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Probabilistic solving of NP-hard problems with bistable nonlinear optical networks
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We study theoretically a lattice of locally bistable driven-dissipative nonlinear cavities. The system is found
to resemble the classical Ising model and enables its effective simulation. First, we benchmark the performance
of driven-dissipative nonlinear cavities for spin-glass problems, and study the scaling of the ground-state-energy
deviation and success probability as a function of system size. Next, we show how an effective bias field can
be included in an optical model and use it for probabilistic solving of optimization problems. As particular
examples we consider NP-hard problems embedded in the Ising model, namely graph partitioning and the
knapsack problem. Finally, we confirm that locally bistable polariton networks act as classical optimizers and
can potentially provide an improvement within the exponential complexity class.
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I. INTRODUCTION

Solving complex optimization problems is highly de-
manded in various fields of science and information technolo-
gies, ranging from economics [1] and finances [2] to biology
and physics [3–5]. While certain problems can be solved de-
terministically in polynomial time and belong to class P, many
optimization problems do not have a deterministic solution.
Namely, these correspond to tasks in which the number of
operations to obtain the true optimum scales exponentially,
and the solution should be searched for probabilistically, thus
falling into the nondeterministic polynomial (NP) complexity
class. Methods include simulated annealing [6], Monte Carlo
sampling [7], ant colony optimization [8], and genetic proto-
cols [9], which represent improvement on brute force (greedy)
algorithms. Some examples of NP problems are satisfiabil-
ity, graph partitioning, and Hamiltonian-cycle problems (e.g.,
traveling salesman), among others [10]. They include NP-hard
problems, which correspond to a search for the exact value of
the optimal solution.

As NP-hard problems are ubiquitous in nature and their
efficient solving strategies represent a major milestone in
many areas, the problem has attracted much attention in
computational science. One of the possible approaches was
suggested in the field of quantum computing, where a quan-
tum adiabatic algorithm searches for the ground state of an
associated spin-glass-type Hamiltonian [11,12], which can be
mapped to the solution of NP-complete problems [10,13].
The strategy also serves as a goal for large-scale quantum
annealers built by DWave, Inc. [14], though operating in the
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open-system regime. However, thus far there is no significant
evidence to suggest that there is an efficient (i.e., polyno-
mial) quantum algorithm to solve NP tasks. To date, only
constant speedup has been demonstrated [15]. This poses
the question of whether alternative strategies using classical
analog simulating devices can provide similar advantages. Re-
cently, one of these devices—a degenerate optical parametric
network—has attracted attention as a possible Ising model
solver [16–19], and has shown scalability potential. Other
considered options include pure [20] and hybrid photonic [21]
quantum simulators.

A new emerging platform for classical simulation of effec-
tive spin models is the nonlinear system of exciton-polariton
lattices [22–31]. Recently, several experiments reported the
generation of real-space lattices of polaritonic wells, where
each node corresponds to a coherent nonequilibrium con-
densate of polaritons [32,33]. Coupling was realized through
the delocalized photonic component, and the exciton-exciton
interaction provides nonlinearity. So far classical simulators
for XY-type models have been considered [27,34,35], as well
as spin chains [36]. Another way to arrange for nonlinear
optical lattices is to host polaritons in photonic crystal struc-
tures, where both III-V semiconductor platforms [37,38] and
two-dimensional materials [39] can be used.

In this paper we provide a general method to encode clas-
sical spin in the nonlinear optical system, and show its ability
to find probabilistically the ground-state configuration for the
effective Ising model. This is based on the mapping of high- or
low-intensity optical states into a binary information [40]. The
approach is inherently nonlinear, and is largely different from
previously demonstrated phase-encoded Ising [18,19] and
XY [27,34,41,42] simulators, both in driven-dissipative and
coherent circuit settings [43]. We propose a feedback scheme
that provides all-to-all coupling, and find that the suggested
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encoding allows us to tackle concrete optimization prob-
lems without extra overhead required by mapping from other
models with sparse connectivity or bias-free systems [44].
This for instance can lead to huge improvements for system
size, as an all-to-all-connected Ising model with O(100) spins
would require up to O(106) auxiliary spins to be simulated
with a 2D nearest neighbor connected graph [44].

We consider actual optimization problems and show that
native Ising encoding is beneficial for small-scale optimizers.
As an example, we apply bistable polaritonic networks to
the NP-hard graph-partitioning problem, where Ising-type
interaction is encoded into polaritonic intermode tunneling.
Then, we introduce bias in the system and apply it to
the knapsack problem, widely used in economics [45,46].
Finally, we discuss possible implementation using existing
technology.

II. MODEL

Classical spin models with bistable states. To begin, we
consider a system of spatially separated but interconnected
nonlinear optical resonators. This can be represented by the
coupled micropillars with an active medium inside, where
nonlinearity is provided by the presence of matter quasi-
particles (e.g., excitons) [25] or quantum emitters (defects,
quantum dots) [47,48]. Despite the implementation differ-
ences, these setups correspond to the general class of driven-
dissipative nonlinear lattices, and are described by the non-
linear Schrödinger equation for open systems (see Ref. [32]
for an extensive review). This corresponds to the evolution
equations in which each cavity (optical mode) is described by
a complex field amplitude ψn. The system reads

ih̄
∂ψn

∂t
=

[
−�n(t ) − i

γn

2
+ α|ψn|2

]
ψn + Fn(t )

+
∑

m

Jnmψm. (1)

Fn represents the amplitude of a coherent driving field acting
on the mode n. We work in the frame oscillating at the
frequency of this driving field, which we assume to be the
same for all resonators. �n represents the detuning between
the driving frequency and the resonant frequency of the mode
n. We allow for both Fn and �n to be slowly varied over
time. The dissipation in the system is represented by the
term −iγn/2, where γn corresponds to the dissipation rate
at each mode. In the following, we consider decay to be
homogeneous such that γn ≡ γ . α corresponds to the strength
of a repulsive (self-defocusing) Kerr nonlinearity. The term
Jnm allows for coherent coupling between different modes,
and in general enables all-to-all connectivity. While we iden-
tify exciton-polaritons in micropillar cavities as a potential
implementation of the presented model, this also applies to
a range of other nonlinear driven-dissipative bosonic sys-
tems (e.g., photonic crystals, superconducting circuits, and
driven-dissipative superfluids [49]). Specifically, we target the
situation of coherent excitation Josephson coupling between
the modes [50,51]. However, we expect that similar results
could be obtained with dissipative coupling mechanisms (i.e.,
imaginary Jnm) [27].

FIG. 1. (a) Bifurcation diagram of a single nonlinear driven-
dissipative system, described by Eq. (2). In the shaded region the
system is bistable, while in the unshaded region it is monostable. The
solid point marks the bifurcation point and the solid line a possible
ramping of system parameters. (b) Dependence of the average effec-
tive spin population on the initial pump amplitude after crossing the
bifurcation point, with �n(t ) and Fn(t ) increasing linearly as stated
in the text. The vertical line marks the value at which the effective
spin population is zero on average, corresponding to F 0

init = 0.1135,
and the noise level is set to θ0 = 0.4. The shading around the curve
in (b) indicates the statistical error.

To perform the numerical analysis, it is convenient to use
dimensionless parameters for Eq. (1), which reads

i
∂ψ̃n

∂ t̃
=

[
−�̃n(t ) − i

2
+ |ψ̃n|2

]
ψ̃n + F̃n(t ) +

∑
m

J̃nmψ̃m.

(2)
For this we rescale time in the units of inverse decay, t̃ = tγ ,
energy is measured in units of h̄γ [�̃ = �/(h̄γ ) and J̃ =
J/(h̄γ )], the nonlinear interaction strength is absorbed in the
definition of the field amplitude, ψ̃n = ψn

√
α/(h̄γ ), and the

pump amplitude is rescaled as F̃ = Fα1/2/(h̄γ )3/2. Thus, by
changing the laser intensity one can tune the effective amount
of nonlinearity in the system. For brevity, in the following we
remove the tildes and consider the dimensionless parameters
throughout the rest of the paper.

A. Single-mode case

It is instructive to first consider a single isolated mode. Tak-
ing �n and Fn to be constant and setting the time derivative in
Eq. (1) to zero yields a cubic equation for the stationary-state
intensity |ψn|2, namely, [(� − |ψn|2)2 + 1/4]|ψn|2 = |Fn|2.
In general the cubic equation yields three solutions; whether
or not they are real depends on parameters. The possibilities
are illustrated in Fig. 1(a), which shows two types of behav-
ior: in the unshaded region there is only one real stationary
solution corresponding to monostable behavior, while in the
shaded region all three solutions are real. In this latter case
two of the solutions are stable and have different intensities,
while the third solution is unstable. Consequently the system
is considered bistable, with both low- and high-intensity states
possible under the same conditions. The effect of bistability
in nonlinear optical systems is well known, and we refer to
textbooks for the didactic description [52,53]. Another sys-
tem that can show pronounced bistable behavior is a system
of exciton-polaritons [54]. In Fig. 1(a) we can identify a
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bifurcation point separating the bistable and monostable re-
gions, at the critical pump amplitude Fc = 3−3/4 and critical
detuning �c = √

3/2.
The solid line in Fig. 1(a) represents a possible slow (adi-

abatic) ramping of the parameters Fn(t ) and �n(t ) according
to �n(t ) = �ct/τ and Fn(t ) = Fn,init + (Fc − Fn,init )t/τ . Here,
Fn,init defines the initial value of Fn and τ is the time at
which the bifurcation point is reached. Following this path
of parameters, a bifurcation point is expected [40], where
the system must choose one of the two possible bistable
states to lie in thereafter. The interplay of local bistability
and Josephson coupling has been studied previously in Kerr
nonlinear lattices, showing lattice solitons [55–57], various
collective phases [58,59], interaction-induced hopping [50],
phase-controlled bistability [60], cellular automata [61], and
topological behavior [62].

To model the stochastic choice of the system at the bifur-
cation point we add a noise term θn to the right-hand side of
Eq. (1), where 〈θ∗

n θm〉 = 2θ2
0 δn,mdt and 〈θnθm〉 = 0. The mag-

nitude of such a term can be controlled experimentally and it
can cause jumps between bistable states [63]. The probability
of a jump is high near the bifurcation point and decreases as
one moves farther and farther beyond the bifurcation point.
The choice of bistable state after passing the bifurcation
point also depends on the angle of the line along which the
parameters are ramped up in the Fn-�n plane. We define
an effective classical spin as s = ±1 depending on whether
the system chooses the higher- or lower-intensity state when
in the bistable zone. Figure 1(b) shows how the average
of this effective spin, obtained by calculating over different
realizations of the stochastic noise, varies with Finit . For a
value of F 0

init = 0.1135, for which the line in Fig. 1(a) passes
between the lower and upper boundaries of the bifurcation
zone, we find an equal chance to form high- or low-intensity
states, corresponding to 〈s〉 = 0.

B. Two-mode case

Next, we consider the case of two coupled modes and pro-
vide a motivation for encoding of an Ising model into bistable
states for the modes. While we only claim empirical evidence
for a heuristic rather than exact global minimizer, there is
an intuition underlying the operation of our system. For two
coupled modes, the evolution of the system is described by the
equations (neglecting the noise terms)

i
dψ1

dt
= (−� − i/2 + |ψ1|2)ψ1 + F + Jψ2, (3)

i
dψ2

dt
= (−� − i/2 + |ψ2|2)ψ2 + F + Jψ1. (4)

Without coupling (in the absence of J) and above the bifur-
cation point the possible solutions, (ψ1, ψ2), are (ψL, ψL ),
(ψL, ψU ), (ψU , ψL ), and (ψU , ψU ), where ψL and ψU are the
lower- and upper-intensity single-mode stationary solutions.
We recall that when the system is in a stationary solution it
evolves with a real energy. This is set to zero here as we
are working in the frame rotating with the pump frequency.
Considering first the state (ψL, ψL ), we are interested in how
its energy changes in the presence of coupling J . Setting
ψ1,2 = ψL exp(−iω1,2t ), that is, allowing the energy of the

stationary state to be changed and become complex (such that
it is no longer stationary),

i
dψ1

dt
= ω1ψL = JψL, (5)

i
dψ2

dt
= ω2ψL = JψL. (6)

Here, we have made the crude approximation on the right-
hand side, assuming that the influence of one mode on an-
other is approximately given by taking the influencing mode
as being in the single-mode solution. While a very rough
approximation, it illustrates the principle: ω1 and ω2 do not
change much from the single-mode stationary values when
both modes are in the low-intensity state. The same occurs
when considering both modes in the upper-intensity state,
that is, (ψ1, ψ2) = (ψU , ψU ). However, considering the case
(ψ1, ψ2) = (ψL, ψU ), we obtain

i
dψ1

dt
= ω1ψL = JψU , (7)

i
dψ2

dt
= ω2ψU = JψL. (8)

Here we find that ω1 = JψU /ψL and ω2 = JψL/ψU . Above
the bifurcation point, it is straightforward to find from the
analytic solutions that ψU /ψL has a negative imaginary part,
while ψL/ψU has a positive imaginary part. Thus, the effect
of J > 0 on (ψL, ψU ) is to make ψ1 drop in intensity and ψ2

grow in intensity. This suggests that the state (ψL, ψU ), that is,
an antiferromagnetic state, is more stable due to the coupling
J . The argument applies in the same way to the state opposite
the antiferromagnetic state, (ψU , ψL ). We can also note that if
J < 0, the antiferromagnetic state will instead be less stable as
the signs of ω1 and ω2 will be inverted. Thus, when the system
passes the bifurcation point and is fluctuating in the presence
of noise, the picture is that because the antiferromagnetic
state (for J > 0) is more stable it is more likely to be chosen
by the system. However, to verify this picture we need to
consider the basins of attraction of the system in phase space
[64]. While it is an educated guess that a deeper basin of
attraction is also larger in phase space, we are not aware of
any law to be certain before actually calculating it.

Figure 2(a) shows the phase diagram of the single-mode
system. There are two fixed points, corresponding to the low-
intensity (small dot) and high-intensity (large dot) bistable
states. The solid curve denotes the separatrix, corresponding
to the boundary between basins of attraction between the two
fixed points. Figure 2(b) shows how the phase diagram of
mode ψ1 is modified by coupling to a second mode ψ2, as-
suming that the second mode ψ2 is in the lower-intensity state
(treated with the single-mode approximation). Remarkably,
not only does the basin of attraction for the upper-intensity
state grow, as expected from the crude analysis presented
above, but it fills the whole phase space as the lower-intensity
state has become unstable [therefore no separatrix for this
case can be plotted and only comparison with case Fig. 2(a)
is shown by the blue solid line]. We have also observed
the opposite behavior, namely the upper intensity becoming
unstable, when J < 0 (not shown in the plot). Figure 2(c)
shows the phase diagram of mode ψ1 when coupled to a
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FIG. 2. Phase diagrams for (a) a single-mode system (blue), (b) a
mode ψ1 coupled to a mode ψ2 in the lower intensity state (purple),
and (c) a mode ψ1 coupled to a mode ψ2 in the upper intensity
state (green). Parameters were taken the same as in Fig. 1(b), with
dFinit = 0 and t = 1.2τ . J > 0 case is considered, with J = 0.04.
The large and small spots represent fixed points of high and low
intensity, respectively. The solid curves mark separatrices, blue for
the single-mode system and green for the mode coupled to a mode in
the upper intensity state.

second mode in the upper-intensity state (again treated with
the single-mode approximation). In this case the low-intensity
state has been stabilized. Although the separatrix is little
changed from the single-mode case, the shown behavior al-
lows the antiferromagnetic state to be stable in our system.

C. Multimode case

Finally, building on the single- and two-mode examples,
we consider the multimode case of coupled nonlinear cavities.
We note that while the phase diagrams in Fig. 2 describe
well the mechanism at play for a two-coupled-mode system,
generalization to larger systems is not trivial. Recent work
using a functional-integral approach was successful in show-
ing that Eq. (2) exhibits an emergent equilibrium, where the
system tends to the state of an effective Ising Hamiltonian
[40]. Here we consider a heuristic approach and will consider
empirical testing of application of the studied system to
different problems, using multiple trajectories to sample the
multidimensional phase space.

To address complex optimization problems, we take an
all-to-all-type coupling Jnm. In principle, this could be realized
with a feedback approach [65] in which the optical output
of all modes is extracted and fed back into the system after
some manipulation. For this we propose several schemes that
can allow for coupling between cavities. First, the feedback
can be realized using an optical matrix multiplier composed
of a pair of lenses and a spatial light modulator [66–68] (see
Appendix A for the details of the scheme). Namely, using the
emitted light that goes through a Fourier lens, the localized
modes in the real space of the microcavity can be mapped
to the reciprocal space of a plane behind the lens. Next,
using the spatial light modulator different Fourier components
are mixed, reflected, and fed back into the cavity array. We
note that a feedback approach was exploited successfully for
coherent Ising machines, leading to large connectivity [18].
Second, an alternative scheme to realize a highly connected
graph can be arranged with a bus-coupled mechanism. It relies
on the effective coupling through a detuned bus mode, such
that effective all-to-all coupling of different magnitudes can
be realized, suitable for the graph-partitioning problem (see
Appendix B for the detailed description).

III. RESULTS

A typical example of the system dynamics for a randomly
chosen coupling matrix Jnm is shown in Fig. 3(a) for N = 10.
The coherent drive amplitude Fn(t ) and detuning �n(t ) are
chosen the same for all modes and ramped slowly through the
bifurcation point [following the solid line in Fig. 1(a)]. The
overall scale of the couplings is taken such that their root-
mean-squared value 〈Jnm〉 is kept small (�0.1), and that it can
be considered as a perturbation to the single-mode dynamics.
After crossing the bifurcation point, all modes adopt either a
high or low intensity, close to the exact adiabatic solutions
for the single-mode case. Remarkably, although our N-mode
system is multistable, for the particular noise realization used
in Fig. 3(a), we find empirically that the system attains the
state minimizing the effective Ising Hamiltonian with arbi-
trary connectivity, Heff = ∑

n,m Jnmsnsm, corresponding to a
spin-glass system. An underlying intuition for this behavior
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(a) (b)

FIG. 3. (a) Colored curves show the evolution of |ψn|2 for a
ten-mode system slowly ramped through the bifurcation point. The
solid gray curves show the stable stationary solutions followed by
the single-mode system in the adiabatic limit; the dashed gray curve
shows an unstable branch associated with the bistable region. Jnm

was chosen as a real symmetric matrix with Gaussian-distributed
values of root-mean-square size 0.04. Other parameters are the same
as in Fig. 1, using the unbiased value F 0

init = 0.1135 corresponding to
the vertical dashed line in Fig. 1(b). (b) Dependence of the effective
spin correlation, 〈s1s2〉, for two antiferromagnetically coupled modes
(J12 = 0.04) on the difference in the initial pump amplitude from the
unbiased value. The insets show the time dependence, using the same
axes as in (a).

can be based on the behavior of the basins of attraction of
the system described in the previous section, where we find
that two coupled modes with Jnm > 0 are more likely to form
in an antiferromagnetic state. The obtained state is sensitive
to Fn,init , as expected from its influence on the single-mode
behavior [Fig. 1(b)]. Figure 3(b) shows that antiferromagneti-
cally coupled modes may be forced into a ferromagnetic state
under sufficient adjustment of Finit = F 0

init + dFinit . Consider-
ing the N = 10 system with different noise realizations, the
optimal solution appeared in over 30% of tries, which largely
exceeds the probability of random guesses for the problem.

A. Spin-glass benchmarking

To characterize the polariton optimizer, we repeated our
calculations with different randomly generated coupling ma-
trices Jnm. The performance was benchmarked by compari-
son to the ideal ground state of Heff using several metrics.
The Hamming distance hdist = (1/N )

∑N
n (1 − sns(g)

n )/2 is a
measure of how far in configurational space the obtained sn

and ideal ground states s(g)
n are. We also defined the energy

difference of the approximate solution E and the ground state
as dE = (E − Eg)/(Emax − Eg), where the normalization fac-
tor allows us to consider various instances on equal footing.
Finally, the success probability psuccess was defined as the
probability of having exactly the ground-state energy.

Considering, for simplicity, the zero-bias case (setting
Finit = F 0

init as for the single-mode system), Fig. 4(a) shows
the variation of the different performance characteristics as
the system size is increased. For each system size there is an
optimum of the overall scale of the coupling 〈J〉, which was
chosen by scanning over 〈J〉. While the success probability
is less than unity, it is finite, and the ability of an optical

FIG. 4. (a) Variation of the average Hamming distance hdist ,
energy difference from the ground state dE , and success probability
psuccess (all in logarithmic scale) with the number of modes in the
system. Here the value of 〈J〉 was taken as the optimum for each
number of modes. Parameters were taken the same as in Figs. 1
and 3(a), with 2τ = 104. The shading around the curves indicates
the standard error. (b) Variation of the average Hamming distance,
normalized energy difference from the ground state, and success
probability as a function of the system integration time 2τ . The
shading around the curves indicates the standard error. Parameters:
F 0

init = 0.1135, 〈J〉 = 0.04, θ0 = 0.4.

system to reach a state promptly makes it feasible to rerun
the simulator several times.

The total calculation time taken for the simulator to obtain
the correct result after several trials is then inversely propor-
tional to the success probability and scales exponentially with
the system size, as is expected for a nonpolynomial problem.
Even when a state different from the ground state is found, the
Hamming distance and energy difference suggest that it is still
a reasonable approximation of the ground state.

We also studied the success probability as a function of
ramping time for Fn(t ) and �n(t ). We found that the perfor-
mance of the considered polariton simulator depends weakly
on the rate at which the parameters are ramped through the
bifurcation point. Taking a system of 10 modes, with ran-
domly chosen couplings and no bias, we show in Fig. 4(b) the
variation with the system integration time. Here, τ represents
the time at which the bifurcation point is reached and 2τ is the
total integration time at which the system state is measured.
The results suggest overall but weak improvement for slower
operation times. However, in practice it may be viable to take
smaller τ , while performing more repetitions. Given that the
polariton lifetime can be around a picosecond, and ultrafast
switching of bistable states is well established [69–71], we
conservatively predict device operation times of nanoseconds
with little loss of success probability.

B. Graph partitioning

We now show an Ising-type embedding of the NP-
hard graph-partitioning problem and solve it simulating the
bistability-based polaritonic optimizer. Given the graph G =
(V, E ) with vertices V = {v j}Nv

j=1 and the set of edges, E =
{ek}Ne

k=1, the task is to find the partitioning into two groups
of equal numbers of vertices (assume Nv being even) such
that the number of edges connecting the groups is minimized
[10]. It is also related to the max-cut problem, albeit without
assigning distances (i.e., different weights) to the edges. Such
a task can be used to speed up classical high-performance
computing providing the routes for efficient parallelization.
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FIG. 5. Sketch of the graph-partitioning problem, aiming to find
two separated sets of modes. For the chosen connection net, the
ground-state solutions are represented by two possible cuts (red and
green lines).

The problem can be formulated as the minimization of an
all-to-all-connected Ising Hamiltonian,

H = J
∑

(k,l )∈E

(1 − sksl )/2 + Jβ

Nv∑
(i, j)∈V

sis j, (9)

where J and β are real positive parameters. The spin vari-
ables si = ±1 label the nodes of two groups to be minimally
coupled. Here, the first term assures that each connection
between the two groups of spins introduces an energy penalty,
and for J > 0 the number of edges will be minimized. The
second term represents a constraint and ensures that the total
spin is zero, thus giving equal partitioning for large β (see
Ref. [10] for the introductory description of NP-hard problem
embeddings). Rearranging terms in the Hamiltonian (9) shows
that to solve the graph-partitioning problem one should find
the ground state of the Ising Hamiltonian. Due to the problem
encoding we observe that Eq. (9) contains interaction terms
with coupling of two magnitudes, βJ and (β − 1/2)J . This,
for instance, can be encoded in the real-space coupled polari-
ton nodes through the common bus (see Appendix B).

As a particular test, we can choose the small system of size
of Nv = 6 vertices, where

E = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6),

(1, 3), (3, 5), (4, 6), (3, 6), (2, 6), (1, 6)} (10)

corresponds to a dense connection grid, where the ratio for
the number of connections at each node to the total num-
ber of sites becomes comparable to unity. The problem’s
topology is depicted in Fig. 5. The optimal partitioning
then corresponds to two degenerate energy configurations
(in addition to spin degeneracy), being [{1, 2, 3}, {4, 5, 6}]
and [{1, 2, 6}, {3, 4, 5}] (see corresponding cuts 1 and 2 in
Fig. 5), which are encoded in the {−1,−1,−1, 1, 1, 1} and
{−1,−1, 1, 1, 1,−1} spin configurations (or their bit-flipped
partners).

Figure 6 shows that while the overall scale of J and
the value of β should be carefully chosen, the system can
solve the graph-partitioning problem. We also consider the
scaling of the graph-partitioning problem. For this, we average
the success probability and energy deviation over randomly
selected graphs. Each graph is taken to have a number of
connections equal to one-half the total number of possible

(a) (b)

FIG. 6. Variation of the success probability psuccess (a) and energy
difference from the ground state dE (b) for solving the graph-
partitioning problem with J for a graph with N = 6 and different
values of β (marked on the plots). Other parameters were taken the
same as in Figs. 1 and 3(a), with 2τ = 104. The standard error is
within the line thickness.

connections for each given system size (similar results can
be obtained for different connection fractions). The results
are shown in Fig. 7, suggesting that while the overall success
probability (within the adopted definition) drops, the average
Hamming distance and energy deviation persist.

C. Knapsack problem

As a further example of an NP-hard problem potentially
solved by the nonlinear optical network, we consider the knap-
sack problem. Having the list of N objects of fixed weight (wi)
and cost (ci), we want to fill a knapsack maximizing its cost,
given that the maximal total weight is limited to Wmax. Here,
i is an item index running from 1 to N , weights correspond
to integer-valued numbers, and we introduce a binary variable
si, which is equal to 1 when an object is inside the box and
0 otherwise (see Fig. 8). The total weight and total value
then read W = ∑N

i=1 wisi and C = ∑N
i=1 cisi, respectively.

We further introduce auxiliary binary variables aj , where the
index j runs from 1 to Wmax, being the maximal weight.
The classical Hamiltonian corresponding to the problem then
reads

H =α

⎛⎝1−
Wmax∑
j=1

a j

⎞⎠2

+α

⎛⎝Wmax∑
j=1

ja j −
N∑

i=1

wisi

⎞⎠2

−β

N∑
i=1

cisi,

(11)

(a) (b)

FIG. 7. Variation of the average Hamming distance hdist , energy
difference from the ground state dE , and success probability psuccess

(all in logarithmic scale) for partitioning random graphs for a system
of size N = 10 (a) and random graphs of different sizes taking in
each case the optimum J (b). Other parameters were taken the same
as in Fig. 6, with β = 1.
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FIG. 8. Sketch of the knapsack problem. Different items of
weight wi and cost ci can be placed in the suitcase (assign binary
variable s = 1), or left outside (s = 0). The maximal weight of
the suitcase is bounded by Wmax. The solution can be obtained by
searching for minimal energy configuration for combined item (si)
and auxiliary (ai) spins, combined into an all-to-all-connected Ising
network.

where α and β are parameters for the simulation, chosen such
that the global minimum of (11) corresponds to the solution.
The Hamiltonian (11) can be rewritten as the standard all-to-
all-connected Ising model with bias terms hn as (where we
now take sn = ±1)

H := −
N+Wmax∑

n<m

Jnmsnsm −
N+Wmax∑

n=1

hnsn, (12)

where Jnm denotes the Ising coupling matrix, formed by
weights, and hn is an effective magnetic field formed by the
combination of cost and weight. The parameters are inferred
from the original encoding given in Eq. (11).

The knapsack problem represents a ubiquitous problem
in the field of finances and portfolio optimization [45,72],
resource allocation problems, cargo-loading problems, and
others. Its solution, for instance, provides the answer on how
one can choose the best portfolio basket given the limited
resources.

As a test we choose an instance of the knapsack problem
in its bounded version. In particular, we consider the example
with 3 coins of weight 1 and value 5 (coin a), 2 coins
of weight 2 and value 10 (coin b), and 1 coin of weight
3 and value 25 (coin c). The maximal weight is fixed to
Wmax = 9. Using a brute-force algorithm, which considers
all possible item (i.e., spin) configurations, the solution is
2 a coins, 2 b coins, and 1 c coin. In the classical spin
language these are three degenerate configurations, {s} =
[{−1, 1, 1, 1, 1, 1}, {1,−1, 1, 1, 1, 1}, {1, 1,−1, 1, 1, 1}].

Next, we simulate the dynamics of a corresponding po-
lariton network in order to solve the same problem. For this,
recalling that the average effective spin population depends
on Finit [as shown in Fig. 1(b)], we identify the difference
of Finit from the value favoring equal spin populations in
the single-mode system as an effective biasing parameter hn.
Using the effective bias, the outlined knapsack problem with
15 spins in total is modeled by time-evolving Eq. (1) with the
corresponding matrix Jnm and the appropriate vector of biases

(a) (b)

FIG. 9. Success probability (a) and Hamming distance (b) for
solving the fifteen-mode knapsack problem with a polariton simu-
lator. The plots show the variation with the overall scale of dFinit ,
for different values of J (marked on the plots). Parameters were
taken the same as in Fig. 3, although considering the effective spin
Hamiltonian with bias terms representing a specific instance of the
knapsack problem. The shading around the curves indicates the
standard error and 2τ = 104.

dFinit . The probability of successfully reaching the ground
state of the effective Hamiltonian is shown in Fig. 9 as a
function of the overall scale of dFn, where we find a success
probability ∼50% for optimally chosen parameters. While for
the problem with unknown solution the choosing of optimal
dFinit is not straightforward, it can be assessed using a sweep
over a range of values followed by sampling, and searching
for the optimal configuration in each case. Later the choice of
dFinit can be refined. In Appendix C we consider the variation
of the system performance for randomly chosen knapsack
problems.

IV. CONCLUSIONS

We have considered nonlinear, near-resonantly excited,
optical-cavity lattices as coherent driven-dissipative machines
that are capable of solving Ising-type optimization problems.
We presented an encoding scheme for binary information
based on bistable behavior of each lattice site, which naturally
appears for photons due to the Kerr-type interaction. Two
possible schemes for experimental implementation of an all-
to-all-connected real-space polariton network were proposed,
and were exploited to solve graph partitioning and the knap-
sack problem. While the results do not suggest improved
scaling with system size, showing approximately exponential
reduction of the probability of getting the correct ground state,
the devices can speed up calculation because of fast operation
(a few nanoseconds for N = 20 modes with ∼106 configura-
tions) and use of now-well-established fabrication techniques
of photonic systems. As mechanisms of resonantly driven
multistability are established experimentally [70,73,74], gen-
eralization to such models seems within reach, together with
consideration of nonresonantly driven mechanisms of bista-
bility [75,76]. The described results can be applied to various
nonlinear optical systems, including nonlinear plasmonics
[77], silicon photonics [78], and vibron-polaritons [79].
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FIG. 10. Example scheme of all-to-all coupling using a spatial
light modulator (SLM). The cavity array, corresponding to an array
of micropillar cavities, photonic crystal cavities, or other set of
nonlinear modes, is coherently excited by the driving field, Fn. The
transmitted light from the cavity array is passed through a Fourier
lens (L), which maps the spatially separated modes to Fourier space.
If the SLM contains a component at the difference wave vector of the
modes, it can allow their coupling in Fourier space via diffraction.
The light is retroreflected and returned to the real space after passing
back through the original Fourier lens so as to feed back into the
cavity array.
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APPENDIX A: FEEDBACK SCHEME

Here, we present the details of a setup that can potentially
enable high connectivity for polaritonic graphs. We consider
a planar polaritonic system, for example where a cavity is
formed by distributed Bragg reflectors and the active medium
corresponds to a stack of quantum wells, hosting excitonic
quasiparticles. The lattice of localized modes can be created
by an optical potential, and each mode is fully separated
in space and can be driven resonantly. Assuming that the
substrate on which the cavity array is grown is transparent,
light is emitted through the back surface. When this emitted
light passes through a Fourier lens, the localized modes in
the real space of the microcavity are mapped to the reciprocal
space of a plane behind the lens. There one can place a spatial
light modulator (SLM), represented by material with spatially
modulated refractive index (Fig. 10). Thus, in this plane we
expect a coupling of the different modes according to the
weights given by the Fourier components of the effective
potential (refractive index variation) set by the spatial light
modulator. Placing another mirror or retroreflector behind the
spatial light modulator ensures that the light is reflected and
fed back into the cavity array. Using the Fourier lens, the
modes in the reciprocal space of the spatial modulator ψk
are then mapped back to the real-space modes of the active
medium, ψx.

As an alternative, the traditional optical matrix multiplier
method could be employed (Fig. 11). In this case the cavities

SLMFn
Cavity Array

L

L M

M

M

BS

Optical Rotator

FIG. 11. Example scheme of feedback loop providing all-to-all
coupling. The transmitted light from the cavity array is fed through
an optical matrix multiplier, composed of a combination of lenses (L)
and an SLM. The light is then reflected by a series of mirrors (M) and
an optical rotator (e.g., Dove prism) before being overlapped with the
original driving field, with the aid of a beam splitter (BS), and being
fed back into the cavity array.

are arranged into a 1D array. A lens maps their output into
an array, which is focused and modulated on a spatial light
modulator. The transmitted signal is mapped by a second lens
into a 1D array that is returned to the original cavity array via
a feedback loop.

As compared to the scheme in Fig. 10, this alternative
allows one to operate with a lower-resolution SLM (e.g., a
shadow mask could also be used), while the overall system
size is larger since the cavity array is stretched out into a 1D
rather than 2D array.

The described schemes correspond to a specific form of
optical input-output network (ION) with coherent feedback
control. The idea of ION originated from the cascade for-
malism from input-output theory [80] and dates back to early
work by Wiseman and Milburn [81]. Mathematically, it can
be treated within the SLH framework, which provides the
formal approach to treat optical systems with feedback [82].
A detailed review on the subject can be found in Ref. [83].
Given access to passive-mode-mixing devices and feedback,
networks of arbitrary connectivity can be arranged in coherent
fashion. Here, we start with providing the generic approach
and show a simple example, leaving the question of a full
multimode network for a separate specialized study.

The central object of the SLH theory corresponds to the
system operator G described as a triple G = (S, L, H ) that
contains operators of the input-output scattering (S), the cou-
pling between the system and input-output ports (L), and
the system Hamiltonian (H). The equation of motion for the
unitary evolution operator of the system U (t ) can be generally
written as

dU (t ) = {−(
iH + 1

2 L†L
)
dt + LdB†

in(t ) (A1)

− L†SdBin(t )
}
U (t ), (A2)

where the evolution is written in Ito form and dBin(t ) is an
increment of the input field vector [83]. Then, given the set
of modes {â j}N

j=1, the Heisenberg equations of motion for any
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FIG. 12. (a) General N-mode SLH scheme with the feedback
loop through a retroreflector. (b) The two-mode system with feed-
back that allows for effective coupling between the modes through
optical loops and phase shifters.

mode â j can be written as

â j (t ) = U †(t )â jU (t ), (A3)

where U (t ) is obtained from Eq. (A1) by integration. The
behavior of the composite system is then defined by the
lumped triple GF = (SF , LF , HF ). In schematic fashion the
SLH equivalent of the retroreflector scheme is shown in
Fig. 12(a). Here, the first block corresponding to the SLH
triple GS describes the system, the second block denotes
the retroreflector triple GR, followed by the coherent feed-
back loop. To provide a concrete and intuitive example, we
consider the two-mode case with phase shifts and feedback,
which models the simplest retroreflector. The scheme is pre-
sented in Fig. 12(b). Here G1 = (I2, [L1, L1′ ]T , H1) and G2 =
(I2, [L2, L2′ ]T , H2) correspond to mode 1 and 2 triples. In our
case Hamiltonians correspond to �1,2â†

1,2â1,2 mode energies;
L1,1′ and L2,2′ describe the input-output port couplings and for
equal coupling rates κ1,2 read L1,1′ = √

κ1â1, L2,2′ = √
κ2â2.

The scattering matrix is represented by the identity I2 acting
in the Hilbert space of the two modes. The phase shifter is
described by Gφ = (eiφ, 0, 0). Finally, the output of the circuit
can be written using the SLH formalism, leading to

GF = (SF , LF , HF ) = G1 � Gφ � Gφ � G2, (A4)

where the � operation denotes the concatenation product for
the circuits. After the feedback reduction and elimination of
the internal connections, the reduced circuit can be written as
triple Gred = (Sred, Lred, Hred ), with

Sred = eiφI2, (A5)

Lred =
(

eiφL1 + L2

eiφL2′ + L1′

)
, (A6)

Hred = H1 + H2 − i

2
(eiφL1L†

2 − e−iφL†
1L2

+ eiφL†
1′L2′ − e−iφL1′L†

2′ ). (A7)

An important consequence of the presence of the feedback
loop along with the shift is a generation of the coupling
between modes. This can be seen in the effective Hamiltonian
Hred ∝ i(â†

1â2 − â†
2â1), once we use the explicit form for

the input-output coupling operators. The magnitude of the

FIG. 13. (a) Bus-coupled polaritonic boxes. The all-to-all cou-
pling is realized though a detuned common bus (top channel).
Additionally, the edge coupling for the particular graph is realized
with a multimode bus (bus α, bottom) with multiplexed coupling.
(b) The proof-of-principle calculation of a six-mode system coupled
through three bus modes. The plot shows the intensity for each mode
( j = 1, . . . , 6) for the full time-dependent calculation (curves) and
effective eliminated version (dots), which coincide.

coupling is then controlled by the parameters of the retrore-
flector, which can mix the signals with different weights.

APPENDIX B: BUS-COUPLED SCHEME

We consider a chain of unconnected polariton wells, where
the wave function in each box is described by the mean field
ψn. We take the situation in which there is no direct coupling
between different polariton boxes, but there is a channel that
runs alongside the chain that represents a coherent polariton
bus, similar to a quantum-connecting bus used for microwave
circuits [84]. In particular we consider two types of buses, be-
ing geometrically suitable for the graph-partitioning problem
[bus α and bus β in Fig. 13(a)].

The top channel is described by macroscopic wave func-
tion χ0, and is detuned to frequency f0. This would allow us
to effectively realize homogeneous all-to-all coupling, which
is for instance required by the second term in Hamiltonian (9)
of the main text. The bottom channel contains a set of modes,
described by mean field χm (m � 1) and bare frequency fm.
If we further imagine that the potential between the bottom
channel and each polariton box is modulated in time, then we
can write the equations of motion:

∂ψn

∂t
= (−i�n − γn/2)ψn + Fn − iJ0χ0

− i
∑

m

Jnm cos(ωmt )χm − |ψn|2ψn, (B1)

195301-9



KYRIIENKO, SIGURDSSON, AND LIEW PHYSICAL REVIEW B 99, 195301 (2019)

∂χm

∂t
= −iωmχm − i

∑
n

Jnm cos(ωmt )ψn − χm, (B2)

∂χ0

∂t
= −iω0χ0 − iJ0

∑
n

ψn − χ0, (B3)

where Fn is a coherent pump amplitude for the nth mode
with detuning �n and decay γn. Here Jnm characterizes the
coupling strength between the localized mode ψn and channel
mode χm, which is modulated at frequency ωm. J0 is the
homogeneous coupling to the β bus.

We account for nonlinear losses in the equation for the lo-
calized modes, which may undergo condensation (the amount
of nonlinear losses has been scaled to unity through the defin-
ition of ψ and χ ). We also account for losses of the channel
modes, by an amount scaled to unity through the timescale.
We consider the bus modes to be nondriven. Now, let χm =
χ ′

me−iωmt , such that

∂χ ′
m

∂t
= −i

∑
n

Jnm cos(ωmt )eiωmtψn − χ ′
m

≈ −i

2

∑
n

Jnmψn − χ ′
m, (B4)

where we neglect fast-oscillating components. Solving the last
equation for the stationary state and assuming fast dynamics
for the bus, we can rewrite the system using effective cou-
plings for the modes. Similarly, the stationary solution for χ0

(static bus) gives

χ0 = − J0

ω0 − i

∑
n

ψn. (B5)

Substituting the stationary solutions into Eq. (B1) gives the
effective couplings. This ultimately allows us to arrange J and
Jβ terms for the partitioning problem.

To test the validity of the used approximation, we perform
the dynamical simulation of an N = 6 mode system with
three dynamical buses, which are detuned by 25, 10, and −15
energy units (measured by the channel’s decay rate), and are
coupled through Jnm = 1. Other parameters are Fn = γn = 1,
J0 = 0, and we take random initial conditions. The results

(a) (b)

FIG. 14. Success probability (a) and energy difference from the
ground state (b) for solving random fifteen-mode knapsack problems
with a polariton simulator. The problem size is fixed, such that as
in the main text six coins are considered, although here they have
random weights and costs. The knapsack problem again seeks to
maximize the cost, while not exceeding a fixed maximum weight.
Other parameters were taken the same as in Fig. 9.

are shown in Fig. 13(b), and reveal that the mode intensities
can be successfully described by the effective theory, where
time-dependent coupling is converted into selective intermode
interaction.

APPENDIX C: RANDOM KNAPSACK PROBLEMS

As shown in the main text, the success probability of solv-
ing the knapsack depends on the chosen system parameters, in
particular Finit and J . In principle the optimum parameters can
depend on the specific instance of the knapsack problem. To
avoid optimization of each problem from scratch, in Fig. 14
we consider the system performance averaged over randomly
generated knapsack problems of a fixed size.

It can be seen that general optimum parameters can be
identified even when averaging over randomly generated
problems. Although the success probability is less than for
optimizing a specific problem, it is notable that the energy
difference from the ground state is small. This result shows
that when one is interested in solving many different knapsack
problems, for example an economics problem that varies
daily, good parameters can be set from the beginning and
reused.
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