm–3 and the mass of sediment in 

the reservoir was then calculated to 1031690.56 tonnes. 

 

3.6 Sediment accumulation rates (SAR) 

The average sediment depth (N=15) in João Penido reservoir was 0.254 m. 

Calculated SAR (cm year–1) and accumulation of POC (g m–2 year–1) from OC 

data for sediment core samples in João Penido reservoir are summarized in 

Table 46. From field observations the sedimentation rate was calculated by 

dividing the thickness (cm) of the accumulated post-flooding sediment layer by 

the age of the reservoir (82–83 years depending on the year of sampling: 2016 

or 2017), which gave SAR values between 0.07–0.44 cm year–1 in the reservoir. 

The POC accumulation rates were calculated by estimating the inventory of 

POC (g) in the post-flooding sediment divided by the area of the sample corer 

(0.0028 m2) and the age of the reservoir (years). Figure 126 shows calculated 

SAR in the reservoir by inverse distance weighting interpolation.  

 

While SAR vary across the reservoir gradient, the OC data showed OC 

accumulation with a minimum and maximum rate of 5.99 and 93.46 g OC m–2 

year–1, respectively. Average POC mass per volume (kg m-3) was calculated 

by: 

 

𝑃𝑂𝐶𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑃𝑂𝐶𝑡𝑜𝑡

𝑉
 

 

Where POCtot is the mean total mass of POC in the sediment cores (0.00986 

kg) and V is the post-flooding volume of the core, derived from the core area 

(0.0028 m2) and mean post-flooding sediment thickness (0.254 m). The 

average POCdensity was 13.86 kg m–3.  
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An estimate of the total POC (kg) in the reservoir was then calculated as 

a product between the average POC mass per volume (13.86 kg m–3) and 

calculated total reservoir sediment volume (753059 m3). Based on these input 

factors the result gave a total POC inventory of 10440 tonnes in the reservoir 

post-flooding sediment. This would on average require a yearly net POC input 

of c. 127 tonnes year–1 into the reservoir storage since the year the dam was 

built (1934). 

 

3.7 POC concentrations in soils and sediment 

POC inventories POCinv (g m–3) for soil are summarized in Table 47. The POC% 

soil profiles showed that many of the shrubland sites had low variability in POC 

content with depth, compared to pasture sites which were more enriched in top 

soils. 

The sediment profiles presented in Figure 128 showed that POC 

concentrations tend to be lower in pre-flood material beneath the post-flooding 

sediment. As expected, POC% also tends to be higher in sediment profiles of 

reservoir arms and at the deltaic site (SED4, SEDJP01, SEDJP05, SEDJP07, 

SEDJP08, SEDJP09, SEDJP10, SEDJP13, SEDJP16), due to the shallower 

waters being abundant in growing macrophytes and algae in these parts of the 

reservoir. Most of the deeper open water sites of the main reservoir body 

(SED1, SED2, SED3) lack the declining POC% profile typical of the shallow 

reservoir arm sites, although the accumulation sites at SED5C and SEDJP17 

showed a distinct difference in POC% of post-flooding sediment and sub-

bottom pre-flooding material. The IDW interpolated POC distribution in the 

reservoir is presented in Figure 84.  

 

3.7.1 POC redistribution in the catchment soils and sediments 

The soil samples in this study were retrieved from pasture and shrubland, which 

represents ca 70% of the catchment. Although these soils can be considered 

relatively poor in organic matter and carbon, the redistribution of existing SOC 

may be mineralised and released as inorganic C species when exposed to the 

atmosphere or enter the aquatic system to contribute to buried organic matter 

in the reservoir. Compared to SOC stocks from national surveys such as Batjes 
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et al (2005) who summarized SOC distribution in different soil groups of Brazil 

and reported mean concentrations of 5.2 kg C m–2 for the upper 30 cm and 9.6 

kg C m–2 for the upper 100 cm of ferralsols of Brazil, the soil carbon inventories 

(with its low content of inorganic carbon) found in this study are within the same 

comparable range with an average of 5.8 kg C m–2 in the upper 20 cm of 

catchment top soil. The resulting POC erosion map derived from RUSLE model 

output and average POC inventory in catchment grassland soils, indicated that 

a mean of 0.3 tonnes ha–1 year–1 is mobilized annually in the surface soil layer. 

This assumes negligible erosion in land use classes such as built up areas and 

broadleaf woods of the catchment.  

The reservoir sediment characteristics showed that the average organic 

matter concentration in top sediments (2 cm) was 28.3%, while the remaining 

mass composed inorganic material (Figure 109) and that at 30 cm depth the 

average concentration was 10.7% lower. This low concentration (c. 17%) was 

maintained with depth. As pre-flood material have OM concentrations similar to 

terrestrial soils, it is likely that overlying layers of post-flooding sediment with 

low concentrations compose mainly terrestrial aggregate-bound SOC, and that 

surface sediments compose partly terrestrial allochthonous matter (equivalent 

of average soil OM%, c. 13.99%) and additional autochthonous OM. Simplified, 

the autochthonous part would compose the difference between total OM% and 

assumed allochthonous OM%, which when using the average concentrations 

amount to an average of 8.53% (22.55–13.99%). If these assumptions are valid 

the dominant source of OM in the reservoir sediments is terrestrial. These 

estimations only consider matter-dry weight and therefore do not represent 

dissolved OM in e.g. pore space solution of these fluffy post-flooding sediments. 

Post-flooding sediment bulk density was calculated to 1370 kg m–3 and this 

relatively low bulk density suggests that the porosity and water content are high 

in the post-flooding surface sediment, in which the concentrations of DOM 

become important, however this parameter was not specifically measured in 

this work. 

In João Penido reservoir, POC contributions from allochthonous and 

autochthonous sources might be dependent on seasonal variation due to the 

local climate. In a study of reservoir Kentucky Lake, USA, by Yurista et al 

(2001), it was found that autochthonous POC was mainly inputted into the 
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reservoir during the summer months while allochthonous POC dominated 

during winter. In contrast, a study on POC sedimentation in oligotrophic Loch 

Ness in Scotland, Jones et al (1997) showed that allochthonous sources 

composed the dominant form of POC, with peak inputs in late winter to spring 

explained by higher riverine discharge. Upstream allochthonous POC mainly 

consist of litter and soil organic carbon, and primarily rainfall erosion events 

control these terrestrial inputs. In summer autochthonous POC sources such 

as growing macrophytes, algae and microbes are likely more important for POC 

production and sedimentation. For the eutrophic João Penido reservoir, POC 

mass of post-flooding sediments were estimated and the seasonal variability 

could not be determined from the samples collected and analysed, but it is 

probable that both growing biota and rainfed soil erosion contribute with POC 

into this reservoir.  

C/N ratio of sediment POC showed the typical mixed source limnic 

signature of organic matter composition in João Penido reservoir, while pre-

flood material had more terrestrial like signatures, which appears to confirm the 

boundary of post- and pre-flood material. Although the C/N data showed mixed 

terrestrial and aquatic signatures in post-flooding sediments, peaks in C/N 

indicate high input of terrestrial organic matter. These peak sediment layers are 

likely related to events of high erosion input.  

Particle size appears more varied with depth in sediment cores 

compared to soil cores, which likely is connected to varying particle size input 

from soil erosion into the reservoir due to high-energy runoff during rainfall 

events in the catchment, where higher energy has mobilized coarser grain 

fractions.   

 

3.7.2 Concentrations of organic matter and OC quality 

Comparison between the OC data obtained from C/N analysis and calculated 

from OM data obtained by LOI analysis, revealed that the commonly used 

conversion factor of 0.58 (Pribyl et al, 2010) is too high for soils of João Penido 

watershed, when converting OM concentrations obtained from LOI analysis to 

OC concentrations. Soils showed varying OM% content with respect to land 

use, and soil samples from pasture in general displayed a wider range of OM% 
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than samples from non-managed shrubland. For terrestrial soils the lowest C% 

values appeared in colluvium, mainly in subsoils at depths >15 cm. In general, 

POC% decreased with depth in most pasture and colluvium profiles, while 

shrubland soils often showed lower content in the surface layer with mostly 

consistent POC content with depth. An explanation for this is that pasture is 

being continuously fertilized which promotes plant growth and organic matter 

input, while shrubland soils remain nutrient poor and often compose sandy 

texture in the top layer. Soil organic matter inventories appeared to be of 

consistent concentrations for all the eroding soil sites, but lower for seasonally 

dry colluvium. Soil to sediment transects revealed that colluvium was depleted 

in organic matter compared to eroding soils. This OM has likely been washed 

out and accumulated in reservoir sediments together with autochthonous OM. 

In sediments the density separated samples showed that the C/N signature of 

post-flooding sediment showed increasingly more terrestrial like signatures with 

depth, suggesting that this SOC is preferentially preserved with depth.   

For the aquatic sediment sites, sites in the delta and shallow reservoir 

arms (depth c. 1 m)  showed the highest POC content, while they were depleted 

further out in deeper (c. 8–10 m) reservoir sediments. C/N ratios were typically 

lower in reservoir sediments compared to deltaic sediment and soils and the 

C/N data also showed that deeper sediments were characterized by lower 

concentrations of carbon and nitrogen compared to the surface sediments. A 

higher C/N ratio is associated with terrestrial soil organic matter, which agreed 

with the distribution in the João Penido sediments.  

 

3.7.3 OC accumulation in sediments 

The calculated OC accumulation rates appear to be sensible for João Penido 

catchment. The average POC content of terrestrial soils from LOI data (2.8%) 

in the João Penido catchment and pre-flood material (2.9%) beneath post-

flooding sediment in the reservoir suggest that the mineral aggregate 

associated POC content is general for soil particles in the catchment. If it is 

assumed that the mean soil POC value of 2.8% in this study is recalcitrant both 

in terrestrial soils and in eroded soils that have entered and been redeposited 

in the reservoir, while the average reservoir sediment POC value is 4.5%, this 
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would suggest that the excess POC in the sediment is of aquatic origin. Most 

of the sediment cores in the shallower water profiles showed POC profiles with 

declining POC concentrations with depth, indicating that there had been vertical 

loss of organic carbon from the surface sediment to the pre-flood material. The 

similar POC content of terrestrial soil and pre-flood matter suggest that mineral 

aggregate bound POC is physically protected from processes which transform 

organic carbon (e.g. microbial respiration), and that the organic matter loss 

mainly affects autochthonous organic matter. If it is assumed that the average 

difference (2.1%) of the total POC and  in the reservoir is of aquatic origin, this 

would be an equivalent of autochthonous POC amounting to c. 4883 tonnes of 

the total POC mass (10440 tonnes) in the reservoir post-flooding sediment, or 

almost 47% of the total POC in post-flooding sediment is autochthonous. 

The estimated quantity of the allochthonous component of terrestrial 

POC in post-flooding sediments is based on many assumptions about the 

average SOC content in the catchment soils, the quantity of inputted soil mass 

into the reservoir over the years since the dam was built, and recalcitrance of 

the mineral-associated organic carbon fraction. Because of all these 

assumptions, this output can only provide a simplified picture of the actual 

carbon transport and fate in this catchment, however the results appear to be 

within a plausible order of magnitude for such a system. 

 The results indicated that soil-derived aggregate-bound POC was an 

important source of organic carbon in the reservoir sediments of João Penido, 

but sample numbers from density fractionated C/N samples were insufficient to 

determine whether OC storage is controlled by allochthonous or autochthonous 

POC. Further analysis of a higher sample number, would statistically increase 

the confidence of the results. An overview of the OM and OC budget in the 

calculated mass of the reservoir sediments suggested that with depth heavy 

aggregate-bound and therefore physically protected OM increased in relation 

to free light organic matter.  

 Some extreme values of soil C/N were observed in the results. Average 

C/N ratios of world soils range between 9.9–25.8 (Batjes et al, 2014) and in this 

study the average SOC value amounted to 48.08,  which was likely skewed by 

outliers in the dataset. Five samples had C/N ratio >100, mainly samples from 

the deeper layers of the soil profiles. Either the nitrogen content was depleted 
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for these outlier samples, or something happened during the analytical 

processing. Other analyses of qualitative properties were not measured in this 

study, but would have contributed to the interpretation when discriminating 

between allochthonous and autochthonous POC in the post-flooding 

sediments.     

 

 

Figure 115 Sediment and POC transport in João Penido catchment and 

reservoir. 

 

 

In summary, the study in João Penido catchment showed that 

 POC erosion from surface soils calculated by RUSLE and SOC 

inventories amounted to an average rate of 0.02–0.11 kg m–2 year–1, 
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 A large component of the POC in post-flooding sediments was 

autochthonous, but that in deeper layers organic carbon bound to soil-

aggregates from allochthonous sources composed a major component 

of POC, 

 Soil erosion measured in the field by empirical methods utilizing fallout 

radionuclides revealed that 137Cs was less useful, whilst 210Pbex showed 

more potential as a soil erosion tracer, 

 The RUSLE model worked adequately in this deforested environment, 

however the results varied greatly depending on which input factors were 

used. It was demonstrated that the RUSLE model was a useful tool to 

calculate average erosion rates in the catchment (validated by field 

observations) and that the accuracy of the modelled results increased 

with improved detail in input factors.  

 

4 Conclusions 

POC erosion from soils in the catchment were calculated and compared with 

the total mass of POC input during the lifetime of the reservoir determined for 

reservoir sediments. The sediment data suggested that c. 12581.6 tonnes year-

1 has accumulated in the reservoir since the dam was built 1934. 

The results showed that the redistribution of particulate SOC from 

terrestrial soils into the reservoir contributed to semi-permanent limnic storage 

of carbon, while it seems that mostly autochthonous aquatic-produced carbon 

is subject to mineralisation processes in the sediments. The results indicate that 

not all autochthonous organic matter is mineralised, but that some is present in 

limnic storage at sediment depth, mixed with terrestrially sourced POC. This 

relocation of terrestrial organic carbon is in this catchment likely a result of land 

use change (LUC) such as deforestation and damming, and serves as an 

example of how effects of human perturbation of the natural ecosystem change 

the pathways of carbon. Future problems of such a landscape include for 

instance degradation in soil and land quality, along with increased greenhouse 

gas emissions from artificial reservoirs in which eroded soils are trapped as 

sediments together with autochthonous POC. 
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Appendix 2 

Exmoor project 

Descriptive tables 

Descriptive Statistics: pH, EC (mS), Twater (°C) of Exmoor streams     

Variable Site N N* Mean 
SE 

Mean 
StDev Min Q1 

Media
n 

Q3 Max 

pH A 9 0 7.48 0.21 0.62 6.38 6.86 7.7 7.96 8.15 

                        

  B 9 0 7.29 0.18 0.54 6.31 6.77 7.52 7.69 7.85 

  C 9 0 7.33 0.15 0.46 6.47 6.91 7.5 7.67 7.77 

  D 9 0 7.25 0.13 0.39 6.48 6.94 7.42 7.52 7.65 

  E 9 0 6.7 0.15 0.44 6.16 6.39 6.58 6.93 7.62 

  F 9 0 6.79 0.13 0.39 6.4 6.5 6.65 7.06 7.63 

  G 9 0 7 0.16 0.47 6.42 6.61 6.88 7.36 7.87 

  H 9 0 7.16 0.14 0.42 6.49 6.8 7.14 7.5 7.81 

  I 8 0 4.94 0.1 0.29 4.3 4.83 5.07 5.1 5.22 

EC (mS) A 9 0 0.06 0 0.01 0.04 0.05 0.05 0.07 0.07 

  B 9 0 0.06 0 0.01 0.05 0.05 0.06 0.07 0.08 

  C 9 0 0.03 0.01 0.02 0 0.02 0.03 0.05 0.06 

  D 9 0 0.05 0 0.01 0.04 0.04 0.05 0.07 0.07 

  E 9 0 0.06 0 0.01 0.04 0.05 0.06 0.07 0.07 

  F 9 0 0.04 0.01 0.02 0.02 0.02 0.05 0.06 0.07 

  G 9 0 0.05 0 0.01 0.03 0.05 0.05 0.07 0.07 

  H 9 0 0.09 0.01 0.03 0.01 0.09 0.09 0.1 0.11 

  I 8 0 0 0 0 0 0 0 0.01 0.01 

Temperature 
stream water 

(Celsius) 
A 9 0 8.42 0.85 2.55 5.7 6.85 7.7 9.85 14 

  B 9 0 8.16 0.73 2.19 5.6 6.7 7.8 9.25 12.9 

  C 9 0 7.77 0.83 2.49 5.1 6.05 7.2 9.1 13.2 

  D 9 0 9.03 0.68 2.05 6.2 7.7 8.7 10.1 13.3 

  E 9 0 8.85 0.73 2.18 6.66 7 8.5 10.1 13.5 

  F 9 0 8.73 0.86 2.57 5.3 6.85 8.6 10.4 13.9 

  G 9 0 9.33 0.86 2.59 6.3 7.05 9.1 11.15 14.4 

  H 9 0 9.6 0.72 2.16 7.1 7.85 9.1 11.15 13.9 

  I 8 0 7.35 1.13 3.2 4.2 4.85 6.5 9.52 13.7 

Table 38 Bimonthly-monthly stream water data from 9 sampling campaigns between 2017-04-24–2018-
05-01.  
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Diagrams 

pH, electrical conductivity (EC) and temperature 
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Riverine TSP, organic matter and POC 

 

Descriptive Statistics: TSP mg L–1 & OM mg L–1           

Variable Site N N* Mean 
SE 

Mean 
StDev Min Q1 Median Q3 Max 

TSP mg L–1 A 8 1 0.92 0.28 0.78 0.2 0.31 0.71 1.26 2.6 

  B 8 1 1.3 0.31 0.87 0.35 0.77 1.15 1.49 3.25 

  C 8 1 0.7 0.19 0.53 0 0.3 0.66 1.13 1.6 

  D 8 1 1.15 0.25 0.7 0.43 0.6 0.97 1.63 2.5 

  E 8 1 0.85 0.25 0.71 0.2 0.34 0.58 1.5 2.16 

  F 7 2 0.46 0.13 0.34 0.2 0.25 0.31 0.6 1.18 

  G 8 1 1.94 1.03 2.9 0.2 0.5 0.92 1.8 9 

  H 8 1 1.67 0.48 1.37 N/A 0.85 1.45 2.66 4.15 

  I 7 1 0.29 0.08 0.22 0.05 0.1 0.28 0.55 0.63 

OM mg L–1 A 5 4 0.03 0.01 0.03 0.01 0.01 0.03 0.06 0.09 

  B 5 4 0.06 0.01 0.03 0.03 0.03 0.05 0.08 0.1 

  C 5 4 0.02 0.01 0.01 0 0.01 0.02 0.03 0.04 

  D 5 4 0.04 0.01 0.02 0.02 0.02 0.03 0.06 0.07 

  E 5 4 0.02 0.01 0.02 0.01 0.01 0.01 0.04 0.05 

  F 4 5 0.03 0.02 0.04 0.01 0.01 0.01 0.07 0.09 

  G 5 4 0.1 0.07 0.16 0.02 0.02 0.03 0.22 0.38 

  H 5 4 0.09 0.03 0.06 0.02 0.03 0.08 0.15 0.16 

  I 4 4 0.01 0 0.01 0 0 0.01 0.02 0.02 

Table 39 Descriptive statistics of TSP and OM (mg L–1) of Exmoor streams. 

 

 
Figure 116 Total suspended particulates (TSP) of stream samples. 
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Figure 117 POM% of TSP (mg L–1) in stream samples. 
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Fluorescence peaks A, B, C, M and T for experimental flocculation samples 
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Method descriptions from Uppsala University (original M. Groeneveld, 2018) 
Absorbance and fluorescence spectrometry 
UV–Vis absorbance spectra (250 to 600 nm) of filtered water were measured in a 0.5 cm quartz cuvette 
using a Lambda35 UV–Vis Spectrometer (PerkinElmer Lambda 25, Perkin Elmer, Waltham, USA). 
Synchronous fluorescence scans were obtained using a FluoroMax-4 Spectrofluorometer (FluoroMax-4, 
Jobin Yvon, Horiba, Kyoto, Japan), with excitation-emission matrices (EEMs) from excitation wavelengths 
250 to 445 nm with 5 nm increments, and emission wavelengths 300 to 600 nm with 4 nm increments. 
The EEMs were blank subtracted using a sample of Milli-Q water run on the same day, corrected for 
instrument biases and normalised to Raman units (Lawaetz and Stedmon 2009). A shift in the location of 
the maximum intensity of peak A and peak C was observed across samples and as a result of treatment 
2 (clay) and 4 (clay+salt). These locations were determined within Ex250-Em400-480 for peak A and Ex300-

360-Em400-460 for peak C. Three commonly used indices were calculated at fixed excitation/emission 
wavelength pairs or regions: the fluorescence index (FI; Cory and McKnight, 2005), the humification index 
(HIX; Ohno et al. 2002), and the freshness index (FRESH; Parlanti et al. 2000). All fluorescence 
corrections were performed using the FDOMcorr toolbox (Murphy et al. 2010) for MATLAB (Mathworks, 
Inc., Natick, MA).  

Parallel factor analysis (PARAFAC, Bro 1997) was used to identify the main fluorescence 
components of DOM present throughout the samples and to assess the effect of the treatments. The 
analysis was conducted on a set of 151 samples (four replicates and four treatments for nine sites and 
nine initial samples) using the drEEM toolbox for MATLAB (Mathworks, Inc., Natick, MA) following Murphy 
et al. (2013). EEMs were pre-processed as follows: 1) a faulty part of one EEM and one outlier were 

removed, 2) primary and secondary Rayleigh and Raman were removed and EmEx was set to zero, and 
3) the data were normalised to total fluorescence intensity of each sample. Non-negativity constraints 
were applied on all modes (excitation, emission and sample). The appropriate number of components 
was identified considering the effect of adding more components on the model fit (expressed as the sum 
of square errors), by visual inspection of the residuals and random initialization with 20 iterations with a 
convergence criterion of 1*10-08 to find a stable model. The model was validated using random split-half 
analysis.  
 
Mass spectrometry 

DOM composition was measured by direct infusion electrospray ionisation (ESI) Orbitrap mass 
spectrometry (Hawkes et al. 2016, Fleury et al. 2017). Solid phase extraction was performed with 100 mg 
Bond Elut PPL cartridges (Agilent Technologies). The cartridges were cleaned once with methanol, 
allowed to soak in fresh methanol overnight, and then rinsed with 0.1% formic acid. Due to the low DOC 
concentrations, all replicates were combined into one 160 ml sample. The samples were acidified to pH≈2 
with 50% high purity HCl (Suprapure, VWR; 1 μL mL-1) and allowed to flow through the cartridges by 
gravity or slowly pushed through at a rate of a drop per second. The cartridges were flushed with 3 mL 
0.1% formic acid to remove salts, and then dried using N2. The samples were then eluted with 2 mL 
methanol in pre-combusted 2 mL amber vials and stored at -20°C until analysis. (SPE was done 12-18/6, 
Orbitrap 11/7, if you want to how much time there was in between the experiment and the analysis) 
Samples were dried at 60°C, dissolved in 150 µl 50% methanol at a DOC concentration of approximately 
50 ppm and loaded by autosampler (Agilent 1100) to the Orbitrap mass spectrometer (Velos Pro, Thermo 
Fisher). A mobile phase of 50% methanol (10 µL min-1) was used to transport the loaded organic material. 
The ESI source was operated in negative mode at 3kV and masses were calibrated using the lock mass 
setting on masses 269.06676, 369.08272 and 425.108935, which were present in every sample. 150 
scans were acquired (4.5 minutes) for each sample after 3 minutes, after which lines were flushed for 4.5 
minutes with methanol so that a baseline signal was achieved. Noise was removed and formulas assigned 
according to in-house routines (Hawkes et al. 2016), allowing up to C40H80O40N2S1 under the 
conditions 0.3≥H/C≤2, O/C≤1. Formulas were only assigned with a mass error <1ppm (1 x 106 x 
Δm/(m/z)). Isotopologues (13C peaks) and rare cases of double assignments were removed from 
consideration. Since many compounds were also identified in the treatment blanks, the samples were 
treatment blank-corrected as follows. Peaks were only considered if they were three times larger than the 
corresponding peak in the treatment blank, in which case the peak intensity for the treatment blank was 
subtracted from the peak intensity in the sample. The samples were then normalised to total sample 
intensity.   
Weighted average H/C ratios (HCWA) were calculated for all samples and treatments as: 
 

  ∑
𝐻

𝐶
∗ 𝐼𝑛

𝑖=1 / ∑ 𝐼𝑛
𝑖=1          

 
where H is the number of hydrogen atoms and C is the number of carbon atoms in molecular formula i, I 
is the intensity of formula i, and n is the total number of formulae in each sample. Weighted average O/C 
ratios (OCWA) were calculated in the same manner.  

Formulae were assigned to compounds groups (black carbon, polyphenols, highly unsaturated, 
aliphatics, peptides, sugars) based on Seidel et al. (2014). (More specifically: “(1) polycyclic aromatics 
(PCAs, AImod > 0.66), which include condensed combustion-derived DBC if C > 15 (Dittmar and Koch, 
2006), (2) highly aromatic compounds, which include polyphenols and PCAs with aliphatic chains (Koch 
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and Dittmar, 2006) (0.66 ≥ AImod > 0.50), (3) highly unsaturated compounds, which include phenols such 
as soil-derived products of lignin degradation (Stenson et al., 2003) (AImod  ≤ 0.50 and H/C < 1.5), (4) 
unsaturated aliphatic compounds (2.0 > H/C ≥ 1.5), (5) saturated compounds, including fatty and sulfonic 
acids, and/or carbohydrates (H/C ≥ 2.0 or O/C ≥ 0.9), and (6) unsaturated aliphatic compounds containing 
N, which includes peptide molecular formulae (2.0 > H/C ≥ 1.5, N > 0).” – copied from Seidel et al. 2014, 
AImod is the modified aromaticity index defined by Koch and Dittmar, 2006) 

In order to determine the effect of the treatment on DOM composition, we first performed a 
principal coordinate analysis (PCoA) on the Bray-Curtis dissimilarity matrix of the normalised molecular 
data and additional sample characteristics. When the variable ‘treatment’ approximately aligned with the 
one of the PCoA axes, this is axis was used a proxy for treatment. Univariate relationships between FT-
Orbitrap-MS peak intensities and the principal coordinate representing the treatment were analysed using 
the Spearman correlation and plotted in van Krevelen space (H/C vs. O/C ratio). The correlation limit was 
set at 0.497 for a = 0.05 (N=16) and adjusted when outliers were removed (correlation limit = 0.514, N=15, 
correlation limit = 0.532, N=14) or when only T1 was considered (correlation limit=0.707, N=8). (taking 
principal coordinates as proxies for treatments is justified by the good correspondence between the effect 
shown by the correlations in van Krevelen space and the effect of treatment visible in the weighted 
average H/C and O/C plots). 
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