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Abstract. Most popular technologies are based on informal or semi-
formal standards that lack a rigid formal semantics. Typical examples
include web technologies such as the DOM or HTML, which are de-
fined by the Web Hypertext Application Technology Working Group
(WHATWG) and the World Wide Web Consortium (W3C). While there
might be API specifications and test cases meant to assert the compli-
ance of implementations, the actual standard is rarely accompanied by
a formal model that would lend itself for, e. g., verifying the security or
safety properties of real systems.
Even when such a formalization of a standard exists, two important
questions arise: first, to what extent does the formal model comply with
the standard and, second, to what extent does a concrete implementation
comply with the formal model and the assumptions made during the
verification of certain properties?
In this paper, we present an approach that brings all three involved
artifacts—the (semi-)formal standard, the formalization of the standard,
and the implementations—closer together by combining verification, sym-
bolic execution, and specification-based testing.

Keywords: Standard compliance · Compliance tests · DOM

1 Introduction

Most popular technologies are only specified by standards using a semi-formal or,
worse, an informal notation. Moreover, the tools used for writing standards only
support, if at all, trivial consistency checks. Thus, it is no surprise that such stan-
dards usually contain inconsistencies (e. g., different sections of the same stan-
dard that contradict each other) or unwanted under-specifications (e. g., where
the authors of the standard omit the specification of important properties that,
e. g., the defined API should fulfill).

Even if a standard is developed formally, or contains a (often non-normative)
formalization, two important questions arise: 1. to what extent does the formal
model comply with the semi-formal parts of the standard, and 2. to what extent
does an actual implementation comply with the formal model? If the formal
model was used for verifying properties, one also needs to validate that the real
system fulfills the assumptions made during the verification.
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Neither the problem of glitches and inconsistencies of standards nor the use
of testing for showing compliance of implementations are new (see, e. g., [1, 7, 8]
for examples of formalizations of standards, outside the Web domain, and the use
of testing for showing the compliance of implementations.) Still, most standard
development today is based on semi-formal specifications. Prominent examples
of such a semi-formal standard development are the standards for the com-
mon web technologies, such as the Document Object Model (DOM) or HTML.
Both are defined by the Web Hypertext Application Technology Working Group
(WHATWG) and the World Wide Web Consortium (W3C). These web stan-
dards are developed in an open process, e. g., everybody can read and comment
on upcoming versions of the standard, and they usually include type-checked
interfaces for the defined APIs. These interfaces are specified in Web IDL [11].
Moreover, these standards are complemented by a manually defined compliance
test suite that can be used by developers to check their implementation. Ad-
ditionally, due to the manual process of developing the compliance tests, their
quality mostly depends on expert knowledge and their quality varies greatly,
depending on who wrote the test cases.

In this paper, we present an approach that brings all three involved artifacts—
the standard, the formalization of the standard, and the implementations—closer
together by combining verification, symbolic execution, and specification-based
testing. Moreover, we report on a case study applying this approach to the Doc-
ument Object Model (DOM) standard [10, 13] that specifies the central data
structure of all modern web browsers as well as algorithms for querying and
updating the DOM. Our case study is based on the official DOM standard, the
compliance test suite provided by the authors of the standard (which is used by
browser vendors to show that their browsers faithfully implement the standards),
and our own formalization of the standard [3, 4] in Isabelle/HOL [9].

The rest of the paper is structured as follows: in Sect. 2 we present our
approach for linking formal and informal parts as well as implementations using
test and proof. In the next section (Sect. 3) we report on our experience in
applying our approach to the DOM standard [13]. We conclude in Sect. 4.

2 Using Test and Proof for Formalizing Standards

In this section, we present an approach using and combining test and proof for
providing strong links between semi-formal standards (and their compliance test
suites) and a formalization. Fig. 1 illustrates the overall scenario for both tradi-
tional development of standards (upper part of the figure) and the integration
of “test and proof”-activities (bottom part).

First, let us recall the process and challenges of developing informal or semi-
formal standards and implementations that should comply with such a standard:
most standards are developed as a text document that contains technical details,
e. g., in the form of interface specifications or pseudo-code, that implementations
need to comply with. Such semi-formal or informal standards usually contain
many inconsistencies; tool support for ensuring the syntactic consistency of the
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Fig. 1. Using test and proof for establishing strong links between formal standards,
compliance test suites, and implementations.

standard is sometimes available in a limited form, but the semantic consistency is
an open problem. Also, linking standards to implementations is, in the best case,
only supported by the possibility to automatically extract interface definitions
(APIs), if the standard defines a (software) system. Alternatively, if the standard
defines a data format (or a language) it might possible to extract grammar
definitions for the abstract or concrete syntax of the defined data format or
language. A good standard also includes an extensive set of compliance test
cases. These compliance test cases are usually specified manually by experts.
Hence, manually developed test cases cannot guarantee to cover all important
cases and, thus, they can only provide a weak compliance-relationship between
standard and implementation. Nevertheless, they are the only machine-checkable
artifact for vendors to validate the compliance of their product to the standard.

Second, let us discuss how test and proof can improve the situation and
address the consistency and compliance challenges of semi-formal and informal
standard development. In the following, we assume that an executable formal-
ization (e. g., expressed in Isabelle/HOL) of the standard exists. Of course, if
we start with an informal standard, the question arises to which extent the for-
malization is a faithful representation of the informal (or semi-formal) standard,
i. e., the compliance of the formalization. As we assume an executable model, we
can—similarly to implementations—use symbolic execution to show the compli-
ance of the formal model to the semi-formal standard (or, more precisely, the
manually developed compliance test suite). In addition, we can use the formal
model to actually prove important properties of the standard (e. g., proving the
correctness of the algorithms presented in the standard). We can also general-
ize test cases provided in the compliance test suite and turn them into proof
obligations for our formal model. Using symbolic specification-based test case
generation techniques (e. g., as presented in [6]), we can automatically generate
new compliance test cases that, e. g., guarantee branch coverage on the level of
the specification. Finally, we could generate a reference implementation using
code generators available in systems such as Isabelle [9] or Coq [2].



3 Case Study: The Document Object Model (DOM)

We successfully applied this approach to our formal model [3, 4] of the DOM
standard [13]. This increases the confidence that our formalization faithfully
represents the official standard.

3.1 Formalizing the DOM Standard

We illustrate our approach using the insertBefore method as an example. The
interface of insertBefore is given in Web IDL [11]:

interface Node {
Node insertBefore(Node node, Node? child);

}

The behavior of this method is described using structural English:

insertBefore:
The insertBefore(node, child) method, when invoked, must return the
result of pre-inserting node into context object before child.

This descriptions refers, using hyperlinks, to the concepts pre-inserting and con-
text object. Without a clear understanding of these concepts, we cannot formalize
insertBefore. The concept pre-inserting is described as follows:

pre-insert:
To pre-insert a node into a parent before a child, run these steps:
1) Ensure pre-insertion validity of node into parent before child.
2) Let reference child be child.
3) If reference child is node, set it to node’s next sibling.
4) Adopt node into parent’s node document.
5) Insert node into parent before reference child.
6) Return node.

Again, several new concepts are introduces and to fully understand the behavior
of insertBefore, we need to understand and formalize these concepts as well.
We formalize the insertBefore using monads in Isabelle/HOL:

definition insert_before :: "_ object_ptrCore_DOM ⇒ _ node_ptrCore_DOM
⇒ _ node_ptrCore_DOM option ⇒ _ dom_prog"

where
"insert_before ptr node child = do {
ensure_pre_insertion_validity node ptr child;
reference_child ←(if Some node = child
then next_sibling node
else return child);

owner_document ←get_owner_document ptr;
adopt_node owner_document node;
insert_node ptr node reference_child

}"



3.2 Showing Standard Compliance

While our formalization tries to stay as close as possible to the description in the
standard, it is not obvious that it complies to it. To show this compliance, we first
selected all relevant test cases from the official DOM compliance test suite [12],
i. e., the test suite used by web browser vendors to show that their DOM imple-
mentation complies to the standard. These test cases are written in JavaScript,
which is embedded into the DOM document under test. We then automatically
translated these tests into higher-order logic (HOL) to symbolically execute (the
test cases can be “evaluated” by Isabelle’s simplifier using a set of simplifier rules
optimized for code generation) them on our model of the DOM. For example,
consider the following test case (the left-hand site shows the official specifi-
cation in JavaScript, the right-hand site our formalization in Isabelle/HOL):
test(function() {
var a = document.createElement(’div’);
var b = document.createElement(’div’);
var c = document.createElement(’div’);
assert_throws(’NotFoundError’, () => {
a.insertBefore(b, c);

});

},’Calling insertBefore with a reference’ +
’child whose parent is not the context’ +
’node must throw a NotFoundError.’)

lemma "test (do {
a ←document.createElement(’’div’’);
b ←document.createElement(’’div’’);
c ←document.createElement(’’div’’);
assert_throws(NotFoundError,
(cast a).insertBefore(cast b,
Some (cast c)))

}) Node_insertBefore_heap"
by code_simp

(* ’Calling insertBefore with a reference
child whose parent is not the context
node must throw a NotFoundError.’ *)

This test checks whether the DOM method insertBefore throws a certain ex-
ception if called with a certain combination of arguments. We formalized this test
into a state-exception-monad and show the error-freeness by symbolic execution.

Tests are, of course, a very limited way of showing such important proper-
ties, as they only show the property for concrete input values (here, a simple
DOM instance). To overcome this limitation, we generalize such test cases in to
generic theorems that show the corresponding property for all possible inputs. In
our example, we generalize the test into the following theorem, which we prove
formally in Isabelle/HOL:

lemma insert_before_non_child_reference_node:
assumes "heap_is_wellformed h" and "is_known_ptrCore_DOM ptr"
and "¬ (h `reference_child.parentNode → r Some element)"
and "¬ (is_character_data_ptr element)"
and "

∧
ancestors. h `get_ancestors element → r ancestors

=⇒cast new_child /∈set ancestors"
shows "h `element.insertBefore(new_child, Some reference_child)

→ e NotFoundError"

Instead of creating three concrete elements, we can quantify over all possible
elements. The two assumptions give additional insight; the test would fail if
the argument were a CharacterData or included in the reference’s ancestors,
because these circumstances are checked earlier and cause different exceptions.

Using this approach, we formalized all non-type-related test cases from the
official test suite to “test” our model. Table 1 shows the number of formalized



Table 1. The number of tests regarding our supported DOMmethods that are available
from the official suite and not related to type checks. Additionally, we present a rough
estimate of the complexity of the tested function along with the coverage of the tests
to estimate how much each function would benefit from automatically generated tests.

# Test Cases
in Scope

Function
Complexity

Function
Coverage

assignedNodes 24 high high
assignedSlot 24 high high
insertBefore 5 high low
getElementByID 10 medium medium
removeChild 8 medium medium
attachShadow 2 medium medium
createElement 49 medium low
adoptNode 2 medium low
getRoot 3 medium low
childNodes 2 low medium
parentNode 3 low medium
shadowRoot 2 low low
host 1 low low
getOwnerDocument 0 low –
getAttribute 0 low –
setAttribute 0 low –
nextSibling 0 low –

tests per DOM function that we support. We cannot easily utilize test cases
regarding type checks, as we decided to formalize a strongly typed model. The
official compliance test suite contains many typing-related tests, mainly due to
two reasons:
1. Dynamic typing and prototype-based inheritance of JavaScript leads to many

tests that, for example, check the behavior of functions when passed null or
undefined, whereas we in HOL only allow None in places where the DOM
standard actually permits it.

2. We model a simplified version of the core DOM. We turned many classes
that extend the Node interface and, thus, participate in the node tree,
into attributes of other interfaces. For example, the DOM standard defines
DocumentType as a node that must appear in exactly one location of the
node tree—it must be the first child of a Document. We model the docu-
ment type as a field of a Document. Many tests of the official suite test that
constraint, which we therefore did not formalize.

The official test suite is developed manually and, thus, it is not surprising that
the test cases vary in style and quality. For example, the compliance test for
the tree-modifying method insertBefore consists of 26 test cases, of which
only five are relevant for our formalization. This indicates that the test authors’
concern is mostly testing the absence of run time errors and, to a lesser extent,
the correctness of this rather complex method.



3.3 Formal Verification: Analyzing the Standard

In many cases, the methods defined in the DOM standard need to fulfill impor-
tant properties. These properties are neither spelled out explicitly nor does the
compliance test suite contain test cases for them. During the formalization of
the standard, these properties often emerge as proof obligations that need to be
shown to be able to prove the high-level properties specified in the standard.

An example for such an important property is that after a successful call of
insert_before, the list of child nodes remains distinct, even if the new child
was already a child of that node:

lemma insert_before_children_remain_distinct:
assumes "heap_is_wellformed h" and "is_known_ptrCore_DOM ptr"
and "

∧
parent. h `get_parent new_child
→ r Some parent =⇒is_known_ptrCore_DOM parent"

and "h `insert_before ptr new_child child_opt → h h2"
shows "

∧
ptr children. is_known_ptrCore_DOM ptr

=⇒h2 `get_child_nodes ptr → r children
=⇒distinct children"

This is true because insert_before first removes the new child from its old
parent before inserting it into the child node list of the new parent.

While the verification as such is important to ensure the consistency and im-
plementability of the standard, it also forms the basis for developing an improved
compliance test suite. Using a specification-based or theorem prover-based test-
case generation approach [6], the proven lemmas can be systematically turned
into additional compliance test cases that ensure that actual implementations
fulfill these crucial properties.

4 Conclusion

We reported on a first case study combining test and proof for formalizing a
standard that is the core of modern web-browsers. We can show the compli-
ance of our formal model to the standard by symbolically executing the official
compliance test suite. Our manual analysis of this test suite revealed several
important properties that not sufficiently covered, or not covered at all, by the
compliance test suite.

As future work, we plan to automatically generated test cases from our for-
mal model (e. g., using HOL-TestGen [5]) and to contribute them to the official
compliance test suite. We also plan to enrich our model with a security model
formalizing common web-related security measures to verify and test the security
guarantees of modern web browsers (and applications running on top of them).
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