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ABSTRACT

The East Asian summer monsoon (EASM) is important for bringing rainfall to large areas of China.

Historically, variations in the EASM have had major impacts including flooding and drought. The authors

present an analysis of the impact of anthropogenic climate change on EASM rainfall in eastern China using a

newly updated attribution system. The results suggest that anthropogenic climate change has led to an overall

decrease in total monsoon rainfall over the past 65 years and an increased number of dry days. However, the

model also predicts that anthropogenic forcings have caused the most extreme heavy rainfall events to be-

come shorter in duration and more intense. With the potential for future changes in aerosol and greenhouse

gas emissions, historical trends in monsoon rainfall may not be indicative of future changes, although extreme

rainfall is projected to increase over East Asia with continued warming in the region.

1. Introduction

The East Asian summer monsoon (EASM) brings

much-needed water for agriculture to most of eastern

China. In recent decades southern provinces of China

have experienced an increased frequency of severe

flooding during the monsoon season. In contrast north-

ern provinces of China have experienced an increase in

severe summer droughts [for details of the northern

drought–southern flood pattern see, e.g., Qian and Zhou

(2014); also see the FloodList Copernicus project (http://

floodlist.com/tag/china)]. Understanding changes in past

and future monsoon rainfall patterns can have impor-

tant implications for water management and urban

planning.

The Clausius–Clapeyron relation states that the atmo-

sphere can hold 7%more moisture per degree Celsius of

warming. Basic physical expectations are that a warmer

world should experience increased amounts of rainfall. A

simple interpretation of the Clausius–Clapeyron relation

is that the total quantity of rainfall should increase by 7%

per degree Celsius of warming globally. However, in

reality different surfaces heat at different rates, and in

the case of anthropogenically induced global warming,

greenhouse gases do not cause the atmosphere to be

heated equally at all levels. Additionally, the emission of

aerosols can change cloud formation properties, alter

the locations of cloud nucleation sites, and cause local-

ized cooling. Changes in chemistry and thermodynamics

mean that increases in temperature may not necessarily

lead to a uniform increase in precipitation in all loca-

tions or at all intensities of rainfall.

Heating of the lower troposphere as a consequence of

increased concentrations of well-mixed greenhouses

gases (GHGs) leads to an increase in the height of the

tropopause. GCM-based studies have argued that

warming will cause increases in cloud height and stron-

ger convection as a result (see Fowler and Hennessy

1995; Mitchell and Ingram 1992; Trenberth et al. 2003).

Other studies have argued that surface warming leads to

decreases in convective mass fluxes with the heating of

the upper troposphere. It is instead argued that increases

in horizontal transport due to an enhanced pattern of

evaporation minus precipitation will cause increased

convergence (e.g., Held and Soden 2006). With in-

creased moisture content of the air, stronger convection

or convergence will lead to more severe storms with

higher hourly and total rainfall (Fowler and Hennessy

1995; Trenberth et al. 2003; Held and Soden 2006).
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Several studies of global rainfall trends have found

that global annual mean and total precipitation has in-

creased by 1%–3% per degree Celsius of warming (e.g.,

Allen and Ingram 2002; Wu et al. 2013; Donat et al.

2016). At the same time extreme rainfall, defined

by upper-decile daily total orR3 1 day, has increased by

6%–7% per degree (Celsius) of warming (e.g.,

Trenberth et al. 2003; Westra et al. 2013). The increase

in extreme heavy rain is often found to be at the expense

of light rain, with studies finding a decrease in the

number of light rain days, or total rain from light rain

events, coinciding with increased totals or frequency

of heavy rain (e.g., Trenberth et al. 2003; Ban et al.

2015; Allen and Ingram 2002).

Regional changes in rainfall totals and a changing

distribution of rainfall between light and heavy events

are also observed. In the current study we focus our

attention on China. The annual rainfall climatology of

China can be broadly split into two halves, a cold, dry

winter monsoon from October to March and a warm,

wet summer monsoon from April to September. During

the winter monsoon continental cold, dry air flows

southward from high latitudes, bringing a cold, dry

winter. During the summer monsoon, warm moist air

flows from the ocean to the south of China and con-

verges with the cool, dry air to the north. The conver-

gence causes the formation of a rainband over the

Indochina Peninsula, and as the summer season prog-

resses the rainband moves steadily northward over

eastern China (and is known as the mei-yu), eventually

as far north as Japan (where it is referred to as the baiu)

and the Korean Peninsula (where it is referred to as the

changma). Toward the end of the summer the rainband

then retreats southward [for a summary of the charac-

teristics of the East Asian summer monsoon, see Ding

and Chan (2005), Hsu et al. (2014), and Xue et al.

(2015)].

As mentioned above, in recent years southern China

has seen more frequent incidents of flooding and

northern China has seen more frequent severe droughts

during the monsoon season when compared to historical

monsoon seasons. Changes in monsoon total rain and

changes in circulation patterns that dictate the most

northern extent of the mei-yu front each year have been

correlated with modes of natural variability, such as the

Pacific decadal oscillation (PDO) (Zhu et al. 2011; Qian

and Zhou 2014; Qian et al. 2014). Several studies have

also noted changes in total summer rain that coincide

with the increasing trend in global temperature (Liu

et al. 2005; Zhai et al. 2005; Su et al. 2006; Fu et al. 2008),

and some studies suggest links with local emissions of

anthropogenic aerosols (e.g., Qian et al. 2009; Fu and

Dan 2014; Deng and Xu 2015). Many studies also note a

change in character of summer rainfall in eastern China,

with increases in numbers of heavy rain days and de-

creases in numbers of light rain days reported (Zhai

et al. 2005; Liu et al. 2005; Fu and Dan 2014; Fu

et al. 2008).

In this study we examine changes in the East Asian

summer monsoon rainfall over China using an ensemble

of simulations from an atmosphere-only climate model

representing present-day conditions with anthropogenic

influences and comparing these to an ensemble repre-

senting conditions without anthropogenic influences.

We compare characteristics of light and heavy rain

during the monsoon in model experiments with and

without climate change and compare our results with

those of previous observational studies.

2. Data

Weuse amodel ensemble fromHadGEM3-A at N216

resolution, run in the atmosphere-only mode with pre-

scribed historical sea surface temperatures (SSTs) from

HadISST, version 1 (Rayner et al. 2003). The resolution

is approximately 0.58 3 0.88, equivalent to;50 km at the

latitude range covered by China. The ensemble contains

15 members, which include both anthropogenic and

natural forcings (ALL) during 1960–2015. This is com-

pared with an ensemble of 15 runs of the same model

that contain only natural forcings (NAT), in which the

SSTs have been adjusted to remove anthropogenic

warming. This anthropogenic warming is calculated from

the difference between the mean patterns derived

from ALL and NAT simulations in 19 model ensembles

from CMIP5 (Taylor et al. 2012). This pattern of SSTs

is subtracted off the SSTs for the ALL experiment to

provide the SSTs used in the NAT experiment. We also

adjust the sea ice concentration for the NAT experiment

using simple empirical relationships between SSTs and

sea ice concentrations. Thesemethods and full details on

model experiment setups are described in Christidis

et al. (2013) and A. Ciavarella et al. (2017, manuscript in

preparation).

To verify the model output we use the APHRODITE

observational gridded daily precipitation dataset for

East Asia (Yatagai et al. 2012). This dataset runs during

1960–2007 and is gridded to approximately the same

resolution as the model (0.58 3 0.58). Han and Zhou

(2012) compare the APHRODITE dataset to daily

rainfall records from 559 rain gauges spread over China.

They find that theAPHRODITE data show very similar

rainfall amounts for mean variables, such as seasonal

total, and accurately characterize the progression of the

seasonal rainband. However, they find that the gridding

of spatially sparse station data in APHRODITE leads to
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underestimates of precipitation intensity and over-

estimates of precipitation frequency compared to the

station data. They show that annual mean heavy rainfall

totals are underestimated and light tomoderate rainfall

totals are overestimated in the gridded data. A large

difference is also found between the station and

APHRODITE data for spatial patterns of trends in

intense rainfall, and the APHRODITE data un-

derestimate trends in the recent northern drought–

southern flood pattern compared to station data. With

these limitations in mind, we use the APHRODITE data

for model verification of seasonal rainfall characteristics

and focus on the model output for examining trends in

rainfall and changes in extreme rainfall characteristics.

For consistent comparison, we regrid both the obser-

vations and model to an identical 18 3 18 grid, taking
daily area means over the cells within the 18 3 18 grid. A
map of the mean and maximum numbers of stations per

grid cell for APHRODITE between 1960 and 2007 is

shown in Fig. 1 (first row). As is clear in the figure, in

western China station coverage is spatially very sparse.

Additionally, being a desert, the monsoon does not

reach this region, so we exclude western China from our

analysis. The location of northeast (NE), northeast coast

(NEC), southeast coast (SEC), southeast (SE), south-

central China (SCC), north-central China (NCC), and

central west (CW) regions is shown in Fig. 1.

3. Model evaluation and climatology

For this study we define the monsoon season to be

from the beginning of April to the end of August.

Figure 2 shows the climatological rainfall, averaged over

1960–2000, for the monsoon season from 5-day total

rainfall for four time slices throughout the monsoon

season. Being a multidecadal average the detailed fea-

tures of the monsoon do not appear very strongly owing

to their spatial variation between years. However, some

indication of the general location of themei-yu front can

be seen in both observations and model. The model

reproduces fairly well the spatial location of the ob-

served rainfall and the progression of the locations of

high and low rainfall throughout the monsoon season.

However, the model consistently overestimates the

total rainfall. When normalized to the observations

[dividing out by the eastern China area-mean ratio of

observed total to model total; Fig. 2 (right)], the model

appears qualitatively similar to the observed rainfall

patterns.

Figure 2 also shows the climatological (1960–2000)

mean total seasonal rainfall and climatological seasonal

maximum daily rainfall. As is again clear in this figure,

the model reproduces quite well the spatial patterns of

rainfall but tends to overpredict rainfall totals. When

normalized the model mean appears qualitatively simi-

lar spatially to the observations. We use the raw (non-

normalized) model output for the rest of our evaluation

and for our analysis of the monsoon.

We group areas of China into climatologically similar

regions, indicated in Fig. 1. We exclude regions with

very low numbers of observation stations. These regions

also tend to be in the desert parts of China and therefore

receive very little rainfall annually and are not clima-

tologically subject to rainfall as a result of the monsoon.

Figure 1 (third and fourth rows) shows the intensity

distribution of daily precipitation total for all years be-

tween 1960 and 2000. This figure indicates how much

daily total rainfall contributes to the total monsoon

seasonal rain. For the central four regions the model

reproduces the shape of the distribution well. However,

for all the regions the model peak of the distribution of

daily rainfall contribution is at a somewhat larger value

than is observed and shows a fatter tail at the high daily

total end of the distribution. However, as previously

noted, the APHRODITE gridded data may un-

derestimate the heavier end of the daily precipitation

distribution. This could lead to a skewing to the lighter

end of daily precipitation in the observations. Alterna-

tively it could be that the model systematically over-

estimates daily rainfall in eastern China during the

monsoon season.

Figure 3 shows the 1960–2000 climatology of 5-day

consecutive (nonoverlapping) total rain throughout the

monsoon season for the regions shown in Fig. 1. As in

earlier figures, the model reproduces the spatial patterns

and timing of the monsoon rainfall fairly well but

overestimates the total rainfall. For three northern re-

gions the model spread encompasses the observed to-

tals. For SEC the model spread and mean are close to

the observed values, but generally for the southern re-

gions the mean 5-day totals are greater than observed.

The reported underestimation of extreme rainfall in

APHRODITE (Han and Zhou 2012) may contribute to

the discrepancy between observations and models. We

also examine this claim using a small number of publicly

available station data for China, which have undergone

basic quality control. In Fig. 4 we show the same as Fig. 3

but for one station per region for six of seven regions,

compared with grid cells containing the station location

in the model, and APHRODITE data - station locations

are indicated in the figure. While the station is a point

source and the gridded data are a representation of a

larger area, this comparison gives a reasonable idea of

how well the model and gridded observations perform.

In Fig. 4 it is generally clear that the station data 5-day

rainfall totals are slightly higher than the APHRODITE
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data. As noted in Han and Zhou (2012), in Fig. 4 the

APHRODITE data show notably lower total rain for

heavy rainfall days than is recorded in the station data.

This figure shows themodel data to bemore similar to the

station data than the APHRODITE data. This compar-

ison provides some crude measure of observational

uncertainty. While the station data are a point source,

estimates of 5-day total rainfall may be less biased than

the larger gridbox average from APHRODITE.

When compared to APHRODITE our model re-

produces the main features of the monsoon fairly ac-

curately. Comparison with data from a few stations

FIG. 1. (first row) The 1960–2007 (left) mean and (right) max number of stations per square-degree grid cell from which the

APHRODITE observation data are constructed. (second row) China divided into climatologically similar regions. For verification we

exclude areas of China with very low observation station density and very little total monsoon rainfall. (third and fourth rows) Pre-

cipitation intensity distribution (from area daily mean) for regions in China, climatology for 1960–2000. The contribution of daily

rainfall total to the total monsoon rainfall is shown: observations (black) andALL (red) andNAT (green) experiments (the green line is

often hidden behind the red in these plots).
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FIG. 2. (first, second, third, and fourth rows) The 1960–2000mean pentad climatology [5-day total rainfall; mm (5 days)21] for (left)ALL

ensemblemean, (center) observations, and (right) model mean when normalized to the observed average. (fifth row) Seasonal mean total

rain (mm) for monsoon season, mean of 1960–2000. (sixth row) Max daily total rain (mm) for monsoon season, mean of 1960–2000.
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shows that the model also reproduces extreme rainfall.

Although the model seems to generally overestimate

rainfall totals compared to the observations, the offset

between the two is fairly consistent, so for examining

trends in monsoon rainfall the model should be

adequate.

It is interesting to note that the model used here can

reproduce themain features of the EASM, including the

mei-yu front and its progression. This has been chal-

lenging for models in the past including many CMIP5-

generation models. The improved resolution of models

from N96 (as used by most CMIP5 models) to N216 (as

used by our model) has been shown to produce more

realistic precipitation globally (Demory et al. 2014) and

regionally (Schiemann et al. 2014; Vellinga et al. 2016)

andmore realisticmonsoon systems (Johnson et al. 2016).

Our model uses prescribed SSTs and sea ice coverage,

one advantage of which being that it will capture many

ongoing large-scale modes of natural variability, such

as El Niño. This and the ‘‘correct’’ forcing from sea

surface temperature will allow a more accurate mon-

soon to be produced for a specific year than a coupled

model. The physical realism of our model makes it a

suitable tool for studying changes in the characteristics

of the EASM.

4. Analysis of trends in monsoon rainfall

We calculate anomalies with respect to the 1960–79

mean value for the each of ALL and NAT and obser-

vations to illustrate trends in monsoon rainfall. Anom-

alies are only calculated for illustrative purposes and do

FIG. 3. The 5-day total rainfall time series throughout the monsoon season, averaged over 1960–2000. Regions corresponding to Fig. 1

are indicated above panels. Red and green lines are ALL and NAT ensemble means, and red and green shading are ensemble range

(appears brown where the two overlap). Black line is the observations.
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not inform the results shown below. We choose this

baseline, which is shorter than the more commonly used

1961–90 baseline, in order that the reader might see

changes in the metrics examined by eye.

The time series in Fig. 5 shows the seasonal total

monsoon rain anomaly for the SEC region, and we use

SEC as an example for the rest of the results presented.

No clear trend is seen for the time series of the seasonal

total monsoon rain, and the interannual variability is

large for all of the regions indicated in Fig. 1. There is no

clear difference between the ensemble means of the

ALL and NAT experiments for most of the time series;

however, there is a difference between the two for the

most recent 5 years (2010–15). The time series of mean

daily total rainfall also shows no trend and large

variability (not shown), and similarly variable time se-

ries, with lack of clear trends, are found for mean 5-day

total rain and maximum 5-day total rain. Since the time

series data are very noisy and trends are likely to be well

within the internal variability, we focus on the differ-

ences between the distributions of the ALL and NAT

ensembles for the most recent 15 years when presenting

quantitative results.

Figure 5 also shows the total number of dry days in the

monsoon season (rainfall total less than 1mmday21).

For all regions the ALL ensemble mean shows an in-

creased number of dry days compared to the NAT en-

semble mean, and the difference between the two

ensembles appears greatest in more recent years sug-

gesting an increasing trend in dry days in the ALL

FIG. 4. The 5-day total rainfall time series throughout the monsoon season, averaged over 1960–2000. Blue line shows data for an

individual station, indicated in the map with a blue dot. Black line is APHRODITE and red and green lines are ALL and NAT ensemble

means, respectively. The APHRODITE, ALL, and NAT are for the individual grid cell in which the station lies.
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ensemble. The variability of the model and the obser-

vations are again quite large and trends (if present) are

not very clear. Given that the monsoon total rain shows

no clear change, an increase in the number of dry days

during the monsoon could imply an increase in rainfall

total per day on wet days.

Previous studies have noted changes in observed

rainfall when the season is divided up into deciles of

daily total rain (e.g., Liu et al. 2005; Fu andDan 2014; Fu

et al. 2008). For our model ensemble we divide all the

wet days (rainfall total greater than or equal to

1mmday21) in the monsoon season into deciles of daily

total rain—where each decile contains 10% of the total

seasonal rainfall. We define the decile bin edges using all

the members of the NAT ensemble during 1960–2015.

The upper and lower limits for each bin are then applied

to the ALL ensemble. Figure 6 shows the change in total

rain in each decile for the last 20 years of data with re-

spect to the 1960–79 baseline climatology. Some regions

show changes in the distribution of rainfall totals

FIG. 5. (top) Time series for SEC (left) monsoon season total rainfall (anomaly with respect to 1960–79) and (right) total dry days during

themonsoon. Colors as in Fig. 3. (middle)Histograms with fitted PDFs for themost recent 20 years of the time series (1996–2015) forALL

and NAT; black line indicates the mean of the NAT ensemble, dashed line indicates the mean of ALL ensemble, and dot–dashed line

indicates 10th and 90th percentiles of NAT ensemble for total rainfall and days below 1mm, respectively. (bottom) Probability ratio DP
maps between ALL and NAT ensembles, with respect to the mean of the NAT ensemble for all ensemble members during 1996–2015.

Black crosses indicate grid cell where DP is not significant at a 2s (95%) level.
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FIG. 6. (first row) Fractional total rainfall change for 1996–2015 compared to 1960–79 for each decile of daily rainfall for SEC. (left) The

DPmap for (second row) first-decile total rain, (third row) tenth-decile total rain, and (fourth row) tenth-decile rain per day, with respect

to the mean of the NAT ensemble for all ensemble members between 1996 and 2015. Black crosses indicate grid cell where DP is not

significant at a 2s (95%) level. (right) Histograms for the variables in the maps shown for SEC. Solid line indicates the mean of NAT, and

dashed line indicates the mean of ALL.

15 JULY 2017 BURKE AND STOTT 5213



between deciles for the ALL ensemble mean. For the

southern regions a clear increase can be seen in the

lowest decile (bottom 10% daily total rain), and at

the same time a decrease in the total rain in the upper

deciles for the ALL ensemble with respect to the NAT

ensemble (see Fig. 6). A decrease in rainfall from upper-

decile days and an increase in rainfall from lower-decile

days is the opposite of what is generally reported in the

literature (e.g., Liu et al. 2005; Ma et al. 2017); however,

the literature reports results for observations, which end

in 2000–06.

We also analyze the distribution (PDF) of daily totals

(and numbers of days) within the first and tenth deciles

(i.e., the top and bottom 10% daily total rainfall). For

the tenth decile, comparing the ALL and NAT experi-

ments, the ALL ensemble has lower total rainfall and a

lower number of days of rain; however, the PDF (Fig. 6)

also shows a fatter tail at high values of mean rainfall per

day. So even though the total rainfall in the tenth decile

is less in theALL ensemble than the NAT ensemble, the

total rain in individual days is shifted to higher values

(see Fig. 6). We discuss this further below.

In reality rain falls during storms, which may last

several days. We divide the monsoon season up into

storms, or events, of n days in duration. An event is

defined as a number of consecutive days where each day

has total rainfall greater than 1mm. We also consider

the duration of an event (n_days), the total rain that falls

during an event (n_day_tot), and the mean rainfall per

day during an event (intens; see Burke et al. 2016). We

divide up the monsoon into events for each grid cell.

In a time series of mean and maximum annual n_days,

n_day_tot, and intens (not shown) there is no clear trend,

no clear separation between ALL and NAT ensemble

means, and large variability. As illustrated above, changes

in monsoon rainfall are more pronounced at the extreme

light and heavy ends. In our previous paper (Burke et al.

2016) we found that for rainfall events in May 2015 with

high n_day_tot, intens increases and n_days decreases in

the ALL ensemble compared to NAT. We examine

the changes in n_days and intens for the 95th-percentile

n_day_tot, where the 95th percentile is defined from

the NAT ensemble for events between 1960 and 1979.

Figure 7 shows the time series (percent anomaly) of

n_days and intens for events in the 95th percentile of

n_day_tot—both figures show 5-yr means in order to

show the signal more clearly without so much natural

variability. In this figure a trend can be seen for increased

intens and decreased n_days with time and a shift in the

spread of the ALL ensemble in the same direction.

We remind the reader that our chosen threshold for a

wet or rainy day is 1mmday21. Given that this threshold

for a rainy day is set relatively low, this will inevitably

lead to us recording long-duration events using our

n_days method. The most extreme consequence of

this is that our rainfall events can last weeks; a continuous

rainfall event of this magnitude would probably be un-

physical in reality. Given the temporal resolution of data

available to us we are not able to examine the ‘‘real’’

duration of individual rain storms. However, the number

of consecutive days of rain is an interesting metric with

regard to flooding. The change in number of consecutive

days of rain and the total rainfall in those days is also

informative as to how the nature of rainfall during the

monsoon season is changing as a result of anthropogenic

forcings. As the EASM season progresses, the rainband

(mei-yu front) moves northward across eastern China

and later retreats southward again (as described in the

introduction). As such most regions of eastern China will

experience multiple wet and dry spells throughout the

season. Our n_days method allows us to see how an-

thropogenic forcings change in the progression and du-

ration of the wet and dry spells.

5. Change in likelihoods of extreme rainfall due to
anthropogenic climate change

We examine change in likelihood of the metrics for

which we can see differences between the ALL and

NAT experiment output described above using themost

recent 20 years of model data (1996–2015). The change

in probability DP (sometimes referred to as ‘‘risk ratio’’

in the literature) is given by DP 5 P(ALL)/P(NAT),

where P(ALL) and P(NAT) are the probability of a

metric exceeding a given threshold in theALL andNAT

ensembles, respectively. For each metric presented we

define a threshold based on the NAT ensemble—these

thresholds are the mean, 10th percentile, or 90th per-

centile of the NAT ensemble depending on the metric

examined. As such P(NAT) will be equal to 0.5 where

we define our threshold to be the mean of NAT (etc.).

The P(ALL) is calculated by fitting a probability dis-

tribution function to the histogram of the variable con-

sidered and taking the area under the curve above (or

below) the threshold defined by NAT. This is illustrated

in the PDF plots in Figs. 5–7.We fit a gamma distribution

to the normalized histogram for the variable considered

(as illustrated in the figures), using amaximum-likelihood

estimation fitting routine (gamma.fit, freely available in

scipy.stats). There are a minimum of 300 data points in

each fitted histogram (15 members 3 20 years 3 points

per year for metric in question), so there is sufficient data

for a reliable fit—by eye the curves appear to fit well. We

test the goodness of fit by calculating DP from the area

under each histogram before fitting and compare with the

value of DP from the fits to the histograms. We find the
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values of DP from the histogram to be the same as those

from the gamma fit to within 2% [i.e., DP(gamma fit)/

DP(histogram)5 1.006 0.02; standard deviation5 0.05].

The results from calculating DP with and without fitting

are close enough that we are confident of the appropri-

ateness of the gamma fit to represent the distribution of

the data. These values derivedwith andwithout fitting are

similar enough, and enough data are available to sample

the distribution of values well that fittingmay not actually

be necessary for examining extremes in this case.

The maps in Figs. 5–7 also indicate which grid cells

have DP that is significant at the 2s level (95% con-

fidence level). The statistical significance of DP is

determined by bootstrapping the data and fitting the

resulting histogram with a PDF from which DP is cal-

culated. The bootstrap is performed 1000 times for each

grid cell (with replacement). For some of the figures

there are a large number of grid cells that are not sig-

nificant at 2s, and at a 1s level the picture is generally

the same but with the addition of the grid cells along the

coastlines also being significant. However, given the

contiguous large areas showing similar changes in

distribution, a lack of statistical significance in individual

grid cells may be indicative of the presence of weak

trends. We report area-mean values for DP and the

change in the mean absolute value (also 10th and 90th

FIG. 7. (top) Time series of (left) intens (mmday21) and (right) n_days for 95th-percentile n_day_tot events for SEC. (middle) His-

tograms with fitted PDFs for variables examined for all events between 1996 and 2015 in ALL and NAT. (bottom) The DP maps, with

respect to themean of theNAT ensemble, for all ensemblemembers between 1996 and 2015, for events in the 95th percentile (w.r.t. 1960–79)

of n_day_tot. Black crosses indicate grid cells where DP is not significant at a 2s (95%) level.
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percentiles for monsoon total rain and number of dry

days, respectively) for each variable and each region in

Table 1. The change in mean absolute value is defined as

the difference between the mean of the NAT and the

mean of the ALL ensembles (similarly for the value of

10th and 90th percentiles). As is clear in the table, when

averaged over larger areas the values of DP and the

changes in absolute values of variables measured are

indeed statistically significant in most cases.

Figure 5 shows DPmaps for the monsoon total rain and

the number of dry days during the monsoon. Despite no

clear difference between ensemble means and no clear

trends being seen in the time series, the change in the

probability distribution function of monsoon total rain

between the ALL and NAT forcings ensembles is statis-

tically significant (see also Table 1). Over all of eastern

China the seasonal total rain is likely to be less, and the

number of dry days during the monsoon is likely to be

greater in the ALL ensemble compared to the NAT en-

semble. The total rainfall during the monsoon season is

10%–40% (DP 5 1.1–1.67), more likely to be below the

NAT ensemble average in the ALL ensemble than the

NAT ensemble. This is more severe in the south of

the region of China examined than the north (see Fig. 5).

The area-mean value of total monsoon rainfall is found to

be 45mm less in the ALL ensemble compared to NAT.

The decrease in mean annual rainfall ranges from tens of

millimeters in northeastern China to;100mm or more in

southern areas (the maximum decrease for an individual

grid cell examined is 291mm). The area-average DP for

total monsoon rainfall to be below the 10th percentile

defined byNAT is 1.1, and the value of the 10th-percentile

seasonal total is decreased by 49mm in the ALL world

compared to theNATworld (easternChina area average).

Similarly the likelihood of the number of dry days in the

season being above theNATaverage isDP5 1.4–2 inmost

of southern and easternChina, with an increase in themean

number of dry days of 3.6 days in the ALL ensemble. The

area-mean likelihood of the number of dry days exceeding

the 90th percentile of the NAT ensemble is DP 5 1.9 in a

world with climate change, with the 90th percentile number

of dry days increased by 3.4 days in the ALL ensemble.

Figure 6 shows DPmaps for bottom 10% and top 10%

daily rainfall totals (first and tenth deciles) and the mean

rainfall per day in the top 10%. On average, there is

likely to be more rainfall in the first decile and less

rainfall in the tenth decile in the ALL ensemble com-

pared to NAT. However, the rainfall total on individual

days in the tenth decile is likely to be greater in the ALL

world—while this change is not statistically significant

TABLE 1. Results by regions as indicated in Fig. 1. Probability ratioDP values give the change in likelihood of themean seasonal value of

the variable considered for the ALL ensemble with respect to the NAT ensemble. The absolute change is the change in the value of the

variable considered for the ALL ensemble with respect to the NAT ensemble (e.g., the mean seasonal rainfall total isXmm less). Results

not statistically significant at 2s are highlighted in italics.

Variable NE NCC NEC CW SCC SEC SE

Total

rainfall

DP mean 0.8 6 0.01 0.8 6 0.01 0.9 6 0.01 0.9 6 0.03 0.6 6 0.03 0.8 6 0.01 0.6 6 0.02

Mean change (mm) 228.3 6 1.72 234.9 6 2.26 213.5 6 2.38 213.3 6 4.62 2110.0 6 6.56 272.9 6 4.12 2146.2 6 9.15

DP 10th percentile 0.9 6 0.01 0.9 6 0.01 1.0 6 0.01 1.0 6 0.01 0.8 6 0.01 0.9 6 0.01 0.9 6 0.01

Mean change (mm) 223.4 6 1.82 233.9 6 2.93 214.5 6 2.49 213.3 6 4.98 298.3 6 6.44248.65 6 3.27 2108.1 6 7.87

Dry days DP mean 1.2 6 0.01 1.3 6 0.02 1.2 6 0.01 1.1 6 0.04 1.5 6 0.02 1.4 6 0.01 1.6 6 0.01

Mean change (days) 2.0 6 0.13 3.6 6 0.25 2.1 6 0.08 1.0 6 0.31 5.9 6 0.28 4.1 6 0.13 6.5 6 0.11

DP 90th percentile 1.4 6 0.03 1.9 6 0.07 1.5 6 0.04 1.4 6 0.10 2.6 6 0.11 1.8 6 0.03 2.5 6 0.06

Mean change (days) 2.0 6 0.20 3.6 6 0.28 2.0 6 0.16 0.9 6 0.36 5.7 6 0.35 3.8 6 0.16 6.0 6 0.18

First

decile

DP mean 1.0 6 0.01 1.0 6 0.01 1.0 6 0.01 1.1 6 0.02 1.1 6 0.02 1.0 6 0.01 1.2 6 0.02

Total rain Mean change (mm) 0.1 6 0.03 0.1 6 0.06 20.1 6 0.03 0.5 6 0.18 0.7 6 0.13 0.2 6 0.06 1.0 6 0.12

Tenth

decile

DP mean 0.9 6 0.01 0.9 6 0.01 1.0 6 0.01 1.0 6 0.02 0.8 6 0.02 0.9 6 0.01 0.8 6 0.02

Total rain Mean change (mm) 212.1 6 0.97 210.9 6 1.33 1.2 6 2.00 21.8 6 2.17 244.4 6 3.72 225.7 6 2.44 252.5 6 5.75

Tenth

decile

DP mean 1.0 6 0.01 1.1 6 0.01 1.1 6 0.01 1.0 6 0.01 1.0 6 0.01 1.0 6 0.01 1.1 6 0.02

Rain per

day

Mean change

(mmday21)

0.4 6 0.04 0.9 6 0.03 0.9 6 0.13 0.1 6 0.03 0.3 6 0.07 0.5 6 0.09 0.6 6 0.09

n_days DP mean 0.8 6 0.01 0.8 6 0.01 0.8 6 0.01 0.8 6 0.02 0.7 6 0.02 0.8 6 0.01 0.6 6 0.01

Mean change (days) 20.6 6 0.04 20.9 6 0.09 20.6 6 0.04 21.9 6 0.46 22.6 6 0.21 21.1 6 0.13 24.9 6 0.29

intens DP mean 1.0 6 0.01 1.1 6 0.01 1.1 6 0.01 1.0 6 0.02 1.1 6 0.02 1.1 6 0.01 1.1 6 0.02

Mean change

(mmday21)

0.4 6 0.12 0.9 6 0.10 2.2 6 0.20 0.1 6 0.04 0.7 6 0.14 1.3 6 0.21 1.4 6 0.2
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for the majority of individual grid cells, it is statistically

significant when we average over larger areas (see

Table 1). The strongest results for this are in south-

eastern China—for the total rain in the first decile be-

ing above the NAT average DP 5 1.2 and for mean

total rain in the tenth decile being below the NAT av-

erage DP 5 1.25. However, the likelihood of rainfall

per day in the tenth decile being above the NAT mean

in this area is DP5 1.1 in the ALL ensemble. So in this

region, anthropogenic forcings may be causing a shift to

more light rain and less heavy rain in the season, but

even though heavy rain days are more infrequent, the

total rainfall per day on heavy rain days is increased.

The likelihood changes we find for the number of days

in each decile are similar in value to those reported

above for total rain per decile. However, the absolute

changes in number of days in each decile are on the

order of 0.1–0.5 days increase or 0.5–1.0 days decrease

for the first and tenth deciles, respectively. It could be

argued that over the period of time examined, 1960–

2015, this change is small enough to not be observable.

Figure 7 shows DPmaps for the duration (i.e., n_days)

and intensity (i.e., intens) of rainfall events in the 95th

percentile of n_day_tot. For an NAT world average

95th-percentile n_day_tot event in an ALL world the

event is 1.3 times (area average) more likely to be

shorter in duration, and the daily total rain within each

day of the event is 1.1 timesmore likely to be greater. On

area average, these events will be 1.8 days shorter, with

the decrease in duration being more pronounced in the

south than the north (see figure). The mean rain per day

in these extreme events is increased by 1mmday21 in

the ALL ensemble compared to NAT. Thus, we have

found evidence that the intensity of the most extreme

rainfall events is expected to increase because of an-

thropogenic forcings.

6. Discussion

Under anthropogenic forcings the model predicts that

there is, on average, a decrease in the total monsoon

rainfall, an increase in the number of dry days, an in-

crease in the total rain that falls in the first decile of daily

totals, and a decrease in the total rainfall in the tenth

decile of daily total rain. This gives a picture of a gen-

erally drier monsoon. However, for extreme heavy

rainfall events a different picture is given. The results

show an increase in total rain per day in the tenth decile of

daily total rain, and for the 95th percentile of n_day_tot

rainfall in events as defined above, the mean rainfall per

day is increased and the number of days over which the

rainfall is decreased. So while the total seasonal rain is

generally reduced, and the distribution of daily total rain

is shifted toward the lighter end, for heavy rain events the

rainfall per day is increased and the duration of heavy

rain events is decreased.

The statistical significance of the changes reported per

grid cell is strong for the general drying changes—

monsoon total rainfall, number of dry days, increase in

first-decile days, and shortening in duration of extreme

events. The statistical significance per grid cell is weaker

for increased tenth-decile rain per day and increased

intensity of heavy rain events. Figures 6 and 7 show

comparatively few grid cells are significant at 2s for

these metrics compared to the drying metrics (at 1s the

coastal grid boxes also appear significant, but otherwise

the figures are very similar; not shown). However, for

regional averages on most metrics the results are sta-

tistically significant (see Table 1). The heavy rainfall

changes are smaller in magnitude compared to the

changes for drying metrics for both grid cells and re-

gional means. This suggests that the increase in extremes

is a smaller effect than the overall drying.

We have examined changes in the monsoon season,

considering all the days from the beginning of April to

the end of August as being in the season. As illustrated

in Fig. 3, the rainfall within the season is very variable

between dates and locations. It may be that our exami-

nation misses detail on shorter time scales and that

changes in extremes are more or less pronounced on the

monthly time scale than that reported for the whole

season. We also do not examine changes in the timing or

spatial extent of the monsoon season.

We point out that our results are for model data and

represent changes in likelihoods between model ensem-

bles with and without anthropogenic climate change. As

such the results presented here are predictions of the

changes in monsoon rainfall as a result of anthropogenic

forcing, which we might expect to see in observations.

While we have carried out some verification with the

observations available to us, we suspect that the obser-

vations we have for this region are imperfect (as illus-

trated in Fig. 4). To verify themodel and results presented

here more detailed and up-to-date observational studies

will be required. Unlike many CMIP5-generation models

that struggle to reproduce extreme rainfall observed in

reality, the model setup used is able to produce the ex-

tremes of rainfall that are observed and tends to over-

rather than underpredict the extremity and frequency of

heavy rainfall (however, the observed gridded data we

compare to may underestimate extreme rainfall).

a. Physical basis and comparison with previous
studies

In recent years there have been reports of a southern

flood–northern drought pattern during the summer
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monsoon (see introduction). A drier monsoon season

could easily lead to drought, and short intense rainfall

bursts can lead to flooding. Long-duration rainfall is

generally needed to alleviate droughts, so short but

heavy rainfall events, once over, may allow a drought to

persist. Examination of the mechanism, which would

cause extended drought over northern China but re-

curring flooding over southern China, is outside of the

scope of this study.

Several previous model-based studies discuss in-

tensifying convection as a result of global warming

leading to increased heavy rainfall and depletion of light

rain at the expense of this heavy rain (e.g., Trenberth

et al. 2003). The proposed mechanisms for this change

are that global warming can lead to enhanced convec-

tion processes, an enhanced water cycle, and increased

convergence (super Clausius–Clapeyron). The heavy

rainfall as the result of these processes is more extreme

than in a world without anthropogenic climate change,

and the result of intense downpours is that the pre-

cipitable water column is emptied, inhibiting subsequent

light rainfall (Fowler and Hennessy 1995; Fisher and

Knutti 2016; O’Gorman and Schneider 2009). The re-

cent observational work of Fisher and Knutti (2016)

shows that globally very heavy daily total rainfall events

in the 95th percentile or greater are notably increasing in

frequency, and this is reflected in current climate models.

Generally, recent observational studies of global rainfall

trends report a slight increase in total rainfall (e.g., Wu

et al. 2013); however, for heavy rainfall a significant in-

creasing trend is consistently found (Donat et al. 2016;

Westra et al. 2013; Ban et al. 2015; O’Gorman and

Schneider 2009).

Over the area of eastern China, in the upper decile of

daily rainfall total we see some weak shift to larger

rainfall per day values, but we do not see a reduction in

light rain (first–second-decile daily total rain). Perhaps

by selecting the 90th percentile, rather than the 95th or

99th, we are only seeing hints of this trend in our only

moderate results for heavy rain increase. Similarly for

our 95th percentile n_day_tot rainfall, we see someweak

indication of increased daily total, but it is not as im-

pressive as that reported for global daily totals.

On more local spatial scales, some previous observa-

tional studies also report an increase in heavy rain and a

decrease in light rain over China. For example, Ma et al.

(2017) observe a decrease in total rain from light rain

days and an increase in total rain from heavy rain days.

Their reported change in light rain is weak statistically,

and their reported change in heavy rain is larger and

statistically stronger.

Numerous observational studies have reported an in-

crease in seasonal total rainfall over the period 1960–2000

for eastern China (Liu et al. 2005; Zhai et al. 2005; Wang

and Zhou 2005; Su et al. 2006; Fu and Dan 2014; Fu et al.

2008; Qian andQin 2008; Gemmer et al. 2004). However,

these changes are not uniformly spatially coherent, nor

are the observed regions all defined to cover the same

areas as each other or as that examined here. Subsets of

these works (Zhai et al. 2005; Liu et al. 2005; Fu and Dan

2014; Fu et al. 2008; Su et al. 2006; Qian et al. 2009) also

report increases in the number of heavy rain days and

decreases in light rain days and also with shifts in rainfall

totals across daily deciles in a similar direction. The

method by which deciles or thresholds for extreme rain-

fall totals are defined differs between most of these

studies, being defined for individual seasons in some and

annually in others. The regions studied also vary between

publications, and deciles and extremes may be defined as

an area average or within subregions. Additionally, these

studies tend to end in 2000, near the start of our current

climatology and given that they end 15 years ago it would

be interesting to see if the results that they present con-

tinue in more recent years. Similarly to the result pre-

sented here, the trends reported bymost literature studies

tend to be statistically weak and the data noisy—this is a

frequent issue for studies of precipitation.

There are observational literature studies that are

complementary to our findings. For example, Xiao et al.

(2016) examine the observed hourly peak total rainfall

during the monsoon season. They find peak hourly

rainfall is correlated with daily mean temperature and

that the number of rain hours per day decreases with

increasing temperature, with hourly precipitation ex-

tremes increased by 10% per degree (Celsius) in-

crease of daily mean temperature. However, they find

daily extremes decrease by approximately the same

amount—so extreme total rainfall is increasing but du-

ration is decreased on the hourly time scale.

Liu et al. (2005) find a 10% decrease in frequency of

precipitation events between 1960 and 2000. Zhai et al.

(2005) also report a decrease in number of rain days over

eastern China between 1950 and 2000. They also find the

daily rainfall total in the 95th percentile has increased

with time and an increased frequency of 95th-percentile

rainfall days in southern and eastern China during the

warm half of year. However, they find no statistically

significant change in annual rainfall total.

Precipitation is a notoriously difficult variable to

measure accurately, perform trend analysis of, and detect

changes in with anymeaningful confidence. In the studies

discussed above, several subtly different methods are

used to detect changes in rainfall in subtly, but non-

trivially, different ways. In an ideal world it would be

beneficial to have a unified metric or a set of metrics by

which changes in rainfall could be judged. This would
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help promote a clearer path to detecting and attributing

changes and understanding what drives them.

b. Future changes

With future reductions in aerosol emissions and a con-

tinued increase in greenhouse gas emissions, historical

trends in monsoon rainfall may not be indicative of future

changes (Christensen et al. 2013). CMIP5 (Taylor et al.

2012) RCP8.5 model projections predict that eastern

China summer season (JJA) will become wetter in the

future [see Fig. 12.22 in IPCC AR5, chapter 12 (Collins

et al. 2013)], with a projected increase of approximately

20% in seasonal rainfall total by the end of the century

with respect to the mean of 1986–2005. The projected

changes are likely due to increases in GHGs and re-

duction in aerosols. Additionally, in line with our histor-

ical results, the maximum 5-day precipitation and the

number of consecutive dry days are projected to continue

to increase for eastern China [see Fig. 12.26 of Collins

et al. (2013); also see Christensen et al. (2013, p. 1271)].

In line with our results for historical changes in rain-

fall, in the future, in a world with increased global

warming, we might expect to see more short intense

rainstorms, increasing the possibility of flash flooding.

However, there may be fewer days of rain between ex-

treme rainstorms, which can lead to drought. Alleviation

of drought requires rain over an extended period; the

shortening of rainstorms means that drought may be

exacerbated.

7. Conclusions

We have presented the results of a historical model

ensemble with and without anthropogenic influence on

the climate system. We verify our model against ob-

served climatology and find that it can reproduce the

main features of the EASM. The model shows that, in

the anthropogenic influence scenario, the EASM is

generally drier overall, with a decrease in total rain and

an increase in dry days. However, the anthropogenic

influence model also shows an increase in the intensity

of heavy rain events. These changes could lead to in-

creased likelihood of flash flooding during rainstorms

but also an increased likelihood or severity of drought in

some locations.

Historically a range of different results are found

when examining observed rainfall in eastern China

during the summer and EASM season. These changes

are not always consistent with those observed globally,

which suggests localized forcings may be at play. How-

ever, given the range of methodologies and observed

and modeled data available for investigating rainfall,

this is an area that still warrants further study.
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