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INTRODUCTION. Peru’s rainy season falls in the 
first quarter of the year, often dubbed the “landslide 
season,” with the direst downpours typically occur-
ring in March (Lavado Casimiro et al. 2012). The 
rains of March 2017, however, were deadlier than 
usual and wreaked unprecedented havoc, leaving half 
of the country in a state of emergency. Widespread 
flooding and landslides affected 1.7 million people, 
while the death toll reached 177 and an estimated 
total damage of $3.1 billion was reported (EM-DAT 
2017). Anomalously warm sea surface temperatures 
(SSTs) in the region, characteristic of El Niño condi-
tions, favor extreme rainfall (Sanabria et al. 2018). 
Although a marked SST anomaly was present off the 
Peruvian coast at the time of the event (Fig. 1a), the 
strong global El Niño of 2015–16 had already come 
to an end, as demonstrated in the time series of the 
Southern Oscillation index (SOI; CPC 2017) shown in 
Fig. 1b. The ocean at the peak of the March rains was 
warmer than during the preceding El Niño (Fraser 
2017), creating conditions that are commonly referred 
to as a “local” or “coastal” El Niño, also reflected in 
the anomalously high value of the Niño 1 + 2 index in 
March (Trenberth et al. 2016). A possible atmospheric 
triggering mechanism of the 2017 coastal warming 
was proposed by Garreaud (2018). While the presence 
of a warm SST anomaly increases the likelihood of 
extreme rainfall in the region, anthropogenic climate 
change may also make a contribution, for example, via 
a long-term warming of the ocean (Rhein et al. 2013) 

that could intensify the local El Niño. A similarly 
catastrophic event associated with the El Niño of 1998 
amassed more rainfall in the region, but, as reported 
in the media, what made March 2017 distinct was the 
fact that heavier rainfall fell in shorter periods. This 
study employs a well-established probabilistic event 
attribution methodology (Stott et al. 2016) to examine 
the effect of man-made climate change on extreme 
rainfall events in Peru similar to 2017, over the entire 
month of March, as well as on shorter, submonthly 
time scales.

Data and methods. Attribution analyses use classes of 
extreme events that share some basic characteristics 
with the event under investigation (Christidis et al. 
2018). Here, extreme rainfall averaged over the 
Peruvian region (69°–83°E, 0°–20°S) is defined as the 
exceedance of a high threshold. Three climatologi-
cal thresholds are employed to examine extremes of 
different rarity, namely the 1-in-10-, 1-in-50-, and 
1-in-100-yr events during 1960–2015. This period is 
modeled by 15 ensemble simulations of the historical 
climate with HadGEM3-A, the model underpin-
ning the Hadley Centre’s event attribution system 
(Christidis et al. 2013; Ciavarella et al. 2018). Different 
event durations are also considered by computing 
the average rainfall over the month of March, the 10 
and 5 wettest consecutive days in March (R10x and 
R05x), and the wettest day of that month (R01x). The 
monthly mean anomaly pattern in March 2017 com-
puted with data from the NCEP–NCAR reanalysis 
(Kalnay et al. 1996) is illustrated in Fig. 1c. The total 
rainfall over the reference region is about 5 standard 
deviations above the historical mean estimated 
with the reanalysis data and this is also the case in 
subregions over the mountains and to the east of the 
Andes (see the online supplemental material). March 
rainfall time series constructed with NCEP–NCAR 
and HadGEM3-A data are shown in Fig. 1d. Year 
2017 stands out as a record in the reanalysis, which is 
also found to be the case in the shorter GPCP dataset 
(Huffman et al. 2009), but not in the GPCC record 
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(Schneider et al. 2016). Rainfall over shorter time 
scales (R10x, R05x, R01x) is found to reach record 
levels in 2017 as well. Time series from the long (mul-
tidecadal) HadGEM3-A simulations are also shown 
in Fig. 1d. In addition to the experiment representing 
the historical climate that includes all (both natural 
and anthropogenic) external forcings (experiment 
ALL), a second set of 15 simulations has also been 
produced, representing a hypothetical natural climate 
without anthropogenic forcings (NAT). HadGEM3-A is 
an atmospheric model and therefore oceanic conditions 
need to be prescribed. In the ALL experiment these 
come from the HadISST dataset (Rayner et al. 2003). 
In the NAT simulations, an estimate of the anthropo-
genic SST change is subtracted from the observations, 
obtained from simulations with 19 coupled models 
(http://portal.nersc.gov/c20c/experiment.html) and 
simple empirical relationships are used to adjust the sea 

ice to cooler SSTs (Christidis et al. 2013). The rainfall 
time series display characteristic peaks during major El 
Niño events (e.g., 1982/83), also evident in the model 
simulations which retain the ENSO signal through 
the prescribed boundary conditions. Interestingly, 
the 1997/98 El Niño, which had devastating impacts 
in Peru, is more pronounced in the model, probably 
indicating a reanalysis shortcoming.

This study addresses two questions: 1) Has 
anthropogenic inf luence altered the likelihood of 
the 2017 extreme rainfall in Peru, given the warm 
oceanic anomaly present at the time? 2) How does 
the presence of such an SST anomaly affect the cur-
rent likelihood of extreme rainfall in the region? To 
answer these questions the Hadley Centre’s event 
attribution system is employed. Large 525-member 
ensembles of ALL and NAT simulations of the first 
quarter of 2017 were generated, as part of the sys-

Fig. 1. (a) Mean SST anomalies (°C) in March 2017 from HadISST. (b) Time series of monthly SOI values in re-
cent years. Negative values (in red) indicate El Niño and positive values (in blue) La Niña conditions. (c) Mean 
rainfall anomalies (mm) in March 2017 estimated with NCEP–NCAR reanalysis data. (d) Time series of the 
March mean rainfall anomaly in the region of Peru constructed with NCEP–NCAR reanalysis data (black line) 
and HadGEM3-A data from the ALL (orange lines) and NAT (blue lines) multidecadal simulations. All anomalies 
are relative to 1961–90. The black box in (a) and (b) marks the study area.
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tem’s quasi-operational setup. The coastal El Niño 
is also manifest in the NAT simulations, although 
the cooler ocean under preindustrial conditions 
takes the edge off the intensity of the 2017 anomaly 
(see the online supplemental material). The first 
question of the study is addressed by comparing 
estimated probabilities of extremes obtained with 
the ALL and NAT simulations of March 2017 (525 
estimates per experiment). The impact of the coastal 
El Niño in the present-day climate is examined by 
comparing the 525 ALL simulations for 2017 with 
their counterparts of the historical climate, from 
which the last 10 years (2006–15) are extracted. The 
selected years provide a sample of 150 (15 runs × 10 
yr) probability estimates and are used as a proxy of 
the current climate under any oceanic conditions. 
Near-zero mean March SST anomalies over this 
decade (see the supplemental material) indicate 
no SST bias in the near-present-day climate. As in 
previous work, extreme probabilities are computed 
with the generalized Pareto distribution and their 
associated uncertainties with a Monte Carlo boot-
strap procedure (Christidis et al. 2013). It is essential 
that models in attribution studies are evaluated to 
establish whether they are fit for the purpose (Vau-
tard et al. 2018). Despite the lack of long and reliable 
observational rainfall records for Peru available 
to the authors, standard evaluation assessments 
against reanalysis data applied to HadGEM3-A 
indicate that the model’s representation of rainfall 
variability and extremes in the region is consistent 
with the reanalysis (see the supplemental material). 

While it cannot be established beyond doubt that 
the modeled rainfall over the complex topography 
of the study region is reliable, the attribution results 
presented below ought to be viewed in the light of 
this uncertainty.

Results. Return times (reverse probabilities) of extreme 
rainfall events are reported in Table 1. A comparison 
between the ALL and NAT estimates for 2017 indi-
cates that anthropogenic forcings unambiguously 
increase the likelihood of extremes across events of 
different rarity and duration. Human influence leads 
to a shift in the March rainfall distribution illus-
trated in Fig. 2a (similar shifts also found for shorter 
rainfall durations). The estimated risk ratios plotted 
in Fig. 2b reveal greater anthropogenic influence on 
rarer events (1 in 100 yr), although the uncertainty 
in the likelihood of these events also increases. The 
effect of the warm SSTs is inferred by comparing 
ALL simulations of 2017, when a strong anomaly 
was present, with ALL simulations of recent years 
representing a wider range of oceanic conditions. 
Figures 2c and 2d show that the SST anomaly of 2017 
leads to a marked shift in the rainfall distribution and 
in most cases increases the likelihood of extremes 
by at least a factor of 3. The probabilities of the rarer 
events without the effect of a strong SST anomaly 
are very small and hence their estimates suffer from 
large uncertainties (Table 1). Risk ratios estimated 
in subregions with different topography indicate no 
peculiar orographic effect on the attribution find-
ings (supplemental material). It should be noted that 

Table 1. Return times (in years) of high rainfall events in Peru estimated using the ALL and NAT experi-
ments for year 2017 and the multidecadal ALL simulations for years 2006–15. Estimates are provided for 
the total rainfall in March, the 10 and 5 wettest consecutive days, and the wettest day in March. The best 
estimate (50th percentile) of the return time is reported together with the 5%–95% uncertainty range (in 
parentheses).

March R10x R05x R01x

1-in-10-yr events

ALL 2017 1.99 (1.85 to 2.14) 2.10 (1.95 to 2.27) 2.22 (2.06 to 2.43) 3.62 (3.14 to 4.08)

NAT 2017 3.44 (3.08 to 3.90) 3.40 (3.05 to 3.83) 4.26 (3.79 to 4.74) 6.91 (5.88 to 8.25)

ALL 2006–15 10.23 (6.88 to 17.08) 9.41 (7.02 to 13.65) 12.25 (7.48 to 19.40) 10.39 (5.75 to 22.64)

1-in-50-yr events

ALL 2017 6.02 (5.23 to 6.98) 8.71 (7.45 to 10.22) 10.19 (8.71 to 12.24) 14.48 (11.78 to 18.47)

NAT 2017 19.51 (15.33 to 25.97) 22.02 (17.10 to 29.91) 46.92 (33.06 to 72.72) 34.92 (25.43 to 51.07)

ALL 2006–15 Large uncertainty (45 to >104)

1-in-100-yr events

ALL 2017 12.09 (9.60 to 15.46) 19.25 (15.46 to 25.27) 23.97 (18.88 to 32.46) 20.23 (15.89 to 26.56)

NAT 2017 55.28 (40.02 to 88.93) 74.26 (49.45 to 131) 1945 (523 to >104) 56.93 (39.13 to 96.06)

ALL 2006–15 Large uncertainty (100 to >104)
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Stott 2014), it was verified that the modeled oceanic 
warming used in this study to produce the boundary 
conditions is broadly consistent with observed SST 
trends in the region, which increases confidence in 
the results. Uncertainty about the accuracy of the 
simulated rainfall in the region remains the major 
caveat of this study, traced to the lack of reliable 
observational datasets for a detailed model evalu-
ation. Hence, the attribution results reported here 
only provide a useful first assessment of the event’s 
main drivers rather than a definitive measure of their 
effect. Moving toward the integration of the Hadley 
system into an attribution service that outputs as-
sessments of extremes on a regular basis, could be 
key to well-informed decision-making, especially 
in the aftermath of catastrophic events like the one 
investigated here.

uncertainties related to the boundary conditions and 
model’s ability to represent regional rainfall are also 
present and will affect to some extent the attribution 
results shown here.

Conclusions. Coastal El Niño conditions and man-
made climate change both favor extreme rainfall in 
Peru. When the effect of large positive SST anomalies 
similar to 2017 is factored in, wet extremes are esti-
mated to be at least 1.5 times more likely to happen 
(or 2–3 times for more rare events) compared to pre-
industrial times. The coastal El Niño is estimated to 
increase the likelihood of extremes 3–6 times (best 
estimate), or more than 10 times for rarer events. 
Although model dependency, and in particular the 
uncertainty in the NAT boundary conditions, may 
affect the estimated probabilities (Christidis and 

Fig. 2. (a) Normalized distributions of the March 2017 mean rainfall in Peru constructed with data from the 
ALL (red) and NAT (green) experiments. Events with different climatological return times (1-in-10-, 1-in-50-, 
and 1-in-100-yr) are represented by the vertical blue lines. (b) Risk ratio estimates showing the effect of human 
influence on March rainfall, R10x, R05, and R01x extremes. Events with different climatological return times 
are represented by different shades of blue. The best estimate (50th percentile) is marked by a cross and the 
5%–95% uncertainty range by whiskers. (c) As in (a), but for distributions constructed with data from the ALL 
experiments for March 2017 (red line) and the same month in years 2006–15 (orange line). (d) As in (b), but for 
the effect of the 2017 SST anomalies on rainfall extremes.
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