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ABSTRACT 19	
 20	
 21	

Phytoplankton size structure impacts ocean food-web dynamics and biogeochemical 22	

cycling, and is thus an important ecological indicator that can be utilised to quantitatively 23	

evaluate the state of marine ecosystems. Potential alterations to size structure are 24	

predicted to occur in tropical regions under future scenarios of climate change. Therefore, 25	

there is an increasing requirement for the synoptic monitoring of phytoplankton size 26	

structure in marine systems. The Red Sea remains a comparatively unexplored tropical 27	

marine ecosystem, particularly with regards to its large-scale biological dynamics. Using 28	

an in situ pigment dataset acquired in the Red Sea, we parameterise a two-component, 29	
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abundance-based phytoplankton size model and apply it to remotely-sensed observations 30	

of chlorophyll-a (Chl-a) concentration, to infer Chl-a in two size classes of 31	

phytoplankton, small cells < 2µm in size (picophytoplankton) and large cells > 2µm in 32	

size. Satellite-derived estimates of phytoplankton size structure are in good agreement 33	

with corresponding in situ measurements and also capture the spatial variability related to 34	

regional mesoscale dynamics. Our analysis reveals that, for the estimation of Chl-a in the 35	

two size classes, the model performs comparably or in some cases better, to validations in 36	

other oceanic regions. Our model parameterisation will be useful for future studies on the 37	

seasonal and interannual variability of phytoplankton size classes in the Red Sea, which 38	

may ultimately be relevant for understanding trophic linkages between phytoplankton 39	

size structure and fisheries, and the development of marine management strategies. 40	

 41	
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 44	

1. INTRODUCTION 45	

 46	

Ecological indicators, which may be defined as quantifiable metrics that characterise 47	

ecosystem structure, composition or function, can be used to monitor the state of marine 48	

ecosystems and their response to environmental perturbations (Niemi and Mcdonald, 49	

2004; Platt and Sathyendranath, 2008; Racault et al. 2014). In the global oceans, 50	

commonly used indicators are typically based on the presence and distribution of 51	

phytoplankton (as indexed by the concentration of chlorophyll-a [Chl-a]), which form the 52	
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base of oceanic food webs. Among the ecological indicators that can be derived from 53	

observations of ocean colour (e.g. primary production and phytoplankton phenology), the 54	

size structure of phytoplankton communities is particularly important as it can influence 55	

marine food web structure (Legendre and Le Fèvre, 1991; Maloney and Field, 1991; 56	

Parsons and Lalli, 2002), biogeochemical cycling (Chisholm, 1992), carbon export (Boyd 57	

and Newton, 1999; Briggs et al. 2011; Eppley and Peterson, 1979; Guidi et al. 2009; 58	

Laws et al. 2000; McCave, 1975) and the thermal structure of the upper-oceanic layer 59	

(Sathyendranath and Platt, 2007).         60	

 The Red Sea, situated between the African continent and Arabian Peninsula, is the 61	

world’s northernmost tropical sea. It hosts coral reef ecosystems, contains high levels of 62	

marine biodiversity, and supports shipping, fisheries and tourism, making it a vital 63	

economic asset to the region (Berumen et al. 2013; Carvalho et al. 2019; Gladstone et al. 64	

2013). Over the last decade, the Red Sea has been subject to regional warming (Chaidez 65	

et al. 2017; Krokos et al. 2019; Raitsos et al. 2011), linked with coral reef bleaching 66	

events (Cantin et al. 2010; Monroe et al. 2018; Osman et al. 2018), and alterations in 67	

phytoplankton abundance and phenology (Gittings et al. 2018; Raitsos et al. 2015). 68	

Consequently, there is a need to monitor the response of the Red Sea ecosystem to future 69	

climate variability.  70	

Due to limited in situ sampling, knowledge on the spatiotemporal distribution of 71	

phytoplankton size structure in the Red Sea is relatively sparse. Nevertheless, increased 72	

in situ sampling efforts over the last two decades have enabled researchers to gain insight 73	

in localised regions of the Red Sea, including the Gulf of Aqaba (Shaikh et al 1986; 74	

Sommer et al. 2002), the central east coast (Al-Najjar et al. 2007; Touliabah et al. 2010) 75	
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and the north-western Red Sea (Nassar et al. 2014). More recently, Pearman et al. (2016) 76	

used a molecular approach to assess phytoplankton community structure in the northern 77	

and southern ends of the Red Sea, and Kheireddine et al. (2017) used a taxonomic, 78	

pigment-based approach to investigate community structure along the central axis of the 79	

basin. Both studies revealed that pico-phytoplankton were the main contributor to the 80	

total phytoplankton biomass, although the relative contributions of pico-, nano- and 81	

micro-phytoplankton varied with environmental conditions and mesoscale features. For 82	

extensive reviews on phytoplankton species composition in the Red Sea, the reader is 83	

referred to the works of Ismael (2015) and Qurban et al. (2019).    84	

 A key method used to observe ecological indicators synoptically and frequently is 85	

ocean-colour remote sensing (Platt 2008, Platt et al. 2009), and several studies have 86	

demonstrated the applicability of satellite remote sensing for investigating the 87	

spatiotemporal distribution of phytoplankton abundance in the Red Sea (Acker et al. 88	

2008; Brewin et al. 2013, 2015a; Dreano et al. 2016; Gittings et al. 2018, 2019; 89	

Papadopoulos et al. 2015; Racault et al. 2015; Raitsos et al. 2013, 2015, 2017; 90	

Triantafyllou et al. 2014). Existing remote-sensing methodologies for deriving 91	

phytoplankton size classes (PSCs) can be broadly categorised into abundance-based 92	

(Brewin et al. 2010, 2011; Hirata et al. 2011; Uitz et al. 2006) and spectral-based 93	

(Devred et al. 2011; Kostadinov et al. 2009) approaches. A detailed review of these 94	

different methods can be found in IOCCG (2014), Bracher et al. (2017) and Mouw et al. 95	

(2017). Recent inter-comparisons have revealed that abundance-based approaches, which 96	

exploit the ubiquitous relationship between phytoplankton biomass and cell size (lower 97	

biomass equates to smaller cell size and vice versa, (Chisholm, 1992)), performs well at 98	
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retrieving PSCs (Hu et al. 2018; Liu et al. 2018). Specifically, the three-component PSC 99	

model of Brewin et al. (2010), which builds upon the work of Sathyendranath et al. 100	

(2001) and Devred et al. (2006), was shown to perform well in these inter-comparisons, 101	

and has been successfully re-parameterised and validated in many other oceanic regions, 102	

including: the Atlantic Ocean (Brewin et al. 2010; Brotas et al., 2013), the Indian Ocean 103	

(Brewin et al. 2012a), the South China Sea (Lin et al. 2014), the continental shelf seas of 104	

China (Sun et al. 2018), the Western Iberian coastline (Brito et al. 2015), the 105	

Mediterranean Sea (Sammartino et al. 2015), Southern Africa (Lamont et al. 2008), Chile 106	

(Corredor-Acosta et al. 2018) and the global ocean (Brewin et al. 2015b; Ward, 2015). 	107	

Recently, Brewin et al. (2015a) applied this model to derive pico- (< 2 μm) and 108	

combined nano/micro- (> 2 μm) phytoplankton size classes in the Red Sea. However, due 109	

to the paucity of in situ data on these two size classes within the region, at the time, their 110	

study utilised model parameters obtained from other oceanic regions (see Brotas et al. 111	

2013), justified through analysis of particulate absorption data collected in the Red Sea. 112	

Since then, in situ datasets have become available, enabling the characterisation of 113	

phytoplankton size structure in the Red Sea over large spatial scales (Kheireddine et al. 114	

2017, 2018a). In this study, we utilise these newly available datasets to test and 115	

subsequently re-parameterise the PSC model of Brewin et al. (2015a) for the first time in 116	

the Red Sea. We then apply this model to ocean-colour observations and provide a series 117	

of examples demonstrating the improved performance of the updated approach. 	118	

	119	

 120	

 121	
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2. DATA AND METHODOLOGY 122	

 123	

2.1 Oceanographic cruises and sampling 124	

Seawater samples were acquired during five research cruises conducted across the Red 125	

Sea between October 2014 and January 2016 aboard the R/V Thuwal (Kheireddine et al. 126	

2017, 2018a) (Fig. 1, Table 1). Collectively, these cruises spanned the majority of the 127	

Red Sea (latitudinal range of ~ 15°N – 27°N) and, for convenience, can be separated into 128	

the following biogeographical regions: the Northern Red Sea (NRS), Central Red Sea 129	

(CRS) and Southern Red Sea (SRS).  130	

 131	

 132	

 133	

 134	

 135	

 136	

 137	

 138	

 139	

 140	

 141	

 142	

 143	
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Figure 1. Map displaying the bathymetry of the Red Sea and the locations of the cruise 144	

sampling stations. Markers in red and black represent the data used for the validation and 145	

training of the phytoplankton size class model respectively. 146	

 147	

A total of 49 stations were sampled over the Red Sea, although we note that two of these 148	

stations were repeated locations sampled on different days. The biogeographic region and 149	

temporal period associated with each of the cruises is presented in Table 1 and described 150	

in further detail by Kheireddine et al. (2018a).  151	

 152	

Table 1. Summary of the Red Sea cruises and in situ datasets  153	
 154	

 155	

 156	

 157	

 158	

 159	

 160	

2.2 Phytoplankton pigment database 161	

 162	

Briefly, at each sampling station, seawater samples (volume ranging from 2.4 – 2.8 L) 163	

were collected within the upper 200 metres of the water column and filtered through 25 164	

mm diameter Whatman GF/F filters (porosity of 0.7 µm). The filters were flash frozen 165	

and stored in liquid nitrogen throughout the cruise, then transferred to an -80°C freezer in 166	

the laboratory prior to analysis. Samples were extracted in 3 mL of 100% methanol, 167	
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disturbed with glass pearls on a cooled vibratory homogenizer, centrifuged, and filtered 2 168	

h later using a Teflon syringe filter (0.2 µm). Within 24 hours, the sample extracts were 169	

analysed by High Performance Liquid Chromatography (HPLC) using a complete 1,260 170	

Agilent Technologies system. Measurements of photosynthetic phytoplankton pigments 171	

were acquired in accordance with the HPLC analytical procedure followed by Ras et al. 172	

(2008) and as described by Kheireddine et al. (2017, 2018a). Only samples within the 173	

upper 20 metres of the water column for each station were selected for the analysis, as 174	

satellite sensors acquire measurements approximately within the first optical depth 175	

(typically around 20 meters in the Red Sea (Raitsos et al. 2013)). Uncertainties associated 176	

with the determination of pigment concentrations were calculated using the principles of 177	

uncertainty propagation and are provided in Kheireddine et al. (2017).	178	

 179	

2.3 Estimation of phytoplankton size structure from HPLC data  180	

 181	

For estimating phytoplankton size fractions from HPLC data, we used the method of 182	

Brewin et al. (2015b), adapted from Claustre (1994), Vidussi et al. (2001), Uitz et al. 183	

(2006), Brewin et al. (2010) and Devred et al. (2011). First, the total Chl-a concentration 184	

(C) was computed from the weighted sum of seven diagnostic phytoplankton pigments 185	

(henceforth referred to as Cw), according to  186	

	187	

𝐶" = 	∑ 𝑊'
(
')* 𝑃'					 	 	 	 	 	 	 	 	       (1),	188	

 189	
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where W represents the weights and P corresponds to the following seven diagnostic 190	

pigments: fucoxanthin, peridinin, 19′-hexanoyloxyfucoxanthin, 19′-191	

butanoyloxyfucoxanthin, alloxanthin, total chlorophyll-b and zeaxanthin. We estimated 192	

W by applying a multi-linear regression on the 133 samples collected during the five 193	

cruises. We then compared our weights with previous studies conducted in other regions 194	

of the global oceans (Table 2). The computed weights are in reasonable agreement with 195	

other datasets, with the exception of notable differences observed for the weights 196	

attributed to peridinin and alloxanthin. We speculate that the differences in these 197	

particular pigments were related to their very low concentrations during sampling. As 198	

only a small number of samples (133) were used to compute the weights, when compared 199	

with other published studies (e.g. Uitz et al. 2006; Brewin et al. 2015b), and considering 200	

the potentially erroneous values obtained with the re-parameterisation, we also tested 201	

weights derived from multiple studies across different regions (Table 2). Excluding our 202	

own re-parameterised weights, the weights computed by Brewin et al. (2014a) gave the 203	

overall best statistical performance with regards to the relationship between Cw and total 204	

Chl-a (C) (Supplementary Fig. 1). Accordingly, we used these weights in our analysis.  205	

 206	

Table 2. Phytoplankton pigments and a comparison of the weights (W), computed for 207	

Equation 1 using the 133 HPLC data samples collected in this study, with weights 208	

derived from other studies.  209	

 210	

 211	

 212	
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 Next, based on the previously reported finding that two optically-distinct 213	

assemblages of particles dominate the Red Sea, and that Chl-a in the Red Sea is generally 214	

lower than 1 mg m-3 (Brewin et al. 2015a), we computed fractions of the total Chl-a 215	

concentration for two size classes: pico-phytoplankton (cell size < 2 μm) and combined 216	

nano/micro-phytoplankton (cell size > 2 μm). Due to a low contribution of micro-217	

phytoplankton to total Chl-a in our dataset (figure not shown), a two-component model 218	

was selected for our study as a more parsimonious solution to the original three-219	

component model put forth by Brewin et al. (2010). However, we do not rule out the 220	

future use of a three-component model in the region, should datasets become available 221	

that span a higher range of chlorophyll (e.g. in coastal waters). Following Eq. 2, the 222	

fraction of pico-phytoplankton (Fp) was computed using zeaxanthin, total chlorophyll-b 223	

and by apportioning some of 19-hexanoyloxyfucoxanthin to the pico-phytoplankton pool 224	

at total Chl-a concentrations less than 0.08 mg m-3 (Brewin et al. 2010, 2015b) 225	

	226	

𝐹- = .

(0*1.345*)7898
4:

+	∑ 7<9<=
<>?
4:

				if	C	 ≤ 	0.08	mg	𝑚0I	

							∑ 7<9<=
<>?
4:

																												if	C	 ≥ 0.08	mg	𝑚0I	
             (2). 227	

 228	

The fraction of Chl-a attributed to the combined nano/micro phytoplankton assemblage 229	

(Fn,m) was then computed as  230	

 231	

𝐹K,M = 1 − 𝐹-                 (3). 232	

 233	

 234	
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After deriving the fractions of the picophytoplankton (Fp) and combined nano/micro 235	

(Fn,m) phytoplankton populations relative to total Chl-a, the Chl-a concentration attributed 236	

to the two size classes was calculated as 237	

 238	

𝐶- = 𝐹-𝐶                 (4) 239	

 240	

and 241	

 242	

𝐶K,M = 𝐹K,M𝐶                 (5), 243	

 244	

where Cp and Cn,m correspond to the size-specific Chl-a concentration of pico-245	

phytoplankton and the combined nano/micro-phytoplankton respectively, and C refers to 246	

the total Chl-a concentration. 247	

 248	

2.4 Datasets and data partitioning for training, satellite validation and visualisation 249	

 250	

The in situ samples were matched with estimates of satellite-derived remote sensing 251	

reflectance (Rrs) from version 3.1 of the European Space Agency’s Ocean Colour Climate 252	

Change Initiative product (OC-CCI). For the period spanning 2015 - 2017, the OC-CCI 253	

product consists of merged and bias-corrected data from the Moderate Resolution 254	

Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer 255	

Suite (VIIRS) satellite sensors. Level 3, daily, mapped data were acquired at a spatial 256	

resolution of 4 km from http://www.esa-oceancolour-cci.org for the time periods 257	
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corresponding to each of the cruises (Table 1). For further information, the reader is 258	

referred to previous literature regarding the OC-CCI product (Sathyendranath et al. 2012, 259	

2016) and its previous applications in the Red Sea and adjacent Arabian Sea (Racault et 260	

al. 2015; Brewin et al. 2015a; Dreano et al. 2016; Gittings et al. 2017). In addition, we 261	

refer the reader to the OC-CCI Product User Guide at http://www.esa-oceancolour-262	

cci.org/?q=webfm_send/318 for a more extensive overview of processing, sensor 263	

merging and uncertainty quantification. Each sample was matched to an individual 264	

satellite pixel temporally (same day) and spatially (nearest pixel based on longitude and 265	

latitude). Of the total 49 stations, we retrieved 14 satellite matchups. The corresponding 266	

sample stations for the matchups were set aside for the independent validation of 267	

satellite-derived total Chl-a, size fractions and size-specific Chl-a (Fig. 1). The in situ 268	

samples at each of the matchup stations were averaged within the top 20 metres 269	

(approximately the first optical depth). The remaining 35 in situ sampling stations were 270	

used for the development and re-parameterisation of the phytoplankton size model. We 271	

note that the remaining 35 sampling stations are representative of samples acquired at 272	

multiple depths (up to 20 metres). Thus, a total of 89 samples (corresponding to the 273	

remaining 35 stations) were used for the model re-parameterisation.    274	

 We utilised three different empirical, satellite ocean-colour algorithms in our 275	

analysis: the standard OC-CCI algorithm (which is a blended combination of the OC5 276	

(Gohin et al. 2002) and the OC4v6 – OCI (Hu et al. 2012) algorithms) and the OC4 and 277	

OCI algorithms (Hu et al. 2012; O’Reilly et al. 2000) that have been regionally tuned for 278	

the Red Sea by Brewin et al. (2015a) (hereafter referred to as OC4-RG and OCI-RG 279	

respectively, Fig. 2). For further illustrative and qualitative validation of the 280	
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phytoplankton size model, daily images of satellite-derived phytoplankton size fractions 281	

from the OC-CCI product were also extracted for periods coinciding with the timing of in 282	

situ sample collection during the cruise programs (Table 1).    283	

 In addition, to provide an example highlighting the potential of new remote-284	

sensing technologies and their application for mapping PSCs, we used a Chl-a dataset 285	

acquired from the Ocean and Land Colour Instrument (OLCI) on-board the recently 286	

launched Sentinel-3a satellite of the European Space Agency. An 8-day composite image 287	

for the period 28th February 2017 - 7th March 2017 was downloaded from the European 288	

Space Agency Copernicus Open Access Hub (https://scihub.copernicus.eu/). This dataset 289	

has a spatial resolution of 300 metres and was processed for the Red Sea using the 290	

regionally tuned algorithm developed by Brewin et al. (2015a).	291	

 292	

2.5 Two-component phytoplankton size class model   293	

 294	

Following Brewin et al. (2015a), we used a two-component size class model to 295	

characterise the pico-phytoplankton and combined nano/micro-phytoplankton 296	

assemblages in the Red Sea. The model assumes small phytoplankton cells 297	

(picophytoplankton) are incapable of growing beyond a specific Chl-a concentration, and 298	

the addition of extra Chl-a into the system beyond this concentration can be attributed to 299	

the addition of larger phytoplankton cells (Chisholm, 1992; Raimbault et al. 1988). The 300	

model is based on the exponential equation originally put forth by Sathyendranath et al. 301	

(2001) and used by Brewin et al. (2010) to relate the concentration of Chl-a in pico-302	

phytoplankton (Cp, cells < 2 μm) to the total Chl-a according to 	303	
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𝐶- = 	𝐶-M P1 − 𝑒𝑥𝑝 T−
UV
4VW
𝐶XY                                        (6).                                                                                  304	

 305	

The parameter Cpm represents the asymptotic maximum value of Chl-a associated with 306	

the pico-phytoplankton size class, whilst Dp determines the fraction of total Chl-a for the 307	

picophytoplankton assemblage as total Chl-a (C) tends to zero. The size-specific Chl-a 308	

concentration of the combined nano/micro-phytoplankton assemblage (Cn,m) can 309	

subsequently be derived according to  310	

 311	

𝐶K,M = 	𝐶 − 𝐶-               (7). 312	

 313	

The model parameters Cpm and Dp were estimated by fitting Eq. 6 to the parameters Cp 314	

and C, which were computed using the HPLC dataset. We used a non-linear, least 315	

squares fitting procedure (Trust-Region-Reflective algorithm, MATLAB Optimisation 316	

Toolbox, function ‘LSQCURVEFIT’), in conjunction with bootstrapping (Efron, 1979), 317	

to compute the model parameters and their associated uncertainties (Table 3). 318	

Bootstrapping was implemented by randomly sub-sampling the dataset (1000 iterations) 319	

and re-fitting Eq. 6 for each sub-sample. The median and 95% confidence intervals were 320	

then computed from the resulting parameter distribution. The parameter Dp was 321	

constrained to be less than or equal to 1, as size-fractionated Chl-a cannot exceed the total 322	

Chl-a concentration. The model parameters are presented in Table 3 and generally appear 323	

to lie within the range of values that have been computed for different regions of the 324	

global oceans. 325	
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Table 3. Model parameters derived from Equation 6 and comparisons with different 326	

studies.  327	

 328	

 329	

 330	

 331	

 332	

 333	

 334	

2.6 Statistical tests 335	

 336	

For the assessment of satellite ocean-colour data and the validation of the re-337	

parameterised model, we primarily used the Pearson linear correlation coefficient (r), 338	

mean absolute difference (MAD (M)) and bias (δ) as performance metrics to compare in 339	

situ and modelled values of total Chl-a, size fractions and size-specific Chl-a. The MAD 340	

is suggested to be less sensitive to different dataset distributions and the presence of 341	

outliers, and provides a natural and unambiguous characterisation of model uncertainty 342	

(Willmott and Matsuura, 2005). The MAD has been extensively utilised in other studies 343	

that involve comparisons between in situ and satellite estimates of chlorophyll (e.g. 344	

Moses et al. 2012; O’Reilly and Werdell, 2019) and phytoplankton size structure (e.g. 345	

Brewin et al. 2012a; Corredor-Acosta et al. 2018). The root-mean-square-difference 346	

(RMSD, ψ) is also presented in order to allow comparisons of the model performance 347	

with previous studies. We note that the linear correlation coefficient and RMSD have 348	
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previously been utilised to compare in situ and modelled data (Brewin et al. 2015c, 2016; 349	

Doney et al. 2009; Friedrichs et al. 2009). Statistical tests based on Chl-a concentrations 350	

were conducted in log10 space, as Chl-a tends to be log-normally distributed in the open 351	

ocean (Campbell, 1995). The MAD (M) was computed according to 	352	

 353	

𝑀 =	∑ [\<
]0\<

^[_
<>`

a
                (8), 354	

 355	

where N is the number of data points, X is the variable (total Chl-a concentration, size 356	

fraction or size-specific Chl-a) and the superscripts E and M correspond to the estimated 357	

variable from the model and the measured variable, respectively. The value of δ was 358	

calculated according to  359	

 360	

𝛿 = 	 *
a
[∑ (𝑋'e − 𝑋'f)a

')* ]                   (9) 361	

 362	

and ψ was expressed as 363	

 364	

𝜓 =	 i*
a
∑ (𝑋'e − 𝑋'f)1a
')* j

*/1
            (10). 365	

                    366	

 367	

 368	

 369	

 370	
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3. RESULTS AND DISCUSSION	371	

 372	

3.1 Satellite validation of total Chl-a	373	

 374	

To determine the best input of Chl-a for the phytoplankton size model, we first evaluate 375	

the performance of three different ocean colour algorithms (Fig. 2, Table 4). Irrespective 376	

of the type of algorithm, in situ values of Chl-a concentration are in good agreement with 377	

the satellite matchups and the relationships are characterised by high correlation 378	

coefficients (r > 0.88) and low mean absolute differences (M < 0.2). Using the correlation 379	

coefficient and RMSD (ψ) as a basis for comparison with previous studies, the model 380	

performance is similar, or in some cases better, to what has been previously observed in 381	

the Red Sea (Brewin et al. 2013, 2015a; Racault et al. 2015) and other regions of the 382	

global ocean (e.g. Bailey and Werdell, 2006; Brewin et al. 2015b; Siegel et al. 2013) 383	

(Table 4).    384	

 385	

Table 4. Statistical results for the three ocean colour algorithms used in this study, and 386	

some comparisons with previous studies 387	

 388	

 389	

 390	

 391	

 392	

 393	
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 Although the three algorithms exhibit a statistically similar performance (e.g. 394	

statistically similar values for the MAD (M) and RMSD (ψ) (95% confidence intervals 395	

overlap) and a statistically similar correlation coefficient (z-test)), the standard OC-CCI 396	

algorithm overestimates Chl-a concentration (δ = 0.08). This is analogous with the results 397	

of Brewin et al. (2015a) who found that the standard NASA OC4 and OCI algorithms  398	

 399	

 400	

 401	

 402	

 403	

 404	

 405	

 406	

Figure 2. Satellite validation of total Chl-a concentration from three different empirical 407	

ocean colour algorithms; the standard OC-CCI algorithm and the regionally tuned OCI-408	

RG and OC4-RG algorithms developed by Brewin et al. [2015a]. r is the Pearson 409	

correlation coefficient, M is the mean absolute difference, δ is the bias and ψ is the root-410	

mean-square-difference. Statistical tests were computed in log10 space. Per-pixel 411	

uncertainties for the matchups obtained using the standard OC-CCI algorithm are 412	

provided as RMSD error bars. Overall, the in situ Chl-a matchups are within the 413	

uncertainty limits of the OC-CCI data. We also present the fixed RMSD uncertainties for 414	

OCI-RG and OC4-RG, which are based on a previous validation of those algorithms 415	

using OC-CCI data (see Fig 7 of Brewin et al. 2015a). Uncertainties associated with in 416	
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situ Chl-a concentrations are expressed as percentages (~ +/- 4.6%) and are represented 417	

by the black horizontal error bars. 418	

 419	

systematically overestimate Chl-a in the Red Sea. They attributed this overestimation to 420	

increased chromophoric dissolved organic matter (CDOM) absorption per unit Chl-a. 421	

This hypothesis was recently corroborated by Kheireddine et al. (2018b), who analysed 422	

the spatial distribution of the absorption coefficient of CDOM (aCDOM), using in situ 423	

measurements acquired during several cruises conducted in the Red Sea. Kheireddine et 424	

al. (2018b) observed that values of aCDOM for a specific Chl-a concentration were 425	

substantially higher in the Red Sea in comparison to the adjacent Mediterranean Sea (20 - 426	

550%) (Organelli et al. 2014). The authors also revealed that CDOM concentrations were 427	

higher than what has been observed in other oligotrophic regions, such as the southeast 428	

Pacific and Mediterranean Sea (Bricaud et al. 2010; Morel and Gentili, 2009).  429	

 The regionally tuned OCI-RG and OC4-RG algorithms are associated with 430	

negative biases (δ = -0.19 and -0.12 respectively), particularly the OCI-RG algorithm, 431	

which displays a consistent underestimation of Chl-a (Fig. 2). However, considering the 432	

improved performance of the regionally-tuned Red Sea algorithms previously obtained 433	

using a larger match-up dataset (Brewin et al. 2015a), and it’s slightly higher statistical 434	

performance in comparison to OCI-RG, we opted to use the OC4-RG algorithm for input 435	

to the PSC model. On-going research is required to monitor the performance of all these 436	

algorithms, as and when more data become available in the Red Sea. 	437	

 438	

 439	
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3.2 Re-parameterisation of the two-component phytoplankton size model	440	

 441	

The re-parameterised size model was fitted to the Red Sea HPLC dataset (Fig. 3, black 442	

line), and for comparison, was plotted alongside the previous two-component model of 443	

Brewin et al. (2015a) (Fig. 3, red line). Overall, the re-parameterised model adequately 444	

captures the general trends in in situ derived size-specific Chl-a (Cp, Cn,m) as a function of 445	

total Chl-a (r > 0.9, M < 0.1). The contribution of Chl-a from the pico-phytoplankton 446	

assemblage is higher at low Chl-a concentrations and the model parameter Dp is 447	

representative of the increase in pico-phytoplankton as the total Chl-a concentration tends 448	

to zero (Dp = 0.92). Above an asymptotic Chl-a concentration of ~ 0.19 mg m-3 for pico-449	

phytoplankton (Cp), additional Chl-a in the system can be attributed to increases in Chl-a 450	

within the nano/micro- phytoplankton assemblage (Cn,m). The model also captures the 451	

general trends observed for the phytoplankton size fractions (Fp, Fn,m), where the fraction 452	

of small (larger) cells decreases (increases) with the total Chl-a concentration.  453	

 454	

 455	

 456	

 457	

 458	

 459	

 460	

 461	

 462	
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 463	

 464	

 465	

   466	

 467	

 468	

 469	

 470	

 471	

 472	

 473	

 474	

Figure 3. The two-component phytoplankton size model fitted alongside the Red Sea 475	

HPLC pigment data. The black and red lines represent the re-parameterised model and 476	

the original model of Brewin et al. (2015a) respectively. The top row shows the 477	

relationship between total Chl-a concentration and size-specific Chl-a, whilst the bottom 478	

row shows the relationship between total Chl-a and the fraction of total Chl-a from the 479	

two size classes.  480	

 481	

Although the model of Brewin et al. (2015a) displays the same general trend, it 482	

underestimates Cp and Fp, and overestimates Cn,m and Fn,m, for a given total Chl-a 483	

concentration (Fig. 3). We note that these differences are apparent regardless of the 484	

choice of regression coefficients for Eq. 2 (Supplementary Fig. 2). Prior to the re-tuning 485	
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of the size model, Brewin et al. (2015a) had set the value of the model parameter Cpm (the 486	

maximum Chl-a concentration reached by the pico-phytoplankton population) at 0.06 mg 487	

m-3 (Table 3). Considering the updated model parameter in this study (Cpm = 0.19 mg m-488	

3), the previous value of Cpm utilised by Brewin et al. (2015a), which was derived using 489	

HPLC datasets collected in the eastern North Atlantic Ocean (see Brotas et al. 2013), 490	

probably under-represents the contribution of the pico-phytoplankton population. Indeed, 491	

Brewin et al. (2015a) and Kheireddine et al. (2017) revealed that pico-phytoplankton 492	

constituted the dominant size class in the Red Sea, although in the case of the latter study, 493	

community structure was found to be fairly heterogeneous due to the mesoscale 494	

variability of the region.  	495	

 496	

3.3 Satellite validation of size-specific Chl-a concentrations and size fractions 497	

 498	

Satellite-derived observations of Chl-a concentration from the independent matchup 499	

dataset were used as input to the re-parameterised two-component size class model, and 500	

accordingly, size-specific Chl-a and size fractions were derived. The resultant 501	

relationships between the satellite and in situ data are presented in Figure 4. Generally, 502	

satellite estimates of size-specific Chl-a concentration match the in situ observations well. 503	

For both Cp and Cn,m, high r values (r > 0.80) and low MAD (M < 0.2) are obtained. A 504	

slight negative bias occurs for both size classes (-0.11), which is most likely related to the 505	

underestimation of total Chl-a from the OC4-RG algorithm (Fig. 2). To further assess the 506	

performance of the re-parameterised model, we present the results of statistical tests 507	

computed for matchups obtained using the previous model parameters of Brewin et al. 508	



23		

(2015a) (Fig. 4). Overall, following model re-parameterisation, the bias is closer to zero, 509	

the MAD is smaller and the RMSD is approximately halved (excluding the RMSD 510	

associated with the size-specific Chl-a concentration of the combined nano-micro 511	

assemblage [Cn,m]). In addition, the RMSD of Cp  presented here (ψ = 0.13) is lower than 512	

what has been observed in the global ocean (Brewin et al. 2015b), the North Atlantic 513	

(Brewin et al. 2017a) the waters off Central-Southern Chile (Corredor-Acosta et al. 514	

2018) and South Africa (Lamont et al. 2018). Satellite-derived size fractions (Fp and Fn,m) 515	

are also in good agreement with the in situ observations (r = 0.67) and the relationships 516	

are characterised by low MAD (M = 0.09) and low biases (δ = ±0.02). We note that as 517	

Fn,m = 1 - Fp (see Eq. 3), the statistical parameters computed for the matchups of  Fp and 518	

Fn,m  are identical (although characterised by a change of sign for the case of δ).   519	

To investigate spatial gradients in satellite estimates of phytoplankton size 520	

structure, we present an 8-day composite image of the pico- and nano/micro-521	

phytoplankton fractions in the CRS region, as well as total Chl-a concentration (Fig. 5). 522	

The composite image represents the period 1st - 9th April 2015, corresponding 523	

approximately to the sampling dates of the NC2 cruise conducted in the CRS (3rd – 9th 524	

April 2015, Table 1). For comparison, the in situ size fractions of the pico- and 525	

nano/micro- phytoplankton assemblage from the NC2 sampling stations are overlaid on 526	

the satellite image (Fig. 5, white circles).    527	

 528	

 529	

 530	

 531	



24		

 532	

 533	

 534	

 535	

 536	

 537	

 538	

 539	

 540	

 541	

 542	

 543	

 544	

Figure 4. Satellite validation of size-specific Chl-a concentrations (top row) and the 545	

fractional contribution of Chl-a to total Chl-a (bottom row) for the two size classes.  546	

Statistical tests were computed in log10 space for size-specific Chl-a concentrations and in 547	

linear space for the size fractions. The statistical parameters are the same as those 548	

described in Figure 2. For comparison, statistical tests are also presented (in red text) for 549	

matchups computed using the previous Red Sea model parameterisation of Brewin et al. 550	

(2015a). 551	

 552	

The satellite data effectively capture the spatial variability of in situ size fractions. 553	

Lower fractions of nano/micro- phytoplankton (~ 20 - 25% of the total population) are 554	
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apparent in the northern region of the CRS (22 – 24°N), coinciding with reduced Chl-a 555	

concentrations and a higher fraction of pico-phytoplankton (75 – 80%). The fraction of 556	

nano/micro- phytoplankton increases to ~ 35% between 21 and 22°N, and this is 557	

observed by the most southerly in situ sampling station at ~ 21.75°N. This region of 558	

larger cells is characterised by higher Chl-a concentrations and extends from the eastern 559	

coast towards the western coastline. We speculate that this feature may be representative 560	

of a mesoscale anticylonic eddy that is a capable of transporting water masses across the 561	

basin. Large eddies are known to occur frequently in the CRS (~ 18 – 24°N) (Zhan et al. 562	

2014, 2019) and previous research has demonstrated how these eddies transfer waters 563	

rich in Chl-a between the east and west coastlines of the Red Sea (Raitsos et al. 2017). 564	

Coral reefs contain elevated concentrations of nutrients from processes such as grazing, 565	

sediment re-suspension and bacterial respiration (Acker et al. 2008; Erez, 1990; Rasheed 566	

et al. 2002) and instances of higher nutrient availability are known to correlate with 567	

larger phytoplankton cells (Marañón, 2015). Indeed, total Chl-a concentration and the 568	

fraction of larger cells is notably higher along the coastlines of the CRS, constituting 40 – 569	

60% of the total phytoplankton population. The eddy may advect larger cells further 570	

offshore between 21 and 22°N at its periphery, whilst simultaneously driving a decrease 571	

in total Chl-a concentration, and an increase in the contribution of pico-phytoplankton at 572	

its core (~ 22.5°N), as a result of downwelling and enhanced oligotrophy.  573	

	574	

 575	

 576	

 577	
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 578	

 579	

 580	

 581	

 582	

 583	

Figure 5. 8-day climatology (1st – 9th April 2015) of total Chl-a (computed using the 584	

OC4-RG algorithm), and the fractional contributions of pico- and the combined 585	

nano/micro- phytoplankton assemblages generated using the updated model parameters. 586	

In situ data points from the NC2 cruise, conducted during this 8-day period (Table 1), are 587	

overlaid on the satellite imagery and are represented by the white circles. The in situ 588	

samples are plotted with the same colour scale as the satellite image. 589	

 590	

3.4 Potential caveats	591	

 	592	

3.4.1 In situ estimates of phytoplankton size structure	593	

 594	

We utilised a Red Sea HPLC dataset, in conjunction with a diagnostic pigment approach, 595	

to derive in situ measurements of size-specific Chl-a concentration that would be used for 596	

the re-parameterisation of the two-component size class model of Brewin et al (2015a). 597	

We note that some diagnostic pigments may be shared by several phytoplankton groups 598	

that span a broad range of sizes, and thus may not always be precise biomarkers that 599	

enable the definitive differentiation between size classes. In consideration of this, 600	
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refinements have been made to infer size fractionated Chl-a from the HPLC data using 601	

the diagnostic pigment approach. Specifically, we followed the approach of Brewin et al. 602	

(2010) to compute in	 situ	 values of the pico-phytoplankton size fraction (Fp). This 603	

involved apportioning some of the 19′-hexanoyloxyfucoxanthin pigment to pico-604	

phytoplankton at lower Chl-a concentrations, as some pico-eukaryotes contain this 605	

pigment. Considering that a two-component model was used to derive pico-606	

phytoplankton and the combined nano/micro-phytoplankton assemblages, it was not 607	

necessary to implement further adjustments that have been previously used to account for 608	

the partitioning of pigments between micro-phytoplankton and nano-phytoplankton (e.g. 609	

Devred et al.  2011). Although we did not compare HPLC-derived estimates of size-610	

fractioned Chl-a with those derived using other methods (e.g. size-fractionated filtration, 611	

flow cytometry or molecular analysis), systematic differences in size-fractionated Chl-a 612	

between HPLC and other methods have been observed (e.g. Brewin et al. 2014a). Future 613	

efforts should focus on collecting concurrent data on size-fractioned Chl-a in the Red Sea 614	

using multiple methods, for a more complete and accurate diagnosis of phytoplankton 615	

size classes (Nair et al. 2008). Until such datasets become available, the HPLC approach 616	

is our only in situ resource, and it has been shown to capture trends in phytoplankton size 617	

structure in other oceanic regions (Organelli et al. 2013; Uitz et al. 2008, 2015). 618	

Furthermore, the conceptual framework of the two-component model used here has been 619	

supported by multiple in situ methods, including: size-fractionated filtration 620	

measurements (Brewin et al., 2014b; Gin et al., 2000; Marañón et al., 2012;), 621	

measurements from flow cytometry and microscopy (Brotas et al., 2013), and 622	
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measurements of spectral absorption by phytoplankton and particle backscattering 623	

(Brewin et al., 2011, Brewin et al., 2012b; Devred et al., 2006, 2011). 624	

 625	

3.4.2 Abundance-based phytoplankton size model	626	

 627	

The abundance-based, three-component model conceptualised by Brewin et al. (2010), 628	

and adapted for the Red Sea by Brewin et al. (2015a), has been applied and validated 629	

both globally, and for individual oceanic regions (e.g. Brewin et al. 2010, 2012a, 2014a, 630	

2015a, 2015b; Hu et al. 2018; Lamont et al. 2018; Lin et al. 2014). However, abundance-631	

based algorithms infer phytoplankton size structure based on relationships between the 632	

total Chl-a concentration and size-fractionated Chl-a, and thus do not directly detect the 633	

presence of different phytoplankton size classes. Although these relationships have been 634	

shown to hold across the global oceans, deviations from these relationships occur (e.g. 635	

Goericke, 2011). Furthermore, for applications of the model to satellite data in optically-636	

complex waters, satellite retrievals of Chl-a may be impacted by the presence of CDOM 637	

and non-algal particles (Hirata et al. 2011; Mouw et al. 2017). Modifications to 638	

ecosystem structure as a result of climate change may alter relationships between 639	

phytoplankton size structure and total Chl-a (Agirbas et al. 2015; Racault et al. 2014; 640	

Sathyendranath et al. 2017). Thus, as well as a need for increased in situ sampling efforts 641	

in the Red Sea, re-calibration of abundance-based algorithms may be necessary in the 642	

future, and may require tying model parameters (Cpm and Dp) to other environmental 643	

variables amenable from space (see Brewin et al. 2015b, 2017a; Ward, 2015).	644	
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Abundance-based algorithms use total Chl-a from satellite remote sensing as 645	

input. Thus, the accuracy of satellite Chl-a observations is critical for the derivation of 646	

accurate size-fractionated Chl-a data. Per-pixel uncertainties in satellite size-fractionated 647	

Chl-a data can be derived in two ways: 1) by propagating errors in the input total Chl-a 648	

through to the output size-fractionated Chl-a, accounting for uncertainties in model 649	

parameters (Brewin et al. 2017b); or 2) through comparison of satellite size-fractionated 650	

Chl-a with in situ data (validation), by matching the two estimates in time and space 651	

(Brewin et al. 2017a). Each approach has its advantages and disadvantages. Model error 652	

propagation requires good knowledge of errors in model parameters and model input, and 653	

assumes the model is conceptually accurate. Validation generally assumes the in situ data 654	

are correct, when in reality the in situ measurements have their own uncertainties that 655	

should be considered in the analysis, but are difficult to estimate (Brewin et al. 2014b, 656	

2017a; Nair et al. 2008). In addition, when comparing satellite data with concurrent in 657	

situ data, the scales of the observations differ by orders of magnitude (e.g. 1 litre HPLC 658	

sample and 4km satellite pixel), which can cause additional uncertainties. In our study we 659	

report the uncertainties based on validation (see Figure 4). It is envisaged that future 660	

work could improve on this, perhaps making use of optical water type classification 661	

methods (e.g. Brewin et al. 2017a), and by characterising uncertainties in the in situ data, 662	

through the collection of concurrent in situ size-fractioned Chl-a data using multiple 663	

methods. 664	

 665	

 666	

 667	
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 668	

 669	

 670	

 671	

 672	

 673	

 674	

 675	

 676	

Figure 6. 8-day climatology (28th February – 7th March 2017) showing the fractional 677	

contribution of the combined nano/micro- phytoplankton assemblage at a spatial 678	

resolution of 300 metres. The size fraction was computed using parameters from the re-679	

parameterised model and observations of Chl-a concentration acquired via the Ocean and 680	

Land Colour Instrument (OLCI) on-board the SENTINEL-3 satellite (European Space 681	

Agency).  682	

 683	

4. CONCLUSIONS  	684	

 685	

We re-parameterised the two-component phytoplankton size model of Brewin et al. 686	

(2015a) using HPLC pigment data collected in the Red Sea. The updated model 687	

effectively captures the relationships between in situ measurements of total Chl-a 688	

concentration and the Chl-a concentrations of the pico- and combined nano/micro- 689	

phytoplankton size classes, and was subsequently applied to remotely-sensed ocean 690	



31		

colour observations. Overall, satellite estimates of phytoplankton size structure correlate 691	

well with concurrent in situ measurements and also capture the spatial variability in 692	

phytoplankton size structure related to an anticyclonic eddy.	693	

 To our knowledge, this analysis provides the first in situ validation of satellite-694	

derived estimates of phytoplankton size structure in the Red Sea and paves the way for 695	

further investigation on the seasonality, interannual variability and phenology of different 696	

PSCs. This is likely to be paramount for developing a better understanding of trophic 697	

relationships and fisheries dynamics in the region, contributing to the development and 698	

implementation of marine ecosystem management schemes. Finally, with the advent of 699	

more advanced remote-sensing capabilities, including the launch of next-generation 700	

satellite sensors such as OLCI on-board the Sentinel-3a spacecraft (European Space 701	

Agency), the large-scale spatiotemporal distribution of ecological indicators, as well as 702	

their linkages to mesoscale variability, can be resolved at much finer temporal scales 703	

(Fig. 6).   704	

 705	

 706	

 707	

 708	
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 710	
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 713	
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