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Reduction Techniques for the Prize-Collecting Steiner Tree

Problem and the Maximum-Weight Connected Subgraph

Problem

Daniel Rehfeldt∗ · Thorsten Koch · Stephen J. Maher

Abstract

The concept of reduction has frequently distinguished itself as a pivotal ingredient of
exact solving approaches for the Steiner tree problem in graphs. In this paper we broaden
the focus and consider reduction techniques for three Steiner problem variants that have
been extensively discussed in the literature and entail various practical applications: The
prize-collecting Steiner tree problem, the rooted prize-collecting Steiner tree problem and
the maximum-weight connected subgraph problem.

By introducing and subsequently deploying numerous new reduction methods, we are
able to drastically decrease the size of a large number of benchmark instances, already solving
more than 90 percent of them to optimality. Furthermore, we demonstrate the impact of
these techniques on exact solving, using the example of the state-of-the-art Steiner problem
solver SCIP-Jack.

1 Introduction

The Steiner tree problem in graphs (SPG) is a classical NP-hard problem [22]: Given an undi-
rected connected graph G = (V,E), costs c : E → Q+ and a set T ⊆ V of terminals, the problem
is to find a minimum-cost tree S ⊆ G that spans T . Although commonly cited to entail a variety
of practical applications [11, 18, 30, 31, 35], the SPG rarely arises in pristine shape when it comes
to modeling real-world problems [17]. Instead, one predominantly encounters variations of the
classical Steiner tree problem. Three of these variations will be discussed in this paper: The
prize-collecting Steiner tree problem (PCSTP), the rooted prize-collecting Steiner tree problem
(RPCSTP) and the maximum-weight connected subgraph problem (MWCSP). These problems
have been frequently discussed in the literature and involve various practical applications.

For exact solving of the SPG, reduction techniques have distinguished themselves as a pivotal
ingredient; indeed, within the empirically most successful exact solving approach for the SPG
described in the literature [30] these methods constitute the central pillar. Likewise, state-of-
the-art solvers for both the (R)PCSTP and MWCSP heavily rely on such techniques. However,
even though there have been notable advances for the (R)PCSTP [7, 24, 27, 34], and also certain
developments for the MWCSP [3, 13], reduction techniques for Steiner problem variants fall short
of achieving the same scope and potency as their kinsmen for the SPG. Against this backdrop,
this paper aims at narrowing the gap towards the SPG by introducing a variety of new reduction
methods for the PCSTP, the RPCSTP and the MWCSP. Furthermore, we will show the strength
of these new techniques on several benchmark sets. Finally, we will demonstrate the tremendous
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influence they can exert on exact solving by incorporating them into the state-of-the-art Steiner
problem solver SCIP-Jack [17].

2 The Prize-Collecting Steiner Tree Problem

The prize-collecting Steiner tree problem (PCSTP) has been widely discussed in the literature [6,
21, 25], accompanied by several exact solving approaches [13, 25, 24, 27]. Besides SCIP-Jack,
an empirically strong solver can be found in [14]. Several publications [7, 24, 27, 34] have
addressed reduction techniques for the PCSTP, with the computational results reported in [34]
being the best by far. Practical applications of the PCSTP range from the design of fiber optic
networks [25] to computational biology [19].

Formally, the prize-collecting Steiner tree problem can be defined as follows: Given an undi-
rected graph G = (V,E), edge-weights c : E → Q+, and node-weights p : V → Q≥0, a tree
S = (VS , ES) ⊆ G is required such that

C(S) :=
∑
e∈ES

ce +
∑

v∈V \VS

pv (1)

is minimized. For ease of presentation, we will henceforth refer to the set T := {v ∈ V | pv > 0}
as terminals.

The rooted prize-collecting Steiner tree problem (RPCSTP) can be regarded a variation of
the prize-collecting Steiner tree problem, incorporating the additional condition that one distin-
guished node r, called the root, must be part of every feasible solution to the problem.

Although the reduction techniques presented in this section are formulated for the PCSTP,
it should be noted that all of them can be easily applied to the RPCSTP. Consider an RPCSTP
instance (V,E, c, p, r). By setting pr to an sufficiently large value (e.g. to p(V ) + 1) this instance
can be transformed to an equivalent PCSTP.

For the remainder of this section it will be presupposed that a PCSTP instance PPC =
(V,E, c, p) is given and we further define n := |V | and m := |E|. Thereupon, we set s := |T |
and for the sake of simplicity V := {v1, ..., vn} and T := {t1, ..., ts}. Additionally, the subpath
of a path Q between two vertices vr, vs ∈ V [Q] will be denoted by Q(vr, vs). The “interior”
of a path Q that starts with vk and ends with vl is defined as Q◦ := (V [Q] \ {vk, vl}, E[Q]).
Furthermore, we define the distance function d(vi, vj) as the length of a shortest path between
vi and vj without intermediary terminals. In [11] an O(m + n log n) algorithm was introduced
to compute for each non-terminal vi a constant number of d-nearest terminals vi,1, vi,2, ..., vi,k (if
existent) along with the corresponding paths. We will refer to this procedure as Duin’s nearest
terminals algorithm.

A somewhat less basic concept, which will frequently recur in the course of this section,
is the following [28]: A Voronoi diagram to (G,T, c) is a partition {N(t) | t ∈ T} of V (i.e.
V =

⋃
t∈T N(t) and N(t) ∩N(t′) = ∅ for t, t′ ∈ T , t 6= t′) such that

v ∈ N(t)⇒ d(v, t) ≤ d(v, t′) for all t′ ∈ T. (2)

If vj ∈ N(ti), ti is called the base of vj , denoted by base(vj). The set N(ti) is called Voronoi
region of ti and we will refer to an edge {vj , vk} such that base(vj) 6= base(vk) as Voronoi-
boundary edge. The Voronoi diagram can be computed in O(m + n log n) by slightly adapting
Dijkstra’s algorithm [15] in such a way that all terminals are considered as start vertices of
distance zero [28].
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2.1 Basic Reductions

Several basic reduction techniques can be readily devised:

Non-terminal of degree 1 (NTD1): A non-terminal of degree 1 and its incident edge can be
deleted.

Non-terminal of degree 2 (NTD2): A non-terminal vi of degree 2 and its incident edges
{vi, vj}, {vi, vk} can be substituted by a single edge {vj , vk} with c{vj ,vk} := c{vi,vj}+ c{vi,vk}. In
the case of two parallel edges, one of lowest cost is retained.

Terminal of degree 1 (TD1): Let ti ∈ T be a terminal of degree 1 and set {el} := δ(ti). If
there exists tj ∈ T such that pti ≤ ptj and additionally it holds that

a) pti ≤ cel , then ti and el can be discarded;

b) pti > cel , then ti and el = {ti, vk} can be discarded, concurrently setting pvk := pvk + pti −
cel .

In case a) pti and in case b) cel must be added to the objective value of each feasible solution to
PPC to obtain the value of the corresponding original solution.

Terminal of degree 2 (TD2): Let ti ∈ T such that δ(ti) = {{ti, vk}, {ti, vl}} and pti ≤
min{c{vk,ti}, c{ti,vl}, ptj} for a tj ∈ T \ {ti}. If a new edge {vk, vl} of cost c{ti,vk} + c{ti,vl} − pti
is added, then {vk, ti}, {vl, ti} and ti can be deleted. For a solution S′ to the transformed problem
P ′PC there is a corresponding solution S to the original problem such that the relation C ′(S′) +
pti = C(S) holds.

Both NTD1 and NTD2 were already proposed in [27]. However, to the best of our knowledge,
the complete versions of the tests TD1 and TD2 have not been previously presented in the
literature. In [34] the tests TD1 b) and TD2 were suggested, but without the condition ∃tj :
ptj ≥ pti . The absence of the latter, or a comparable condition, renders both tests erroneous,
since a unique optimal solution consisting only of a single terminal could then be discarded. We
denote by Degree-Test (DT) the successive execution of those four tests. Since in each of
them only vertices of degree at most 2 are checked, the worst-case complexity of DT is of Θ(n),
assuming that deleting or inserting an edge can be realized in O(1).

Additionally, we suggest another simple test, which we perform prior to all other reduction
methods:

Unconnected dominated vertex (UDV): Each vertex vi that satisfies pvi ≤ pvj for a vj ∈
V \ {vi} and that is not connected to any vertex (except itself) of positive prize can be deleted
along with all incident edges.

By using a modified breadth-first search with all vertices of positive weight in the initial
queue, UDV can be realized with worst-case complexity of O(m+ n). As shown in Section 4.1,
the UDV test allows to eliminate a certain portion of vertices of edges in several benchmark
instances. Perhaps surprisingly, these instances contain small connected components that do not
include any vertices of positive prize.

2.2 Alternative-Based Reductions

In this subsection several tests are introduced that utilize the existence of alternative solutions.
They can be partitioned into exclusion and inclusion tests: The former use the argument that for
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any solution containing a certain part of the graph (e.g. an edge) there is a solution of smaller or
equal cost that does not contain this part. The latter use the converse argumentation: For any
solution not containing a specified part of the graph an additional solution can be found that
contains this part and is of less or equal cost.

The arguably most potent alternative-based concept for the SPG is the bottleneck Steiner
distance [12], paving the way for several powerful reduction methods [30]. The paramount
achievement of [34] was a redefinition of this concept in the context of the PCSTP:

Let vi, vj ∈ V be two distinct vertices, Q(vi, vj) the set of all simple paths between vi and vj
and Q ∈ Q(vi, vj). The local prize-collecting Steiner distance of Q(vk, vl) for any vk, vl ∈ V [Q]
is defined as

sdloc(Q(vk, vl)) =
∑

e∈E[Q(vk,vl)]

ce −
∑

v∈V [Q◦(vk,vl)]

pv. (3)

Built upon this definition, the prize-collecting Steiner distance of (the whole path) Q is:

sd(Q) = max
vk,vl∈V [Q]

sdloc(Q(vk, vl)). (4)

Finally, the bottleneck prize-collecting Steiner distance between vi and vj can be defined as

s(vi, vj) = min{sd(Q) | Q ∈ Q(vi, vj)} (5)

and the excluding bottleneck prize-collecting Steiner distance between vi and vj as

s−(vi, vj) = min{sd(Q) | Q ∈ Q(vi, vj), {vi, vj} /∈ E[Q]}. (6)

The two most salient tests spawned by the Steiner bottleneck distance in the context of the
SPG find their equivalent for the PCSTP:

Lemma 1. Every edge ek = {vi, vj} ∈ E with cek > s(vi, vj) can be discarded.

Corollary 2. Every edge ek = {vi, vj} ∈ E with cek ≥ s−(vi, vj) can be discarded.

Lemma 3. A non-terminal vertex vi is of degree at most 2 in at least one minimum Steiner
tree if for each set ∆, with |∆| ≥ 3, of vertices adjacent to vi it holds that: the (summed) cost
of all edges δ(vi) ∩ δ(∆) is not less than the weight of a minimum spanning tree for the network
(∆,∆×∆, s).

Corollary 2 and Lemma 3 were formulated and proved in [34], and Lemma 1 can be verified
analogously. In the same publication it was demonstrated that computing the bottleneck prize-
collecting Steiner distance is NP-hard and the application of heuristics was suggested. However,
no information was provided on the actual design of these heuristics. Thereupon, we propose
two novel tests to calculate an upper bound on the bottleneck prize-collecting Steiner distance.

Given an edge {vi, vj}, we first run a modified version of Dijkstra’s algorithm, terminating as
soon as a predefined (constant) number of edges has been processed or the distance of a scanned
vertex exceeds c{vi,vj}. The further modifications are as follows: Starting from vi, the edge
{vi, vj} is continually ignored and the algorithm does not proceed from terminals (other than
vi). If vj has been labeled (or scanned) and the length of the corresponding path between vj
and vi is not higher than c{vi,vj}, the edge {vi, vj} can already be eliminated. Otherwise, we
run the analogous limited version of Dijkstra’s algorithm from vj , additionally stopping at all
vertices that have been scanned in the course of the first run. Finally, let q ∈ N be the number
of all vertices labeled or scanned during the first execution of Dijkstra’s algorithm. Further,
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denote each of these vertices by v
(k)
i with k ∈ {1, ..., q}. If a v

(k)
i has been labeled or scanned

during the second run and further the corresponding path Q (from vi to v
(k)
i to vk) satisfies

C(Q)− p
v

(k)
i
≤ c{vi,vj}, the edge {vi, vj} can be deleted due to Corollary 2. We will refer to this

procedure as Bottleneck Steiner Distance Circuit (SDC) test.

v5

p=2.3

v1

v2 v3 v4

11

2.5

1.4

1.2

Figure 1: Segment of a PCSTP instance; edge {v2, v3} (dashed) can be eliminated by the SDC
test.

For the second test some groundwork is necessary. We wish to obtain for a given α ∈ N to
each terminal its α d-nearest terminals. Duin’s nearest terminals algorithm allows to compute a
constant number of d-nearest terminals vi,1, vi,2, ... to each non-terminal vi, but not to terminals.
Remedy is provided by the following lemma. For ease of presentation, we subsequently assume
for each {vj , vk} ∈ δ

(
N(ti)

)
that vj ∈ N(ti) holds.

Lemma 4. Let α ∈ N, 1 ≤ α < |T |, ti ∈ T and assume that for each vj ∈ V \ T the α + 1
d-nearest terminals vj,1, vj,2, ..., vj,α+1 exist and their d-distances to ti are available. Thereupon,

setting t
(0)
i := ti, the remainder of the α+1 d-nearest terminals t

(1)
i , ..., t

(α)
i to ti can be computed

as follows:

Set t
(1)
i := vk,1 with k such that:

d(ti, vk,1) = min
{vj ,vk}∈δ(N(ti))

{d(ti, vj) + c{vj ,vk} + d(vk, vk,1)}. (7)

Having computed t
(1)
i , ..., t

(r)
i (r < α), we set t

(r+1)
i := vk,l with k, l such that:

d(ti, vk,l) = min
{vj ,vk}∈δ(N(ti))

{
d(ti, vj) + c{vj ,vk}

+ min{d(vk, vk,l) | l = 1, ..., r + 2 : vk,l 6= t
(q)
i , q = 0, ..., r}

}
. (8)

Proof. First, note that both of the minima attained in (7) and (8) correspond to a path. Next,

let t
(1)
min ∈ T \ {ti} such that d(ti, t

(1)
min) is minimal. The corresponding path between ti and

t
(1)
min contains an edge {vj , vk} ∈ δ(N(ti)) and since the path is of minimum d-length its cost is
d(ti, vj) + c{vj ,vk} + d(vk, vk,1). Hence:

min
{vj ,vk}∈δ(N(ti))

{d(ti, vj) + c{vj ,vk} + d(vk, vk,1)} ≤ d(ti, t
(1)
min).

Furthermore, for {vj , vk} ∈ δ(N(ti)) let Q be a path consisting of a shortest path between ti and
vj , the edge {vj , vk} and a shortest path between vk and vk,1. Since vj lies in N(ti) and vk,1 is
a d-nearest terminal to vk, the path Q contains no intermediary terminal vertices. Consequently
it is of cost at least d(ti, vk,1), so:

min
{vj ,vk}∈δ(N(ti))

{d(ti, vj) + c{vj ,vk} + d(vk, vk,1)} ≥ d(ti, vk,1) ≥ d(ti, t
(1)
min).
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The validity of the claim for r > 1 can be demonstrated similarly: Denote by t
(r)
min the

r’th d-nearest terminal to ti, if such a terminal exists. Let r ∈ N, 1 < r < α and assume

that there is a t
(r+1)
min . Additionally, let Q be a path corresponding to d(ti, t

(r+1)
min ). This path

contains an edge {vj , vk} ∈ δ(N(ti)) and can therefore be dissected into the subpath Q(ti, vj),

the edge {vj , vk} and the subpath Q(vk, t
(r+1)
min ). The first subpath is of length d(ti, vj), since

otherwise it could be substituted by a shorter one. The second subpath is of length at least

min{d(vk, vk,l) | l = 1, ..., r + 2 : vk,l 6= t
(q)
i , q = 0, ..., r, }, because this is the minimum length

between vk and a terminal other than t
(0)
i , t

(1)
i , ..., t

(r)
i and without intermediary terminals. Note

that vk itself can be a terminal, so just scrutinizing all vk,l with l ∈ {1, ..., r+ 1} is not sufficient,

since these r + 1 terminals could be identical to t
(0)
i , t

(1)
i , ..., t

(r)
i . This discussion implies:

min
{vj ,vk}∈δ(N(ti))

{
d(ti, vj) + c{vj ,vk}

+ min{d(vk, vk,l) | l = 1, ..., r + 2 : vk,l 6= t
(q)
i , q = 0, 1, ..., r}

}
≤ d(ti, t

(r+1)
min ).

To see the converse, note that each path Q associated with the set in (8) is composed of the

components Q(ti, vj), {vj , vk} and Q(vk, vk,l), for some l such that vk,l /∈ {t(0)
i , t

(1)
i , ..., t

(r)
i }. By

construction none of these components contain intermediary terminals, thus the same holds for
Q. Hence, C(Q) ≥ d(ti, vk,l) and therefore:

min
{vj ,vk}∈δ(N(ti))

{
d(ti, vj) + c{vj ,vk}

+ min{d(vk, vk,l) | l = 1, ..., r + 2 : vk,l 6= t
(q)
i , q = 0, 1, ..., r}

}
≥ d(ti, t

(r+1)
min ).

Consequently, the lemma is established.

Corollary 5. Let α ∈ N, 0 < α < |T |. The α d-nearest terminals to each terminal can be
computed with worst-case complexity of O(m+ n log n) if α is considered a constant.

Having established Lemma 4, we are in a position to propose a test that scrutinizes alternative
paths with up to two intermediary terminals: We compute the four d-nearest terminals (or
as many as exist) to each non-terminal vi. For each terminal ti we compute, three d-nearest

terminals t
(1)
i , t

(2)
i , t

(3)
i . Additionally, we determine a further terminal t

(4)
i that is not necessarily

fourth d-nearest to ti, but reasonably close empirically. The reason behind this procedure is that
for an exact computation the fifth d-nearest nearest terminals vj,5 to all Steiner vertices vj are
necessary. We proceed by choosing to each ti a terminal vk,l such that:

d(ti, vk,l) = min
{vj ,vk}∈δ(N(ti))

{
d(ti, vj) + c{vj ,vk}

+ min{d(vk, vk,l) | l = 1, ..., 4 : vk,l 6= t
(q)
i , q = 0, 1, ..., 3}

}
.

For all (both non-terminal and terminal) vertices vi we denote the set of the so obtained (up to
four) close terminals by Li. Next, we scrutinize each edge {vi, vj} ∈ E:

Mark each vertex tq ∈ Li satisfying d(vi, tq) < c{vi,vj}. Thereafter, proceed for each tl ∈ Lj
such that d(vj , tl) < c{vi,vj} as follows. If tl has been marked and d(vi, tl)+d(vj , tl)−ptl < c{vi,vj},

delete {vi, vj}. Otherwise, if a t
(r)
l , r = 1, ..., 4 has been marked, we have found a path between
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vi and vj , containing exactly two intermediary terminals, namely tl and t
(r)
l . Next, we examine

whether the prize-collecting Steiner distance of this path is smaller than the cost of the edge
{vi, vj}. For this purpose, we need to check whether the four inequalities

1. d(tl, t
(r)
l ) < c{vi,vj},

2. d(tl, t
(r)
l ) + d(vj , tl)− ptl < c{vi,vj},

3. d(tl, t
(r)
l ) + d(vi, t

(r)
l )− p

t
(r)
l

< c{vi,vj},

4. d(tl, t
(r)
l ) + d(vj , tl) + d(vi, t

(r)
l )− ptl − pt(r)

l

< c{vi,vj}

are satisfied. If this is the case, c{vi,vj} > s(vi, vj) holds and we consequently remove {vi, vj}.
The above procedure is reiterated vice versa, starting from vj and marking all vertices in Lj
to detect additional vi − vj paths containing exactly two intermediary vertices. We name the
described test Bottleneck Steiner Distance (SD) test. Since the up to four close terminals
are readily available, the foregoing examination of an edge can be performed in constant time.
Therefore, these examinations can be accomplished for all edges in a total of Θ(m). Consequently,
the SD test can be realized with worst-case complexity of O(m+n log n). With upper bounds on
the bottleneck Steiner distances being available, we can now also implement a test to Lemma 3:
Whenever the test condition is satisfied for a vi ∈ V \ T , this vertex and all incident edges can
be discarded, while for each two vertices vk and vj adjacent to vi an edge {vk, vj} with cost
c{vi,vk} + c{vi,vj} is inserted. In the case of two parallel edges, only one of minimum cost is
retained. Analogously to the SPG [11], we call this test Non-Terminal of Degree 3 (NTD3).

Not only exclusion, but also inclusion tests are possible for the PCSTP: For both the Nearest
Vertex (NV) and the Short Links (SL) test for the SPG [30] we propose an extension for the
PCSTP, yielding a different but not less powerful result. A somewhat intricate theorem, which
may at first glance appear too constraining to be of practical importance, sets the stage.

Initially, a simple procedure is defined that will in the remainder of this section be referred
to as cycle-pruning : Let G′ = (V ′, E′) be a connected subgraph of G. Until G′ is cycle-free (and
therefore a tree), repeatedly select a cycle CG′ and remove an arbitrary edge of CG′ . It should
be noted that the prize-collecting cost C(G′) =

∑
e∈E′ ce +

∑
v∈V \V ′ pv of G′ is not increased by

this procedure, since only edges are removed, which are by definition of non-negative cost

Theorem 6. Let ti, tj ∈ T , W ⊂ V , with ti ∈ W , tj /∈ W and |δ(W )| ≥ 2. Further let
e1 = {v1, v

′
1}, e2 = {v2, v

′
2}, with v1, v2 ∈ W , be two distinct edges in δ(W ) such that ce1 ≤ ce2

and ce2 ≤ cẽ for all ẽ ∈ δ(W ) \ {e1}. Assume that the following three conditions hold:

ce2 ≥ d(ti, v1) + ce1 + d(v′1, tj), (9)

ptj ≥ d(ti, v1) + ce1 + d(v′1, tj), (10)

pti ≥ d(ti, v1) + ce1 . (11)

Thereupon, for each feasible solution S to PPC containing ti, v1, or v′1 (or a combination of
them), there is a solution S̃ of lesser or equal cost containing ti and the edge e1 = {v1, v

′
1}.

Proof. Let S = (VS , ES) be feasible solution to PPC . Furthermore, for this proof it will be
assumed that cycle-pruning does not remove the edge e1.

In the remainder of this proof three major cases will be differentiated, the first one being
ti ∈ VS , the second v1 ∈ VS and the third v′1 ∈ VS . It will be demonstrated that in each of these
three cases there is a solution S̃ that includes both ti and the edge e1 = {v1, v

′
1} and moreover

satisfies C(S̃) ≤ C(S). These deliberations prove the theorem.
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i) Suppose ti ∈ VS , but {v1, v
′
1} /∈ ES . If tj ∈ VS , there is a unique path in S between ti and tj

that contains an edge {w,w}, w ∈W , w /∈W of cost at least ce2 . Removing {w,w} one obtains
a tree S1 containing ti and a tree S2 containing tj . By including a shortest path Q1 between ti
and v1 as well as a shortest path Q2 between v′1 and tj and including the edge {v1, v

′
1}, a new

subgraph S̃ is obtained. However, S̃ is not necessarily a tree, since Q1
◦ or Q2

◦ may contain a
vertex of S, resulting in a cycle. In this case, S̃ is modified by applying cycle-pruning. Thereby,
S̃ is rendered a tree and, containing VS , it is of cost:

C(S̃) ≤ C(S)− ce2 + d(ti, v1) + ce1 + d(v′1, tj)
(9)

≤ C(S).

In the complementary case tj /∈ VS , construct a tree S̃ by once again including Q1 and Q2 and

inserting the edge {v1, v
′
1}, followed by cycle-pruning. The tree S̃ is of cost:

C(S̃) ≤ C(S) + d(ti, v1) + ce1 + d(v′1, tj)− ptj
(10)

≤ C(S).

ii) Suppose v1 ∈ VS . If ti /∈ VS , then by adding a shortest path between ti and S a tree S̃ of
cost:

C(S̃) ≤ C(S)− pti + d(ti, v1)
(11)

≤ C(S)

is obtained. Since ti ∈ S̃, one can proceed as in case i) to find a tree S̃′ with C(S̃′) ≤ C(S̃)
that contains both ti and {v1, v

′
1}. Finally, if ti ∈ VS holds in the first place, one can forthwith

procced as in case i).
iii) Suppose v′1 ∈ VS . If ti ∈ VS but {v1, v

′
1} /∈ ES , there is a unique path in S between v′1 and

ti that contains an edge {w,w}, w ∈ W , w /∈ W of cost at least ce2 . The tree S̃ obtained from
S by removing {w,w} and inserting e1 = {v1, v

′
1} as well as including a shortest path between

v1 and ti (and if necessary performing cycle-pruning) is of cost:

C(S̃) ≤ C(S) + ce1 + d(v1, ti)− ce2
(9)

≤ C(S).

On the other hand, consider the case ti /∈ VS . The addition of a shortest path between v1 and ti
and the addition of the edge e1 (if not already present) connects ti to S. After cycle-pruning, a
tree S̃ of cost:

C(S̃) ≤ C(S) + ce1 + d(v1, tj)− pti
(11)

≤ C(S)

is obtained.

Contrary to the NV and SL tests for the SPG, in the case of the PCSTP one cannot assume
that {v1, v

′
1} is part of at least one minimum Steiner tree. However, the following corollary allows

us to contract the edge nevertheless. Initially, consider a PCSTP P ′PC resulting from contracting
an edge of a PCSTP PPC . Thereupon, a solution to P ′PC may correspond to several solutions
to PPC . In the following it is presupposed that in such a case among these solutions one of
minimum cost is selected.

Corollary 7. Assume that the premises of Theorem 6 are fulfilled and furthermore that inequality
(11) holds strictly or v1 = ti is satisfied. Let P ′PC = (V ′, E′, c′, p′) be the PCSTP obtained by
contracting e1 = {v1, v

′
1} in the following way. If both v1 = ti and v′1 = tj, contract v′1 into vi

and set p′ti := pti + ptj − ce1 . Otherwise, define p′ti := pti − ce1 and contract v1 into v′1 if v′1 = tj
or contract v′1 into v1 if v′1 6= tj. In each case set p′v := pv for all v ∈ V ′ \ {ti}.

Thereupon, for each optimal solution S′ to P ′PC the corresponding solution S to PPC is also
optimal.

9



Proof. Let S′ = (V ′S′ , E
′
S′) be a solution to P ′PC and S = (VS , ES) the corresponding solution

to PPC . The cost of S′ (with respect to P ′PC) is denoted by C ′(S′). Additionally, assume that
e1 = {v1, v

′
1} is contracted into v1 (the opposite case is analogous). Initially, two cases are

discussed, namely i) v1, ti /∈ V ′S′ and ii) v1, ti ∈ V ′S′ .
i) Assume v1, ti /∈ V ′S′ . In this case S′ and S consist of exactly the same edges and vertices,

which implies that
∑
e∈E′

S′
c′e =

∑
e∈ES

ce. Recall that if both v1 = ti and v′1 = tj hold, then

p′ti = pti + ptj − ce1 and otherwise p′ti = pti − ce1 . Thereupon, it can be further inferred that∑
v/∈V ′

S′
p′v =

∑
v/∈VS

pv − ce1 . These deliberations amount to the equation:

C ′(S′) + ce1 = C(S). (12)

ii) Assume v1, ti ∈ V ′S′ . Consequently,
∑
e∈E′

S′
c′e + ce1 =

∑
e∈ES

ce and
∑
v/∈V ′

S′
p′v =∑

v/∈VS
pv hold, so:

C ′(S′) + ce1 = C(S). (13)

In the following assume that S′ is an optimal solution to P ′PC . In this case, one can verify
that only the two cases i) and ii) discussed above can occur. This assertion is certainly true
if ti = v1, since in this case it can only hold that either v1, ti /∈ V ′S′ or v1, ti ∈ V ′S′ . In the
following it will therefore be assumed that ti 6= v1. Consequently, according to the conditions of
this corollary, inequality (11) holds strictly, i.e. pti > d(ti, v1) + ce1 is satisfied. Once more, two
cases need to be considered.

First, suppose ti ∈ V ′S′ and v1 /∈ V ′S′ . This implies for the corresponding solution S to PPC
that ti ∈ VS and v1 /∈ VS . Consequently, it holds that

∑
e∈E′

S′
c′e =

∑
e∈ES

ce and
∑
v/∈V ′

S′
p′v =∑

v/∈VS
pv, so C ′(S′) = C(S). Furthermore, according to Theorem 6 there would a solution S̃ to

PPC of cost C(S̃) ≤ C(S) that contains ti, v1, and v′1. Due to case i) the corresponding solution
S̃′ to P ′PC would be of cost C(S̃)− ce, so one could infer that:

C ′(S′) = C(S) ≥ C(S̃) = C ′(S̃′) + ce > C ′(S̃′),

which contradicts the assumption that S′ is optimal.
Conversely, suppose ti /∈ V ′S′ and v1 ∈ V ′S′ . Since pti > d(ti, v1) + ce1 is satisfied, S′ could be

connected to ti, in the graph (V ′, E′), by a path of cost at most

d(v1, ti) < pti − ce1 = p′ti ,

which would give rise to a solution of smaller cost.
Based on the above discussions, one can finally prove the corollary. To this end, let S′ be an

optimal solution to P ′PC . Thereupon, it needs to be demonstrated that S is an optimal solution

to PPC . Suppose this is not true, i.e. that there is a solution Ŝ to PPC such that C(Ŝ) < C(S).
According to Theorem 6, it may be assumed that Ŝ contains either ti, v1, and v′1 or none of
them. Due to (12) and (13), in both cases the corresponding solution Ŝ′ to P ′PC would be of cost

C ′(Ŝ′) = C(Ŝ)− ce < C(S)− ce = C ′(S′),

contradicting the assumption that S′ is optimal. Concludingly, S has to be an optimal solution
to PPC .

In the case of |δ(W )| ≤ 1, a corresponding result can be obtained:
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Figure 2: Segment of a PCSTP instance; setting W := {v1, v2, v5, v7}, one infers from Corollary 7
that edge {v2, v3} (dashed) can be contracted.

Lemma 8. Let W ⊂ V and ti ∈W , tj /∈W . If δ(W ) = ∅, W ∩ T = {ti} and ptj ≥ pti , there is
an optimal solution S? = (VS? , ES?) with VS? ∩W = ∅. If δ(W ) = {e1}, where = {e1} = {v1, v

′
1}

and v1 ∈W , and moreover the conditions (10) and (11) of Lemma 6 hold, then for each feasible
solution S to PPC containing ti, v1, or v′1 (or a combination of them), there is a solution S′ of
lesser or equal cost containing both ti and the edge e1 = {v1, v

′
1}.

With those rather general results at hand, we are now able to formulate extended forms of
the NV and the SL test for the PCSTP.

Lemma 9. Let ti be a terminal of degree at least 2 and let e′i = {ti, v′i} and e′′i = {ti, v′′i } be a
shortest and a second shortest incident edge. Assume that there is a terminal tj 6= ti such that:

ce′′i ≥ ce′i + d(v′i, tj), (14)

ptj ≥ ce′i + d(v′i, tj), (15)

pti ≥ ce′i . (16)

Thereupon, for each feasible solution S to PPC containing ti or v′i, there is a solution S′ of lesser
or equal cost containing {ti, v′i}.

Proof. Defining W := {ti}, one can identify the lemma as a special case of Theorem 6.

Condition (14) of Lemma 9 can be verified analogously to the NV test for the SPG [30] in
O(m+n log n). Furthermore, with d(v′i, tj) available, the additional conditions (15) and (16) can
be verified trivially by checking all incident edges of ti. Since each edge is thereby checked at
most twice, this can be rendered for the entire set of terminals in Θ(m). Additionally, the test
can be extended based on the subsequent lemma.

Lemma 10. Let ti be a terminal of degree at least 2 and let e′i = {ti, v′i} be a shortest edge
incident to ti. Assume that there is a second edge {ti, v′′i } incident to ti with v′′i /∈ T . If there is

11



a terminal tj 6= ti such that:

ce ≥ ce′i + d(v′i, tj) for all e ∈ δ({ti, v′′i }) \ {e′i}, (17)

ptj ≥ ce′i + d(v′i, tj), (18)

pti ≥ ce′i , (19)

then for each feasible solution S to PPC containing ti or v′i, there is a solution S′ of lesser or
equal cost containing {ti, v′i}.

Proof. Defining W := {ti, v′′i }, one can identify the lemma as a special case of Theorem 6.

In the context of the PCSTP, we call the test associated with Lemma 9 and Lemma 10 that
contracts edges as described in Corollary 7 by Nearest Vertex (NV) test. Since Lemma 10
can be realized with additional costs of O(m), NV is of O(m+ n log n).

Theorem 6 can furthermore be used to verify the following two lemmata, which in turn set
the stage for a Voronoi based inclusion test.

Lemma 11. Let ti be a terminal and let e′1 = {v1, v
′
1} and e′2 = {v2, v

′
2} be a shortest and a

second shortest Voronoi-boundary edge of N(ti) (satisfying v1, v2 ∈ N(ti) and v′1, v
′
2 /∈ N(ti)).

Let tj := base(v′2) and assume:

ce′2 ≥ d(ti, v1) + ce′1 + d(v′1, tj), (20)

ptj ≥ d(ti, v1) + ce′1 + d(v′1, tj), (21)

pti ≥ d(ti, v1) + ce′1 . (22)

Then for each feasible solution S to PPC containing v1 or v′1, there is a solution S′ of lesser or
equal cost containing {v1, v

′
1}.

Proof. Defining W := N(ti), one can identify the lemma as a special case of Theorem 6.

Lemma 12. Let ti be a terminal and let e′1 := {v1, v
′
1} be a shortest Voronoi-boundary edge of

N(ti). Assume that there is a second Voronoi-boundary edge of N(ti), namely e′2 = {v2, v
′
2},

with v′2 /∈ T ∪ {v′1}. Further, let tj := base(v′2) and assume:

ce ≥ d(ti, v1) + ce′1 + d(v′1, tj), ∀ e ∈ δ({ti, v′′i }) \ {e′1}, (23)

ptj ≥ d(ti, v1) + ce′1 + d(v′1, tj), (24)

pti ≥ d(ti, v1) + ce′1 . (25)

Then for each feasible solution S to PPC containing v1 or v′1, there is a solution S′ of lesser or
equal cost containing {v1, v

′
1}.

Proof. Defining W := N(ti)∪{v′2}, one can identify the lemma as a special case of Theorem 6.

We denote the test associated with Lemma 11 and Lemma 12 that contracts edges as described
in Corollary 7 by Short Links (SL). Additionally, this test checks whether the conditions of
Lemma 8 are satisfied. SL can be realized in O(m + n log n): The computation of the Voronoi
diagram requires O(m+ n log n) [28] and a shortest and second shortest Voronoi-boundary edge
to all terminals can be computed by traversing all Voronoi region, in a total of Θ(m). The
extension of the test affiliated with Lemma 12 is restricted to terminals ti such that |δ(ti)| ≥
2 ∗ |δ(v′′i )|, bounding the additional costs to O(m). Note that the distances d(v1, ti) and d(v′1, tj)
are computed during the build up of the Voronoi regions.
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2.3 Bound-Based Reductions

This section describes a series of reduction methods that identify edges and vertices of PPC for
elimination by examining whether they induce a lower bound that exceeds a given upper bound.
Two classed of tests will be discussed. The first type is based on the concept of the Voronoi
diagram (2), the second one on a fast dual-ascent heuristic.

2.3.1 Voronoi Diagram Tests

For the SPG, bound-based methods can be built upon the radius concept that was introduced
in [30]. Given a Voronoi diagram N and a terminal ti ∈ T , radius(ti) is defined as the minimum
cost of any path containing ti and leaving N(ti) [30]. This concept can be generalized for the
(R)PCSTP as follows:

pcradius(ti) := min{radius(ti), pti}, ti ∈ T. (26)

The adaptation of the radius definition is necessary because a feasible solution to an SPG
contains for each Voronoi region a path that leaves this region, whereas this assumption does not
hold for the (R)PCSTP—since feasible solutions to the (R)PCSTP do not need to contain all ter-
minals. Definition (26) sets the stage for a series of lemmata and corollaries presented hereinafter
that allow to eliminate both vertices and edges. For ease of understanding, it is presupposed
that all terminals are ordered such that pcradius(t1) ≤ pcradius(t2) ≤ ... ≤ pcradius(ts). The
first lemma can be seen as an extension of a test already known for the SPG [30]. The reader is
reminded that we have defined s := |T |.

Lemma 13. Let vi ∈ V \ T . If a minimum Steiner tree S = (VS , ES) with vi ∈ VS exists, then

d(vi, vi,1) + d(vi, vi,2) +
∑s−2
q=1 pcradius(tq) is a lower bound on the cost of S.

Proof. Assume that there is a minimum Steiner tree S = (VS , ES) such that vi ∈ VS . Denote
the (unique) path in S between vi and a terminal tj ∈ VS by Qj and the set of all such paths
by Q. First, note that |Q| ≥ 2, because if Q just contained one path, say Ql, the single-vertex
tree {tl} would be of smaller cost than S, contradicting the initial assumption that the latter is
of minimum cost. Second, if a vertex vk is contained in two distinct paths in Q, the subpaths
of these two paths between vi and vk coincide. Otherwise there would need to be a cycle in S.
Additionally, there are at least two paths in Q having only the vertex vi in common. Otherwise,
due to the precedent observation, all paths would have one edge {vi, v′i} in common which could
be discarded, yielding a tree of smaller cost than S.

Now, choose two distinct paths Qk ∈ Q and Ql ∈ Q such that their combined number of
Voronoi-boundary edges is minimal and V [Qk] ∩ V [Ql] = {vi} holds. Further, define Q− :=
Q \ {Qk, Ql}. For all Qr ∈ Q−, denote by Q′r the subpath of Qr between tr and the first vertex
not in N(tr). Suppose that Qk has an edge e ∈ ES in common with a Q′r: Consequently, Ql
cannot have any edge in common with Qr, because this would require a cycle in S. Furthermore,
according to the preceding observations, Qk and Qr have to contain a joint subpath including vi
and e. But this would imply that Qk contained at least one additional Voronoi-boundary edge
(in order to be able to reach tk, which is by definition not in N(tr)). Therefore, and due to Ql
and Qr being edge disjoint, Qr would have initially been selected instead of Qk.

Following the same line of argumentation, one validates that likewise Ql has no edge in
common with any Q′r. Conclusively, the paths Qk, Ql and all Q′r are edge disjoint. Using their
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combined cost, one can obtain a lower bound on the cost of S by:

C(S) =
∑
e∈ES

ce +
∑

v∈V \VS

pv

≥
( ∑
Qr∈Q−

C(Q′r)

)
+ C(Qk) + C(Ql) +

∑
v∈V \VS

pv

≥
s−2∑
q=1

pcradius(tq) + C(Qk) + C(Ql)

≥
s−2∑
q=1

pcradius(tq) + d(vi, vi,1) + d(vi, vi,2)

where C(Q) :=
∑
e∈E[Q] ce. Ergo, the lemma is proven.

A Steiner vertex vi can be discarded if its associated lower bound, specified in Lemma 13,
exceeds a known upper bound U of the underlying problem. If a solution S of cost U is available,
vi can eliminated in the case of equality of both bounds if additionally vi /∈ V [S] is satisfied.
Analogous tests are possible for all subsequent lemmata and corollaries in this subsection.

A similar approach can be applied to probe whether a terminal is part of any optimal solution.

Recall that to each terminal ti we denote by t
(1)
i 6= ti a terminal of shortest distance to ti.

Corollary 14. Let ti ∈ T and assume that a minimum Steiner tree S = (VS , ES) other than
{ti} exists such that ti ∈ VS. Additionally, let φ : {1, .., s} → {1, .., s} be a bijection, such that
φ(i) = 1 and all tφ(j) are ordered such that the pcradius(tφ(j)) values are non-decreasing in

j = 2, ..., s. In this case, d(ti, t
(1)
i ) +

∑s−1
q=2 pcradius(tφ(q)) is a lower bound on the cost of S.

If a terminal cannot be eliminated using the conditions of the antecedent corollary, another
approach based on the following lemma can be attempted:

Lemma 15. Let ti ∈ T and assume that a minimum Steiner tree S = (VS , ES) exists such
that ti is of degree at least 2 in S. Additionally, let φ : {1, .., s} → {1, .., s} be a bijection, such
that φ(i) = 1 and all tφ(j) are ordered such that the pcradius(tφ(j)) values are non-decreasing in

j = 2, ..., s. In this case, d(ti, t
(1)
i ) + d(ti, t

(2)
i ) +

∑s−2
q=2 pcradius(tφ(q)) is a lower bound on the

cost of S.

The last lemma can be utilized to show that in all optimal solutions the terminal ti is either
not contained or of degree 1. To make use of this information, the following simple reduction
test can be applied.

Lemma 16. Let ti ∈ T and assume pti ≤ ce for all e ∈ δ(ti). If ti is not contained or of degree
1 in at least one minimum Steiner tree, there exists a minimum Steiner tree not containing ti.

If the premises of Corollary 14 or Lemma 16 are fulfilled, ti and all incident edges can be
deleted. To obtain the original solution value, pti needs to be added to the objective value of
each feasible solution (analogously to the TD0 test).

Lemma 17. Let {vi, vj} ∈ E. If there is a minimum Steiner tree S = (VS , ES) such that
{vi, vj} ∈ ES, then L defined by

L := c{vi,vj} + d(vi, vi,1) + d(vj , vj,1) +

s−2∑
q=1

pcradius(tq) (27)
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if base(vi) 6= base(vj) and

L := c{vi,vj} + min
{
d(vi, vi,1) + d(vj , vj,2), d(vi, vi,2) + d(vj , vj,1)

}
+

s−2∑
q=1

pcradius(tq) (28)

otherwise, is a lower bound on the cost of S.

Lemma 18. Let vi ∈ V \ T, δ(vi) ≥ 3. If there exists a minimum Steiner tree S such that vi is

of degree at least 3 in S, then d(vi, vi,1) + d(vi, vi,2) + d(vi, vi,3) +
∑s−3
q=1 pcradius(tq) is a lower

bound on the cost of S.

Occasionally, an even stronger bond can be obtained by utilizing the following lemma, which
can be seen as a generalization of a lemma introduced in [30].

Lemma 19. Let G′ = (T,E′) be graph in which two vertices ti and tj (which correspond to
terminals in G) are adjacent if and only if there is an edge {v, w} ∈ E such that v ∈ N(ti) and
w ∈ N(tj). Additionally, define a cost function c′ on E′ by

c′{ti,tj} := min{min{pti , ptj , d(ti, vi), d(tj , vj)}+ c{vi,vj} | vi ∈ N(ti), vj ∈ N(tj)}.

The weight, with respect to c′, of a minimum spanning tree for G′ is a lower bound on the weight
of any Steiner tree for (V,E, c, p)

All antecedent bound-based tests can be easily modified to make use of the bound obtained
from Lemma 19. For instance, one may adapt Lemma 17 by substituting the value L by the
weight of a minimum spanning tree for G′ minus the weight of its longest edge (analogously to
the procedure for the SPG described in [30]).

The test associated with the introduced bound-based reduction approaches is denoted by
Bound (BND) test. It works with an upper bound computed by a constructive heuristic that
was introduced in [17]. The worst-case complexity, which would otherwise be of O(m+ n log n),
is dominated by the constructive heuristic, which exhibits a complexity of O(s(m+n log n)) but
is empirically very fast.

2.3.2 Dual-Ascent Tests

For the final bound-based test we transfer a powerful reduction technique for the Steiner tree
problem in graphs, the dual-ascent method [11, 30]. While this method is a bound-based reduction
test, it is distinctively different from the bound-based methods previously introduced in this
paper.

To set the stage, we first define the Steiner arborescence problem (SAP): Given a directed
graph D = (V,A), costs c : A→ Q≥0, a set T ⊆ V of terminals and a root r ∈ T , a directed tree
(arborescence) S = (VS , AS) ⊆ D of minimum cost

∑
a∈AS

ca is required such that for all t ∈ T
the tree S contains a directed path from r to t.

Considering an SAP (V,A, c, r), we associate with each arc a ∈ A a variable ya indicating
whether a is contained in the Steiner arborescence (ya = 1) or not (ya = 0). Thereupon, an IP
formulation can be stated as [36]:

Formulation 1. Directed Cut Formulation

min cT y (29)

y(δ−(W )) ≥ 1 for all W ⊂ V, r /∈W,W ∩ T 6= ∅, (30)

ya ∈ {0, 1} for all a ∈ A. (31)
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In [36] a dual-ascent algorithm for the SAP was introduced that, empirically, both provides
strong lower bounds and allows for fast computation, defying its worst-case time complexity
of O(|E|min{|V ||T |, |E|}) [30]. Efficient implementations of the algorithm can be found in [11]
and [29]. We use the latter implementation combined with the heuristic guiding-solution criterion
suggested in [30]. At termination, dual-ascent provides a dual solution to the LP relaxation of
Formulation 1, involving directed paths along arcs with a reduced cost of 0 from the root to
each additional terminal. This information can be used for the SPG reduction method dual-
ascent [11, 30], which is based on the possibility to transform the SPG to the SAP, see for
instance [32].

In the following we demonstrate the dual-ascent approach for the RPCSTP, but it can be
naturally extended to the PCSTP and MWCSP. The first step is to transform a given RPCSTP
to an SAP, as we already described in [33]:

Transformation 1 (RPCSTP to SAP).
Input: An RPCSTP P = (V,E, p, r)
Output: An SAP P ′ = (V ′, A′, T ′, c′, r′)

1. Set V ′ := V , A′ := {(v, w) ∈ V ′ × V ′ | {v, w} ∈ E}, r′ := r and c′ : A′ → Q≥0 with
c′a = c{v,w} for a = (v, w) ∈ A′.

2. Denote the set of all v ∈ V with pv > 0 by T = {t1, ..., ts}. For each node ti ∈ T , a new
node t′i and an arc a = (ti, t

′
i) with c′a = 0 is added to V ′ and A′ respectively.

3. Add arcs (r′, t′i) for each i ∈ {1, ..., s}, setting their respective weight to pti .

4. Define the set of terminals T ′ := {t′1, ..., t′s} ∪ {r}.

5. Return (V ′, A′, T ′, c′, r′).
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(a) RPCSTP instance
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(b) Transformed SAP instance (modi-
fications in bold)

Figure 3: Illustration of an RPCSTP instance with root r (left) and the equivalent SAP obtained
by Transformation 1 (right). Terminals are drawn as squares and Steiner vertices as circles (with
those of positive weight enlarged).

Lemma 20 (RPCSTP to SAP). Let P ′ = (V ′, A′, T ′, c′) be an SAP obtained from an RPCSTP
P = (V,E, c, p) by applying Transformation 1. Each solution S′ = (V ′S′ , A

′
S′) to P ′ can be mapped

to a solution S = (VS , ES) to P defined by:

VS := {v ∈ V | v ∈ V ′S′} (32)

ES := {{v, w} ∈ E | (v, w) ∈ A′S′ or (w, v) ∈ A′S′} (33)

If S′ is an optimal solution to P ′, then S is an optimal solution to P and their objective values
are equal.
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With this transformation at hand, let vi ∈ V/T and S? be an optimal Steiner arborescence
to a given SAP instance (V,A, c, r) and LDA the lower bound obtained by dual-ascent. If S?

contains vi, the weight of S? can be bounded from below by LDA plus the length (with respect
to the reduced costs provided by dual-ascent) of a shortest path from the root to vi and the
length of a shortest path from vi to a d-nearest terminal (other than the root) to vi. Hence, vi
can be deleted if the just defined bound exceeds a known upper bound U . An analogous test
can be stated for the elimination of arcs. Since each RPCSTP instance can be transformed to
an SAP, the above deliberations forthwith set the stage for an RPCSTP reduction technique:
Whenever a vertex can be deleted in the SAP, the same is true for its counterpart in the analogous
RPCSTP. Similarly, if two anti-parallel arcs of the SAP have been shown to be removable, the
corresponding edge of the RPCSTP can be discarded. Finally, a test to replace vertices by edges
that is analogous to NTDk can be used.

In addition to these methods already known for the SPG, the graph transformation from
RPCSTP to SAP sets the stage for two new tests. First, terminals of the RPCSTP can be
deleted if the corresponding vertex ti in the SAP is shown to be removable. Second, if the
reduced cost of an arc (r′, t′i) is higher than U − LDA, we can deduce that the vertex ti is part
of an optimal solution to P . Consequently, we can set its prize to infinity, which possibly allows
several tests (such as SDC) to perform additional reductions. Moreover, we can create a new SAP
using ti as the root, which can pave the way for additional eliminations by the above procedure.
In our reduction package the maximum number of root changes and subsequent dual-ascent runs
is limited to 15.

As with the BND test, all dual-ascent based reduction methods can be extended to the case
of equality if a Steiner tree corresponding to the upper bound U is given. We call the entire
procedure of computing the reduced costs on the SAP, computing an upper bound to the original
problem and eliminating vertices and edges as well as fixing terminals Dual-Ascent (DA) test.

Obviously, one question remains, namely how to obtain an upper bound for the DA test. As
will be shown in the following, the availability of the reduced costs provided by DA allows to
transfer an heuristic approach already known for the SPG.

Ascend-and-Prune

The ascend-and-prune heuristic has been demonstrated to be a powerful device for the Steiner
tree problem in graphs [30]. An extension of the heuristic to the (R)PCSTP (and the MWCSP)
was essentially impeded by the lack of two techniques: Transformations of (R)PCSTP and
MWCSP to SAP and powerful reduction methods. With both transformations and strong re-
duction techniques at hand, the ascend-and-prune approach can be extended beyond the SPG.

Let P be the original RPCSTP and P ′ the SAP resulting from Transformation 1. The
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Figure 4: Illustration of a solution to the RPCSTP instance of Figure 3 (left) and an equivalent
solution to the corresponding SAP (right).
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ascend-and-prune heuristic attempts to find a good solution on the subproblem P̃ constituted
by the undirected edges of P corresponding to zero-reduced-cost paths in P ′ from the root to
all additional terminals. This approach is motivated by the assumption that notable similarities
exist between an optimal (or nearly optimal) Steiner tree and the LP solution corresponding to
the reduced costs provided by dual-ascent.

To find a solution to P̃ , the concept of the prune heuristic [30] for the SPG is transfered
to the RPCSTP. This extension is possible by virtue of the new reduction tests, in particular
BND, introduced in this paper. The heuristic works as follows: After applying all previously
introduced reduction techniques on P̃ , we use an heuristic extension of the BND test to further
reduce P̃ . While for the original BND test the upper bound is provided by a primal solution, in
the prune heuristic the bound is decreased in such a way that in each iteration a constant amount
of edges and vertices is eliminated. Thereupon, all (exact) reductions methods are executed on
the reduced problem, motivated by the assumption that the (possibly inexact) eliminations
performed by the bound-based method will allow for further reductions. This procedure is
reiterated until not more than two terminals remain. To avoid infeasibility, we compute a Steiner
tree by using the shortest path constructive heuristic described in [32] and forbid eliminations
of any of its vertices or edges by the inexact BND test. In [33] we implicitly used the previously
described reduction techniques to implement ascend-and-prune for the (R)PCSTP and MWCSP
and demonstrated its ability to find strong, often optimal upper bounds within short time.

2.4 Reiteration and Ordering

Studying different combinations and orderings of reduction techniques, we have come to the
conclusion that the tests are not overly sensitive to the order of their execution (as with the
SPG [30]). However, this is not true for the total reduction time.

The underlying precept for the ordering of the reduction methods is to perform the faster
ones first so that the more expensive tests are applied to, hopefully, substantially reduced graphs.
Furthermore, it seems reasonable to perform the two SD test variants prior to the NTD3 test,
since the former reduces, if successful, the degrees of vertices. Additionally, first performing the
SD test allows us to reuse the computed d-distances for the NTD3 test. Similarly, due to the
NTD3 and SD variant tests deleting edges (and possibly replacing pairs of edges by a single one),
they are performed prior to the NV and SL tests.

All reduction tests are arrayed in a loop that is reiterated as long as a constant proportion
(for our solver 0.5 percent) of edges were eliminated during the last run. Thereby, one obtains
the same asymptotic time bound as the most expensive performed reduction test; due to DA
this bound is of O(|E|min{|V ||T |, |E|}). This bound implies in particular that the reduction
package is of polynomial worst-case complexity. Furthermore, during a succeeding loop each test
is performed only if it could eliminate a constant proportion (0.1 percent) of edges during the
previous run. Moreover, the BND test is executed only if at most three percent of all vertices
are terminals; we have observed that the test is otherwise of very little effect.

Additionally, we have implemented an exhaustive version of the reduction package, in which
the loop as well as all tests are reiterated until no more reductions can be performed. This loop
is not supposed to be used a preprocessing step for exact solving (unless the instance to be solved
is known to be hard), but rather for demonstrating the capacity of the reduction tests.

3 The Maximum-Weight Connected Subgraph Problem

The third Steiner variant to be discussed in this paper is the maximum-weight connected sub-
graph problem (MWCSP): Given an undirected graph G = (V,E) and node weights p : V → Q,
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the objective is to find a connected subgraph S = (VS , ES) ⊆ G such that
∑
v∈VS

pv is maxi-
mized. The problem has been discussed in various publications [4, 10, 20]. Practical applications
of the MWCSP can be found in diverse areas such as wildlife conservation [9], computational
biology [10] and computer vision [8].

Several publications about the MWCSP have addressed exact solving approaches [4, 5, 13, 14].
However, compared to the SPG very little research has been performed regarding reduction
techniques for the MWCSP [3, 13]. This provided an incentive for us to develop various novel
techniques, which will be subsequently introduced along with several others known from the
literature.

In the following it is assumed that at least one vertex is assigned a negative and one a
positive weight. In the case of only non-negative vertex-weights, the problem reduces to finding
a connected component of maximum vertex weight; in the case of only non-positive vertex-
weights, the empty set constitutes an optimal solution. For a given solution S = (VS , ES) to an
MWCSP we denote its weight by C(S) :=

∑
v∈VS

pv. Note that to each feasible solution there
is a solution of the same weight that additionally is a tree—such a solution can for example be
obtained by the cycle-pruning procedure introduced in Section 2. For simplicity, in the following
lemmata it will be assumed that each solution to an MWCSP is a tree.

Furthermore, throughout this section it will be presupposed that an MWCSP instance PMW =
(V,E, p) is given. The remainder of the notation is analogous to the one introduced in Section 2.

3.1 Basic Reductions

Analogous to the PCSTP, reductions for vertices of low degree are readily conceived. The first
of the following two simple tests was already suggested in a less general form in [13] (namely
only for negative vertices of degree 0):

Vertex of degree 0 (VD0): A vertex vi of degree zero can be discarded if there is a vertex
vmax such that both pvmax

≥ pvi and vmax 6= vi.

Vertex of degree 1 (VD1): If there is vertex vi of degree 1 with incident edge ek = {vi, vj},
a vertex vmax satisfying both pvmax

≥ pvi and vmax 6= vi and it moreover holds that

a) pvi ≤ 0, then vi and ek can be discarded;

b) pvi > 0, then vi and ek can be discarded while adding pvi to the weight of vj.

The next two reduction tests can be found in both [3] and [13].

Non-negative incident vertices (NNIV): An edge {vi, vj} such that pvi ≥ 0, pvj ≥ 0 can
be contracted if the weight of the remaining vertex is set to pvi + pvj .

Non-positive chain (NPC): A path Q between two vertices vi, vj, containing only non-
positive interior vertices of degree 2 and fulfilling |V [Q]| > 3 can be replaced by a node v′ with
pv′ :=

∑
v∈V [Q◦] pv and the two edges {v′, vi}, {v′, vj}.

The joint execution of the four forgoing tests, in the specified order, will be hereinafter referred
to as Basic Test (BT).

Recalling that connectivity is not postulated for the MWCSP, one readily devises the following
test:

Unreachable non-positive vertex (UNPV): Each non-positive vertex vi that is not con-
nected to any positive vertex can be deleted along with all incident edges.
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3.2 Alternative-Based Reductions

Alternative-based reductions for the MWCSP have not been comprehensively researched in the
literature yet. This section aims for a more extensive study by introducing many novel reduction
techniques, which, to the best of the authors’ knowledge, have not been previously published.

The subsequent reduction test was tentatively suggested in [13], to be later generalized in [3].
Only the latter version is stated here:

Adjacent Neighbourhood Subset (ANS) 1 Let vi and vj be two distinct vertices. If pvi ≤ 0,
pvi ≤ pvj and {

v ∈ V \ {vj} | {vi, v} ∈ E
}
⊆
{
v ∈ V | {vj , v} ∈ E

}
,

then vi and all incident edges can be removed.

However, even this revised version can be notably generalized:

Lemma 21. Let vi ∈ V and W ⊆ V \ {vi}, W 6= ∅ such that (W,E[W ]) is connected and∑
w∈W :pw<0 pw ≥ pvi holds. If{

v ∈ V \W | {vi, v} ∈ E
}
⊆
{
v ∈ V \W | {w, v} ∈ E,w ∈W

}
(34)

is satisfied, then there is at least one optimal solution that does not contain vi.

Proof. Suppose that there is an optimal solution S = (VS , ES) containing vi. Since∑
w∈W :pw<0

pw ≥ pvi

it can be inferred that pvi ≤ 0. Therefore, it can be assumed that vi is of degree at least 2 in
S (if vi is of degree 1 in S, it can be simply discarded without deteriorating the objective value).
Let ∆S ⊂ VS be the vertices adjacent to vi in S. Removing vi and all incident edges from S
and inserting all vertices in W \ S as well as all edges between W and ∆S ∪W , one obtains a
connected subgraph S′ = (VS′ , ES′) such that:

C(S′) =
∑
v∈VS′

pv ≥
∑
w∈W
pw<0

pw + C(S)− pvi ≥ C(S). (35)

Due to (35) it holds that S′ is optimal. Furthermore, by construction S′ does not contain vi, so
the statement of the lemma is established.

Affiliated to Lemma 21 we suggest the subsequent reduction test. For each vertex vj ∈ V
proceed as follows: Define Wj as the union of vj and all non-negative adjacent vertices of vj .
Next, we mark all neighboring vertices of Wj . Finally, we check for all non-positive neighboring
vertices vi of Wj such that pvi ≤ pvj whether condition (34) holds. If this is the case, vi can
be deleted. In the following, this test is referred to as Connected Neighborhood Subset
(CNS).

Furthermore, we suggest an extension of CNS for which not only all vi adjacent to Wj but
all vi ∈ V \Wj such that pvi ≤ pvj are scrutinized. We call this variant Advanced Connected
Neighborhood Subset (ACNS) test.

The perhaps most intuitive, but nonetheless effective, of the reduction tests introduced here-
inafter is based on the following lemma:

1The reduction test was originally named “Neighbourhood Subset”, abbreviated “NS”, test in [3], but owned
to historical considerations we have decided to substitute it. Especially in Germany, “NS” has commonly been
used as an abbreviation for National Socialism.
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Figure 5: Segment of an MWCSP instance. Lemma 21 guarantees that vertex v1 and its incident
edges (dashed) can be eliminated, since each neighbor of v1 is a neighbor of either v5 or v6

Lemma 22. Let ek = {vi, vj} ∈ E. If there is a path Q between vi and vj such that ek /∈ E[Q]
and pvl ≥ 0 for all vl ∈ V [Q◦], then there is at least one optimal solution that does not contain
ek.

Proof. Let S be a solution to PMW containing ek. By removing ek from S one obtains two
connected subgraphs S1, S2 such that vi ∈ S1, vj ∈ S2. Since Q connects vi and vj , there are
vertices vr ∈ V [S1] ∩ V [Q], vs ∈ V [S2] ∩ V [Q] such that for the induced subpath Q(vr, vs) it
holds that V [S1] ∩ V [Q(vr, vs)] = {vr} and V [S2] ∩ V [Q(vr, vs)] = {vs}. Reconnecting S1 and
S2 by Q(vr, vs) one yields a new connected subgraph S̃ of weight at least C(S).

These discussions prove the lemma, since they imply that to each solution that contains ek,
a solution of greater or equal weight not containing ek can be constructed.

We suggest a reduction test based on Lemma 22, designed as follows: By first executing the
NNIV test, each path containing only interior vertices of non-negative weight is reduced to a
path consisting of three vertices (with an interior vertex of non-negative weight). Thereafter, to
probe an edge {vi, vj} it suffices to check all adjacent vertices of both vi and vj . By bounding the
number of adjacent vertices to be visited from vi and vj by a constant, the test can be performed
for all edges in a total of Θ(m). We call this test Non-Negative Paths (NNP).

The development of the next reduction strategy originated from the observation that after
the NPC test has been performed each non-positive chain is reduced to a single non-positive
vertex of degree 2. Naturally, one aspires to dispose of those as well. To set the stage for such a
reduction method we define a function on two vertices, similar to that of the bottleneck Steiner
distance: Let vi, vj ∈ V be two distinct vertices and Q(vi, vj) the set of all simple paths between
vi and vj . In the context of the MWCSP we define the interior cost of such a subpath as:

C◦(Q(x, y)) :=
∑

v∈V [Q(x,y)]\{x,y}

pv. (36)

Furthermore, we define the vertex weight bottleneck length of Q as:

l̂(Q) := min
x,y∈V [Q]

C◦(Q(x, y)). (37)
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Given two disjoint connected subgraphs that can be connected by a subpath of a given path Q,
by l̂(Q) a lower bound on the additional vertex weights is provided.

The two preceding definitions pave the way for the vertex weight bottleneck distance between
vi and vj that we define as

d̂(vi, vj) := max{l̂(Q) | Q ∈ Q(vi, vj)}. (38)

With this new definition at hand, a lemma bearing some similarities with the Steiner distance
based exclusion tests can be formulated.

Lemma 23. Let vi ∈ V such that pvi ≤ 0 and |δ(vi)| = 2 with incident edges {vi, vj} and
{vi, vk}. If

d̂(vj , vk) > pvi (39)

holds, then there is at least one optimal solution not containing vi.

Proof. Suppose that there is an optimal solution S that contains vi. In this case, due to vi
being of non-positive weight, we can assume that both incident edges of vi are likewise part of
the solution. Otherwise, vi could simply be removed, yielding another optimal solution (or a
solution greater weight, which would forthwith contradict the assumption of S being optimal).
Removing vi as well as its incident edges from S, we obtain two connected subgraphs S1 and S2.
Let Q be a path between vj and vk such that l̂(Q) = d̂(vj , vk). Additionally, let Q(v′1, v

′
2) be a

subpath of Q between v′1 ∈ V [S1] and v′2 ∈ V [S2], such that no additional vertices of either S1 or
S2 are contained. By including Q(v′1, v

′
2) a connected subgraph S′ is obtained, which is of cost:

C(S′) = C(S) + C◦(Q(v′1, v
′
2))− pvi

≥ C(S) + l̂(Q)− pvi
= C(S) + d̂(vj , vk)− pvi
(39)
> C(S).

This proves the lemma.

We suggest the following reduction test to utilize Lemma 23: First substitute each edge by
two anti-parallel arcs such that for each arc a = (v, w):

c′a =

{
−pw, if pw < 0

0, otherwise

This procedure results in a directed graphD′ = (V ′, A′) with non-negative arc costs c′. Following,
a modified version of the SDC test can be used on D′ to find alternative paths containing at
most one interior vertex of positive weight: Let vi ∈ V be non-positive and of degree 2 with
adjacent vertices vj and vk. Similar to the original SDC test, a limited execution of Dijkstra’s
algorithm is performed first from vj and then from vk, ignoring vi and its incident edges. For
each vertex being processed during Dijkstra’s algorithm, only outgoing arcs are considered and
the computation does not proceed from vertices of positive weights. If directed paths ~Q′k and ~Q′j
from vk and vj respectively to a vertex vl ∈ V have been found, denote by Qjk the corresponding
undirected path in G between vj and vk (over vl) and distinguish two cases (note that we denote
by p the vertex weights in the original graph G):

1. if pvl > 0, then l̂(Qjk) = min{−C ′( ~Q′j),−C ′( ~Q′k),−C ′( ~Q′j)− C ′( ~Q′k) + pvl};
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2. if pvl ≤ 0, then l̂(Qjk) = −C ′( ~Q′j)− C ′( ~Q′k)− pvl .

In the first case we consider the interior costs of the two subpaths between each endpoint of
Qjk and the intermediary vertex of positive weight, and the interior cost of the whole path. The
minimum among those three is equal to the vertex weight bottleneck length of Qjk. In the second

case Qjk does not contain any intermediary vertex of positive weight, so l̂(Qjk) = C◦(Qjk) holds.

If l̂(Qjk) ≥ pvi , the vertex vi and its incident edges are deleted. We denote this procedure by
Non-Positive Vertex of Degree 2 (NPV2) test.

The concept of the vertex weight distance not only gives rise to Lemma 23 and the affiliated
NPV2 test, but furthermore leads the way to a far more general and powerful result:

Lemma 24. Let vi ∈ V such that pvi ≤ 0 and denote by ∆ the set of all vertices adjacent to vi.

Furthermore, for ∆′ ⊆ ∆ denote by K∆′ := (∆′,∆′ ×∆′, d̂) the complete graph on ∆′, with edge

weight d̂(vj , vk) for an edge {vj , vk} ∈ ∆′ ×∆′. If for each ∆′ ⊆ ∆ of cardinality at least two it
holds that the weight of a maximum spanning tree on K∆′ is greater than pvi , then there is at
least one optimal solution that does not contain vi.

Proof. It can be readily verified that in the cases |∆| = 0, 1, 2 the claim has already been
established by the proofs to VDO, VD1 and Lemma 23 respectively. So suppose |∆| > 2 and
let S = (VS , ES) be a connected subgraph such that vi is of degree k > 0 in S. If k < 2, the
claim can be established analogously to the hereinbefore referred to proofs. Otherwise, denote
by ∆′ = {v′1, ..., v′k} ⊂ VS the vertices incident to vi in S. Due to the premises of the lemma,
there is a maximum spanning tree T∆′ on K∆′ of weight greater than pvi . The solution S can be
segmented into k connected subgraphs S1, .., Sk such that vj ∈ Sj for j = 1, ..., k, by removing
vi and δ(vi). In the following, we will iteratively rejoin these k connected subgraphs to obtain a
new connected subgraph not containing vi and being of no lesser weight than S.

First, one observes that each edge of T∆′ corresponds to a path in G between two vertices of
∆′. Let Qrs with r, s ∈ {1, ..., k} be such a path connecting v′r and v′s. Since the edge between

v′r and v′s is a spanning tree for the subset {v′r, v′s} ⊆ ∆, it holds that d̂(v′r, v
′
s) > pvi (due to

the premises of the lemma). Consequently, vi is not contained in Qrs. Analogously to the proof
of Lemma 23, Sr and Ss can be linked to a connected subgraph S′1 by a subset of Qrs that

is of weight at least d̂(v′r, v
′
s). Thereupon, S′1 can be linked in the same way to a connected

subgraph Sl, k ∈ {1, ..., k} \ {r, s}, bringing forth a connected subgraph S′2 that once more
does not contain vi. Reiterating in this manner, S′2 can be joined with all not yet incorporated
connected subgraphs Sq, finally yielding a connected subgraph S′k−1. This connected subgraph
does not contain vi and is of weight:

C(S′k−1) ≥
∑

l={1,...,k}

C(Sl) +

( ∑
{vq,vl}∈E[T∆′ ]

d̂(vq, vl)

)
− pvi ≥ C(S)

Consequently, the claim is established.

Corollary 25. Let vi ∈ V such that pvi ≤ 0 and denote by ∆ the set of all vertices adjacent
to vi. Denote the vertex weight bottleneck distances on the graph G− := (V −, E−) with V − :=
V \ {vi}, E− := E[V −] by d−vw. Further, for ∆′ ⊆ ∆ define K∆′ := (∆′,∆′ × ∆′, d−vw). If for
each ∆′ ⊆ ∆ of cardinality at least two it holds that the weight of a maximum spanning tree on
K∆′ is not less than pvi , there is at least one optimal solution that does not contain vi.

Proof. The proposition can be verified largely in line with the proof to Lemma (24). As the sole
amendment, to demonstrate that for joining the connected subgraphs S1, ..., Sk the vertex vi can
be disregarded one simply uses the fact that all paths corresponding to d−vw do not include vi by
definition.
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We use reduction tests based on the antecedent corollary only for non-positive vertices of
degree 3, 4 and 5 and refer to the corresponding methods as Non-Positive Vertex of Degree
k (NPVk) test (k ∈ {3, 4, 5}). In line with the proceeding for the bottleneck based tests to
both the SPG [30] and the PCSTP, the vertex weight distances are not pre-computed and are
furthermore substituted by ad-hoc calculated lower bounds to each pair of vertices in ∆. To this
end, the procedure deployed in the NPV2 test is utilized. If a vertex has been verified to satisfy
the premises of Corollary 25, it is removed along with all incident edges.

Finally, the DA test introduced in Section 2 for the RPCSTP is also used for the MWCSP,
based on the transformation of MWCSP to SAP that we introduced in [33].
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Figure 6: Segment of an MWCSP instance. The NPV3 test shows that vertex v1 and its incident
edges (dashed) can be eliminated.

3.3 Reiteration and Ordering

The settings for the reiteration of the reduction methods within the overall loop as well as for
the truncation of the latter are identical to the settings for the PCSTP, see Section 2.4.

Naturally, empirically less expensive tests are performed first. In this way, the DA test, which
is both theoretically and empirically the most expensive reduction method, is performed at the
end of the loop. Moreover, all other tests are performed prior to the execution of the NPVk test,
in order to reduce the degree of vertices. For the extensive reduction package we execute the
advanced CNS test once the reduction loop has terminated and run the entire reduction loop
again if eliminations can be performed by the advanced CNS test.

4 Computational Results

This section evaluates the various reduction methods introduced in this paper on several bench-
mark test sets for the MWCSP, the PCSTP, and the RPCSTP. To this end, computationally
experiments are performed on problems collected for the 11th DIMACS Challenge [1]. In ad-
dition, a number of MWCSP instances collected from a computational biology application are
considered.

The computational experiments were performed on a cluster of Intel Xeon X5672 CPUs
with 3.20 GHz and 48 GB RAM, running Kubuntu 14.04 and using SCIP 3.2 [16]. For the
computations with SCIP-Jack, CPLEX 12.6.22 was employed as the underlying LP solver. For
all computations a time limit of two hours was set.

2http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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When providing average values we will proceed in two ways: First, for the remaining vertices
(edges) of a test set the percentage of remaining vertices (edges) for each instance is computed
and the arithmetic mean of these percentages is provided. Second, the solving time of both
the reduction package and SCIP-Jack are computed by taking the shifted geometric mean [2]:
Given values t1, ..., tk ∈ R≥0, and a shift s ∈ R≥0, the shifted geometric mean is defined as

k

√√√√ k∏
i=1

(ti + s)− s. (40)

Compared to the arithmetic average, the use of a geometric mean brings the benefit of reducing
the influence of very hard instances. On the other hand, the use of a shift is motivated by
the endeavor to reduce the effect of very easy instances on the mean value. In the subsequent
computations, a shift of s = 1 is used.

Finally, if an instance has been solved to optimality by the reduction techniques, in the
statistics the number of remaining edges and vertices is assumed to be 0.

4.1 (Rooted) Prize-Collecting Steiner Tree Problem

Table 1 provides a brief description of the five benchmark test sets that are used for the com-
putational evaluation of the (R)PCSTP reduction techniques. In each line the name of the test
set is given in the first column. The next column lists the number of instances within the test
set, thereafter the range of the number of vertices for the individual instances within the class
is given. Furthermore, the Status indicates whether all instances of a class have been solved in
the literature. Conclusively, some elementary characteristics including the origins of the test set
are provided.

Name Instances |V | Status Description

JMP 34 100-400 solved Sparse instances of varying structure,
introduced in [21].

CRR 80 500-1000 solved Instances with up to 25 000 edges, based
on the C and D test sets of the SteinLib [25].

PUCNU 18 1200-4096 unsolved Hard instances derived from the PUC set, with
c ≡ 1, p ∈ {1, 2}. From the 11th DIMACS Challenge.

Cologne1 14 741-751 solved
 RPCSTP instances derived from the design of fiber

optic networks for German cities [25]
.

Cologne2 15 1801-1810 solved

Table 1: Classes of (R)PCSTP instances.

The results given in Table 2, in which we illustrate the results of extensive runs, bespeak
the strength of the employed reduction techniques. On average (with respect to the arithmetic
mean) the number of edges is reduced by more than 90 percent. Even for the hard PUCNU
test set, whose SPG predecessor allowed for less than one percent of reduction by the reductions
techniques described in [30], more than 25 percent of the edges could be removed. Furthermore, it
should be noted that the Cologne1 and Cologne2 test sets are already reduced by the techniques
described in [25], which renders the results even more notable. All Cologne1 and Cologne2
instances are solved to optimality during presolving, with no instance requiring more than 0.26
seconds. Furthermore, of the 34 JMP instances 33 can be solved by reduction methods alone.
Similarly, the reduction techniques are able to solve 74 of the 80 CRR instances. On each test
set the execution of the reduction techniques requires less than one second (with respect to the
shifted geometric mean).
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Remaining Remaining
Class Vertices[%] Edges[%] ∅Time [s]

JMP 0.07 0.03 0.01
CRR 3.28 0.34 0.22
PUCNU 85.34 74.60 0.57
Cologne1 0 0 0.09
Cologne2 0 0 0.33

all 11.23 8.54 0.19

Table 2: Computational results of the extensive (R)PCSTP reduction package.

Another interesting aspect is the individual performance of the reduction tests. To this end,
we have listed the results of running each test exclusively (until no more eliminations are possible)
in Table 3. Before each run, however, we perform the UDV test to dispose of vertices with a
weight of 0 that are not connected to any positive-weight vertex. The results of each reduction
method are given as the average over all instances of the test sets listed in Table 1. The most
effective reduction test is DA, eliminating more than half of the vertices and two thirds of the
edges on average. However, it is also the most expensive test, both on average and individually—
with one instance requiring almost five seconds to be processed. Remarkably, the second most
effective method is BND, notwithstanding the fact that it is only performed for less than forty
percent of the instances. The test is also much faster than DA both on average and in the
worst-case—BND processes each instance in less than a second.

The SD/SDC test is able to eliminate a notable number of edges, but is on the other hand
the second most expensive reduction method. Finally, the NV/SL and the NTD3 tests are
both notably fast, but while the NV/SL test is able to reduce the number of vertices by more
than 15 percent and the number of edges by more than ten percent, NTD3 is the least effective
of all reduction methods. However, it should be noted that the reduction methods described
in this paper usually become more effective in combination, since eliminations performed after
the execution of a specific reduction method often set the stage for renewed reductions by this
method.

Remaining Remaining
Reduction Method Vertices[%] Edges[%] ∅Time [s]

UDV 99.86 99.96 0.01
DT 82.04 87.61 0.01
SD/SDC 100 78.33 0.12
NTD3 96.55 97.40 0.02
NV/SL 85.75 89.83 0.01
BND 81.04 77.33 0.02
DA 43.01 30.70 0.14

Table 3: Computational results of running the (R)PCSTP reduction tests individually.

Having discussed our reduction approach for the (R)PCSTP, we furthermore aspire to classify
our experimental results with respect to related publications. The most effective reduction
techniques published in the literature are from [34], clearly surpassing previous results [23, 25, 27].
The author performed computational experiments on the CRR instances and a subset of the
JMP test set. Unfortunately, no run times are provided in [34]. However, the fact that so
called expansions of reduction tests were used, which can be exceedingly time-consuming [30],
suggests that these computations require far more time than our approach. No expansions of
reduction methods are deployed in this paper, since the purpose of the reduction approach is a
more subordinate one, namely to also serve as a component for fast exact solving.

Nevertheless, the reduction package introduced in this paper still achieves notably better
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results on both test sets than the approach in [34]: For the JMP test sets the number of remaining
edges constitutes less than ten percent of the number of remaining edges reported in [34] and
for the CRR test set it is even less than four percent. Noticeably, the difference between our
package and the results given in [34] become most pronounced on instances of small |T |. This
phenomenon is epitomized in the D11-A instance, originally consisting of 5000 edges and 1000
vertices: While our reduction package eliminates all edges (more than 3000 by the BND test),
the approach described in [34] removes merely 23 vertices and 1029 edges. Detailed comparison
between the results reported in [34] and those of our (R)PCSTP reduction package is provided
in the appendix in Table 8 and Table 9.

4.2 Maximum-Weight Connected Subgraph Problem

This section provides computational results of the MWCSP reduction package introduced in this
paper on three test sets described in Table 4. The ACTMOD and JMPALMK instances were all
solved to optimality in the course of the 11th DIMACS Challenge, while the SHINY test set has
only been recently introduced [26]. The SHINY test set remains unsolved since there exists one
instance that could not be solved in [26], neither by their own algorithm nor by the MWCSP
solver Heinz2 Version 2.1 [13].

Name Instances |V | Status Description

JMPALMK 72 500-1500 solved Euclidean, randomly generated instances
introduced in [4].

ACTMOD 8 2034-5226 solved Real-world instances with up to 93 394 edges derived
from integrative biological network analysis [10].

SHINY 39 232-3828 unsolved Sparse, real-world instances from network
enrichment analysis in computational biology [26].

Table 4: Classes of MWCSP instances.

Our reduction package manages to solve all 119 MWCSP instances that were part of the
computational experiments to optimality, exhibiting an overall average run time of 0.08 seconds.
The JMPALMK instances are the fastest to be solved, with the maximum run time being below
0.2 seconds. The ACTMOD instances need more time, 0.3 seconds on average and 1.7 seconds
for the longest run. Finally, the vast majority of the SHINY test set is solved in less than 0.1
seconds, but three instance require more time: 5.5 (25e857e14393 ), 6.5 (25e81700dead), and
7.4 (25e814a792c4 ) seconds. Notably, prior to this publication instance 25e814a792c4 remained
unsolved. As a result of our reduction package this instance is solved to optimality with an
objective value of 1083.308.

In order to evaluate the individual strength of the reduction methods, we list in Table 5 the
results of running them exclusively (until no more reductions are possible) on all instances of
the JMPALMK, ACTMOD and SHINY test sets. For the computations the BT and NNP tests
are performed in tandem, as the latter requires that all adjacent non-negative vertices have been
contracted.

Remaining Remaining
Reduction Method Vertices[%] Edges[%] ∅Time [s]

UNPV/BT 59.12 57.55 0.03
ACNS 45.00 35.56 0.01
BT/NNP 11.76 12.54 0.05
NPVk 87.42 89.65 0.01
DA 35.63 20.14 0.15

Table 5: Computational results of running the MWCSP reduction tests individually.
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As opposed to the (R)PCSTP, the DA test achieves only the second place for the MWCSP
in terms of effectiveness, with the BT/NNP test being first. Notably, this combined test is not
only three times faster than DA, but furthermore allows on average for a reduction to almost ten
percent of the original edges and vertices. Likewise, the UNPV/BT and the advanced CNS test
are fast as well as effective, with the latter being clearly superior in both categories. Finally, the
NPVk test exhibits a somewhat lesser performance than the previous tests: although considerably
fast, it leaves almost 90 percent of both edges and vertices untouched. However, NPVk usually
becomes more effective after the execution of the other reduction methods, since these methods
reduce the degree of the vertices and also facilitate the detection of paths of high vertex weight
bottleneck length (37), for instance by contracting vertices of non-negative weight.

For the combined ACTMOD and JMPALMK instances [13] report 16.8 percent vertices and
5.6 percent of edges remain. Unfortunately, no run times for the preprocessing were reported by
the authors.

In [3] the results of their reduction package on the ACTMOD instances is reported, yielding an
average reduction in the number of edges of about 45 percent. As in the previous publication [13],
run times for the preprocessing were not reported by the authors.

4.3 Impact on Exact Solving

Besides already solving many instances to optimality, a salient application of reduction techniques
is their use as a preprocessing routine for both heuristics and exact solvers. In the following we
demonstrate the impact of integrating our reduction package into the Steiner problem solver
SCIP-Jack. To this end, SCIP-Jack is run first without using any reduction methods and
second with the entire reduction package introduced in this publication. However, the second
run still includes reduction methods implicitly, namely within the ascend-and-prune heuristic. It
should be noted that we do not run the reduction methods extensively, but use the termination
criterion described in Section 2.4. In this way, we do not only improve the empirical run time of
the entire solving procedure, but furthermore obtain a theoretical guarantee for the run time of
the reduction package to be polynomial.

Table 6 provides results on the influence of the heretofore introduced (R)PCSTP reduction
techniques on SCIP-Jack. For JMP and Cologne1—the two tests that require the least run
time both with and without presolving being applied—the benefit of the reduction techniques is
the least pronounced. For the JMP class the average run time without applying reductions is
more than three times as high and for Cologne1 the increase is more than two times. When the
computational difficulty increases, also the disparity between solving with and without applying
reduction techniques becomes more distinctive: For CRR the average difference is close to a
factor of eight. The hardest instance requires more than 300 seconds without employing reduction
techniques, while it is solved in less than one second when the reduction methods described in
this paper are used. Similarly, Cologne2 takes more than ten times longer to be solved when
the reduction package is disabled. The last and hardest test class PUCNU manifests a different
picture: Notably, the reduction techniques are far less effective, as compared to the other test
classes. Nevertheless, two more instances can be solved when our reduction package is applied,
compared to the computations that do not use reduction methods, and moreover each solved
problem requires less than 500 seconds.

Bolstered by our reduction package, the performance of SCIP-Jack as compared to the best
results obtained in the DIMACS Challenge is also remarkable. Using the same computational
setting, we can solve the RPCSTP instances on average (with respect to the shifted the geometric
mean) more than 50 times faster than the best solver in the DIMACS Challenge—which was
also SCIP-Jack, albeit in a previous version. Likewise, for all but one of the JMP, CRR and
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With Reductions Without Reductions

Class Instances Solved ∅Time [s] Solved ∅Time [s]

JMP 34 34 0.0 34 0.3
CRR 80 80 0.2 80 1.74
PUCNU 18 10 432.6 8 937.9
Cologne1 14 14 0.1 14 0.3
Cologne2 15 15 0.3 15 5.0

Table 6: Computational results of SCIP-Jack on the (R)PCSTP instances

PUCNU instances that were part of the Challenge, SCIP-Jack yields the best results.
For the MWCSP the situation is similar. In Table 7 we list the results of running SCIP-Jack

with and without applying reduction techniques. The difference is tremendous: The average
factor for both ACTMOD and JMPALMK instances is more than ten, with one instance—
drosophila0075—taking 0.6 seconds to be solved with and 350 seconds to be solved without
reduction techniques. For the SHINY instances the average increase in run time corresponds to
a factor of more than four. In particular, the 25e814a792c4 instance that could be solved for
the first time to optimality, see Section 4.2, cannot be solved when the reduction techniques are
disabled. However, the final gap at the time limit (of two hours) is small, 0.01 percent.

With Reductions Without Reductions

Class Instances Solved ∅Time [s] Solved ∅Time [s]

JMPALMK 72 72 0.0 72 0.2
ACTMOD 8 8 0.4 8 9.0
SHINY 39 39 0.3 38 1.4

Table 7: Computational results of SCIP-Jack on the MWCSP instances

One can achieve further insight into the impact of the reduction methods introduced in
this publication on exact solving by setting the heretofore computational results against the
backdrop of the best results obtained at the DIMACS Challenge. When running SCIP-Jack
together with the new reduction techniques in the computational environment of the DIMACS
Challenge all eight ACTMOD instances are solved at least three times faster by SCIP-Jack than
by any group competing in the Challenge [17]. In contrast, without using reduction techniques,
SCIP-Jack is faster than all competing solvers on only one instance. Moreover, on the 20
JMPALMK instances that were part of the actual competition, SCIP-Jack using reduction
techniques exceeds all participants of the Challenge on 15 and is outperformed on only one—the
run time on the remaining four instances is equal to the respective best run time achieved at the
Challenge.

Finally, a possible further approach for exact solving is to use the information obtained by
DA that a vertex vi of a PCSTP instance is part of at least one optimal solution. Thereupon,
the PCSTP could be solved as an RPCSTP with vi as the root. In this case, Transformation 1,
which empirically yields strong results [32], could be used to eventually solve the problem as an
SAP.
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5 Conclusions and Outlook

In this paper we have established a reduction package for the maximum-weight connected sub-
graph problem, the prize-collecting Steiner tree problem, and the rooted prize-collecting Steiner
tree problem that surpasses existing approaches for all three problems. The practical implica-
tions of these developments are twofold: First, 257 out of 280 benchmark instances can be solved
solely by reduction techniques. Second, if our preprocessing is incorporated into an exact solver,
the time required to solve instances to optimality is drastically reduced—by more than ten times
on average and by more than a thousand times for several hard instances. Furthermore, besides
contributing to the existing literature with various new reduction techniques, we are able to
use these new methods to extend the powerful heuristics prune and ascend-and-prune from the
Steiner tree problem in graphs to the RPCSTP, the PCSTP and the MWCSP.

The computational results demonstrate that in order to solve PCSTP, RPCSTP and MWCSP
instances in short time it is certainly worthwhile to devise powerful reduction techniques. Ad-
ditional developments of such techniques are very likely to further improve the performance of
an underlying exact solver. Furthermore, one might extend the scope and set about developing
reduction techniques for additional Steiner problem variants. Another promising approach would
be to extend the reduction-based slack-and-prune heuristic [30], which has remained until today
the empirically strongest primal SPG heuristic (perhaps with the exception of [29]). Based upon
the reduction methods introduced in this paper one could use this approach for the MWCSP
and PCSTP both as a stand-alone heuristic and as part of an exact solving approach.

Finally, we hope that by incorporating our reduction techniques into the academic Steiner
tree problem solver SCIP-Jack not only existing problems can be solved significantly faster,
but also an incentive is provided for researchers to model further real-world phenomena as an
MWCSP or (R)PCSTP.
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A Detailed Computational Comparisons

This section presents detailed instance-wise comparisons of our reduction package with results
from the literature. The tables provide in columns two to four the number of vertices, edges, and
terminals of the instance specified in the first column. The next two columns state the number of
vertices and edges that remain after the reduction package described in this publication has been
applied. The final two columns show the corresponding information for the reduction package
described in [34].
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Original Reduced Reduced [34]

Name Vertices Edges Terminals Vertices Edges Vertices Edges

C01-A 500 625 5 1 0 105 190
C01-B 500 625 5 1 0 49 77
C02-A 500 625 10 1 0 82 148
C02-B 500 625 10 1 0 71 125
C03-A 500 625 83 1 0 113 190
C03-B 500 625 83 1 0 79 121
C04-A 500 625 125 1 0 72 119
C04-B 500 625 125 1 0 71 113
C05-A 500 625 250 1 0 7 9
C05-B 500 625 250 1 0 1 0
C06-A 500 1000 5 1 0 346 792
C06-B 500 1000 5 1 0 344 778
C07-A 500 1000 10 1 0 353 806
C07-B 500 1000 10 1 0 342 769
C08-A 500 1000 83 1 0 251 531
C08-B 500 1000 83 1 0 217 410
C09-A 500 1000 125 1 0 279 577
C09-B 500 1000 125 1 0 232 440
C10-A 500 1000 250 1 0 103 166
C10-B 500 1000 250 1 0 100 156
C11-A 500 2500 5 1 0 485 1801
C11-B 500 2500 5 1 0 480 1667
C12-A 500 2500 10 1 0 453 1495
C12-B 500 2500 10 1 0 441 1358
C13-A 500 2500 83 1 0 343 799
C13-B 500 2500 83 1 0 317 704
C14-A 500 2500 125 1 0 190 365
C14-B 500 2500 125 1 0 179 330
C15-A 500 2500 250 1 0 1 0
C15-B 500 2500 250 1 0 1 0
C16-A 500 12500 5 1 0 499 2714
C16-B 500 12500 5 1 0 499 2714
C17-A 500 12500 10 1 0 494 2295
C17-B 500 12500 10 1 0 494 2295
C18-A 500 12500 83 1 0 374 1002
C18-B 500 12500 83 1 0 374 997
C19-A 500 12500 125 222 567 246 589
C19-B 500 12500 125 329 971 249 592
C20-A 500 12500 250 1 0 1 0
C20-B 500 12500 250 1 0 1 0

Table 8: Reductions on CRR (C) instances.
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Original Reduced Reduced [34]

Name Vertices Edges Terminals Vertices Edges Vertices Edges

D01-A 1000 1250 5 1 0 223 422
D01-B 1000 1250 5 1 0 223 416
D02-A 1000 1250 10 1 0 238 450
D02-B 1000 1250 10 1 0 232 423
D03-A 1000 1250 167 1 0 114 194
D03-B 1000 1250 167 1 0 129 202
D04-A 1000 1250 250 1 0 171 297
D04-B 1000 1250 250 1 0 50 70
D05-A 1000 1250 500 1 0 84 125
D05-B 1000 1250 500 1 0 12 17
D06-A 1000 2000 5 1 0 740 1697
D06-B 1000 2000 5 1 0 736 1682
D07-A 1000 2000 10 1 0 721 1664
D07-B 1000 2000 10 1 0 702 1602
D08-A 1000 2000 167 1 0 673 1489
D08-B 1000 2000 167 1 0 561 1142
D09-A 1000 2000 250 1 0 580 1260
D09-B 1000 2000 250 1 0 439 841
D10-A 1000 2000 500 1 0 235 425
D10-B 1000 2000 500 1 0 36 56
D11-A 1000 5000 5 1 0 977 3971
D11-B 1000 5000 5 1 0 972 3740
D12-A 1000 5000 10 1 0 960 3300
D12-B 1000 5000 10 1 0 942 3040
D13-A 1000 5000 167 1 0 708 1713
D13-B 1000 5000 167 1 0 694 1631
D14-A 1000 5000 250 1 0 571 1238
D14-B 1000 5000 250 1 0 512 1062
D15-A 1000 5000 500 1 0 139 217
D15-B 1000 5000 500 1 0 4 5
D16-A 1000 25000 5 1 0 1000 6735
D16-B 1000 25000 5 1 0 1000 6725
D17-A 1000 25000 10 1 0 999 6330
D17-B 1000 25000 10 1 0 999 6330
D18-A 1000 25000 167 332 812 812 2314
D18-B 1000 25000 167 470 1278 806 2276
D19-A 1000 25000 250 407 1007 686 1895
D19-B 1000 25000 250 314 712 680 1870
D20-A 1000 25000 500 1 0 1 0
D20-B 1000 25000 500 1 0 1 0

Table 9: Reductions on CRR (D) instances.
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