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The dynamics of networks of interacting dynamical
systems depend on the nature of the coupling between
individual units. We explore networks of oscillatory
units with coupling functions that have ‘dead zones’,
that is the coupling functions are zero on sets
with interior. For such networks, it is convenient
to look at the effective interactions between units
rather than the (fixed) structural connectivity to
understand the network dynamics. For example,
oscillators may effectively decouple in particular
phase configurations. Along trajectories, the effective
interactions are not necessarily static, but the effective
coupling may evolve in time. Here, we formalize
the concepts of dead zones and effective interactions.
We elucidate how the coupling function shapes the
possible effective interaction schemes and how they
evolve in time.

This article is part of the theme issue ‘Coupling
functions: dynamical interaction mechanisms in the
physical, biological and social sciences’.

1. Introduction
Many systems in applied sciences can be seen as systems
of coupled units that mutually influence each other, such
as interacting neurons of an animal’s nervous system.
Moreover, the system’s functionality often depends
on emergent properties of this dynamical system.
The dynamical behaviour of a network composed of
coupled systems depends on a number of factors.
One might wish to separate these factors into three
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broad categories: firstly, the dynamics of component systems (the unit dynamics) in isolation;
secondly, the structure of the graph of couplings between the systems (the network structure
viewed as a directed graph where the nodes are systems and the edges are connections); and,
thirdly, the nature of the interactions (we refer, in general, to this as coupling functions [1]).

This approach can be limiting in several ways. First, it is well known that coupling
isolated systems with simple unit dynamics may result in relatively simple dynamics (such as
synchronization); equally, it can result in the emergence of qualitatively different dynamics [2].
While a graph structure—as a graph of connections—is an efficient way to encode linearly
weighted coupling between dynamical units, it may not capture higher-order, multi-way
coupling. Such interactions are typically not ‘pairwise’ if there are nonlinear interactions between
three or more nodes; for example, if the input from unit 2 to unit 1 is modulated by unit 3.
This leads to more general non-pairwise coupling that has recently been investigated in coupled
oscillators (for example [3–5]) and in a broader contexts such as ecological networks [6]. Second,
even if one assumes linearly weighted pairwise couplings, the coupling function itself is often
assumed to be fairly simple in some sense: in the case of weakly coupled oscillatory units, the
interaction is typically never assumed to vanish on any interval of phase differences.

Here, we analyse networks with more complex coupling functions that allow dynamical units
to (effectively) dynamically decouple and recouple as the system evolves. More specifically, the
dynamical systems we investigate have state-dependent interactions that arise through dead
zones in the coupling function; this concept has been previously identified (for example [7]).
Intuitively speaking, in the dead zones of a coupling function there is no interaction. We call the
complements live zones and formalize these concepts below. Although a wide range of adaptive
and time-dependent networks have been studied in the past, this sort of coupling between
network structure and dynamics has been overlooked in many contexts, probably because the
coupling functions considered may be thought to be pathological (the functions have non-trivial
variation at some regions and trivial variation at others and so cannot be analytic). State-
dependent dynamics induced by coupling with dead zones relate dynamical models in systems
biology, through piecewise linear dynamics characterized by thresholds (for example [8–13]) or
continuous modelling (e.g. [14,15]). However, the investigation in these specific settings have
focused almost exclusively on the asymptotic behaviour (whether synchronized, periodic [16–19]
or chaotic [20,21]) of the underlying high-dimensional coupled system rather than on the
dynamics of the effective interactions between individual subsystems of a network. This is also
the case in [22,23], where the authors have related the existence of circuits in the graph of
interactions to the existence of multistable or stable limit cycles in phase space.

In this paper, we elucidate the interplay between dynamics and effective interactions in
networks of coupled phase oscillators. We first define the notion of a dead zone for such systems,
which leads to the definition of an effective coupling graph at a particular state. The network
dynamics are determined by the effective interactions: the dynamics at a particular point are
determined by the (state-dependent) effective interactions which may change over time. Hence,
the dynamics are determined by both the structural properties (what effective interactions are
possible) and the dynamical properties (whether and how do the effective interactions change
over time) of the system. Our contribution is threefold. First, we consider the structural question
what effective interaction graphs are possible for a given network structure by careful design
of coupling functions and examination of the dead zones. Second, we give a result on how the
effective interactions do (or do not) change as time evolves. Third, we give instructive examples
how dead zones shape the network dynamics; in particular, for a fully connected network and
a coupling function for which the dynamics are fully understood, a single dead zone can induce
non-trivial periodic dynamics.

While we restrict ourselves to dead zones in coupled phase oscillators, we note that these
concepts are likely to be applicable to more general network dynamical systems in a wider
range of contexts. Indeed, even in networks that appear structurally simple (for example,
networks that are all-to-all coupled from a structural point of view) the existence of dead zones
can induce new dynamics. A decomposition of phase space into regions of identical effective
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interactions yields a natural coarse-graining of the system: it can be understood in terms of the
transitions between effective interactions similar to the state transition diagrams in [9]. Such
a dynamical decomposition can provide a framework for network dynamical systems with
coupling that has ‘approximate’ dead zones—regions where the coupling is small but non-zero.
Hence, we anticipate that notable examples and applications may arise in systems biology as
discussed above, where many studies use this type of active/inactive interactions, neuroscience,
where for example state- and time-dependent interactions may arise, for example, through
mechanisms such as spike-time-dependent plasticity [24] or refractory periods, or continuous
opinion models [25,26] where agents only interact if their opinion is sufficiently close.

(a) Dead zones for phase oscillators
The particular class of system that we study in this paper has particularly simple unit dynamics
(coupled phase oscillators) and pairwise coupling so that a network of interactions and pairwise
coupling functions are appropriate. These models arise naturally in a range of applications where
there are coupled limit cycle oscillators and the coupling is weak compared to the limit cycle
stability [27,28]. More precisely, we assume that the phase θk ∈ T := R/(2πZ) of oscillator k ∈
{1, . . . , N} evolves according to

θ̇k =ω +
N∑

j=1

Ajkg(θj − θk), (1.1)

where ω is the fixed intrinsic frequency of all oscillators, Ajk ∈ {0, 1} encode the coupling topology
between oscillators (we assume no self-coupling, Akk = 0), and the (non-constant) coupling function
g: T → R determines how the oscillators influence each other. A graph A is associated with
the adjacency matrix (Ajk)—the structural coupling graph that encodes whether oscillator k can
receive input from oscillator j. We constrain ourselves here to phase oscillator networks where
the oscillators have the same intrinsic frequency and the coupling function g is the same between
all pairs of oscillators.

The coupling topology relates to dynamical properties of network dynamical systems such
as (1.1). For commonly studied coupling functions, properties of the structural coupling graph A
such as its spectrum [29,30] determine, for example, synchronization properties (complete or
partial) of the network (1.1): this is used in the master stability function approach of Pecora &
Caroll [31,32] and the work of Wu & Chua [33], who revealed the role played by the spectral
gap and the spectral radius of A. Various conditions for complete synchronization of networks
with arbitrary graph structures have been found using spectral properties [34–38]. Consequently,
this helps understand the effects of structural perturbations on the synchronizability of networks,
including (1.1) and networks where the unit dynamics are more complex (see [39–43]).

Note that it is not necessarily sufficient to consider the structural coupling graph A to
determine dynamical properties: this is particularly the case if the coupling function g has dead
zones, i.e. if it is zero over some interval of phase differences. In the presence of dead zones, we
will define an effective coupling graph of (1.1) as a subgraph of A, which encodes the effective
interactions between oscillators at a particular point in phase space. By definition, the effective
coupling graph is state-dependent and may change dynamically with time. As the system
evolves, the network may even decouple into several components under the influence of dead
zones. These networks with time- and state-dependent links can also be viewed in the framework
of ‘asynchronous networks’ [44,45].

Even though we assume that the uncoupled units are very simple and the functional form of
interactions is the same, the possible dynamics of (1.1) may be very complex [28]. We, therefore,
mostly restrict equation (1.1) to the case where the coupling is all-to-all (and thus fully symmetric),
that is Akj = 1 for all j �= k, and the phase θk ∈ T evolves according to

θ̇k =ω +
N∑

j=1,j�=k

g(θj − θk) (1.2)
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Figure 1. (a) Coupling for the graph K5 corresponding to the fully connected network (1.2) with N = 5. Panels (b–f ) show
five examples of the 25×4 = 1 048 576 possible embedded subgraphs of (a), i.e. having the same number of nodes as (a): by
proposition 3.4, we can show that all of these and more can be realized as effective coupling graphs for a coupling function g
with dead zones. Panels (b,d) show graphs withmore than one component: (b) is the ‘empty’ graphwith no edges, (c) is a cycle
of length 5 and (d,f ) have non-trivial structure. A typical trajectory of the system for such a system will visit several different
effective coupling graphs under time-evolution. While (e,f ) shows similar structure proposition 4.3 shows that only (e) can be
realized in a dynamically stable manner as it contains a spanning diverging tree.

for k = 1, . . . , N. In spite of the high degree of symmetry of the system, the system shows a
very rich variety of behaviour that includes synchronization [46], clustering [47], heteroclinic
dynamics [48] and chaos [49]; see also [47,50,51] for a discussion of the dynamics and bifurcations
of (1.2) and see [52] for a recent review.

Looking at the structural coupling graph, the network associated with (1.2) is rather simple,
since the network is fully connected. However, this also means that there is a rich set of 2N(N−1)

subgraphs corresponding to setting (off-diagonal) entries of A to zero. For a coupling function
with dead zones, this means there is a very rich set of effective coupling graphs that can occur.

Our goal here is to explore some connections between properties of such dead zones, the
effective coupling and the typical dynamics for such networks with these coupling functions
for networks of the form (1.1) or (1.2). As an example, figure 1 shows some possible effective
couplings that can be achieved by (1.2) with N = 5 and choices of coupling function with dead
zones. Section 2 presents a setting in which these dead zones can be defined. It also presents
conditions in proposition 2.12 for local skew product structure that appears in the dynamics due
to the dead zones. We then address the following questions:

Q0: Given any subgraph of the structural coupling graph, is there a coupling function such
that this subgraph is realized as the effective coupling graph for some point in the phase
space?

Q1: What is the relation between the coupling function, the set of possible subgraphs that can
be realized, and the points where these realizations happen?

Q2: How do the dynamics and effective couplings influence each other?

Section 3 discusses some results related to these questions concerning effective coupling
graphs: proposition 3.4 answers Q0 positively in that it shows that any directed graph can be
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realized as an effective coupling for a suitable coupling function. A refinement of this proposition
is given by proposition 3.8 by showing it is possible to do it at a given length of live zone (small
enough with respect to the number of nodes). We also consider specific subcases of Q1 by showing
how symmetries of the points in the torus determine partially the effective coupling graphs.
Section 4 moves on to Q2 and consider the interaction between effective coupling and dynamics:
proposition 4.3 (and corollary 4.4) show that any graph that admits a spanning diverging tree can
not only be realized at some point in phase space but also this can be made dynamically stable.
More generally, it seems that the interaction of dynamics and dead zones may be quite complex
and so we explore some examples. Section 5 looks in detail at the realized effective coupling
graphs for N = 2 and N = 3 with one dead zone. Finally, §6 explores uses, generalizations and
applications of these ideas.

(b) Graph theoretic preliminaries
We briefly introduce some notions (and notation) that are used in this paper (see, e.g., [53] for
more background on graph theory). Recall that a directed graph G is a pair G = (V, E) with a
finite set of vertices V and directed edges E ⊂ V2 between vertices. Depending on the context, we
write V(G), E(G) to denote the vertices and edges of G. A pair (j, k) ∈ E is an edge from vertex j to
vertex k. Since the graphs we consider here relate to network dynamics, we use terms vertex/node
and edge/link interchangeably. We will assume that the graphs do not contain self-loops, i.e.
(k, k) �∈ E for any k. A vertex k ∈ V is said to have an incoming edge if there exists another vertex j
such that (j, k) ∈ E. Any graph G can be identified with an adjacency matrix AG with coefficients
AG

kj = 1 if (k, j) ∈ E(G) and AG
kj = 0 otherwise. We say the graph G is undirected if AG is symmetric,

i.e. AG is equal to its transpose, or equivalently, (j, k) ∈ E if and only if (k, j) ∈ E. This means that an
undirected graph has an even number of directed edges. Finally, a graph H = (V′, E′) is a subgraph
of G, and we write H ⊂ G, if V′ ⊂ V and E′ ⊂ E. In this paper, it will be convenient to consider
a subgraph (V′, E′) ⊂ G as an embedded subgraph (V, E′) by including all vertices V of G. As an
example, figure 1a illustrates the fully connected graph on five vertices and figure 1b–f some
embedded subgraphs.

Write VN = {1, . . . , N}. If G = (VN , E) and H ⊂ G is an embedded subgraph, then the associated
adjacency matrices AG, AH are N × N matrices. The fully connected graph KN is the graph on VN

with (j, k) ∈ E(KN) for all j �= k; it has N(N − 1) edges (figure 1a). Similarly, let ∅N = (VN , ∅) denote
the empty graph with no edges; cf. figure 1b. Note that KN and ∅N are undirected (figure 1). For
(p1, p2, . . . , pr) ∈ Vr

N , let Pp1,...,pr denote the directed path with vertices p1, . . . , pr, i.e. the subgraph
of KN with edge set

E(Pp1,...,pr ) = {
(pq, pq+1)

∣∣ q = 1, . . . , r − 1
}

and similarly, let Cp1,...,pr be the directed cycle with vertices p1, . . . , pr and edges E(Cp1,...,pr ) =
E(Pp1,...,pr ) ∪ {

(pr, p1)
}
; cf. figure 1c. The undirected path P̄p1,...,pr and undirected cycle C̄p1,...,pr are

obtained by adding the reverse edges to Pp1,...,pr , Cp1,...,pr , respectively. Finally, let Kp1,...,pr be the
fully connected subgraph on the set of nodes

{
p1, . . . , pr

}
. When convenient, we will identify the

graphs Pp1,...,pr , Cp1,...,pr and Kp1,...,pr (and their undirected versions) with their corresponding
embedded subgraphs with vertices VN .

A directed graph G = (V, E) is strongly connected if given any two vertices in V there exists
a directed path of edges in E between these two nodes. A directed graph G is said to be weakly
connected if it is not strongly connected and its underlying undirected graph, obtained by ignoring
the orientations of the edges, is strongly connected. A spanning diverging tree of G = (V, E) is a
weakly connected subgraph of G such that one node (the root node) has no incoming edges and
all other nodes have one incoming edge (for instance, the graph in figure 1e contains such a tree).
Lastly, for any graph G = (V, E), an independent set S is a set of nodes included in V, for which any
two nodes of S are never connected by an edge in E. We say that G is a k-partite graph if V admits
a partition in k distinct independent sets.
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(c) Symmetries, dynamics and graphs
Let G be a graph with V(G) = VN and let SN be the symmetric group of all permutations of
VN = {1, . . . , N}. The automorphisms of G, denoted by

Γ (G) = {
γ ∈ SN | A γ (k)γ (j) = Ajk for all j, k ∈ VN

}
,

form a subgroup of SN under composition. Define the set of embedded subgraphs

H(G) = {
H = (VN , E′)

∣∣ H ⊂ G
}

and write HN =H(KN). Note that the group Γ (G) naturally acts on H(G): For H ∈H(G) and γ ∈
Γ (G) the image γH is the graph with vertices VN and edges

E(γH) = {
(γ (j), γ (k))

∣∣ (j, k) ∈ E(H)
}

for γ ∈ Γ (G). For this action, the isotropy group of the graph H ⊂ G is

ΣH = {γ ∈ Γ (G) | γH = H}.

Note that the isotropy group does not uniquely identify the subgraph, for example one can reverse
the edges and get the same isotropy; however, it is a useful characterization of the graph.

The group SN acts on T
N by permuting components. Let G ∈HN . For Σ ⊂ Γ (G) ⊂ SN we

define the fixed point space Fix(Σ) = {
θ ∈ TN

∣∣ γ (θ ) = θ for all γ ∈Σ}
. For a given θ ∈ TN , the

isotropy subgroup of θ is Σθ = {γ ∈ Γ (G) | γ (θ ) = θ}. The symmetries have a number of dynamical
consequences for the oscillator network (1.1) for G above being the structural coupling graph A:
note that (1.1) is equivariant with respect to the action of Γ (A) × T where Γ (A) ⊂ SN acts via
permutation of the oscillators and φ ∈ T acts via phase shifts

(θ1, . . . θN) 	→ (θ1 + φ, . . . θN + φ). (1.3)

The fixed point space of any isotropy subgroup of Γ (A) × T is dynamically invariant [50]. It is
often useful to consider behaviour of (1.1) in terms of the group orbits of T. Equivalently, the
quotient by T corresponds to considering the dynamics in phase difference coordinates, and
relative equilibria (equilibria for the quotient system) typically correspond to periodic orbits for
the original system.

For the structural coupling graph A = KN , we obtain the all-to-all coupled oscillator
network (1.2), which is Γ (KN) × T = SN × T equivariant. In this case, the dynamics on the full
phase space T

N are completely determined by the dynamics on the canonical invariant region (CIR)
[50,51]

C = {θ = (θ1, . . . , θN) | θ1 < θ2 < · · ·< θN < 2π} . (1.4)

The full synchrony and splay phase configurations

Θsync = (φ, . . . ,φ), Θsplay =
(
φ,φ + 2π

N
, . . . ,φ + (N − 1)2π

N

)
∈ C

are relative equilibria of the dynamics. There is a residual action of ZN := Z/NZ on the CIR
and Θsplay is the fixed point of this action [50].

2. From dead zones to effective coupling graphs
In this section, we define dead zones for a coupling function and introduce the resulting effective
coupling graph and its properties. We will restrict to a suitable class of coupling functions that
have dead zones but are otherwise smooth and in general position; clearly, this could be easily
generalized, for example to coupling functions with only finite differentiability.
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Definition 2.1. Suppose that g: T → R is a smooth 2π -periodic function.

— A coupling function g is locally constant at θ0 ∈ T with value c ∈ R if there is an open set U
with θ0 ∈ U ⊂ T such that g(U) ≡ c. Define LC(g) to be the set of locally constant points
of g.

— A coupling function g is locally null at θ0 ∈ T if it is locally constant with c = 0. Let DZ(g) ⊂
LC(g) denote the set of locally null points of g.

— A coupling function g has simple dead zones if DZ(g) has finitely many connected
components and LC(g) = DZ(g), i.e. if there is a finite set of locally constant regions, and
all are locally null.

Definition 2.2. Let g be a coupling function with simple dead zones. Any connected
component of DZ(g) is a dead zone of g. Connected components of the complements LZ(g) =
T \ DZ(g) are interaction or live zones.

Here, we will only consider the case of simple dead zones: in the rest of the paper, we will
implicitly consider only coupling functions with simple dead zones. The class of coupling function
with simple dead zones excludes (smooth approximation of) piecewise constant coupling
functions. These may have non-trivial dynamics that are solely given by the different frequencies
in the region where the coupling function is locally constant. Such non-trivial dynamics are clearly
of interest in some applications, but is beyond the scope of this paper.

Definition 2.3. We say that g is dead zone symmetric if −DZ(g) = DZ(g) modulo 2π , i.e. if
whenever φ ∈ T is in a dead zone, then −φ also belongs to a dead zone.

As an illustration, figure 7 in §5 provides examples of coupling functions (which are dead zone
symmetric or not) with one dead zone.

(a) Effective coupling graphs and their symmetries
Suppose that g is a coupling function for (1.1) with structural coupling graph A given by the
adjacency matrix (Ajk) and let θ ∈ TN . We say a node k is g-effectively influenced by node j at θ
for (1.1) if Ajk = 1 and θj − θk �∈ DZ(g).

Definition 2.4. The effective coupling graph Gg,A(θ ) of (1.1) with coupling function g at θ ∈ T
N is

the graph on N vertices with edges

E(Gg,A(θ )) = {
(j, k)

∣∣ Ajk �= 0 and θj − θk �∈ DZ(g)
}
.

Conversely, an edge (j, k) �∈ E(Gg,A(θ )) if Ajk = 0 (the edge is not contained in A) or θj − θk ∈
DZ(g) (the phase difference is in a dead zone).

Clearly Gg,A(θ ) ⊂ A ⊂ KN , and this will be a proper subgraph (that is, it differs from A by at
least one edge) for some θ ∈ T

N if g has at least one dead zone. For the system (1.1) with coupling
function g and given H ⊂ KN , define

Θg,A(H) =
{
θ ∈ T

N ∣∣ Gg,A(θ ) = H
}

. (2.1)

Definition 2.5. If Θg,A(H) is not empty, then H is realized as an effective coupling graph for (1.1)
with coupling function g. Moreover, a graph H can be realized as an effective coupling graph for (1.1) if
there exists a coupling function g for which Θg,A(H) is not empty.

For the special case A = KN , that is the oscillator network (1.2), we simply write Gg(θ ) for the
effective coupling graph with edges

E(Gg(θ )) = {
(j, k)

∣∣ θj − θk �∈ DZ(g)
}
.

Similarly, we write

Θg(H) =
{
θ ∈ T

N
∣∣∣∣ Gg(θ ) = H

}
(2.2)
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for the regions of phase space with a particular effective coupling graph. Note that the setsΘg(H),
H ∈HN , partition the CIR C.

For particular structural coupling graphs A of (1.1), there is a large number of symmetries, i.e.
the automorphism group Γ (A) may be large [31]; it is maximal for A = KN . At the same time, Γ (A)
acts on the underlying phase space. We now show how the symmetry of a point θ ∈ T

N relates to
the symmetries of the effective coupling graph at θ .

Lemma 2.6. Consider the system (1.1) with structural coupling graph A and any coupling function g.
For any θ ∈ T

N , we have Gg,A(γ θ ) = γGg,A(θ ) for all γ ∈ Γ (A).

Proof. Note that [γ θ ]k = θγ (k), where [ · ]k refers to the kth component, and so [γ θ ]j − [γ θ ]k ∈
DZ(g) if and only if θγ (j) − θγ (k) ∈ DZ(g). These are the edges of γGg,A(θ ). �

Corollary 2.7. Consider the system (1.1) with structural coupling graph A and any coupling
function g. For any θ ∈ T

N , we have

Σθ ⊂ΣGg,A(θ) ⊂ Γ (A).

Proof. To see this, note that if γ ∈Σθ then γ θ = θ and so Gg,A(θ ) = Gg,A(γ θ ) = γGg,A(θ ) which
implies that γ ∈ΣGg,A(θ). �

Note that the reverse containment of corollary 2.7 does not necessarily hold, for example if
there are no dead zones (i.e. if DZ(g) is empty) then clearly Σθ = Γ (A) for all θ .

Remark 2.8. Note that while C is a fundamental region for the dynamics of the all-to-all coupled
network (1.2), the effective coupling graphs can differ between symmetric copies of C.

(b) Local (skew-)product structure and asynchronous networks
In this section, we show that the effective coupling graph at a point captures essential dynamical
information. In particular, we have that, locally around a generic point, the vector field factorizes
into factors that correspond to (weakly) connected components of the effective coupling graph.

For v = {v1 < v2 < · · ·< vr} ⊂ VN let πv : TN → Tr denote the projection of TN onto the
coordinates in v. We write T

v := πv(TN) and θv = (θv1 , . . . , θvr ) are the coordinates in T
v . Suppose

that v1, v2 ⊂ VN partition VN , that is, v1 ∩ v2 = ∅, v1 ∪ v2 = VN . Write rk = ∣∣vk
∣∣ for the length of

the vector vk and we identify TN ∼= Tr1 × Tr2 with elements θ = (θv1 , θv2 ) through the natural
isomorphism that reorders coordinates appropriately.

Definition 2.9. Consider a general ODE on the N-torus,

θ̇ = F(θ ), (2.3)

with θ ∈ T
N , F: TN → T

N some smooth function, and v= (v1, v2) a partition of VN .

(a) The system has a local skew-product structure v1 → v2 at θ ∈ TN if there is an open
neighbourhood U of θ and functions F(1), F(2) such that F(θ ) = (F(1)(θv1 ), F(2)(θv1 , θv2 )) for
all θ ∈ U.

(b) The system has a local product structure with respect to v at θ ∈ TN if there is an open
neighbourhood U of θ and functions F(1), F(2) such that F(θ ) = (F(1)(θv1 ), F(2)(θv2 )) for all
θ ∈ U.

The second statement is equivalent to F having a local skew product structure v1 → v2 and
v2 → v1 at θ . For A ⊂ T

N let int(A) denote the interior of A.

Lemma 2.10. Consider the dynamics (1.1) with a coupling function g. Generically, θ ∈ int(Θg,A(H))
for some H.
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Proof. We have that

T
N

�

⋃
H⊂G

int(Θg,A(H)) =
{
θ = (θ1, . . . , θN) ∈ T

N
∣∣∣ ∃k �= j : θk − θj ∈ ∂DZ(g)

}

is a union of finitely many algebraic sets. �

Note that this does not imply that all Θg,A(H) have non-empty interior. Consider for example
the fully connected network (1.2) with A = KN and a coupling function g such that 0 ∈ ∂DZ(g).
Then Θg(KN) has an isolated point.

Lemma 2.11. Consider the dynamics of (1.1) written in the form (2.3) for a coupling function g.
Suppose that θ ∈ int(Θg,A(H)). Then (j, k) �∈ E(H) if and only if there exists a neighbourhood U ⊂ T

N

of θ such that (∂θj Fk)(θ ) = 0 for all θ ∈ U.

Proof. Write θ = (θ1, . . . , θN) ∈ int(Θg,A(H)). First, suppose that (j, k) �∈ E(H). Since θ ∈ int(Θg,A(H))
there exists a neighbourhood U ⊂ int(Θg,A(H)) of θ . Now (∂θj Fk)(θ ) = Akjg′(θj − θk) = 0 for all θ =
(θ1, . . . , θN) ∈ U since either Akj = 0 or θj − θk ∈ DZ(g). Conversely, suppose that there exists an U
such that ∂θj Fk = 0 on U. But 0 = ∂θj Fk = Akjg′(θj − θk) on U which implies Akj = 0 or g′(θj − θk) = 0
(on U). In either case, we have (j, k) �∈ E(H) by definition. �

Let G = (V, E) be a graph. A partition
{
v1, v2} of V is a graph cut. Write Evp→vq (G) ={

(j, k) ∈ E(G)
∣∣ j ∈ vp, k ∈ vq} for the edges from vertices in vp to vertices in vq. The cut-set of

{
v1, v2}

is Ev1→v2 (G) ∪ Ev2→v1 (G). The graph cut is directed vp → vq if Evp→vq (G) �= ∅, Evp→vq (G) = ∅. The
partition is disconnected if Evp→vq (G) = Evp→vq (G) = ∅. The following result relates properties of the
effective coupling graph at a given point θ with the local properties of the dynamical system (1.1).

Proposition 2.12. Consider a generic point θ ∈ T
N.

(i) There is a directed graph cut v1 → v2 for the effective coupling graph Gg,A(θ ) iff the system (1.1)
has a local skew-product structure v1 → v2 at θ .

(ii) The partition
{
v1, v2} of the effective coupling graph Gg,A(θ ) is disconnected iff the system (1.1)

has a local product structure v1 → v2 at θ .

Proof. Write H = Gg,A(θ ). By lemma 2.10, we may assume θ ∈ int(Θg,A(H)). Suppose that
{
v1, v2}

is a partition. The assertion now follows from applying lemma 2.11 for any edge in Ev1→v2 (H) and
Ev2→v1 (H), respectively. �

Recall that two nodes v, w in a directed graph are weakly connected if there is a path of edges
(irrespective of their direction) between them. A weakly connected component is a maximal
weakly connected subgraph. The following is a direct consequence of proposition 2.12.

Corollary 2.13. Consider a generic point θ ∈ T
N and let H = Gg(θ ). If v1, . . . , v� is the partition of the

vertices corresponding to the weakly connected components of H then there is a neighbourhood U of θ such
that (1.1) can be written in the form (2.3) with

F(θ ) = (
Fv1 (θv1 ), . . . , Fv� (θv� )

)

on U ⊂ Tv
1 × · · · × Tv

� ∼= TN.

Remark 2.14. A network of coupled oscillators naturally defines a non-trivial asynchronous
network as defined in [44]. Events occur when the effective coupling graph changes along a
trajectory, which defines the ‘event map’ E(θ ) = Gg,A(θ ). Now the coupled oscillator network (1.1)
written as (2.3) is determined by the state-dependent ‘network vector field’ F(θ ) = FE(θ)(θ ).
Moreover, the network structure is ‘additive’ in the sense that the dynamics of each oscillator is
determined by a sum of the contributions from other oscillators and the condition whether (j, k) ∈
Gg,A(θ ) only depends on (θk, θj). In the language of [44,45], this means that the asynchronous
network is ‘functionally decomposable’ and ‘structurally decomposable’. Finally, note that
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proposition 2.12 implies that, generically, we have a local product structure, a condition for the
spatio-temporal decomposition of the factorization of dynamics theorem [45].

3. Realizing effective coupling graphs
In this section, we aim to relate dead zones and effective coupling graphs, noting that the effective
coupling graph Gg(θ ) depends both on coupling function g and choice of θ . Recall that Q0 and Q1
in §1a concern the set of effective coupling graphs that can be realized and the goal of this section
is to tackle such structural problems. Recall that if Θg,A(H) �= ∅ then we say that the effective
coupling graph H is realized for g. Proposition 3.4 answers Q0 in the positive: for typical choice
of θ (with trivial isotropy), all effective coupling graphs can be realized. We consider two special
cases of Q1:

Q1a Given a point θ ∈ TN , a structural coupling graph A and a graph H ∈H(A), is there a
coupling function g for (1.1) (resp. (1.2)) such that Gg,A(θ ) = H? (resp. Gg(θ ) = H)?

Q1b Is there a coupling function that realizes all possible effective coupling graphs?
Specifically, for (1.2), is there a coupling function g such that1 Gg(TN) =HN?

Proposition 3.1 gives some constraints on answers of Q1a. We do not have a complete answer to
Q1a, while corollary 3.5 answers Q1b positively. We also consider what possible effective coupling
graphs will be realized for a coupling function g: this is important if we wish to understand the
dynamics of (1.2) with a fixed coupling function. To some extent this is simply a computational
question: for any θ = (θ1, . . . , θN) one has to determine which phase differences θj − θk lie in a
dead zone. We give some general results in this direction in §3b. We believe that typical coupling
functions will not be able to realize more than a small subset of effective coupling graphs.
Henceforth, we mainly restrict to discussion of the fully connected network (1.2) although several
of the results easily generalize to (1.1).

(a) Restrictions on the effective coupling graph imposed by θ
Here, we tackle the questions Q1a, Q1b above by putting the emphasis on the point θ . Specifically,
given θ ∈ T

N , what do the properties of θ impose on the effective coupling graphs of (1.2)? The
isotropy of θ ∈ TN has some important consequences on the possible effective coupling graphs
realized at θ :

Proposition 3.1. Consider the all-to-all coupled oscillator network (1.2) with coupling function g. Let
θ ∈ C ⊂ T

N be fixed.

(i) If θ has isotropy Σθ then Gg(θ ) must have at least the same isotropy.
(ii) For full synchrony Θsync = (a, . . . , a) we have Gg(Θsync) ∈ {∅N , KN}.

(iii) Suppose there exists 0< a< 2π/N such that θk+1 − θk = a for any k ∈ {1, . . . , N − 1}. Then one
of the following cases occurs:

(1) The directed path PN,N−1,...,1 is a subgraph of Gg(θ ) but P1,2,...,N is not.
(2) The directed path P1,2,...,N is a subgraph of Gg(θ ) but PN,N−1,...,1 is not.
(3) The undirected path P̄1,2,...,N is a subgraph of Gg(θ ).
(4) Gg(θ ) is a n-partite graph (with n = [N/2] if N is even or n = [N/2] + 1 if not).

Proof. (i) Is an application of corollary 2.7, notably θ with non-trivial isotropy will limit the
possible networks to those that have at least the same isotropy.

(ii) The claim follows from (i): the effective coupling graph must have full symmetry and hence
be either KN or ∅N .

1Writing the image of a subset A of the range of a function F as F(A) := {F(a) : a ∈ A}.
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Figure 2. Illustration of case (4) in proposition 3.1(iii) for N = 6 oscillators: the coupling function g shown in (a) has two live
zones centred at 2a and 3a, the remainder consists of two dead zones. The diagram in (b) shows the phases θk at one instant
in time such that θj − θi = a(j − i) for all j> i. The effective coupling graph for the coupling function in (a) is indicated by
black arrows between the phases corresponding to individual nodes. This coupling graph is tripartite as indicated by the node
colouring. (Online version in colour.)

(iii) We have one of the following cases as (we illustrate case (4) in figure 2): (1) a ∈ LZ(g), 2π −
a ∈ DZ(g), (2) a ∈ DZ(g), 2π − a ∈ LZ(g), (3) a, 2π − a ∈ LZ(g), (4) a, 2π − a ∈ DZ(g). Since all the
differences θi+1 − θi are equal to a (and thus all θk − θk+1 equal to 2π − a), then in case (1) we
have that PN,N−1,...,1 is a subgraph of Gg(θ ) but not P1,2,...,N . Similarly for the cases (2) and (3). In
the case (4), the vertices of Gg(θ ) can be partitioned into n = [N/2] independent sets An if N is even
(or into n = [N/2] + 1 such sets if N is odd): namely the successive sets A1 = {1, 2}, A2 = {3, 4}, etc.
This means that Gg(θ ) is a n-partite graph. �

While proposition 3.1(iii) limits to the splay configuration Θsplay in a special case, the next
proposition gives a characterization of effective coupling graphs that are realized for Θsplay.

Proposition 3.2. Consider the coupled oscillator network (1.2) with coupling function g.

(i) If 2π/N ∈ LZ(g) then the directed cycle C1,2,...,N is a subgraph of Gg(Θsplay).
(ii) Let 1< n<N and suppose that 2nπ/N ∈ LZ(g). Take indices modulo N.

(a) If N = nm then for any r ∈ {1, . . . , m} the directed cycle Cr,r+n,...,r+(m−1)n is a subgraph of
Gg(Θsplay).

(b) If n does not divide N, then the directed cycle C1,1+n,1+2n,...,1+N−n is a subgraph
of Gg(Θsplay).

Proof. (i) As in the proof of proposition 3.1(iii), we consider successive phase differences
for Θsplay = (θ1, . . . , θN). We have θk+1 − θk = θ1 − θN = 2π/N. Since 2π/N ∈ LZ(g) by assumption,
we have (k, k + 1) ∈ E(Gg(Θsplay)) which proves that C1,2,...,N ⊂ Gg(Θsplay).

(ii) A similar argument proves the second assertion. Let 1< n<N and since θk − θk+n ∈ LZ(g)
we have (k, k + n) ∈ E(Gg(Θsplay)). Now suppose that N = nm + q with 0 ≤ q<m. If q = 0 we have
r + pn = r mod N for p = m<N which proves case (a). If q �= 0 then r + pn = r mod N only if
p ∈ NZ which corresponds to case (b). �

Recall that Θsplay is the only fixed point of the residual action of ZN on the CIR [50].
The graph Gg(Θsplay) is invariant under the action of the symmetry by proposition 3.1(i). In
cases (i) and (iib) of proposition 3.2, Gg(Θsplay) contains one cycle involving all vertices, that is
mapped to itself. By contrast, in case (iia) of proposition 3.2, there are m disjoint cycles that are
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permuted by the symmetry. The existence of cycles has also some immediate consequences for
the connectedness of Gg(Θsplay).

Corollary 3.3. Consider system (1.2) with coupling function g and suppose that the number of
oscillators N is prime. Then either Gg(Θsplay) = ∅N or Gg(Θsplay) contains a directed cycle involving
all N vertices, and so Gg(Θsplay) is strongly connected.

Proof. If 2nπ/N ∈ DZ(g) then Gg(Θsplay) = ∅N . Now suppose that there is an 1 ≤ n<N such
that 2nπ/N ∈ LZ(g). Since N is prime, either proposition 3.2(i) and (iib) applies. In either case,
Gg(Θsplay) contains a directed cycle involving all N vertices. �

The next result gives a positive answer to Q0, providing that we avoid ‘non-generic’ choices
of θ .

Proposition 3.4. For a generic choice of θ ∈ T
N , and for any subgraph H ∈HN , there exists a coupling

function g such that Gg(θ ) = H.

Proof. Generically all the difference terms θj − θk (when j, k are ranging in {1, . . . , N}) are distinct:
therefore, we can specify live zones that contain points θj − θk if and only if the edge (j, k) is
contained in H. �

Notice that the proof gives an upper bound on the number of dead and live zones needed to
realize a given H as an effective coupling graph (by choosing a coupling function and a point
θ ), namely the bound given by the number of edges of H. This bound is far from being optimal,
notably for very ‘regular’ graphs: for instance for any θ ∈ T

N , the graph KN itself can be realized as
a Gg(θ ) where g has only one live zone and no dead zone. Corollary 3.5 extends the same method
of proof to show that one can, in principle, realize all subgraphs using one and the same g.

Corollary 3.5. There exists a coupling function g such that for any subgraph H ∈HN there exists
θ0 = θ0(H) ∈ T

N such that Gg(θ0) = H.

Proof. Enumerate all graphs Hn in HN and choose a set
{
θn = (θn

1 , . . . , θn
N) ∈ T

N}
such that all

phase differences θn
j − θm

k are distinct. Now take a coupling function g such that for any n we
have θn

j − θn
k ∈ LZ(g) if and only if (j, k) is in E(Hn). �

A similar proviso holds here: such a constructed g will typically have a very large number of
dead zones.

(b) Coupling functions for an interaction graph
Given a coupling function g, which properties of g imply certain effective coupling graphs
realized by g? On the other hand, given θ ∈ C, a structural coupling graph A and H ∈H(A), how
can one construct a coupling function g such that H = Gg,A(θ )? Among the different parameters
characterizing the coupling function g, the number of dead zones plays a major role in these
questions, since it determines the shapes of the resulting effective coupling graphs. We thus make
the following definition.

Definition 3.6. Let n ∈ N. We denote by F(n) the set of coupling functions having n dead zones.2

Proposition 3.7. Consider system (1.2) with coupling function g.

(i) The coupling function g is dead zone symmetric if and only if all effective coupling graphs for g
are undirected.

(ii) Assume that g ∈F(1) is dead zone symmetric with LZ(g) = [−a, a]. If a< 2π/N, then for any
1 ≤ k ≤ N and any sequence k, . . . , k + p in {1, . . . , N} we have that ∅N , KN and the embeddings
of P̄k,...,k+p and Kk,...,k+p can be realized as effective coupling graphs for g. If a = 2π/N, then

2Note that if there are n> 1 dead zones there must also be n live zones, while for n = 1 there can be 0 or 1 live zones, and for
n = 0 there is necessarily one live zone.
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KN , P̄1,...,N , C̄1,...,N , and the embeddings of graphs P̄k,...,k+p and Kk,...,k+p can be realized as
effective coupling graphs for g.

(iii) Assume that g ∈F(1) is dead zone symmetric with LZ(g) = [π − a,π + a] and a ≤ 2π/N. Then
∅N and KN can be realized as effective coupling graphs for g.

Proof. (i) This follows directly from the definition of a dead zone symmetric function.
(ii) Suppose that a< 2π/N. Taking θ ∈ C such that all the successive differences θi+1 − θi are

in (a, 2π/N), we have that Gg(θ ) = ∅N : indeed any phase difference θj − θk, with j> k, will belong
to the interval (a, 2π (N − 1)/N) and therefore will be in DZ(g). Similarly, taking θ such that all
the successive differences θk+1 − θk are strictly smaller than a/(N − 1) we have Gg(θ ) = KN . Now
consider 1 ≤ k, p ≤ N and a sequence k, . . . , k + p in {1, . . . , N}. Taking θ such that

θk+1 − θk = θk+2 − θk+1 = · · · = θk+p − θk+p−1 = a/2 + ε,

θ2 − θ1 = θ3 − θ2 = · · · = θk − θk−1 = a + ε

and θk+p+1 − θk+p = θk+p+2 − θk+p+1 = · · · = θN − θN−1 = a + ε,

where ε is a sufficiently small positive real number, we have that Gg(θ ) = P̄k,...,k+p. Similarly taking
a point θ ∈ C such that

θk+1 − θk = θk+2 − θk+1 = · · · = θk+p − θk+p−1 = ε,

θ2 − θ1 = θ3 − θ2 = · · · = θk − θk−1 = a + ε

and θk+p+1 − θk+p = θk+p+2 − θk+p+1 = · · · = θN − θN−1 = a + ε,

with ε small enough, we have in this case that Gg(θ ) = Kk,...,k+p. If a = 2π/N, then the same
reasoning applies.

(iii) This follows along similar lines as (ii). �

Observe that, for the particular points θ =Θsync and θ =Θsplay the coupling functions
considered in propositions 3.1(i) and 3.2 can be taken in F(0) and F(1), respectively. The proof of
proposition 3.4 constructs functions using many dead zones that might be very small. There are
various questions one can pose about optimality. For example, given θ ∈ C, a structural coupling
graph A and a graph H ∈H(A), what is the minimum n such that there is a g ∈F(n) such that
H = Gg,A(θ )? The proof of proposition 3.4 gives an upper bound to this question in the case of
System (1.2), namely n ≤ 2#E(H) (where #E(H) is the number of edges of H), but does not give
any information on the length of the live zones involved, which can possibly be arbitrarily small,
and for which one may need to control the size. Proposition 3.8 below gives a lower bound, as a
function of the number of nodes N (namely π/2N−1), on the length of live zones δ > 0 for which it
is possible to realize any H as an effective coupling graph (and this thanks to a coupling function
of which live zones have length δ).

Proposition 3.8. Let 0< a<π/2N−1 and let 0< δ < a. Then, for any θ ∈ T
N with

θi+1 − θi ≥ θi − θ1 + a, for i ∈ {1, . . . , N − 1} ,

and
θN − θ1 <π − a,

and for any H ∈HN , there exists an integer n ≤ #E(H) and a coupling function g ∈F(n) with live zones
of length at least δ such that Gg(θ ) = H.

Proof. Suppose that θ satisfies the conditions required and H is a subgraph of G. The idea is to
construct a coupling function for which each live zone is precisely associated with only one edge
of H (figure 3).

To do this, we start with the coupling function identically equal to 0. Now, if (2, 1) ∈ E(H)
then we put a live zone of length δ centred at θ2 − θ1. If not, then we set g to be locally null
at θ2 − θ1. Next, we consider θ3 − θ2 ≥ θ2 − θ1 + a: If (3, 2) ∈ E(H) we put a live zone of length δ
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Figure 3. An example of directed graph (b) within K5 with seven edges realized as an effective coupling graph with a coupling
function g inF (7) (a) constructed via the method described in the proof of proposition 3.8: in the bottom of the graph of g, we
show the successive phase differences θi+1 − θi for which the edge (i + 1, i) is in E(H) (the ones for which (i + 1, i) /∈ E(H)
are not shown), and at whichwe impose the existence of a live zone of g. Above the graph of g, we show the values of the phase
differences that are determined by the values of the successive phase differences.

centred at θ3 − θ2. This second live zone does not intersect the first one since θ3 − θ2 > θ2 − θ1 + δ.
If (3, 2) /∈ E(H) we let g be locally null at θ3 − θ2. Then we have θ3 − θ1 ≥ θ3 − θ2 + a which satisfies
θ3 − θ1 > θ3 − θ2 + δ; we can thus put a live zone of length δ centred at θ3 − θ1 if (3, 1) ∈ E(H).

Repeating the process, we construct g by imposing the existence of a live zone of length δ

centred at any of the θi − θk (with 1 ≤ k ≤ i ≤ N) such that (i, k) is in E(H). Since all these terms are
smaller than π , all the opposite values are determined and separated as well by a distance larger
than a. It is, therefore, possible to add live zones at the θk − θi (with 1 ≤ k ≤ i ≤ N) for which the
edge (k, i) is in E(H). �

4. Dynamics of effective coupling graphs
The previous section considered the structural problem of understanding the effective coupling
graph at some point in phase space. Now let θ (t) = ϕt(θo) be the solution of the phase oscillator
network (1.1) with initial condition θo. Clearly, Gg,A(ϕt(θo)) defines an evolution on the set of
effective coupling graphs. In this section, we briefly consider possible dynamics of these effective
coupling graphs.

Suppose that H ∈HN is an effective coupling graph realized for (1.1) with coupling function g
for some θ .

Definition 4.1. The graph H can be stably realized if there is an asymptotically stable invariant
open set B such that B ⊂Θg,A(H). Moreover, if B =Θg,A(H), then we say that the graph H is
completely stably realized.

In other words, for a stably realized effective coupling graph H, there is an open set of θo such
that

Gg,A(ϕt(θo)) = H (4.1)

for large enough t. If H is completely stably realized then this holds for all θo ∈Θg,A(H).
By constructing a coupling function with a stable (relative) equilibrium, we now strengthen

proposition 3.4 to show that for any ‘sufficiently connected’ H there exists a g such that the
effective coupling graph H can be stably realized. To prove this result, recall the following spectral
graph property [30,54].
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Proposition 4.2 ([54, Corollary 1]). Let H be a graph admitting a spanning diverging tree. Consider
the Laplacian matrix LH with coefficients

LH
jk =

⎧⎪⎪⎨
⎪⎪⎩

−AH
jk if j �= k,

N∑
�=1,� �=k

AH
�k if k = j,

where AH denotes the adjacency matrix of the graph H. Then the multiplicity of the eigenvalue 0 in the
spectrum of LH is one.

We use this to prove the following result.

Proposition 4.3. For any H ∈HN admitting a spanning diverging tree, there is a coupling function g
such that the oscillator network (1.2) has a locally asymptotically stable relative equilibrium (Ωt +
θo

1 , . . . ,Ωt + θo
N) satisfying Gg(θo) = H. In other words, there exists a coupling function g that stably

realizes H.

Proof. Let θo be a generic point such that all the terms θo
j − θo

k , j �= k, are distinct. The proof now
proceeds in two steps; see also [47]. First, we construct a coupling function satisfying specific
conditions (specified below) and show that θo is a relative equilibrium of (1.2). Second, we show
that for g, the relative equilibrium θo is locally asymptotically stable. In the following, we write
1 = (1, . . . , 1) ∈ R

N and let Ωt · 1 + θo denote the point (Ωt + θo
1 , . . . ,Ωt + θo

N).
Step 1. We now construct a coupling function g that satisfies the conditions

(i) Gg(θo) = H,

(ii) g′(θo
j − θo

k )> 0 for all (j, k) ∈ E(H)

and (iii)
1
N

N∑
j=1

g(θo
j − θo

k ) = 1
N

N∑
j=1

g(θo
j − θo

1 ) for k = 1, . . . , N.

By assumption all θo
j − θo

k , j �= k, are distinct and hence we can specify g and g′ in sufficiently small
neighbourhoods of these points. To satisfy (i) for given H, choose g such that θo

j − θo
k ∈ DZ(g) if and

only if (j, k) �∈ E(H). For phase differences θo
j − θo

k ∈ LZ(g), it is easy to see that we can specify g, g′
such that conditions (ii) and (iii) are satisfied. This yields a coupling function g that satisfies all
three conditions.

Note that by condition (iii), we have Ω such that

Ω =ω + 1
N

N∑
j=1,j�=k

g(θo
j − θo

k )

for all of k ∈ {1, . . . , N}. This implies that Ωt · 1 + θo is a relative equilibrium of (1.2).
Step 2. Second, we linearize (1.2) at the relative equilibrium θo and check that the conditions

(i),(ii),(iii) on g also ensure asymptotic stability of θo. For χ = θ − (Ωt · 1 + θo), we have

χ̇k = θ̇k −Ω =ω + 1
N

N∑
j=1,j�=k

g(χj − χk + θo
j − θo

k ) −Ω .

This yields the linearized equation χ̇k = 1
N

∑N
j=1,j�=k g′(θo

j − θo
k )(χj − χk) at θo. Therefore, by

condition (ii), the linearized equation at Ωt · 1 + θo read

χ̇k = 1
N

N∑
j=1

AH
jk g′(θo

j − θo
k )(χj − χk), 1 ≤ k ≤ N. (4.2)
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Now set Tjk = AH
jk g′(θo

j − θo
k ) for j �= k and Tkk = −∑N

j=1 AH
jk g′(θo

j − θo
k ) = −∑N

j=1 Tjk to write (4.2)
in matrix form

χ̇k = 1
N

N∑
j=1

Tjkχj.

The stability conditions are given by the spectrum S(T) of the matrix T. In fact −T is a Laplacian
matrix with spectrum

S(T) = {0, λ2, . . . , λN} ,

where the eigenvalue 0 corresponds to the direction 1 = (1, . . . , 1) along the group orbit of the
phase-shift symmetry. This means that stability of Ωt + θo is only determined by the eigenvalues
λ2, . . . , λN .

Note that none of the eigenvalues λ2, . . . , λN are equal to zero, i.e. zero is a simple eigenvalue
of T. Indeed, let H̃ denote the graph of which adjacency matrix AH̃ is defined by AH̃

jk = Tjk for

j �= k. By condition (ii) we have AH̃
jk = 0 if and only if AH

jk = 0. This means that E(H) = E(H̃) and

therefore H̃ has a spanning diverging tree: by proposition 4.2 the eigenvalue 0 of the Laplacian
matrix of H̃ (i.e. of the matrix −T) is simple, which means that 0 is a simple eigenvalue of T.
We also remark that by condition (ii) and by the Gershgorin circle theorem, all the eigenvalues
of S(T) belong to the discs centred in Tkk < 0 and of radius −Tkk. We can thus conclude that the
eigenvalues λ2, . . . , λN have all a negative real part and so Ωt · 1 + θo is an asymptotically stable
relative equilibrium. �

In fact proposition 4.3 can be generalized to (1.1) in a similar way.

Corollary 4.4. Assume that H ∈H(A) admits a spanning diverging tree. Then there is a coupling
function g such that (1.1) has an asymptotically stable relative equilibrium (Ωt + θo

1 , . . . ,Ωt + θo
N)

satisfying Gg,A(θo) = H. In other words, there exists a coupling function g that stably realizes H for (1.1).

Proof. The proof works in an exactly similar way as in proposition 4.3. Under the same
conditions (i), (ii), (iii) above, the linearized equation at Ωt · 1 + θo reads

χ̇k = 1
N

N∑
j=1

AjkAH
jk g′(θo

j − θo
k )(χj − χk), 1 ≤ k ≤ N,

and the coefficients of the corresponding Laplacian matrix T are

Tjk = AjkAH
jk g′(θo

j − θo
k ) for j �= k

and

Tkk = −
N∑

j=1

AjkAH
jk g′(θo

j − θo
k ) = −

N∑
j=1

Tjk.

Denoting again by H̃ the graph with adjacency matrix AH̃
jk = Tjk for j �= k, we have that AH̃

jk = 0 if

and only if AH
jk = 0 by the assumptions made for H. Thus, H̃ admits a spanning diverging tree. As

in the proof of proposition 4.3, this gives again the asymptotic stability of the relative equilibrium
(Ωt + θo

1 , . . . ,Ωt + θo
N). �

We finish with a brief discussion of a sufficient condition for an effective coupling graph H
to be completely stably realized. Suppose that θ ∈ int(Θg,A(H)) and write the coupled oscillator
network (1.1) as θ̇ = F(θ ). Suppose that the boundary ∂Θg,A(H) is a locally N − 1-dimensional
semialgebraic set; this is typically the case as discussed in §2b. Let n(θ ) denote the piecewise
defined normal vector pointing into the interior. One can now obtain sufficient conditions for H
being invariant by imposing that 〈n(θ ), F(θ )〉> 0 for almost all θ ∈ ∂Θg,A(H).
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5. Effective coupling graphs for networks of two and three oscillators
For coupling functions with an arbitrary number of dead zones, all effective coupling graphs can
be realized as outlined above. But what is the global picture of the dynamics for the minimal case
of a coupling function with a single dead zone? In this section, we concentrate on this question
by exploring small all-to-all coupled phase oscillator networks (1.2) with a coupling function g ∈
F(1). First, we briefly consider a network of N = 2 oscillators where there are only four possible
effective coupling graphs. Then we paint the picture for N = 3 oscillators; there are 64 possible
effective coupling graphs and we explore the dynamics numerically.

(a) Networks of two oscillators
One can easily demonstrate that a single dead zone and a single live zone is sufficient to realize all
effective coupling graphs for (1.2) with N = 2 oscillators. More precisely, choose any g ∈F(1) with
LZ(g) = [−a, 2a] for a<π/2, where all inequalities are understood in the interval [−π ,π ]. Then

Gg(0, c) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K2 if c ∈ (−a, a),

P1,2 if c ∈ (a, 2a),

P2,1 if c ∈ (−2a, −a),

∅2 if c ∈ (−π , −2a) ∪ (2a,π ).

This shows that there is a single coupling function that realizes all four subgraphs of K2. Note
that if g is dead zone symmetric then only the undirected graph K2 and ∅2 can be realized
(cf. proposition 3.7(iii)).

(b) Networks of three oscillators
We now consider all-to-all coupled networks of N = 3 oscillators. Since K3 has six edges, there
are 26 = 64 different possible effective coupling graphs. By assigning a colour to each edge,
we create a scheme that assigns a unique colour to each graph and permutations of the three
nodes correspond to permutations of the colour channels. This assignment is outlined in figure 4
together with examples of graphs coloured in their respective colour. Moreover, the possible
effective coupling graphs can be numbered according to the edges that are present. More
specifically, let H ∈H3 and write AH for the associated 3 × 3 adjacency matrix. Define the graph
number

ν(H) = AH
12 + 2AH

21 + 4AH
13 + 8AH

31 + 16AH
23 + 32AH

32 ∈ {0, . . . , 63} , (5.1)

which uniquely encodes the realized effective coupling graph as an integer. In particular, we have
ν(∅3) = 0 and ν(K3) = 63; more examples are given in figure 4.

For a given coupling function g ∈F(1), the setsΘg(H), H ∈H3, partition the CIR C. To visualize
which region of phase space is associated with a given effective coupling graph, we colour the
part of C accordingly. If g is dead zone symmetric, the dead zone can be parametrized by a single
parameter a ∈ (0,π ) that represents the beginning (or end) of the dead zone. Now suppose that 0 ∈
LZ(g) so Gg(Θsync) = K3—the case 0 ∈ DZ(g) is analogous by ‘inverting’ edges (or colours). There
are two qualitatively different cases that are shown in figure 5: if 0< a< 2π/3 then Gg(Θsplay) = ∅3
and if 2π/3< a<π then Gg(Θsplay) = K3. Many more cases are possible for a general function
g ∈F(1); rather than paint a complete picture, we illustrate some cases in figure 6.

The previous considerations were purely in terms of the structure of the effective coupling
graph. We now look at examples of the system’s dynamics and explore how the effective coupling
graph changes along trajectories. To this end, we examine the dynamics of (1.2) with N = 3 and
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Figure 4. The colour scheme to identify the graphs inH3. (a) The shades of cyan, magenta and yellow identified with each
directed edge of K3. If multiple edges are present, the colours are added. Examples of graphs H ∈H3 in their associated colours,
as well as the corresponding graph numbers ν(H), as defined in (5.1), are shown in (b). The subgraphs where all edges to/from
a given node are present (and no others) are associated with the colours red, green and blue. The symmetry that permutes
the three nodes acts on the colour scheme by permuting the colour channels. Hence, graphs which are invariant under this
symmetry operation have a colour that is invariant under permutation of the colour channels; this includes white for∅3, black
for K3, and shades of grey for the directed cycles C1,2,3, C3,2,1. (Online version in colour.)

q
2 = q

3

q1 = q3

q 1 
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q 2

(b)(a) (c)

t

Figure 5. The setsΘg(H) for different H partition the canonical invariant region C for the fully symmetric system of N = 3
oscillators. The CIR is sketched in (a): its boundary is given by the sets θ1 − θ2 = 0, θ2 − θ3 = 0 and θ3 − θ1 = 0 (black
lines) which intersect inΘ sync (black dot,•). The splay phaseΘ splay is the centroid (hollow dot,◦) and is the fixed point of the
residualZ3 = 〈τ 〉 symmetrywhich rotates the CIR (indicated by grey lines). Dashed lines indicate phase configurationswhere
one phase difference is equal toπ . For a dead zone symmetric coupling function g ∈F (1) only the undirected subgraphs of K3
can be realized; these correspond to the ones shown in figure 4 excluding the cycles. (b) The partition of the CIR for DZ(g)=
(π/3, 5π/3). (c) The partition for a dead zone symmetric coupling function with DZ(g)= (5π/6, 7π/6). (Online version in
colour.)

(b)(a) (c)

Figure 6. Many effective coupling graphs are possible forN= 3 oscillators and a general coupling function g ∈F (1) with one
dead zone. As in figure 5, the setsΘg(H) are plotted in the colour corresponding to the effective coupling graph H in the colour
scheme of figure 4. We have DZ(g)= (π/3, 3π/2) in (a), DZ(g)= (−(π/3), 11π/12) in (b) and DZ(g)= (π/3, 11π/12)
in (c).
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Figure 7. The coupling functions (5.2) provide examples of coupling functions g ∈F (1) with one dead zone; here ε= 5 ×
10−3 and α = 1.3. The shaded area indicates the dead zone of the coupling function. (a) We have a dead zone symmetric
coupling function with DZε(g)= (5π/6, 7π/6); cf. figure 5b. (b) We have DZε(g)= (π/3, 3π/2); cf. figure 6a. (c) We have
DZε(g)= (−(π/3), 11π/12); cf. figure 6b. (d) We have DZε(g)= (0.5, 1.5).

the coupling function

g(ψ) = − sin(ψ + α)h(ψ) where h(ψ) = 1
2

(tanh(ε−1(cos b − cos(a − ψ)) + 1) (5.2)

for constants a ∈ [0, 2π ), b ∈ [0,π ), ε > 0 and α ∈ [0, 2π ). This coupling function is a modulated
Kuramoto–Sakaguchi coupling with phase-shift parameter α. We call

DZε(g) = {θ | |θ − a|< b} (5.3)

the approximate dead zone of the coupling function (5.2) since in the limit ε→ 0 the coupling
function (5.2) has a single dead zone DZ(g) = {θ | |θ − a|< b} centred at a of half-width b;
here the inequality is to be understood modulo 2π . In the following, we fix ε= 5 × 10−3 and
α = 1.3.

We explore the dynamics for four examples of coupling functions (5.2) with approximate
dead zones shown in figure 7. Recall that without dead zones (and for any N), the dynamics
for Kuramoto–Sakaguchi coupling is well known: depending on the parameter α, either full
synchrony Θsync or an anti-phase configuration is stable; see also [55]. Now for each of the
Kuramoto–Sakaguchi coupling functions with a dead zone, figure 8 shows a partition of phase
space by effective coupling graph (using the same colour scheme as in figures 5 and 6) together
with a phase portrait for trajectories of (1.2) integrated forwards from a grid of initial conditions.
Note that the dynamics in Θg(∅3)—coloured in white—are trivial and we find, for example,
periodic trajectories that visit Θg(H) for multiple H ∈H3 as time evolves. Such dynamics are
impossible for Kuramoto–Sakaguchi coupling without dead zones.

Finally, we consider the entirety of the effective interaction graphs that are realized by a given
coupling function. Figure 9 shows the set of realized effective coupling graphs corresponding to
the coupling functions in figure 7 sorted by their graph numbers. We are unable to find a single
coupling function g with one live zone that can realize all possible effective coupling graphs—
however, we note that a combination of two coupling functions (for example, (b) and (c)) suffice
to cover all cases.
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Figure8. Thephase space for (1.2)withN = 3 oscillators and coupling function gwith onedead zone as in (5.2) andparameters
as in figure 7a–d respectively. As in figures 5 and 6, black lines indicate the sets θ1 − θ2 = 0, θ2 − θ3 = 0 and θ3 − θ1 = 0
which intersect inΘ sync (black dot, •) that bound C and its symmetric image. The splay phases are indicated by hollow dots
(◦) and dashed lines indicate phase configurations where one phase difference is equal toπ . As above, the colouring indicates
the effective coupling graph overlaid by trajectories started on a regular grid, shown in white—a very wide range of effective
coupling graphs are realised; see figure 9. For (b) and (c), there are white regions of trivial dynamics where no trajectories
are present: these correspond to the effective coupling graph ∅3. Finally, note that for (a) and (c) there are trajectories that
visitΘg(H) for multiple H ∈H3 as time evolves. (Online version in colour.)

6. Conclusion
In this paper, we have demonstrated that the effective coupling graph of a dynamical network
is subtly related to the network structure, the system state and the presence of dead zones in
the interaction. Working with coupled phase oscillator networks (1.1), we give constructions
of coupling functions g that achieve any desired subnetwork, possibly using the same g
(corollary 3.5), even in the special and highly symmetric case of all-to-all coupling (1.2).

In terms of structural questions, we obtain a number of conditions on g and θ that guarantee
the presence of certain coupling structures in Gg(θ ). There are several natural questions that
relate to the number, location and lengths of the dead zones to the set of realizable effective
coupling graphs. For example, the coupling functions in figure 7b,c together can realize all
possible (embedded) subgraphs of K3. Two specific questions in this direction for (1.2) are

— What is the minimum number n of dead zones such that there is a g ∈F(n) that realizes
all H ∈HN?
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Figure 9. The possible effective coupling graphs realized using N = 3 and (5.2) for parameters as in figure 7 and some θ .
Black indicatesΘg(H) �= ∅ for H ∈H3 with a given graph number, and white indicatesΘg(H)= ∅. Since (a) is a dead zone
symmetric coupling function, only undirected subgraphs are realized. By contrast, taking all effective coupling graphs that are
realized by coupling functions (b) and (c) together, one obtains all possible subgraphs of K3.

— What is the minimum m for which one can find m coupling functions, each with at most
n dead zones, such that any H ∈HN is realized by at least one of these functions?3

In terms of the dynamics, probably the most interesting problems relate to how the dynamics
of the coupled system interacts with the effective coupling as Gg(ϕt(θo)) changes along a trajectory
starting at θo. This is briefly explored in §4 and in the examples in §5, but we do not have a
complete picture as yet. For example, can one determine which effective coupling graphs can
be stably realized, and which can be only transiently realized? What does the passage through
effective coupling graphs tell us about the underlying dynamics? How does the partition of phase
space into basins of attraction map on to the partition of phase space by Θg(H)?

Here, we only considered phase oscillator networks with coupling functions that have simple
dead zones, i.e. there are a finite set of non-trivial intervals on which the coupling function
vanishes. This could be developed in three directions: first, one may want to examine coupling
with an infinite set of dead zones (though this is likely to be not of much relevance to applications).
Second, one could look at the case where the coupling function is locally constant on several
intervals where it takes distinct values. Third, one would like to get explicit results for coupling
functions with approximate dead zones, i.e. intervals on which the coupling functions are small
but non-zero. In this direction, it would be desirable to prove explicit results concerning how well
(and over what time scale) networks with dead zones approximate networks where interaction
between nodes is small (but non-zero) in parts of phase space.

Finally, we have restricted ourselves here to discussion of these questions for coupled phase
oscillators where all interactions are governed by a single periodic phase interaction/coupling
function g. On the one hand, it would be desirable to link the coupling functions considered
here to nonlinear oscillator networks through a phase reduction. On the other hand, it would
be interesting to explore how these results can be generalized, for example, to more general
dynamical systems with pairwise coupling of the form

ẋk = f (xk) +
∑
j�=k

g(xj, xk)

for xk ∈ R
d, where g(xj, xk) is null in some open subset of R

d × R
d. Finally, dead zones could also

be present in multi-way interactions [1,4], i.e. interactions where the coupling to xk depends
simultaneously on the relative position of several of the xj with j �= k, and not only on one of
them.
3Figure 9 gives evidence that m ≤ 2 for N = 3 and n = 1.
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