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Abstract

Large collections of images have become readily available through modern digital catalogs, from sources as diverse as
historical photographs, aerial surveys, or user-contributed pictures. Exploiting the quantitative information present in
such wide-ranging collections can greatly benefit studies that follow the evolution of landscape features over decades,
such as measuring areas of glaciers to study their shrinking under climate change. However, many available images were
taken with low-quality lenses and unknown camera parameters. Useful quantitative data may still be extracted, but it
becomes important to both account for imperfect optics, and estimate the uncertainty of the derived quantities. In this
paper, we present a method to address both these goals, and apply it to the estimation of the area of a landscape feature
traced as a polygon on the image of interest. The technique is based on a Bayesian formulation of the camera calibration
problem. First, the probability density function (PDF) of the unknown camera parameters is determined for the image,
based on matches between 2D (image) and 3D (world) points together with any available prior information. In a second
step, the posterior distribution of the feature area of interest is derived from the PDF of camera parameters. In this step,
we also model systematic errors arising in the polygon tracing process, as well as uncertainties in the digital elevation
model. The resulting area PDF therefore accounts for most sources of uncertainty. We present validation experiments,
and show that the model produces accurate and consistent results. We also demonstrate that in some cases, accounting
for optical lens distortions is crucial for accurate area determination with consumer-grade lenses. The technique can be
applied to many other types of quantitative features to be extracted from photographs when careful error estimation is
important.

Keywords: Inverse perspective, Spatial resection, Camera calibration, Bayesian methods, Lens distortion, Digital
elevation models

1. Introduction

A large amount of quantitative physical landscape in-
formation can be extracted from terrestrial, aerial and
satellite imagery using various photogrammetric techniques
[1, 2, 3, 4, 5]. Inverse perspective methods (e.g. monoplot-
ting), as reviewed by [6] and [7], aim at extracting refer-
enced spatial data from a single picture. Such methods
have been used to extract data from either aerial, satellite
or terrestrial imagery [8, 9, 10, 11]. Inverse perspective
methods are particularly used in the study of Earth surface
processes and landscape evolution to produce or update
geological and geomorphological map data [12, 13, 14, 15]
or, among others, in civil engineering and building sta-
bility assessment [10]. The methods have also found a
particular echo in the community of cryospheric sciences,
as they allow to reconstruct and monitor the evolution of
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glaciers over different time scales, ranging from centennial
to annual fluctuations [16, 17, 18], as well as further the
understanding of glacier mass balance processes [19].

Inverse perspective methods also allow to tap into a
wealth of quantitative information present in large and
diverse databases of images readily accessible from the In-
ternet, such as historical records, aerial surveys, or user-
contributed pictures. However, these images are of uneven
quality: many were taken without scientific intent, often
with low-quality lenses and unknown camera parameters,
and are sometimes only available in low resolution. These
limitations can introduce significant uncertainties and bi-
ases in the information obtained from camera orientation
and calibration. Useful quantitative data may still be ex-
tracted, but accounting for potential lens distortions and
quantifying the uncertainty of the results become impor-
tant.

In this paper, we present a method to address both
goals, applying it to the estimation of the area of landscape
features, with the determination of the areas of mountain
glaciers in mind. The present technique is a two-step pro-

Preprint submitted to ISPRS Journal of Photogrammetry and Remote Sen. December 7, 2019



cess based on Bayesian inference.
First, the unknown camera parameters, including lens

optical distortions, are estimated using a Bayesian formu-
lation of the camera orientation with calibration problem,
in the form of a spatial resection problem: the posterior
probability density function (PDF) of camera parameters
is obtained from matches between 2D points in the im-
age and 3D points in world coordinates, together with any
available prior information. Bayesian approaches to cam-
era calibration were presented by several authors, either
based on finding a single value of the parameters which
maximize a posterior distribution [e.g. 20, 21] or using
the whole resulting posterior distribution more extensively
[e.g. 22]. In our work, we keep the full statistical infor-
mation contained in the posterior distribution of camera
parameters, by generating samples distributed according
to the posterior distribution using Markov chain Monte
Carlo (MCMC) sampling.

In a second step, the posterior PDF of the feature area
is derived from the posterior of camera parameters by solv-
ing an inverse perspective problem. The outline of the fea-
ture of interest is manually traced on the photograph as a
polygon, which is then back projected from the 2D image
onto the 3D world using a digital elevation model (DEM).
This back projection step accounts for uncertainties on
the camera parameters, and attempts to model possible
systematic errors introduced by the polygon tracing step,
together with uncertainties introduced by the DEM. In
particular, we propose a model for DEM errors for which
both the root mean square error (RMSE) and spatial auto-
correlation scale are locally varying. The resulting PDF of
the back projected 3D feature area therefore contains in-
formation about most of the uncertainties of the process.

More generally, we attempt to unify the camera orien-
tation with calibration, uncertainty modeling and inverse
perspective problems into a statistically consistent frame-
work which can be extended to similar classes of problems
and uncertainty models.

We stress that given the diverse nature and sources of
our target images and the fact that many were taken using
low-quality or unknown equipment, the focus of this paper
is more on uncertainty estimation than on very accurate
photogrammetric techniques. The reconstructed camera
location, for example, cannot be expected to be more ac-
curate than a few meters, given that we will be working
with low resolution landscape images, and that our 3D
ground control point coordinates will not come from pre-
cision geodetic sources.

We start by describing our Bayesian formulation of the
camera orientation with calibration problem in Section 2,
and our polygon back projection method in Section 3. Sec-
tion 4 describes details of our implementation, including
and the posterior probability density sampling process. In
Section 5, we present test problems for validation, before
discussing the results in Section 6 and concluding in Sec-
tion 7.

Figure 1: Overview of the setup for camera orientation and inverse
perspective problems. Pairs of matching 2D and 3D control points
are used to determine the location of the camera, and establish a
mapping between 2D image plane coordinates and 3D world coordi-
nates using a digital elevation model (DEM).

2. Bayesian formulation of camera orientation and
calibration

2.1. Camera orientation and calibration
Extracting metric measurements from digital images

requires estimating the parameters of the imaging camera
used to take the picture, such as its position and orienta-
tion, focal length, and possibly other optical properties.
For typical orientation problems, this may be done by
matching points with known 3D world coordinates with
their corresponding 2D projections in the image under
study. Camera orientation and calibration then consists
in finding the camera parameters that best reproduce the
2D points by projecting their matching 3D point using the
chosen camera model. The process is illustrated in Fig-
ure 1. The control points are typically selected as charac-
teristic features on the 2D image (such as buildings, peaks,
road crossings, etc.) for which the corresponding points in
3D world coordinates can readily be identified. The 3D
coordinates of the control points may be determined us-
ing a Digital Elevation Model (DEM) [13, 23, 24] or other
sources of cartographic and elevation data.

In the present paper, we note θ the vector of camera pa-
rameters; those will be further described in Section 2.3 as
we discuss the camera model, and are summarized in Sec-
tion 2.3.3 for convenience. The camera calibration prob-
lem may be formulated as finding the camera parameters
θ satisfying:

d2D ' C(d3D;θ), (1)

where θ belongs to a set of admissible camera parameters,
d2D and d3D are the set of 2D and 3D points respectively,
and C is the camera projection operator, representing the
photographic projection operation, and ' represents some
notion of closeness for points in the image plane.

The actual process of determining θ may depend on the
nature of the camera model described by C. For ideal rec-
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tilinear camera models, θ is generally computed via the so-
called collinearity equations [25, 26], which may be solved
by least squares methods [27, 28, 29, 9]. More generally,
the process can be seen as a nonlinear minimization of
the reprojection errors (i.e. the discrepancy between the
2D projections C(d3D;θ) of the 3D points projected us-
ing θ, and the corresponding 2D control point locations
d2D), which is also applicable in the presence of optical
lens distortions in the model.

Beyond minimization of reprojection errors, camera
calibration can also be formulated probabilistically within
a Bayesian framework [e.g. 20, 22]. In this approach, a
posterior distribution for θ is estimated, and may then be
used to infer a suitable single value for θ, for example using
the mode (maximum) of the posterior distribution [20], or
by drawing random samples from it which can be used to
construct other point estimates [22].

In this work, we use an approach similar to [22], and
rely on a Bayesian statistical framework to characterize a
distribution of values of θ, compatible with a set of given
2D/3D matches. Instead of producing a single point es-
timate for θ, we obtain a probability density function on
the camera parameters. It is conditional on the observed
matches, and any prior information that we have on prob-
able values of θ.

2.2. Bayesian formulation
Consider the camera calibration problem for a single

photograph, for which we have a set of n matches between
3D points d3D = {(xp, yp, zp), p = 1 . . . n}, and 2D pro-
jected points on the image d2D = {(up, vp), p = 1 . . . n}.
Collectively, we note D = (d3D,d2D) this data available
to reconstruct the camera parameters θ. We further note
I the set of all prior information available about the pic-
ture which is known before considering D, such as possible
camera orientations or any information known about the
lens. I also includes the assumptions about the projection
model itself. The Bayesian camera calibration problem
amounts to finding p(θ|D, I), which is the probability den-
sity of θ conditional to knowing both D and I, also known
as the posterior PDF of θ. Applying Bayes’ theorem to
our problem, we can write:

p(θ|D, I) =
p(D|θ, I) p(θ|I)

p(D|I)
. (2)

The terms appearing on the right hand side play dis-
tinct roles. p(D|θ, I), the likelihood, is the probability
density of observing the matches described by D and the
model (1) if we assume the camera parameters θ and prior
information I to be known. In our model, this term is
computed by evaluating the 2D projected locations of the
3D points using our camera model C, and providing a
statistical interpretation of the 2D reprojection errors. In
Section 2.3, we detail our camera projection model for C,
and cover the likelihood itself in 2.5.

p(θ|I) is the prior, and encodes all a priori information
assumed about the image, which might be gathered from
embedded Exif (exchangeable image file format) picture
metadata or just from knowledge of the studied area. We
discuss the prior term in detail in Section 2.4.

Note finally that p(D|I) is independent of θ, and can
be recovered by requiring that

∫
p(θ|D, I)dθ = 1. The

value of this constant is of no practical significance in the
rest of this work, so we shall omit it and remember that
the posterior (2) is defined up to a constant multiplicative
factor.

GivenD and I, together with prescriptions for the prior
and likelihood terms, Eq. (2) defines a function from the
multi-dimensional space of parameters θ into real num-
bers, which completely characterizes the distribution of θ.

2.3. Camera model
The camera model C describes how 3D world points

(x, y, z) are projected into 2D image points (u, v), given
camera parameters θ:

(u, v) = C(x, y, z;θ). (3)

The camera model is at the core of the likelihood term
p(D|θ, I) appearing in Eq. (2): given camera parameters
θ and prior information I, the camera model is used to
project 3D control points onto the 2D image plane. The
resulting reprojection errors between the resulting and ac-
tual 2D control point coordinates will be used to provide
a statistical prescription for p(D|θ, I), as is described in
Section 2.5.

The role of C is to emulate the behavior of a real-
istic camera. Our camera model first performs a simple
rectilinear perspective projection based on a pinhole cam-
era model. However, real optics often exhibit deviations
from the ideal pinhole camera model due to optical lens
distortions, and the resulting errors can be significant for
consumer-quality lenses. Because our set of images in-
cludes photographs captured using unknown and presum-
ably low-quality optics, we also include a model for lens
distortion in order to minimize parameter bias due to dis-
tortion errors. The resulting combined model of a pinhole
camera with radial lens distortions is considered a good
approximation of most lenses [30, 31].

2.3.1. Pinhole camera model
The pinhole camera model is commonly used in com-

puter vision, representing a camera with infinitesimally
small aperture and perfect rectilinear projection [32, 33].
In our implementation, it is parameterized by the location
(xc, yc, zc) of the camera optical center, three Euler an-
gles (α, β, γ) representing the orientation of the camera in
terms of yaw, pitch and roll, the camera focal length f ,
and the location (cu, cv) of the lens principal point in the
image plane. After the pinhole camera projection step, we
obtain points (u, v) in the image plane, to which we apply
the lens distortion model.
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Note that we implemented a rotation parametrization
for the Euler angles for oblique terrestrial or aerial pho-
tographs, in order to avoid the typical problems with Eu-
ler angles close to their degenerate configurations. We find
that although they suffer from degeneracies, Euler angles
are more convenient to work with than other represen-
tations of orientations such as quaternions, because they
allow specification of the camera orientation in terms of
yaw, pitch and roll, which is intuitive and lends itself well
to specifying priors and controlling results.

2.3.2. Lens distortion model
Our implementation of lens distortion relies on a poly-

nomial expansion of radial distortion around the lens prin-
cipal point, following e.g. [34, 35, 36]. We adopt in par-
ticular the exact model and notations of the PTLens cor-
rection model1, as it allows using the compatible Lensfun2

database of distortion coefficients to derive a distortion
prior for consumer optics (see Section 2.4.5).

Radial distortions have been found to provide a very
good model for many non-ideal lenses, while avoiding ill-
posed parameter determination problems present in more
general models (see e.g. [21] and references therein for a
more detailed discussion). Given a pixel (u, v) obtained
from the pinhole camera projection, on an image of size
(w, h) pixels, we first compute the central normalized co-
ordinates (ũ, ṽ):

ũ = (u− wcu)/L, (4)
ṽ = (v − hcv)/L, (5)

where L is a scale factor in pixel units, and (cu, cv) ∈
[0, 1]2 define the location of the lens principal point (i.e.
the intersection of the optical axis with the image plane),
with the geometric center of the image corresponding to
(cu, cv) = (0.5, 0.5). In this work, we treat cu and cv as un-
known parameters in the camera model. The scale factor
is chosen as prescribed in the PanoTools distortion model,
and we take L = min(w, h)/2.

The radial distortion model transforms the point (ũ, ṽ)
of an ideal rectilinear lens image, located at normalized
radius r̃ =

√
ũ2 + ṽ2 from the optical axis, into a point

(ũ′, ṽ′) of a distorted image according to:

ũ′ = g(r̃)ũ, (6)

ṽ′ = g(r̃)ṽη−1, (7)

where g(r̃) is a polynomial in r̃ controlling the lens distor-
tion, and η > 0 accounts for possible non-uniform rescaling
of the image: η = 1 corresponds to images with perfect 1:1
pixel aspect ratio, whereas η > 1 and η < 1 correspond to
images which have been stretched horizontally or vertically

1https://wiki.panotools.org/Lens_correction_model.
2https://lensfun.github.io/

respectively. For g, we follow PanoTools and take:

g(r̃) = dar̃
3 + dbr̃

2 + dcr̃ + dd, (8)

where da, db, dc, dd are real coefficients parameterizing the
lens distortion. To anchor the global scaling of the dis-
tortion coefficients and break the degeneracy with the fo-
cal length f , we fix the scale at radius r̃ = 1 by setting
g(1) = 1, which yields dd = 1 − (da + db + dc). The ac-
tual lens distortion parameters appearing in θ are therefore
(da, db, dc), for which da = db = dc = 0 corresponds to an
ideal rectilinear lens.

Whenever we need to reconstruct scene rays from im-
age plane pixels, for example when back projecting the
polygon of interest from the image plane to the 3D world,
it is necessary to invert the transformation (6), (7). We
perform this inversion numerically using Newton-Raphson
iterations.

2.3.3. Summary of camera model parameters
The camera model described in Section 2.3 defines the

whole vector of camera parameters θ:

θ := (xc, yc, zc, α, β, γ, f, cu, cv, da, db, dc, η) , (9)

where:

xc, yc, zc is the camera location in 3D world coordinates,

α, β, γ are the camera orientation Euler angles (yaw, pitch,
roll) in world coordinates,with respect to some rota-
tion parametrization,

f is the camera focal length,

cu, cv describe the location of the lens principal point, the
geometric center of the image being at (cu, cv) =
(0.5, 0.5),

da, db, dc are the independent radial distortion parame-
ters,

η is the image pixel aspect ratio correction.

2.4. Priors
Now that we have detailed the camera model C and

the corresponding parameters θ, we turn to the descrip-
tion of the prior term p(θ|I) in Eq. (2), which captures
all information about θ that is known regardless of any
information coming from the matches D. I may contain
information obtainable from the DEM, from Exif meta-
data in the picture, or from human expertise in analyzing
the photograph. p(θ|I) from (2) is the joint prior PDF for
all the camera parameters:

p(θ|I) = p(xc, yc, zc, α, β, γ, f, cu, cv, da, db, dc, η|I). (10)
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Given only prior information, it is reasonable to assume
that some of these parameters are independent. To sim-
plify the specification of the prior, we assume that it fac-
torizes as:

p(θ|I) = p(xc, yc, zc|I)×
p(α|I) p(β|I) p(γ|I) p(f |I)×
p(cu, cv|I) p(da, db, dc|I) p(η|I). (11)

This amounts to the user specifying independent prior dis-
tributions for the camera position (xc, yc, zc), the camera
attitude angles (α, β, γ), the camera focal length f , the
lens principal point (cu, cv), and finally the distortion pa-
rameters (da, db, dc) and pixel aspect ratio η.

2.4.1. Camera location
To define a prior on the camera location (xc, yc, zc), we

first recognize that prior information may constrain the
altitude zc depending on the position (xc, yc), and it is
therefore useful to write:

p(xc, yc, zc|I) = p(zc|xc, yc, I) p(xc, yc|I). (12)

To define p(xc, yc|I), we delimit a polygonal area inside
which we take this probability density to be a constant,
and outside of which it is zero. The choice of altitude prior
p(zc|xc, yc, I) now depends on whether the photograph is
taken from the ground surface or not.

For aerial photographs, we assume that the (xc, yc) lo-
cation does not provide additional information on the al-
titude zc, and instead we choose a uniform probability
density over some range [zmin, zmax] specified by the user,
and possibly determined from local geography. Most aerial
survey photographs of the Mont Blanc massif of interest to
us are, for instance, taken from altitudes between 6000 m
and 10 000 m.

For terrestrial photographs, we assume that the camera
was located close to the ground surface. Given (xc, yc), the
local altitude h(xc, yc) of ground level may be obtained
from the DEM. Because of vertical errors in the DEM in
particular in steep terrain, and because the camera may
not be exactly at ground level, we take p(zc|xc, yc, I) to be
a Gaussian centered on the DEM altitude h(xc, yc), with
a standard deviation of 5 m, to account for both sources of
vertical errors (see 5.1.3 for more information on the DEM
used for this study).

2.4.2. Focal length
For p(f |I), we use a uniform prior in ln f , i.e. p(f |I) ∝

1/f , truncated to a range of allowed values f ∈ [fmin, fmax]
which are determined from the available prior information.

The choice of a log-uniform prior for f is motivated
by the fact that in the pinhole camera model, f plays
the role of a multiplicative scale parameter. This prior
is scale-invariant: it ensures that, in absence of any addi-
tional information on f , the chosen prior is insensitive to
the overall normalization of f . This reduces the sensitivity

of the inference process to factors such as the sensor size,
and makes it possible to easily choose the normalization
of f (e.g. to work with 35 mm equivalent focal lengths,
see below). Additionally, this prior enforces f > 0 re-
gardless of the chosen bounds on ln f . Translation- and
scaling-invariant priors are discussed in more detail in e.g.
[37]. f may be specified in any unit, as long as the bounds
[fmin, fmax] and the image plane size (sensor size) in the
pinhole camera model equations are scaled accordingly.
For the pinhole camera model, we use the focal length
in pixel units fpx, given by:

fpx
w

=
f

W
, (13)

where w is width of the image in pixels, and W is the
width of the physical image sensor area corresponding to
w, expressed in the same units as f .

The prior range [fmin, fmax] is determined from avail-
able picture information. The value of w is always avail-
able from the picture file under study. For professional
and scientific photographs such as aerials, both f and W
are usually known to a good accuracy, usually in millime-
ters. In this case, [fmin, fmax] can be specified according to
the precision at which f is known (e.g. due to rounding).
With some consumer digital cameras, f may be recorded in
the Exif metadata; in case the sensor size W is then read-
ily available, (13) may then be used directly. If not, Exif
metadata may still store the so-called 35 mm film equiva-
lent focal length, e.g. as standardized in [38], which indi-
rectly factors in sensor size information from the camera.
In this case, we typically constrain f to be within ±5–10%
of the Exif indicated value, to allow for rounding and po-
tential inaccuracies in the Exif metadata. Finally, when-
ever no better prior information is available, we rely on
visual inspection of the perspective in the photograph to
determine a plausible range [fmin, fmax]. Here again, this
interval may be conveniently specified in terms of 35 mm
equivalent focal length, since it provides a good proxy for
angular field of view that is also intuitive to photographers,
and can then be converted back into pixel units.

2.4.3. Camera angles
p(α|I) is the camera yaw prior, and generally comes

from the user’s knowledge of the geographical area. For
convenience, we choose the reference camera orientation
so that the yaw angle is measured with respect to grid
North, and therefore corresponds to the camera’s viewing
azimuth. Depending on features visible on the photograph,
it is often possible to constrain the range of possible cam-
era azimuths. We use a uniform prior with user-specified
left and right azimuth bounds. Note that we treat all three
Euler angles as independent and uniformly distributed3.

3This simplifying choice is adequate for camera attitudes away
from the gimbal lock positions of the chosen Euler angles. In other
situations, it would be necessary to define a uniform probability dis-
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Figure 2: Illustration of prior distributions for the horizontal lo-
cation cu of the lens principal point. The dotted vertical line at
cu = 0.5 marks the horizontal center of the image. For general im-
ages, a Beta(3, 3) distribution is used (blue curve), which provides a
broad prior favoring central locations in the image. Whenever fidu-
cial marks are present, we use a peaked beta distribution centered
around the fiducial location of the optical center, with a standard de-
viation of 5 pixels (illustrated here by the orange curve for a fiducial
center point at 400 pixels and an image width of 1000 pixels).

p(β|I) and p(γ|I) encode the independent prior distri-
butions for camera pitch and roll angles. These can usually
be estimated visually on most images, with photographs
pointing down having negative β, and most terrestrial pho-
tographs having a flat horizon and γ close to 0. Here as
well, we typically use uniform priors over user-specified
ranges.

2.4.4. Lens principal point
To constrain the location of the lens principal point

(cu, cv), we assume that the uncertainties in the u and
v directions are independent, and therefore p(cu, cv|I) =
p(cu|I) p(cv|I). We further assume the principal point to
reside within the image: (cu, cv) ∈ [0, 1]2. A natural way
to specify such a prior is to assume independent beta dis-
tributions for cu, cv.

Consumer cameras and general prior. In absence of more
specific prior information, we take cu, cv ∼ Beta(3, 3),
which imposes only loose constraints on the location of
the optical axis, while favoring locations close to the ge-
ometric center of the image, at (cu, cv) = (0.5, 0.5). This
prior, represented in Figure 2, still allows principal points
far away from the image center, and is broad enough to
accommodate cropped images.

Aerial photographs with fiducial marks. Professional aerial
images, such as the aerials used in this study, feature fidu-
cial marks which can be used to determine the location of
the principal point, and therefore are a part of our prior
information I.

tribution on camera attitudes. This may be done using the Haar
measure on the group SO(3) of 3D rotations.

Taking the horizontal principal point location cu as an
example, we assign a Beta(a, b) prior to cu, with shape pa-
rameters a and b set by imposing the mean and standard
deviation of the distribution. The mean of Beta(a, b) is
set to match the horizontal principal point location, de-
termined as the center of gravity of the fiducial markers.
The standard deviation encodes the a priori uncertainty
about the relationship between the fiducial marks and the
actual principal point. Mapping agencies impose strong
compliance constraints on survey cameras, including up-
per bounds on the distances between the fiducial-indicated
principal point, the principal point of autocollimation, and
the principal point of symmetry. Typical tolerances are of
the order of 30 micrometers [39, 40], translating into 1–
2 pixels at the resolution of the aerial scans available to
us. To account for pixel-level errors in the determination
of the fiducial locations, we set the standard deviation of
our Beta(a, b) prior to correspond to 5 image plane pixels.
We verify that the midpoints of all segments joining pairs
of opposite fiducial marks fall within this distance of the
determined principal point.

The prior distribution for cv in the vertical direction
is constructed in an identical way, with its own indepen-
dently derived a, b parameters. Example priors, without
and with fiducial marks, are illustrated in Figure 2. In
practice, we find the principal point to be very well con-
strained by the control point data with our test images.

2.4.5. Distortion priors
For the distortion parameters da, db, dc we use two types

of priors depending on the source of the photograph:

Consumer-grade or unknown cameras. For photographs
assumed to come from general consumer cameras, we de-
rived a joint prior on the three parameters based on the
Lensfun4 database of calibrated cameras and lenses. To
account for the observed correlations between distortion
parameters, we model p(da, db, dc|I) as a multivariate Gaus-
sian distribution with mean and covariance matrix esti-
mated from the database entries. The resulting prior dis-
tribution is only an approximate match to the data, but
we expect it to perform well for reasonably good lenses.

Aerial photography. Aerial photography lenses typically
have tightly controlled radial distortions; published tol-
erances allow of the order of 10 µm in the whole field [e.g.
39, 40]. The French Institut Géographique National (IGN)
have gracefully provided camera calibration certificates for
the aerial missions whose pictures are used in this study;
indeed we could verify that the calibrated radial lens dis-
tortions never exceed 10 µm. This amount of distortion
represents sub-pixel errors for the aerial photographs used
in this paper. Nevertheless, we still construct an appropri-
ate prior and fit the distortion coefficients. We constrain

4http://lensfun.sourceforge.net/
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da, db, dc by imposing a likelihood on the maximum distor-
tion over the whole half-diagonal of the image, modeled as
a χ distribution with 1 degree of freedom with some scale
s in µm:

max
0≤r̃≤

√
2
|g(r̃)r̃ − r̃| ∼ χ1(s/L). (14)

Note that this results in strong correlations between the
three distortion parameters, as their individual effect can
cancel out in Eq. (8). A trivariate distribution was con-
structed using MCMC sampling of the above likelihood;
the resulting sampled distribution in da, db, dc could then
accurately be fitted with a multinormal distribution. The
scale s ≈ 3.3 µm is determined such that the resulting max-
imum distortion for this distribution of parameters approx-
imately follows a χ3 distribution with a 95th percentile of
10 µm.

2.4.6. Aspect ratio prior
The parameter η appearing in Eq. (7) describes the

pixel aspect ratio of the image, to account for possible non
uniform rescaling after the image was taken. For many im-
ages, we expect η to be very close to 1, and with deviations
of no more than 15–20%, as strongly distorted aspect ra-
tios will be detectable by visual inspection. To ensure that
η remains positive and obtain a symmetric multiplicative
prior around 1, we specify the prior on ln η.

For consumer-grade or unknown cameras, we assume
ln η to be normally distributed with mean 0 and standard
deviation 0.05, resulting in η being close to normally dis-
tributed with mean 1 and standard deviation 0.05.

For aerial photography, the aspect ratio can be deter-
mined from the horizontal and vertical dimensions of the
rectangle delimited by the fiducial marks. We use a Gaus-
sian prior on ln η, centered on the value ln η̄ determined
from the fiducials, and with standard deviation | ln η̄|, so
that the square aspect ratio ln η = 0 is always allowed by
the prior. In practice, we always find ln η̄ to be very close
to 0 for aerial photographs.

2.5. Likelihood
The final ingredient in the Bayesian model of Eq. (2)

is the likelihood p(D|θ, I), which describes the probability
density of observing the data D given some camera pa-
rameters θ under the model and prior information I. In
our case, the data D is the sequence of 2D projected co-
ordinates (up, vp) for each control point p in the image,
corresponding to identified (xp, yp, zp) in 3D space.

Given θ, we may form the 2D projection (ũp, ṽp) in
the image plane of a 3D control point (xp, yp, zp) using the
camera model:

(ũp, ṽp) := C(xp, yp, zp;θ). (15)

We can then use the distance between the reprojected con-
trol point (ũp, ṽp) and the 2D control point (up, vp) as
a source of information about how likely it is to observe

(up, vp) if the actual underlying point location were (ũp, ṽp)
as prescribed by the projection model and θ.

It is useful to think of control points as well-defined (if
arbitrary) points in the real world which could conceptu-
ally be pinpointed with an on-site survey to, say, centimet-
ric accuracy. This could be for example the corner angle
of a building at ground level, the exact center point of cir-
cular roundabout, or the center of the base of a summit
cross. In this picture, there are then two sources of sta-
tistical uncertainty impacting the 2D/3D matches in the
data D.

Firstly, the user-provided placement of the 2D control
points (up, vp) in the image is approximate: point picking
generally involves some level of uncertainty, for instance
when determining the exact location of a summit point
along an elongated ridge. The accuracy of 2D point pick-
ing depends on many factors, including image resolution,
blurriness, perspective, control point visibility, etc. Given
an image, the user is generally able to infer a best-guess lo-
cation for a well-defined control point, together with some
associated point-dependent uncertainty. We therefore as-
sociate to each 2D control point p in the image plane a
user-specified uncertainty radius ep in pixels, which repre-
sents the user’s assessment of the uncertainty in the point
picking process. We choose to use 90% credible regions,
so that when placing a 2D control point and its associ-
ated confidence radius, the user should expect the actual
feature to lie within the designated area with 90% confi-
dence. While there is an amount of subjective probability
estimation involved in this procedure, we find that it works
well in practice, and that this threshold of 90% is rather
intuitive to work with.

Secondly, the 3D locations (xp, yp, zp) of well-defined
control points can only be determined up to some accuracy.
Some control points could potentially be surveyed on-site
to centimetric accuracy with differential GPS, whereas co-
ordinates derived from maps typically only provide accu-
racies of a few meters at best. Therefore, we also account
for a 3D uncertainty radius Ep in meters for 3D points
coordinates. In the case studies presented in this work,
all 3D points come from sources of similar accuracy, and
we typically set Ep = 2 m independent of p as the 90%
credible region for control points.

In practice, for a given 2D/3D control point pair, we
combine the 2D and 3D uncertainties ep and Ep by adding
them in quadrature into a single total 2D pixel uncer-
tainty. A 3D object of size Ep located at control point
p will project onto the image plane as a feature of approx-
imate size fpxEp/dp pixels, where dp is the longitudinal
distance between the object and the camera, and fpx is
the camera focal length expressed in pixels. As a result,
we compute the total uncertainty radius εp in pixels for
control point p as

εp :=
√
e2p + (fpxEp/dp)

2
. (16)
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Note that fpx and dp are a function of the camera param-
eters θ, and may therefore be used in the likelihood com-
putation where θ is assumed to be known. Equation (16)
combines both uncertainties into a single pixel uncertainty
εp in the image plane, as it is in image space that the likeli-
hood evaluation takes place. The addition of the variances
in (16) can be seen as an approximation of the convolution
of the distributions for the point picking and 3D coordi-
nates uncertainties, which arises when marginalizing over
possible exact (error-less) 3D control point locations.

We assume that all points are statistically independent,
in the sense that all 2D user placement errors and 3D un-
certainties are all uncorrelated. Under this assumption,
we may write:

p(D|θ, I) = p((u1, v1), . . . , (up, vp)|θ, I) =

n∏
p=1

p(up, vp|θ, I).

(17)
To evaluate p(up, vp|θ, I) for control point p, we first ap-
ply the full camera model C of Section 2.3 to compute the
projected coordinates (ũp, ṽp) = C(xp, yp, zp;θ). The like-
lihood is then computed by comparing the modeled point
(ũp, ṽp) with the user-specified data point (up, vp).

Because we model our credible regions as circles, we
assume that the likelihood only depends on the error dis-
tance

rp :=
√

(up − ũp)2 + (vp − ṽp)2 (18)

between the data point and the modeled point.
Given a user-provided point (up, vp) and associated to-

tal 90% confidence radius εp obtained from Eq. (16), a
simple likelihood model would be to take (up, vp) normally
distributed around (ũp, ṽp), with covariance σ2

pI2, where
σp ≈ 0.466εp is set so that p(rp < εp) = 0.9 (i.e. 0.466 is
the inverse of the Rayleigh or χ2 quantile for 90%). How-
ever, we find that using a Gaussian likelihood can be prob-
lematic in some cases, because it is not robust to outliers
[41, 42]. Multiple methods exist to make Bayesian meth-
ods robust [see e.g. 37]. Approaches to robust camera cal-
ibration based on Bayesian methods have been presented,
for example by [43] using mixtures of Gaussian and uni-
form likelihoods to account for potential outlier points.

In this work, we follow the simple and well-established
practice of replacing the normal distribution with a Student-
t distribution, which has similar overall properties but fea-
tures heavier tails, and is therefore more susceptible of ac-
commodating outlier points [44]. We therefore define, up
to a normalization constant independent of θ:

p(up, vp|θ, I) ∝ η−2p

(
1 +

r2p
η2p
ν−1

)− ν+1
2

, (19)

where rp is the error radius of (18) for point p, ν > 0 is a
fixed parameter, and ηp is a scaling radius which will de-
pend on θ. The parameter ν controls the heaviness of the
tails, with ν → +∞ approaching the normal distribution,

and lower values of ν producing heavier tails. In practice,
values of 3 . ν . 10 are often recommended for robust
inference [see e.g. 45, Chap. 17]; we adopt a fixed value
ν = 5. For this value of ν, we find for the scaling factor
ηp ≈ 0.304εp by requiring that p(rp < εp) = 0.9. Note
that the overall proportionality constant in (19) depends
on ν and ηp only and not on any parameter of θ. In prac-
tice, this normalization is not important for the sampling
process described in Section 4.1.

3. Inverse perspective and uncertainties

We now discuss the inverse perspective step, in the
form of the back projection, which is needed to recon-
struct the area of a landscape feature from its outline in
the image. In section 3.1, we first describe the back pro-
jection process through which we obtain the area S from
the camera calibration results. To account for uncertain-
ties in both the polygon tracing process as well as DEM
elevations, we derive in 3.2 the posterior distribution of
S, assuming imperfect knowledge of the polygon and dig-
ital elevation model. Finally, in sections 3.3 and 3.4, we
describe our statistical models for the polygon and DEM
uncertainties respectively.

3.1. Polygon back projection
Polygon back projection consists in obtaining the 3D

world coordinates of each vertex of a polygon P drawn on
the image plane, given fixed and known camera parameters
θ, polygon P , and DEM H. Each vertex of P is back
projected independently in a two-step process.

First, we determine the world coordinates of the corre-
sponding ray, i.e., the unit vector pointing from the camera
center to the image pixel of the considered polygon vertex.
To this end, we first undo the lens distortion to recover the
vertex pixel coordinates for a perfect lens. This requires
inverting (6) and (7) jointly, which we do numerically using
a small number of Newton-Raphson iterations. The result-
ing pixel is then interpreted as a ray, cast from the pinhole
camera’s center position through the corresponding pixel
position in the 2D image plane. The ray orientation in 3D
world coordinates is reconstructed from the camera angles.

In a second step, we search along the ray direction for
the first intersection point with the ground, whose local
elevation is given by the DEM H. The intersection point
is then the sought back projected 3D vertex. By construc-
tion, this 3D vertex is the unique 3D point closest to the
camera and located at the surface of the DEM which will
project exactly onto the corresponding polygon 2D vertex
in the image plane.

3.2. Feature area posterior distribution
We now come back to the problem of determining the

posterior distribution of the surface area S of a polygon
traced on the image. In this work, we account for uncer-
tainties on the 2D/3D matches D (through the Bayesian
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camera calibration process), on the tracing of the polygon
P , and on the digital elevation model H. We stress that
the following derivation can easily be extended to other
sources of uncertainties, provided that relevant statistical
models are provided.

The uncertainties on the control point matches is de-
scribed by the posterior PDF of the camera parameters
from the camera orientation and calibration problem, p(θ|D, I).
To account for the polygon and DEM uncertainties, let us
note P̃ the polygon traced by the user, and H̃ the DEM
used for the study. The tilde notation highlights the fact
that both P̃ and H̃ are imperfect representations of the
true, exact underlying polygon P and DEM H, which are
unknown and inaccessible. The difference between P and
P̃ is caused by errors in the manual user tracing process,
whereas H̃ differs from H because of deviations between
the DEM and actual “true” elevation map.

Given the control point matches D, the user-traced
polygon P̃ , the DEM H̃, and prior information I, the pos-
terior of S may be informally expressed as

p(S|D, P̃ , H̃, I) =

∫
dθ

∫
DP

∫
DH ×

p(S,θ, P,H|D, P̃ , H̃, I) (20)

where we have marginalized over all camera parameters θ,
as well as all the possible exact polygons P and DEMs H
compatible with P̃ and H̃. The integrals

∫
DP and

∫
DH

run over the spaces of all possible exact polygons P and
DEMs H with appropriate probability measures; we can
avoid the complication of formally defining these integrals
by using Monte-Carlo sampling, whose application to the
posterior of S is described in section 4.2.

Splitting the joint PDF on the right-hand side using
conditional probabilities, we get:

p(S,θ, P,H|D, P̃ , H̃, I) = p(S|θ, P,H, I) ×
p(θ, P,H|D, P̃ , H̃, I) (21)

where we have used the fact that in the back projection
process, S depends on P and H only. Further splitting the
right-hand product term using conditional probabilities on
P and H, noting that the posterior on θ directly depends
on D, H̃ and I only5, and assuming that the statistical
uncertainties on the polygon tracing and the DEM are

5Note that formally, the posterior on θ should be computed as
p(θ|D,H, I), and not p(θ|D, H̃, I). However, the DEM only enters
this posterior in the case of terrestrial images through the prior for
zc(xc, yc), for which we choose a vertical uncertainty (5 m) which
is typically comparable to the estimated RMSE between H and H̃
(4 m). Therefore, in this case the simplifying approximation H̃ ≈ H
is justified, and allows decoupling the camera estimation from the
DEM Monte-Carlo sampling.

independent, the integrand of (20) becomes:

p(S|θ, P,H, I)︸ ︷︷ ︸
Back-proj.

× p(θ|D, H̃, I)︸ ︷︷ ︸
Calibration

×

p(P |P̃ , I)︸ ︷︷ ︸
Poly. uncert.

× p(H|H̃, I)︸ ︷︷ ︸
DEM uncert.

. (22)

This expression collects all the sources of statistical uncer-
tainty accounted for in the model; it is easy to see how it
can be expanded in a similar fashion to account for more
sources of errors.

Because the back projection process yields a fully de-
termined area S given θ, P̃ , H̃ and I, as described in 3.1,
the probability density of S simply writes:

p(S|θ, P,H, I) = δ(S − S(θ, P,H, I)), (23)

where δ is the Dirac delta function. Note that although
(20), (22) and (23) look unwieldy, they lend themselves
well to sampling p(S|D,P,H, I); in practice we use Monte-
Carlo sampling to probe the posterior of S, which we will
describe in 4.2.

3.3. Characterization of polygon tracing uncertainties
Tracing uncertainties arise from the user’s approximate

placement of the polygon vertexes on the picture. This re-
sults in the user-input polygon P̃ differing from the actual
underlying error-free polygon P . The discrepancy is de-
scribed statistically by specifying in (22) a PDF p(P |P̃ , I)
on the space of 2D point coordinates of P . Note that trac-
ing errors are more intuitively specified by the reversed
probability density p(P̃ |P, I), that is, the probability den-
sity of observing a given traced polygon P̃ suffering from
tracing errors, knowing the true underlying polygon P .
Formally, the two densities p(P |P̃ , I) and p(P̃ |P, I) are
related through Bayes’ theorem; in the following we will
assume for simplicity that p(P |P̃ , I) = p(P̃ |P, I), which in
our following model holds in the limit of small errors.

Providing an accurate description of p(P |P̃ , I) is a po-
tentially complicated problem, as it requires investigating
in detail sources of errors in the tracing process. In this
work, we settle for a simple model in which P̃ and P have
the same number n of vertexes. We define a vertex normal
2D vector nj at each vertex j of the polygon P̃ , and re-
strict ourselves to errors which displace vertexes along nj ,
as these types of errors will have the most impact on the
shape of the polygon and its total surface area. Errors are
therefore characterized by the collection of n real numbers

λj := (vj − v̄j) · nj , j = 1, . . . , n, (24)

with λj = 0 yielding vj = v̄j . We assume that the error
amplitudes λj follow a multinormal distribution with zero
mean and covariance matrix

cov(λj , λk) = σ2e−djk/`, (25)
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where djk is the shortest path distance between vertexes j
and k along the polygon perimeter, and ` is a correlation
length scale that we chose to be 1/20 of the total perimeter
of the polygon P̃ . This ensures that the polygon can have
about 20 continuous “segments” of vertexes whose errors
are roughly independent. The σ parameter describes the
overall scaling of the errors, and in the rest of this work
we take σ = 1 pixel, corresponding to a user tracing the
true underlying polygon within about ±1.6 pixels in the
normal direction 90% of the time.

3.4. Characterization of DEM uncertainties
Because the back projection procedure consists in in-

tersecting camera rays with the DEM, unknown deviations
of the elevation model H̃ from actual terrain elevation H
will result in additional uncertainties on the feature area
of interest. In this section, we describe a simple model
which plays for a DEM H an analogous role to the un-
certainty model 3.3 for the polygon P . The goal of this
model is to generate possible true underlying DEMs H
given a DEM H̃ with errors, i.e. to sample the p(H|H̃, I)
term in (22). Note that here again, we conflate p(H|H̃, I)
and p(H̃|H, I) into a same DEM uncertainty process. Just
like for the polygon, this is justified in the limit of small
perturbations. From a practical standpoint, H̃ constitutes
our best available elevation information [see 46, for a dis-
cussion of this point in a similar context].

The accuracy of digital elevation models has been ex-
tensively studied in connection to various problems, e.g.
for viewshed and intervisibility problems [47], automatic
feature extraction [48], the creation of DEMs from multi-
ple data sources [49], or the determination of local topo-
graphic parameters [46]. Various methods have been pro-
posed to model realistic autocorrelated DEM uncertain-
ties based on accurate elevation measurements at ground
control points, often relying on stochastic or random field
approaches [48, 50, 51, 49, 46].

Deviations between an approximate DEM H̃ and true
elevation mapH are often first described using simple met-
rics, which capture the globally averaged properties of the
error. A commonly used indicator is the root mean square
error (RMSE) [e.g. 52, 51]:

RMSE :=

√
1

N

∑
i

(H̃i −Hi)2, (26)

for which estimates are usually provided in the DEM prod-
uct documentation.

Global error metrics are insufficient however to fully
characterize DEM errors. The magnitude of errors has
been found correlate with a number of local terrain prop-
erties [53], including in particular slope [54, 53], ruggedness
[49, 54], and possibly local terrain elevation [49]. The doc-
umentation for our DEM, for instance, indicates an RMSE
error varying from 1 m in plains to 4 m in high-altitude
rugged alpine areas.

Beyond the magnitude of DEM errors measured as a
space-varying RMSE, DEM errors are also spatially au-
tocorrelated [see e.g. 47, 51, 49, 48, 55, 53]. Based on a
semivariogram analysis, some authors find DEM error au-
tocorrelations to be well described by a two-component
model: a short-scale correlation, over separations of 20 m
to 125 m, and larger-scale correlations at kilometric scales
[55, 56]. It has also been suggested that the error auto-
correlation scale is itself position-dependent, based on the
local topography, with the autocorrelation length varying
with the scale of local terrain features [54].

In this paper, we opt for a simple model which still
attempts to capture all these elements. For simplicity, we
assume that our DEM H̃ is unbiased, in the sense that
the average of each Hi over all statistical realizations of
the error is equal to the true elevation Hi at each DEM
node i, however it is very easy to relax this assumption
if prior information on the DEM supports doing so. We
adopt an ad-hoc model with locally-varying RMSE σ(x, y),
as well as locally-varying correlation scale length λ(x, y).
The maps for σ and λ are constructed from the DEM H̃
which describes the elevation map z(x, y). Since our DEM
specifications document different values of the RMSE for
low-altitude and flat areas on the one hand, and high-
altitude and alpine terrain on the other, we propose to
define a transition map ξ(x, y) ∈ [0, 1], with ξ ≈ 0 in
plains, and ξ ≈ 1 in mountainous areas. We construct
this transition map from the local elevation z(x, y), and a
proxy quantity q(x, y) for local terrain ruggedness.

We start by computing a map of local terrain rugged-
ness qi at each DEM node i, roughly following the defini-
tion6of [49]:

qi := h−1

√√√√1

8

∑
j→i

(
zj −

1

9

∑
k→i

zk

)2

, (27)

where the sums on j, k run over the 3× 3 square of nodes
immediately around node i, and h is the horizontal DEM
resolution (grid cell size) in meters. Therefore, qi is propor-
tional to the local standard deviation of DEM elevations
in the 3 × 3 square around i. Note that q ≥ 0 is dimen-
sionless, and is closely related to the local terrain slope.
Regions of terrain with low q will be found in flat, fea-
tureless plains and plateaus, whereas steep slopes or very
irregular terrain will result in large ruggedness values.

From the ruggedness map q, we construct an ad-hoc
transition map ξ as:

ξ = tanh

[
Aq +Bmin

(
max

(
z − 2000 m

3000 m− 1000 m
, 0

)
, 1

)]
.

(28)

6The factor of 8 = 9−1 appearing in our formula, corresponds to
the scaling factor for an unbiased estimation of the standard devia-
tion. Compared to [49], the extra 1/h normalization factor ensures
that our definition of q is independent of the DEM horizontal reso-
lution h.
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The term in z behaves as a smooth linear ramp between
0 at z = 2000 m and 1 at z = 3000 m, saturating a 0 be-
low and 1 above respectively. A and B are positive weights
which control the relative scaling of the ruggedness and el-
evation in the transition map; in all of the following we set
A = B = 1. The tanh function ensures that the resulting ξ
is always in the interval [0, 1], introducing a nonlinear sat-
uration for large values of its arguments, but responding
linearly to small arguments. Figure 3 illustrates the tran-
sition function ξ on the Mont Blanc study area, with the
source DEM z shown in panel (a), and the resulting transi-
tion function ξ in panel (b). The altitude cutoffs were cho-
sen to broadly discriminate between sub-alpine and alpine
elevations; the resulting ξ map is smoothly varying across
the whole area of study, and sensitive to both altitude and
local terrain ruggedness.

We then construct maps for the RMSE σ and error au-
tocorrelation scale λ based on the transition function. σ
is constructed by linearly interpolating between the docu-
mented DEM RMSE errors in flat plains and high alpine
areas according to the transition map:

σ := (1− ξ)× 1 m + ξ × 4 m. (29)

Panel (d) of Figure 3 illustrates the resulting map for σ as
specified in the model.

For the DEM perturbation autocorrelation range λ, we
adopt ad hoc values between 20 m and 150 m, based on
the small-scale component observed by [55, 56] in their
semivariogram analysis. We note that the other, multi-
kilometer-scale correlation component found by these stud-
ies is unlikely to significantly impact our study because the
terrain features we study are typically at most kilometer-
sized.

Our prescription for the spatial dependence of λ follows
[54], who find that the autocorrelation length of the DEM
errors varies according to the scale of local terrain features.
In rugged areas with small-scale terrain variation, we set
λ = 20 m. In smooth areas, terrain varies only on larger
scales, and we correspondingly adopt a larger value of λ =
150 m. The map for λ is therefore constructed simply using
the transition map as:

λ := (1− ξ)× 150 m + ξ × 20 m. (30)

Panel (c) of Figure 3 illustrates the resulting map for λ
corresponding to this model.

Finally, we construct random realizations of DEM per-
turbations δz with local standard deviation and local au-
tocorrelation scale length given by the maps σ and λ. This
process is based on a random field approach, inspired by
the autoregressive technique of [50], in which spatially cor-
related DEM disturbance fields u are generated by iterat-

ing7:

u← ρ

4
Wu+N (31)

for 0 ≤ ρ ≤ 1. W is the matrix with ones on “rook” neigh-
bor positions, (i.e. the very next horizontal and vertical
neighboring DEM nodes) and 0 everywhere else. N is a
vector of point-wise independent normal noise realizations,
and is fixed across the iteration process. By iterating this
process to convergence, (author?) [50] obtain a random
field u with spatial correlations.

In this work, we slightly modify and extend this pre-
scription, in order to generate DEM perturbations δz(x, y)
with given maps of autocorrelation length λ(x, y) and RMSE
σ(x, y) (i.e. variance σ2). For a DEM with grid mesh point
spacing (resolution) h, we solve the discrete equation8 in
ũ:

(W − 4I)h−2ũ− λ−2ũ = −2
√
π h−1λ−1N, (32)

and obtain the DEM perturbation with

δz := ũ σ. (33)

The resulting δz(x, y) corresponds to a random DEM per-
turbation with approximate correlation scale length λ(x, y)
and RMSE σ(x, y). Each random realization of δz is ob-
tained by solving Eq. (32) with a different independent re-
alization of the white noise right-hand-side N . In practice,
we solve (32) using an efficient algebraic multigrid solver
[57]. Panel (e) of Figure 3 shows a single realization of a
random δz, on which both the point-dependent variance
and spatially-varying correlation scale is visible. Finally,
panel (f) presents the pixel-wise standard deviation of δz
across 1000 random realizations; the resulting standard de-
viation map follows the map of the RMSE σ of panel (d)
closely, illustrating that the random field approach suc-
cessfully reproduces the local variance prescribed by the
model.

To conclude, coming back to the problem of character-
izing DEM uncertainties, recall that we want to produce
realizationsH that sample the p(H|H̃, I) term in (22). For
each δz realization obtained from H̃ by the process de-
scribed in this section, we obtain a sample from p(H|H̃, I)

7Note that our definition of ρ differs from [50] by a factor of 4,
but otherwise the process is identical.

8This equation can be obtained from (31) by letting λ−2 :=
4h−2(ρ−1 − 1) and considering the fixed point of the iteration pro-
cess in the limit of infinitely fine mesh spacing h → 0, which yields
∆u−λ−2u = −4ρ−1h−2N . This is a linear stochastic partial differ-
ential equation (PDE) for a random field u with correlation length λ.
The local variance of its (continuous) solution u can be computed an-
alytically to be varu = 4π−1ρ−2h−2λ2. Letting ũ :=

√
πρhλ−1u/2

and discretizing this last PDE on the DEM grid yields Eq. (32) with
var ũ = 1, and Eq. (33) therefore produces δz with the desired prop-
erties. Note that while this derivation is only formally correct for λ
and σ uniform in space, we find that using space-varying λ(x, y) and
σ(x, y) works very well in practice and generates fields with appro-
priate statistical properties, as illustrated in Fig. 3.
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Figure 3: Illustration of the DEM perturbation generation process. Panel (a) shows the DEM elevation map z around the area of interest for
the Mont Blanc study. From the elevations z, the transition function ξ ∈ [0, 1] shown in panel (b) is constructed so that ξ ≈ 0 in regions of
smooth and low altitude terrain, and ξ ≈ 1 in rugged and mountainous areas. Models for the error correlation scale λ and RMSE σ (panels
(c) and (d) respectively) are then derived from ξ based on DEM documentation and other studies of DEM errors. From the λ and σ maps,
a random realization δz of an elevation perturbation is then generated as described in the text. The resulting field is presented in panel
(e), clearly showing the spatially varying correlation scale. Panel (f) shows the standard deviation of δz across 1000 random realizations,
illustrating that the generated DEM perturbations closely follow the prescribed RMSE map σ.
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by constructing the DEM H = H̃ + δz.

4. Implementation and MCMC sampling

The first step towards implementation is evaluating the
Bayesian posterior on camera parameters θ. We have by
now specified the full prior (Eq. (11) with terms discussed
in Section 2.4), and likelihood using the camera model and
Eqs. (17) and (19). We can therefore evaluate the posterior
probability density p(θ|D, I) using (2) for any value of the
parameter θ.

4.1. MCMC sampling of the posterior on camera parame-
ters

Because the parameter space of θ is high-dimensional,
it is intractable to explore the posterior PDF (2) by grid-
ding parameter space. To overcome this common prob-
lem in Bayesian inference, Monte Carlo Markov Chain
(MCMC) methods have been developed. Given a way to
evaluate a probability distribution function over a possi-
bly high-dimensional space, MCMC methods produce in-
dividual samples from a random walk whose stationary
distribution asymptotically converges to the chosen PDF.

In this work, we use the emcee implementation [58]
of the affine-invariant MCMC ensemble sampler proposed
by [59] to sample the posterior PDF for the camera pa-
rameters. This method relies on the mixing of a number
Nc of Markov chains (called walkers), which are advanced
together in a step by step process.

At the beginning of the MCMC sampling process, we
initialize the Nc walkers at values of θ randomly drawn
from the prior for θ; this ensures that the walkers are
scattered across the plausible parameter space. The ran-
dom walk typically takes some number of steps τ to forget
about its own history, characterized by the chain’s auto-
correlation time. We therefore first run the process for a
number Nw of warmup steps from the initial positions, and
the corresponding samples are discarded. After warmup,
the chains are advanced by Ns additional steps for sam-
pling. At the end of the sampling process, we obtain a
total of NcNs sampled values of θ, with Ns values for each
of the Nc chains.

Markov chains should be checked for stationarity and
convergence before inferring properties of the posterior
from the samples. We first visually check for convergence,
by plotting the sequence of MCMC chain samples. More
quantitatively, we also estimate the autocorrelation time
τ of the Markov chains; in our tests, typical values of
τ at stationarity are around 130–160. We typically use
Nc = 400 walkers, each sampling Ns = 20000 samples,
after Nw = Ns/3 warmup steps. This results in about
Ns/τ ∼ 140 statistically independent samples per chain.
Since we use hundreds of chains over many autocorrelation
times, we achieve good sampling of the posterior distribu-
tion.

Whenever a point estimate is required for θ, different
prescriptions can be computed from the MCMC samples

[see 60]. In the rest of this work, point estimates are com-
puted as the median of all sample values from the MCMC
sampling. Note that in cases where the posterior distri-
bution for θ is strongly skewed or multi-modal over the
multidimensional θ parameter space, this choice could po-
tentially result in a value of θ that is very unlikely (i.e. that
lies in an area of very low posterior probability density); it
may then be more appropriate to compute a single point
estimate of θ by maximizing the posterior probability den-
sity using traditional nonlinear optimization methods.

4.2. Sampling of the posterior of S
Once we have obtained samples θi characterizing the

posterior p(θ|D, I), we can derive the posterior on the sur-
face area p(S|D, P̃ , H̃, I) based on (20), (22), (24) and
(25), and generate posterior samples for the area S by the
following process:

1. Samples θi are first generated using MCMC, sam-
pling the posterior PDF of the camera parameters
from the camera calibration process,

2. For each sample θi:
(a) an independent polygon Pi is drawn randomly,

by drawing all the λj using (25) and then con-
structing Pi from P̃ using (24),

(b) a DEM elevation map Hi is constructed from
H̃ and a random realization δzi of a DEM per-
turbation as described in 3.4,

(c) The resulting Si = S(θi, Pi, Hi, I) is finally com-
puted using the deterministic back projection
process described in 3.1.

3. The Si obtained by this process then sample the
PDF of S according to (20)–(22).

Note that since 2b is a costly operation requiring solv-
ing an elliptic problem on the DEM grid, we typically only
generate a new random Hi only once every 10 samples θi,
and reuse values of Hi in-between. This significantly re-
duces the overhead of sampling DEM perturbations, and
does not modify the sampling distribution of the Hi.

5. Validation

In this section, we setup validation case studies to demon-
strate the technique presented in this paper. We use a
combination of photographs, both aerial and terrestrial
oblique of different origins and quality, to assess key as-
pects of our method.

First, we consider the problem of camera orientation
with calibration, by fitting images for which the camera
location is known approximately, and comparing the ob-
tained posterior on the camera position to the available
photograph information.

Based on these fits, we discuss goodness-of-fit metrics
for the model, such as control point residuals, and investi-
gate an intrinsically Bayesian test of the model in the form
of posterior predictive checking.
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Finally, we consider the inverse perspective problem of
reconstructing the surface area of geological features from
single images. For a specifically geological feature in the
Mont Blanc massif, we use back projection to determine
the area of the zone from different images and compare the
accuracy and systematic effects present in the result. We
show that some ingredients of the model, such as account-
ing for lens distortions, can have a significant impact on
the accurate determination of features by back projection
when applied to diverse non-precision photographs.

5.1. Presentation of validation case studies and data
We start by describing the input data used in this

study, focusing on the images, digital elevation model, and
construction of 2D/3D control point matches.

5.1.1. Case studies overview
Figure 4 presents an overview map of the two different

case study areas.

Grenoble area (“G”). This case study is located near the
Grésivaudan valley, a broad, flat expanse flanked West
and East by the massifs of Chartreuse and Belledonne.
As a result, terrestrial oblique pictures feature a mixture
of coplanar control points in the valley and remote back-
ground points on the background mountains, making it a
good test for camera orientation. The area is shown in
Figure 6 showing image G-O19.

We do not perform any back projection analysis on this
study, instead focusing on camera orientation and calibra-
tion. We use altitude range priors for all photographs in
this study, and therefore do not require any digital eleva-
tion model of the area.

Mont Blanc massif (“MB”). This case study is located
in the Mont Blanc massif, near Chamonix-Mont-Blanc,
France. The studied area is located on steep, rugged ter-
rain, that is however considered stable according to the
French Land and Forestry Service [61]. In particular, the
studied zone is not indicated as being prone to landslides
[62], and its terrain is therefore likely relatively stable
across the years, making it suitable for tracing geological
features.

For this case study, we first perform camera calibration
and orientation, and also test the inverse perspective prob-
lem of calculating the planimetric area of a polygon drawn
on the input images, which traces a geological feature of a
geometry and configuration relevant for our glacier stud-
ies. The overall area is visible in Figure 5 showing image
MB-O18.

5.1.2. Photographs and photographic information
For both case studies, we use publicly available pho-

tographs from aerial surveys by the French Institut Géo-
graphique National (IGN), as well as terrestrial oblique
pictures taken by the authors specifically for the study

with different low-grade cameras. Photographs will here-
after be labeled by the prefix of their case study (G or
MB), followed by either A## or O##, for “Aerial” and
“terrestrial Oblique” photographs, respectively, and where
## corresponds to last two digits of the year the photo-
graph was taken. All photographs used and some of their
information are collected in Table 1.

Aerial photographs. All aerial photographs were profes-
sionally acquired and digitized by IGN over the course of
airborne survey missions, and are publicly available [63].
The images we studied come from two different analog
imaging systems: prior to and including the MB-A93 im-
age, a Wild Heerbrugg RC10 camera system equipped with
an Universal Aviogon lens was used, all later images were
acquired using a Zeiss RMK TOP 15 aerial survey camera
system equipped with a Zeiss Pleogon A3 lens. The plates
were scanned by IGN, at resolutions between 20 and 30 µm
per pixel (see Table 1).

All aerial images feature fiducial marks from the orig-
inal photographic plates. We therefore use the tighter
aerial priors described in Section 2.4 for lens distortion,
lens principal point and pixel aspect ratio.

For some of the missions, we have obtained lens cali-
bration reports from IGN, which provide us with the ex-
act calibrated focal length of the lens, as well as its exact
distortion profile. However, for our validation setup, we
choose not to set the focal length prior too tightly in or-
der to test the capability of our method to reconstruct the
parameters for unknown cameras, as is typically the case
for archival or non-scientific images. In addition, this tests
the Bayesian method’s ability to deal with the additional
variance, and with the degeneracy between the depth di-
rection and the focal length.

For a subset of the aerial photographs, some informa-
tion on the exposure station is available from the image’s
photographic data panel. These images are marked with
“?” in Table 1, and are used to validate the camera orien-
tation solution. Unfortunately, this information display is
not very accurate: the exposure station is only displayed
to 0.01 arcminute in latitude and longitude. While the
RMK TOP computer system records accurate flight path
information in order to reconstruct the exact exposure lo-
cations once on the ground [64], we have not been able to
obtain better exposure station information on these images
at this time. The aircraft indicated altitude is also shown
on the image plate, however, it is difficult to interpret as a
height without more information due to its dependence on
barometric altimeter calibration and precise atmospheric
conditions.

Terrestrial oblique photographs. The two terrestrial oblique
photographs, one in each study, were taken by the authors,
using consumer smartphone cameras, to test the method
with lower-grade lenses in conditions similar to pictures
taken without scientific intent. For each image acquisi-
tion, the camera location was determined on-site using a
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Figure 4: Overview map for the two case studies. Geographical coordinates of the center of G and MB zones are N45°12’17” E5°47’18” and
N45°55’1” E6°52’17” respectively. Red squares labeled MB-O18 and G-O19 show the camera location for the terrestrial oblique pictures of
each study. For the Mont Blanc study, the gray polygon delineates the landscape feature used in the back projection validation section.

Image Type Source and reference Camera Focal length Scan or image resol. Number of CPs
G-A96? Aerial IGN C96SAA0411-1996-F3234-0090 Zeiss RMK TOP 15 153 mm 21 µm/px 22
G-A98? Aerial IGN CA98S01232-1998-FD38-1088 Zeiss RMK TOP 15 153 mm 28 µm/px 16
G-A03? Aerial IGN CP03000082-2003-FD0038-250-C-2279 Zeiss RMK TOP 15 153 mm 28 µm/px 16
G-O19? Terr. oblique Own Huawei COR-L29 Smartphone 3.8 mm 4608× 3456 px 25
MB-A88 Aerial IGN C3529-0011-1988FD17-0226 Wild RC10 152 mm 21 µm/px 16
MB-A93 Aerial IGN C93SAA088-1993-FD74-0492 Wild RC10 152 mm 28 µm/px 15
MB-A01? Aerial IGN CA02S00032-2001-FD0073-250-C-3163 Zeiss RMK TOP 15 153 mm 28 µm/px 15
MB-A04 Aerial IGN CP04000702-2004-FD74-C-20000-0817 Zeiss RMK TOP 15 153 mm 25 µm/px 12
MB-O18? Terr. oblique Own ASUS X00HD Smartphone 3.4 mm 4160× 3120 px 18

Table 1: Table of photographs used for the two validation case studies G and MB. For images marked with “?”, some exposure station or
camera location information is available, and is used for camera orientation validation.
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Figure 5: Terrestrial oblique image MB-O18 of the Chamonix val-
ley, showing the general terrain configuration, the control points for
camera orientation and calibration, as well as the polygonal feature
used for the inverse perspective validation.

consumer Garmin eTrex 30 hand-held GPS unit, operating
with EGNOS (European Geostationary Navigation Over-
lay Service) augmentation. Between the GPS unit’s own
accuracy indication, and published accuracy for EGNOS
GNSS [65], we assume the location to be accurate to about
3 m accuracy. The camera altitude was determined using
a calibrated barometric altimeter.

The two images, MB-O18 and G-O19, are shown in
Figures 5 and 6 respectively.

5.1.3. Digital elevation model (DEM)
For the Mont Blanc case study, the digital elevation

model used is provided by a regional French agency (Régie
de Gestion des Données des Pays de Savoie). It was con-
structed from 1998 aerial photographs, revised in 2004
through photogrammetric ground control points, and fur-
ther updated in 2008 and 2010. The DEM is provided to
us as rectilinear gridded data with 4 m node spacing (hor-
izontal resolution) in both easting and northing, in the
Lambert-93 projection. The documentation reports an es-
timated vertical root mean square error (RMSE) varying
between 1 m in plains and 4 m in rugged and alpine high
altitude areas. The DEM for the MB case study is used
both in the camera position prior for the MB-O18 image,
and in the inverse perspective back projection step in all
MB images.

For the associated DEM uncertainties, we use the model
described in 3.4, with the exact parameter values men-
tioned in that section.

For the Grenoble case study, we do not rely on any
DEM, since we do not test back projection in this area,
and we use altitude range priors on the camera parameter
zc.

Figure 6: Terrestrial oblique image G-O19 of the Grésivaudan valley,
showing the general terrain configuration and the control points for
camera orientation and calibration.

5.1.4. Control points and definition of 2D/3D matches
For each image in both case studies, we manually de-

termine 2D/3D control point matches. We proceed by
identifying well-defined features on the photograph, such
as road crossings, mountain peaks, corners of noticeable
buildings, and match them to their known position in 3D
world coordinates. This 3D world position may be deter-
mined by correlating diverse sources, such as georeferenced
aerial imagery, detailed topographical maps, planimetric
and altimetric databases such as OpenStreetMap [66]. Be-
cause of uncertainties associated with many of these data
sources, we account for a 3D uncertainty Ep = 2 m in the
likelihood as described in 2.5.

We define the 2D/3D matches by associating to each
3D control point its 2D pixel coordinates in the image.
To account for uncertainties in the placement of each 2D
point, the user specifies for each of them a 90% confidence
radius (see Section 2.5). Examples of 2D points with their
confidence radii are shown in Figure 7.

5.2. Camera orientation validation
We now present results from the camera orientation

and calibration step for our input images for which cam-
era location information is available. We choose to focus
on the reconstruction of the planimetric camera location
parameters (xc, yc), since they are crucial parameters for
which the reference value for our test images is known with
the greatest accuracy. The camera altitude zc is typically
less constrained on aerials because of the degeneracy with
the focal length, and uncertainties on altitude measure-
ments.

5.2.1. Terrestrial images
Figure 8 compares the locations of the camera for our

two terrestrial images as determined by the method to the

16



Figure 7: Example of definition of 2D control points for the MB (left)
and G (right) case studies. The two lower panels are zooms of the
upper row. Circles represent the 90% confidence radius, accounting
for the user’s judgment on point uncertainty.

50 m

GN MB-O18

50 m

GN G-O19

Figure 8: Camera position validation results for terrestrial oblique
photographs. For both images, the ellipses show 7 contours of the
MCMC posterior distribution for (xc, yc). The contour levels are
kM/8, k ∈ {1, . . . , 7}, where M is the maximum value of the pos-
terior PDF. The 4th ellipse therefore corresponds to the half maxi-
mum level of the PDF. The cross marks the posterior point estimate
(median of the MCMC samples), while the circle shows the actual
reference camera position measured with a hand-held GPS unit, with
an assumed error radius of 3 m. Grid North (GN) of the Lambert-93
projection is up. The posterior and reference point distributions are
in very good agreement.

values measured on site. The ellipses show 7 isocontours
of the MCMC posterior PDF for (xc, yc) as described in
the figure caption.

We find that the reconstructed and reference position
distributions are in good agreement. Qualitatively in Fig. 8,
the reconstruction error (offset between the method’s me-
dian point estimate and the measured (xc, yc, zc) position)
is comparable in magnitude to the combined statistical
uncertainties on the reconstructed and reference positions,
materialized by the PDF contours and the 3 m radius circle
respectively.

More quantitatively, the errors on (xc, yc, zc) are (2.0 m,
2.9 m, 10.5 m) and (−5.8 m, 4.0 m, −7.8 m) for the MB-
O18 and G-O19 images respectively. Assuming 3 m er-
rors on the measured reference barometric altitudes, the
90% credible interval for the observed errors on zc in im-
ages MB-O18 and G-O19 are 9.7 m and 6.2 m respectively.

Therefore, the position reconstruction errors are compara-
ble to the combined statistical uncertainties on (xc, yc, zc),
and intrinsic measurement errors on the reference position.

5.2.2. Aerial images
For aerial images for which exposure station informa-

tion is available, we can also compare the reconstructed
camera location at the instant of exposure to the informa-
tion provided.

This comparison is summarized in Figure 9, where we
show both the reference position region and the contours of
the posterior of (xc, yc). Overall, the reconstructed camera
location is within 50 m of the indicated reference position
along each direction. However, the interpretation of this
test is made more complicated by the fact that we could
not have access to precise exposure station information at
the exact instant of exposure.

First, as discussed in 5.1.2, the exposure station infor-
mation is only available to us rounded to 0.01 arcminute
in latitude and longitude. As a result, we can only deter-
mine the corresponding GPS position within 15 to 20 m in
each direction. In Figure 9, we attempt to account for this
uncertainty by representing the locations compatible with
the indicated reference position as a quadrangle, assuming
that the data panel information is rounded down.

Even at this level of precision however, discrepancies
remain in Figure 9. Over-plotting a trajectory defined by
the aircraft’s heading (as obtained from the camera ori-
entation solution and our best estimate for the camera
mount orientation) shows that the reference GPS position
obtained from the plate data panel seems to lag behind
the reconstructed aircraft position. The discrepancy dis-
tance corresponds to a flight time of approximately 0.2 s
to 0.8 s, assuming a typical cruise ground speed of 220 kn
as inferred from consecutive exposures. Even though the
reconstructed aircraft heading does not always exactly join
the reference and reconstructed positions, Figure 9 shows
that the discrepancy is still consistent with the aircraft’s
possible trajectory assuming moderate crosswinds.

A possible explanation for this delay would be that the
data panel display is not refreshed continuously with the
exact current GPS location, but rather displays the last
position fix updated at the GPS sampling rate, typically
set close to 1 Hz for this type of aerial survey [67]. The
onboard computerized imaging system would be recording
the flight track with precise timing information, and accu-
rate exposure station information can then be computed
by interpolation between GPS samples using specialized
software on the ground (see [67, 68], as well as [64] for a
historical discussion of the Zeiss RMK TOP system, in-
cluding of this specific aspect).

While it is difficult to completely settle the question
without access to more accurate exposure station informa-
tion, we find that our method yields camera positions that
are broadly consistent with known data, and while discrep-
ancies of a few tens of meters remain on the studied aerial
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Figure 9: Camera location reconstruction results for aerial photographs. The contours of the posterior distribution of (xc, yc) are shown
together with the reference position region (red rectangle) as determined from the data panel display on the photographic plate. Grid North
(GN) of the Lambert-93 projection is up. The rectangle spans 0.01 arcminute in latitude and longitude, to reflect the display rounding of
the aircraft position. For each image, the probable heading of the aircraft as determined by camera orientation is represented by the median
gray line, marked by dots spaced ≈ 0.2 s of flight time apart. The gray lines left and right of the heading line illustrate the corresponding
ground track of the aircraft for an indicative crosswind of ±40 kn. While directly comparing the reference area to the posterior position shows
discrepancies of order up to 50 m, these can be explained by a 0.2 s to 0.8 s delay between the GPS position measurement refresh (occurring
in the red rectangle), and the actual frame exposure. We discuss this in more detail in the text.

photographs, they can be explained by approximations in
the data panel display.

5.3. Goodness-of-fit tests
In this section, we illustrate checks of the goodness-

of-fit achieved by the model on the test images from the
case studies. We present two tests of the goodness-of-fit
between the control points and the model. First, we study
the residuals between the reprojected control points and
the 2D control points for a single point estimate value of
θ; this tests how well the model is able to fit the control
points of an image.

In a second time, we test how well the Bayesian model
accounts for variability in the model, and whether the sta-
tistical model is consistent with the actual fluctuations ob-
served in the data: this is the purpose of the so-called
posterior predictive check.

In all of this section, we work in pixel coordinates in
the image plane, and use the notations of Section 2.5.

5.3.1. Reprojection residuals
We now discuss reprojection residuals for a single, fixed

image. We first determine a point estimate θ̄ of the cam-
era parameters, which we compute as the median of the
MCMC samples θi. θ̄ is meant to represent camera con-
figuration typically favored by the posterior distribution
from the camera orientation and calibration process.

Given 2D control points (up, vp) and their associated
user-provided pixel uncertainties ep in the image, we com-
pute the reprojections (ũp(θ̄), ṽp(θ̄)) of the corresponding
3D points. We then derive normalized residual vectors
with components ((ũp − up)/ep, (ṽp − vp)/ep), which rep-
resent the reprojection errors normalized to each control
point’s uncertainty.

In Figure 10, we plot these residuals as scaled arrows
located at the approximate control point location in the
image. The arrow length is proportional to the norm of

the error vector (except for very small norms, in which
case the it is represented as an hexagonal dot). Most error
vectors have norm below 1.0, showing that the residual are
consistent with the point placement uncertainties ep. This
demonstrates not only that the point estimate θ̄ provides
a good fit to the control points in the data D, but also
that the errors in the resulting fit are consistent with the
user-provided uncertainties on the location of the control
points. Aerial images exhibit slightly larger normalized
errors compared to oblique photographs, most likely be-
cause of their very high resolution, as the uncertainty Ep

on the 3D points then becomes more significant than the
2D control point errors ep.

We also note that the error vectors are isotropic, and
do not reveal any strong trend with the location of the
control points: this illustrates that there seems to be no
systematic tension in the model to reproduce the projected
control point locations at θ̄.

5.3.2. Posterior predictive checking
We now present another goodness-of-fit test, which is

intrinsically Bayesian and tests the self-consistency of the
model’s statistical description. This test, called posterior
predictive checking, uses the posterior p(θ|D, I) to de-
scribe hypothetical data observations D′ under replicated
data measurement experiments: in our case, it uses the
model to predict control points D′ = {(u′p, v′p)} which we
could likely observe as alternates to D, if the control point
determination process were to be replicated many times.
This prediction relies on the model’s inference from the
existing control points D = {(up, vp)}, and in particu-
lar takes into account the full Bayesian uncertainty in θ.
Posterior predictive checks are commonly used as a self-
consistency and goodness-of-fit check in Bayesian model-
ing [69, 70, 45]. The test amounts to sampling from the
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Figure 10: 2D control point reprojection residual vectors in the image plane, shown for all fitted photographs. For each image, we derive
reprojection error vectors normalized to control point uncertainties ep, as described in Section 5.3.1. The resulting residuals are represented
as dark blue vectors attached to their approximate respective control point location in the image plane. Control points with very small errors
are represented as hexagonal dots. The light gray arrow in the upper left corner of each panel illustrates a unit length vector. The residual
norms are consistent with the point placement uncertainties ep, and the point estimate θ̄ provides a good fit to the control points. In addition,
the residual vectors are fairly isotropic and exhibit no noticeable spatial trend.

posterior predictive distribution:

p(D′|D, I) =

∫
dθ p(D′|θ, I) p(θ|D, I), (34)

where in the first term on the right-hand side, we recog-
nize the likelihood of D′ (see Section 2.5), and the second
term is the posterior of θ. We can therefore generate pos-
terior predictive realizations of D′ by sampling θ from the
posterior p(θ|D, I) (i.e. taking the MCMC samples θi),
and then for each sample θi, drawing a random realization
D′ = {(u′p, v′p)} of 2D matches according to the likelihood
(19).

As a test quantity for posterior predictive checks, we
choose to look at the norm ρp of the normalized residual
for control point p, as defined in Section 5.3.1. For the
data D = {(up, vp)}, this norm writes:

ρp :=
1

ep

√(
ũp(θ̄)− up

)2
+
(
ṽp(θ̄)− vp

)2
, (35)

where like in Section 5.3.1, θ̄ designates the median point
estimate for θ, and the tilde designates pixel coordinates
for reprojected points. For replicated matches D′ drawn
from the posterior predictive distribution, the correspond-
ing ρ′p is defined identically, replacing the points (up, vp)
from D with (u′p, v

′
p) from D′. For a given image and set

of matches D, we therefore obtain one single scalar value
ρp of the test quantity for each control point p. The pos-

terior predictive check amounts to comparing the value of
ρp from the actual data D to the distribution of values ρ′p
when D′ is sampled from the model’s posterior predictive
distribution.

Figure 11 illustrates posterior predictive checking for
image MB-A04. Each panel corresponds to one control
point from this particular photograph. The normalized
residual norm ρp for each point is represented along the
horizontal axis. Vertical bars are located at ρp determined
from the data, while the histograms show the posterior
predictive distribution of the ρ′p. We find that the distri-
bution of ρ′p is consistent with the measured ρp from the
data, reproducing the magnitude and spread of the data
well. We obtain similar results with the other images. This
suggests that the model is able to self-consistently capture
the statistical uncertainties in the control point placement
process, and shows no sign of systematic discrepancies or
tension.

5.4. Inverse perspective and surface area reconstruction
In this section, we test our method’s ability to recon-

struct the surface area of a polygonal feature drawn onto
the 2D image. Here, we focus on the MB case study and
its five photographs.

The polygonal region of interest is located on the North-
west face of the Mont Blanc massif, with a spatial extent
of approximately 1400×500 meters, and chosen to present
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Figure 11: Posterior predictive check on normalized residual norm for the control points of image A04. Each panel corresponds to a single
2D control point in this image. The horizontal axis corresponds to the norm of the (normalized) residuals ρp for each control point. For each
point, the vertical bar marks ρp this point for the actual data D, while each each histogram represents the posterior predictive distribution
of ρ′p under replicated observations D′ predicted by the model based on inference from D. Please refer to the text of Section 5.3.2 for details.
This test shows that the Bayesian model predicts replicated data D′ which is compatible with the observed data D. The model appears
self-consistent and does not exhibit any obvious tension with the data.

typical dimensions, shapes and slopes that could be en-
countered on a hanging glacier or an ice-covered rockwall,
for example. Because the images for the MB case study
were taken over a period of 30 years, we select the polygon
contour based on features that are most likely fixed in the
landscape; as described in 5.1.1, we expect the topography
of the chosen area to be relatively stable and therefore a
good candidate for this validation test.

For each of the MB images, we trace a 2D polygon
defined by the same terrain and geological features. The
resulting polygons for all images are presented together in
Fig. 12. The back projection relies on the posterior on
camera parameters computed during the camera orienta-
tion and calibration process as described earlier.

In order to obtain an independent estimate of the sur-
face area, we also carefully traced the same feature using
the Google Earth Pro software. For all five images, we
run the MCMC sampler as described in 4.1 using 2× 104

MCMC steps and 400 walkers. For each image, its poly-
gon is back projected 104 times as described in 4.2. We set
σ = 1 pixel in the polygon tracing error model of Eq. 25.
A random DEM is generated following 3.4 every 10 poly-
gon back projection samples, to account for DEM-related
uncertainties, with the parameter values for our DEM de-
scribed in that section. For each image, this process yields
an estimation of the posterior p(S|D, P̃ , H̃, I) based on 104

area samples.
The resulting posterior distributions for all images are

presented in Fig. 13. Aerial images MB-A88, MB-A93,
MB-A01 and MB-A04 use the distortion prior for aerial
cameras. The terrestrial oblique photograph MB-O18 uses
the broader general distortion prior. The vertical dashed
line represents the value for the area obtained from Google
Earth Pro. All posterior distributions are consistent with
each other, as well as with the independent measurement
of the area. Because the polygons are traced indepen-

dently across all images, this shows that the method pro-
duces consistent outputs, but also that the systematic ef-
fects caused by manual tracing of the polygon are well
captured in the variance of the posterior.

The posterior of image MB-O18 is much broader due
to a combination of effects: the lower image resolution re-
sults in less accurate determination of both control points
and traced polygonal outline, the weaker prior on the dis-
tortion introduces more statistical uncertainty, and finally,
the oblique viewing angle makes the area more sensitive to
back projection errors.

5.5. Impact of lens distortion
We now turn to the effect of lens distortions on area de-

termination. For this test, we selected three images (MB-
A01, MB-A04 and MB-O18) that we process first with
their normal distortion priors (aerial priors for MB-A01
and MB-A04; and consumer lens for MB-O18). We then
process each one again, but using the other prior: aerials
are processed with the consumer lens prior which allows
for distortion, producing the posteriors MB-A01+D and
MB-A04+D (with “+D” for Distortion); while the terres-
trial smartphone photograph is processed with the strict
aerial prior, yielding the posterior MB-O18+ND (“+ND”
for No Distortion). The posteriors for all three pairs of
models are shown in Figure 14.

Aerial images MB-A01 and MB-A04 are insensitive to
the introduction of lens distortions in the model. The pos-
teriors of MB-A01+D and MB-A04+D are very slightly
broader than MB-A01 and MB-A04 respectively, due to
some additional statistical variance from the uncertainty
on the distortion parameters. This shows that the distor-
tion parameters are well constrained by control points for
these these high-quality images.

For the terrestrial oblique image MB-O18 taken using
a smartphone, however, assuming low distortion results in
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Figure 12: 2D polygons traced on the test images of the MB case study, used for the validation of surface area reconstruction. The test
polygons trace a same contour based on relatively fixed geological features, which are not expected to evolve over the 30 years spanned by
the images.
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Figure 13: Posterior distribution for the surface area of the poly-
gon, for each test image. Aerial images MB-A88, MB-A93, MB-A01
and MB-A04 use the strict prior on distortion, while the terrestrial
oblique photograph MB-O18 uses the weaker prior. The vertical
gray span represents a value for the area independently derived us-
ing Google Earth Pro, covering a range of ±0.2% for reference. For
each distribution, the median is represented using a vertical line,
and the 68% credible region around the median (between the 16th
and 84th percentiles) is shown by a shaded rectangle. All posterior
distributions are consistent with each other, as well as with the in-
dependent measurement of the area, showing that statistical errors
and systematic effects are well captured by the model.

a significant bias: the MB-O18+ND posterior excludes the
actual value of the area by 4 standard deviations. When
using the wider prior for consumer lenses (MB-O18), the
bias is eliminated, at the cost of some additional statistical
variance. This is an example of bias–variance trade-off,
where a bias caused by systematic tension can be absorbed
by a more general, better-fitting model, at the cost of some
additional statistical uncertainty coming with the newly
introduced parameters.

This test illustrates the importance of accounting for
lens distortions when using photographs originating from
unknown cameras, and shows that the model is able to
correct them and eliminate bias, with very little conse-
quence for aerial images which have low distortion in the
first place.

6. Discussion

In Section 5.2 we compared the results of the camera
calibration procedure to known values of camera parame-
ters. We found that the errors of camera parameters re-
construction for terrestrial oblique pictures are of the same
order of magnitude (a few meters) than the basic sources
of uncertainty in the method such as the 3D position of
the ground control points. This indicates an accurate re-
construction of the camera position by our method, to the
intrinsic level of accuracy allowed by the data and prior
information.

MB-A01

MB-A01+D

MB-A04

MB-A04+D

MB-O18

37 38 39 40 41 42 43
Area [ha]

MB-O18+ND

Figure 14: Posterior distributions for the surface area of the poly-
gon, illustrating the relevance of lens distortions for area back projec-
tion. Each pair (MB-A01, MB-A01+D), (MB-A04, MB-A04+D) and
(MB-O18, MB-O18+ND) corresponds to an image, processed with
different distortion priors. Posteriors MB-A01+D and MB-A04+D
allow for significant distortions on aerial images, which otherwise use
the tighter aerial distortion prior; whereas posterior MB-O18+ND
uses the aerial prior for the low-grade smartphone lens, effectively en-
forcing a fit with very low distortions. For the aerial images MB-A01
and MB-A04, the impact of the lens distortion prior is not signifi-
cant. For the terrestrial oblique image MB-O18, using the restrictive
aerial prior results in a strong systematic bias of the estimated area,
which disappears with the prior for consumer lenses.

For aerial photographs, we observe larger absolute re-
construction errors on the camera location, of the order of
50 m, despite higher image resolution. This discrepancy,
however, is consistent in direction and magnitude with a
sub-second delay between the last GPS fix information and
the actual exposure. In any case, those discrepancies do
not seem to be detrimental to the quality of the solution to
the inverse perspective problem considered in this paper,
as evidenced by the surface area test.

We showed in Section 5.4 that the presented method
can successfully be used to estimate the surface area of
landscape features on photographs. In Section 5.5, we
have illustrated the need to account for possible lens dis-
tortions in the surface area estimation process. We found
that, with a low-quality lens and without allowing for lens
distortions in the model, the resulting estimated surface
area is biased. We showed that this bias is eliminated,
at the cost of additional variance, by relaxing the priors
on distortion in the camera model. We find that allowing
for distortion in the model does not impact surface area
estimation derived from aerial photographs.

Our method accounts for uncertainties both in the man-
ual tracing of the polygon, and in the digital elevation
model used for back projection. We correspondingly pro-
posed probabilistic models for these sources of errors, in
Sections 3.3 and 3.4 respectively.

While providing an accurate description of user-generated
uncertainties is a complicated task, results provided by
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back projecting the polygon using independent camera
samples and our proposed error model are consistent with
each other, and with independent measurements.

While we used this method to extract surface area mea-
surements from photographic data, it can be extended to
other types of measurements and inverse perspective prob-
lems. We also stress that the derivation of the posterior of
S in Section 3.2 is very general, and can be extended in a
straightforward fashion not only to other observables, but
also to other potential sources of uncertainties, provided
that they can be modeled satisfactorily.

7. Conclusion

In this paper, we presented a novel method for esti-
mating surface area information from landscape features
using single aerial and terrestrial photographs. Driven by
the goal of characterizing uncertainties on the solutions of
inverse perspective problems for archival or non-scientific
photographs, we introduced models for errors in input
data, as well as for characterizing uncertainties in digi-
tal elevation models. We integrated these ingredients into
a statistically consistent Bayesian framework, which can
readily be extended to other sources of uncertainty.

We applied and validated the method to camera orien-
tation and calibration, before estimating the area of back
projected polygons. Our method produced reconstructions
of the camera parameters for aerial and terrestrial oblique
photographs which are accurate to the level of our control
points and input data. Combining Bayesian camera ori-
entation and calibration together with probabilistic uncer-
tainty models, the method consistently estimates surface
areas from different photographs and camera angles, while
also propagating the associated uncertainties. Applied to
our particular problem, our study showed the potential
importance of accounting for radial lens distortions when
working with unknown consumer optics, as it can other-
wise result in significant biases.

As future work, we intend to apply the method to esti-
mate surface area variations in steep glaciers in the Mont
Blanc massif, relying on a large set of terrestrial oblique
and aerial images. The joint increase in availability of
consumer-grade cameras (smartphones and small portable
camcorders among others) and computing power provides
the scientific community with a large amount of quantita-
tive physical landscape information to be extracted from
single photographs. Bayesian methods as presented in this
study stand out as valuable tools to build sophisticated
models for inverse perspective and other photogrammet-
ric methods, while providing an adaptable framework to
estimate and control uncertainties in the results.
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