Remotely sensing phytoplankton size structure in the Red Sea

John A. Gittingsa*, Robert J. W. Brewinb,c, Dionysios. E. Raitsosc,d, Malika Kheireddinee,
Mustapha Ouhssaine, Burton H. Jonese, Ibrahim Hoteita*

aKing Abdullah University of Science and Technology (KAUST), Department of Earth Science and Engineering, Thuwal, 23955-6900, Kingdom of Saudi Arabia
bCollege of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, TR10 9FE, United Kingdom
cPlymouth Marine Laboratory (PML), The Hoe, Plymouth, PL1 3DH, United Kingdom
dDepartment of Biology, National and Kapodistrian University of Athens, Athens, Greece
eKing Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Science and Engineering Division, Thuwal, 23955-6900, Kingdom of Saudi Arabia

ABSTRACT

Phytoplankton size structure impacts ocean food-web dynamics and biogeochemical cycling, and is thus an important ecological indicator that can be utilised to quantitatively evaluate the state of marine ecosystems. Potential alterations to size structure are predicted to occur in tropical regions under future scenarios of climate change. Therefore, there is an increasing requirement for the synoptic monitoring of phytoplankton size structure in marine systems. The Red Sea remains a comparatively unexplored tropical marine ecosystem, particularly with regards to its large-scale biological dynamics. Using an \textit{in situ} pigment dataset acquired in the Red Sea, we parameterise a two-component,
abundance-based phytoplankton size model and apply it to remotely-sensed observations of chlorophyll-a (Chl-a) concentration, to infer Chl-a in two size classes of phytoplankton, small cells < 2\(\mu\)m in size (picophytoplankton) and large cells > 2\(\mu\)m in size. Satellite-derived estimates of phytoplankton size structure are in good agreement with corresponding in situ measurements and also capture the spatial variability related to regional mesoscale dynamics. Our analysis reveals that, for the estimation of Chl-a in the two size classes, the model performs comparably or in some cases better, to validations in other oceanic regions. Our model parameterisation will be useful for future studies on the seasonal and interannual variability of phytoplankton size classes in the Red Sea, which may ultimately be relevant for understanding trophic linkages between phytoplankton size structure and fisheries, and the development of marine management strategies.

Keywords: ocean colour, remote sensing, phytoplankton, size structure, chlorophyll, Red Sea

1. INTRODUCTION

Ecological indicators, which may be defined as quantifiable metrics that characterise ecosystem structure, composition or function, can be used to monitor the state of marine ecosystems and their response to environmental perturbations (Niemi and McDonald, 2004; Platt and Sathyendranath, 2008; Racault et al. 2014). In the global oceans, commonly used indicators are typically based on the presence and distribution of phytoplankton (as indexed by the concentration of chlorophyll-a [Chl-a]), which form the
base of oceanic food webs. Among the ecological indicators that can be derived from
observations of ocean colour (e.g. primary production and phytoplankton phenology), the
size structure of phytoplankton communities is particularly important as it can influence
marine food web structure (Legendre and Le Fèvre, 1991; Maloney and Field, 1991;
Parsons and Lalli, 2002), biogeochemical cycling (Chisholm, 1992), carbon export (Boyd
and Newton, 1999; Briggs et al. 2011; Eppley and Peterson, 1979; Guidi et al. 2009;
Laws et al. 2000; McCave, 1975) and the thermal structure of the upper-oceanic layer
(Sathyendranath and Platt, 2007).

The Red Sea, situated between the African continent and Arabian Peninsula, is the
world’s northernmost tropical sea. It hosts coral reef ecosystems, contains high levels of
marine biodiversity, and supports shipping, fisheries and tourism, making it a vital
economic asset to the region (Berumen et al. 2013; Carvalho et al. 2019; Gladstone et al.
2013). Over the last decade, the Red Sea has been subject to regional warming (Chaidez
et al. 2017; Krokos et al. 2019; Raitos et al. 2011), linked with coral reef bleaching
events (Cantin et al. 2010; Monroe et al. 2018; Osman et al. 2018), and alterations in
phytoplankton abundance and phenology (Gittings et al. 2018; Raitos et al. 2015).
Consequently, there is a need to monitor the response of the Red Sea ecosystem to future
climate variability.

Due to limited in situ sampling, knowledge on the spatiotemporal distribution of
phytoplankton size structure in the Red Sea is relatively sparse. Nevertheless, increased
in situ sampling efforts over the last two decades have enabled researchers to gain insight
in localised regions of the Red Sea, including the Gulf of Aqaba (Shaikh et al 1986;
Sommer et al. 2002), the central east coast (Al-Najjar et al. 2007; Touliabah et al. 2010)
and the north-western Red Sea (Nassar et al. 2014). More recently, Pearman et al. (2016) used a molecular approach to assess phytoplankton community structure in the northern and southern ends of the Red Sea, and Kheireddine et al. (2017) used a taxonomic, pigment-based approach to investigate community structure along the central axis of the basin. Both studies revealed that pico-phytoplankton were the main contributor to the total phytoplankton biomass, although the relative contributions of pico-, nano- and micro-phytoplankton varied with environmental conditions and mesoscale features. For extensive reviews on phytoplankton species composition in the Red Sea, the reader is referred to the works of Ismael (2015) and Qurban et al. (2019).

A key method used to observe ecological indicators synoptically and frequently is ocean-colour remote sensing (Platt 2008, Platt et al. 2009), and several studies have demonstrated the applicability of satellite remote sensing for investigating the spatiotemporal distribution of phytoplankton abundance in the Red Sea (Acker et al. 2008; Brewin et al. 2013, 2015a; Dreano et al. 2016; Gittings et al. 2018, 2019; Papadopoulos et al. 2015; Racault et al. 2015; Raitos et al. 2013, 2015, 2017; Triantafyllou et al. 2014). Existing remote-sensing methodologies for deriving phytoplankton size classes (PSCs) can be broadly categorised into abundance-based (Brewin et al. 2010, 2011; Hirata et al. 2011; Uitz et al. 2006) and spectral-based (Devred et al. 2011; Kostadinov et al. 2009) approaches. A detailed review of these different methods can be found in IOCCG (2014), Bracher et al. (2017) and Mouw et al. (2017). Recent inter-comparisons have revealed that abundance-based approaches, which exploit the ubiquitous relationship between phytoplankton biomass and cell size (lower biomass equates to smaller cell size and vice versa, (Chisholm, 1992)), performs well at
retrieving PSCs (Hu et al. 2018; Liu et al. 2018). Specifically, the three-component PSC model of Brewin et al. (2010), which builds upon the work of Sathyendranath et al. (2001) and Devred et al. (2006), was shown to perform well in these inter-comparisons, and has been successfully re-parameterised and validated in many other oceanic regions, including: the Atlantic Ocean (Brewin et al. 2010; Brotas et al., 2013), the Indian Ocean (Brewin et al. 2012a), the South China Sea (Lin et al. 2014), the continental shelf seas of China (Sun et al. 2018), the Western Iberian coastline (Brito et al. 2015), the Mediterranean Sea (Sammartino et al. 2015), Southern Africa (Lamont et al. 2008), Chile (Corredor-Acosta et al. 2018) and the global ocean (Brewin et al. 2015b; Ward, 2015).

Recently, Brewin et al. (2015a) applied this model to derive pico- (< 2 μm) and combined nano/micro- (> 2 μm) phytoplankton size classes in the Red Sea. However, due to the paucity of in situ data on these two size classes within the region, at the time, their study utilised model parameters obtained from other oceanic regions (see Brotas et al. 2013), justified through analysis of particulate absorption data collected in the Red Sea. Since then, in situ datasets have become available, enabling the characterisation of phytoplankton size structure in the Red Sea over large spatial scales (Kheireddine et al. 2017, 2018a). In this study, we utilise these newly available datasets to test and subsequently re-parameterise the PSC model of Brewin et al. (2015a) for the first time in the Red Sea. We then apply this model to ocean-colour observations and provide a series of examples demonstrating the improved performance of the updated approach.
2. DATA AND METHODOLOGY

2.1 Oceanographic cruises and sampling
Seawater samples were acquired during five research cruises conducted across the Red Sea between October 2014 and January 2016 aboard the R/V Thuwal (Kheireddine et al. 2017, 2018a) (Fig. 1, Table 1). Collectively, these cruises spanned the majority of the Red Sea (latitudinal range of ~ 15°N – 27°N) and, for convenience, can be separated into the following biogeographical regions: the Northern Red Sea (NRS), Central Red Sea (CRS) and Southern Red Sea (SRS).
Figure 1. Map displaying the bathymetry of the Red Sea and the locations of the cruise sampling stations. Markers in red and black represent the data used for the validation and training of the phytoplankton size class model respectively.

A total of 49 stations were sampled over the Red Sea, although we note that two of these stations were repeated locations sampled on different days. The biogeographic region and temporal period associated with each of the cruises is presented in Table 1 and described in further detail by Kheireddine et al. (2018a).

Table 1. Summary of the Red Sea cruises and in situ datasets

<table>
<thead>
<tr>
<th>Cruise Campaign</th>
<th>Vessel</th>
<th>Location</th>
<th>Abbreviation</th>
<th>Time Period</th>
<th>Number of stations</th>
<th>Number of samples</th>
<th>Number of satellite match-ups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duba Cruise 1</td>
<td>RV Thwal</td>
<td>Northern Red Sea</td>
<td>Duba-01</td>
<td>17 - 28 Apr 2015</td>
<td>10</td>
<td>24</td>
<td>3</td>
</tr>
<tr>
<td>Duba Cruise 2</td>
<td>RV Thwal</td>
<td>Northern Red Sea</td>
<td>Duba-02</td>
<td>21 Mar - 2 Apr 2016</td>
<td>10</td>
<td>28</td>
<td>2</td>
</tr>
<tr>
<td>Nutrient Cycle Cruise 1</td>
<td>RV Thwal</td>
<td>Central Red Sea</td>
<td>NC1</td>
<td>16 - 28 Oct 2014</td>
<td>7</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Nutrient Cycle Cruise 2</td>
<td>RV Thwal</td>
<td>Central Red Sea</td>
<td>NC2</td>
<td>3 - 9 Apr 2015</td>
<td>6</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>Jizan</td>
<td>RV Thwal</td>
<td>Southern Red Sea</td>
<td>JIZAN</td>
<td>8 - 21 Feb 2015</td>
<td>8</td>
<td>27</td>
<td>2</td>
</tr>
<tr>
<td>Time Series</td>
<td>RV Thwal</td>
<td>Central Red Sea</td>
<td>TS</td>
<td>Ongoing from 3 Dec 2014 - 12 Sept 2015</td>
<td>5</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Seaglider AUV</td>
<td>Autonomous Glider</td>
<td>Northern Red Sea</td>
<td>GLIDER</td>
<td>25 Mar 2015</td>
<td>1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49</td>
<td>133</td>
<td>14</td>
</tr>
</tbody>
</table>

2.2 Phytoplankton pigment database

Briefly, at each sampling station, seawater samples (volume ranging from 2.4 – 2.8 L) were collected within the upper 200 metres of the water column and filtered through 25 mm diameter Whatman GF/F filters (porosity of 0.7 µm). The filters were flash frozen and stored in liquid nitrogen throughout the cruise, then transferred to an -80°C freezer in the laboratory prior to analysis. Samples were extracted in 3 mL of 100% methanol,
disturbed with glass pearls on a cooled vibratory homogenizer, centrifuged, and filtered 2
h later using a Teflon syringe filter (0.2 µm). Within 24 hours, the sample extracts were
analysed by High Performance Liquid Chromatography (HPLC) using a complete 1,260
Agilent Technologies system. Measurements of photosynthetic phytoplankton pigments
were acquired in accordance with the HPLC analytical procedure followed by Ras et al.
(2008) and as described by Kheireddine et al. (2017, 2018a). Only samples within the
upper 20 metres of the water column for each station were selected for the analysis, as
satellite sensors acquire measurements approximately within the first optical depth
(typically around 20 meters in the Red Sea (Raitsos et al. 2013)). Uncertainties associated
with the determination of pigment concentrations were calculated using the principles of
uncertainty propagation and are provided in Kheireddine et al. (2017).

2.3 Estimation of phytoplankton size structure from HPLC data

For estimating phytoplankton size fractions from HPLC data, we used the method of
Brewin et al. (2015b), adapted from Claustre (1994), Vidussi et al. (2001), Uitz et al.
(2006), Brewin et al. (2010) and Devred et al. (2011). First, the total Chl-a concentration
(C) was computed from the weighted sum of seven diagnostic phytoplankton pigments
(henceforth referred to as \(C_w \)), according to

\[
C_w = \sum_{i=1}^{7} W_i \cdot P_i
\]

(1)
where \(W \) represents the weights and \(P \) corresponds to the following seven diagnostic pigments: fucoxanthin, peridinin, 19'-hexanoyloxyfucoxanthin, 19'-butanoyloxyfucoxanthin, alloxanthin, total chlorophyll-b and zeaxanthin. We estimated \(W \) by applying a multi-linear regression on the 133 samples collected during the five cruises. We then compared our weights with previous studies conducted in other regions of the global oceans (Table 2). The computed weights are in reasonable agreement with other datasets, with the exception of notable differences observed for the weights attributed to peridinin and alloxanthin. We speculate that the differences in these particular pigments were related to their very low concentrations during sampling. As only a small number of samples (133) were used to compute the weights, when compared with other published studies (e.g. Uitz et al. 2006; Brewin et al. 2015b), and considering the potentially erroneous values obtained with the re-parameterisation, we also tested weights derived from multiple studies across different regions (Table 2). Excluding our own re-parameterised weights, the weights computed by Brewin et al. (2014a) gave the overall best statistical performance with regards to the relationship between \(C_w \) and total Chl-a (\(C \)) (Supplementary Fig. 1). Accordingly, we used these weights in our analysis.

Table 2. Phytoplankton pigments and a comparison of the weights (\(W \)), computed for Equation 1 using the 133 HPLC data samples collected in this study, with weights derived from other studies.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fucoxanthin</td>
<td>1.18 (± 0.51)</td>
<td>1.72</td>
<td>1.51</td>
<td>1.65</td>
<td>1.41</td>
<td>1.65</td>
<td>1.55</td>
</tr>
<tr>
<td>Peridinin</td>
<td>6.45 (± 2.60)</td>
<td>1.27</td>
<td>1.35</td>
<td>1.04</td>
<td>1.41</td>
<td>1.3</td>
<td>0.41</td>
</tr>
<tr>
<td>19'-Hexanoyloxyfucoxanthin</td>
<td>0.57 (± 0.61)</td>
<td>0.68</td>
<td>0.95</td>
<td>0.78</td>
<td>1.27</td>
<td>0.83</td>
<td>0.86</td>
</tr>
<tr>
<td>19'-Butanoyloxyfucoxanthin</td>
<td>3.15 (± 1.51)</td>
<td>1.42</td>
<td>0.85</td>
<td>1.19</td>
<td>0.35</td>
<td>0.78</td>
<td>1.17</td>
</tr>
<tr>
<td>Alloxanthin</td>
<td>7.70 (± 3.37)</td>
<td>4.96</td>
<td>2.71</td>
<td>3.14</td>
<td>0.6</td>
<td>0.73</td>
<td>2.39</td>
</tr>
<tr>
<td>Total chlorophyll-b</td>
<td>1.66 (± 0.57)</td>
<td>0.81</td>
<td>1.27</td>
<td>1.38</td>
<td>1.01</td>
<td>0.77</td>
<td>1.06</td>
</tr>
<tr>
<td>Zeaxanthin</td>
<td>0.72 (± 0.13)</td>
<td>1.28</td>
<td>0.93</td>
<td>1.02</td>
<td>0.86</td>
<td>1.29</td>
<td>2.04</td>
</tr>
</tbody>
</table>
Next, based on the previously reported finding that two optically-distinct assemblages of particles dominate the Red Sea, and that Chl-a in the Red Sea is generally lower than 1 mg m$^{-3}$ (Brewin et al. 2015a), we computed fractions of the total Chl-a concentration for two size classes: pico-phytoplankton (cell size < 2 μm) and combined nano/micro-phytoplankton (cell size > 2 μm). Due to a low contribution of micro-phytoplankton to total Chl-a in our dataset (figure not shown), a two-component model was selected for our study as a more parsimonious solution to the original three-component model put forth by Brewin et al. (2010). However, we do not rule out the future use of a three-component model in the region, should datasets become available that span a higher range of chlorophyll (e.g. in coastal waters). Following Eq. 2, the fraction of pico-phytoplankton (F_p) was computed using zeaxanthin, total chlorophyll-b and by apportioning some of 19-hexanoyloxyfucoxanthin to the pico-phytoplankton pool at total Chl-a concentrations less than 0.08 mg m$^{-3}$ (Brewin et al. 2010, 2015b)

\[
F_p = \begin{cases}
\frac{(\text{-}12.5C+1)W_3P_3}{C_w} + \frac{\sum_{i=6}^7 W_iP_i}{C_w} & \text{if } C \leq 0.08 \text{ mg m}^{-3} \\
\sum_{i=6}^7 \frac{W_iP_i}{C_w} & \text{if } C \geq 0.08 \text{ mg m}^{-3}
\end{cases}
\]

(2)

The fraction of Chl-a attributed to the combined nano/micro phytoplankton assemblage $(F_{n,m})$ was then computed as

\[F_{n,m} = 1 - F_p\]

(3)

\[F_{n,m} = 1 - F_p\]
After deriving the fractions of the picophytoplankton \((F_p)\) and combined nano/micro \((F_{n,m})\) phytoplankton populations relative to total Chl-a, the Chl-a concentration attributed to the two size classes was calculated as

\[C_p = F_p C \quad (4) \]

and

\[C_{n,m} = F_{n,m} C \quad (5) \]

where \(C_p\) and \(C_{n,m}\) correspond to the size-specific Chl-a concentration of pico-phytoplankton and the combined nano/micro-phytoplankton respectively, and \(C\) refers to the total Chl-a concentration.

2.4 Datasets and data partitioning for training, satellite validation and visualisation

The *in situ* samples were matched with estimates of satellite-derived remote sensing reflectance \((R_{rs})\) from version 3.1 of the European Space Agency’s Ocean Colour Climate Change Initiative product (OC-CCI). For the period spanning 2015 - 2017, the OC-CCI product consists of merged and bias-corrected data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) satellite sensors. Level 3, daily, mapped data were acquired at a spatial resolution of 4 km from http://www.esa-oceancolour-cci.org for the time periods
corresponding to each of the cruises (Table 1). For further information, the reader is referred to previous literature regarding the OC-CCI product (Sathyendranath et al. 2012, 2016) and its previous applications in the Red Sea and adjacent Arabian Sea (Racault et al. 2015; Brewin et al. 2015a; Dreano et al. 2016; Gittings et al. 2017). In addition, we refer the reader to the OC-CCI Product User Guide at http://www.esa-oceancolour-cci.org/?q=webfm_send/318 for a more extensive overview of processing, sensor merging and uncertainty quantification. Each sample was matched to an individual satellite pixel temporally (same day) and spatially (nearest pixel based on longitude and latitude). Of the total 49 stations, we retrieved 14 satellite matchups. The corresponding sample stations for the matchups were set aside for the independent validation of satellite-derived total Chl-a, size fractions and size-specific Chl-a (Fig. 1). The in situ samples at each of the matchup stations were averaged within the top 20 metres (approximately the first optical depth). The remaining 35 in situ sampling stations were used for the development and re-parameterisation of the phytoplankton size model. We note that the remaining 35 sampling stations are representative of samples acquired at multiple depths (up to 20 metres). Thus, a total of 89 samples (corresponding to the remaining 35 stations) were used for the model re-parameterisation.

We utilised three different empirical, satellite ocean-colour algorithms in our analysis: the standard OC-CCI algorithm (which is a blended combination of the OC5 (Gohin et al. 2002) and the OC4v6 – OCI (Hu et al. 2012) algorithms) and the OC4 and OCI algorithms (Hu et al. 2012; O’Reilly et al. 2000) that have been regionally tuned for the Red Sea by Brewin et al. (2015a) (hereafter referred to as OC4-RG and OCI-RG respectively, Fig. 2). For further illustrative and qualitative validation of the
phytoplankton size model, daily images of satellite-derived phytoplankton size fractions from the OC-CCI product were also extracted for periods coinciding with the timing of *in situ* sample collection during the cruise programs (Table 1).

In addition, to provide an example highlighting the potential of new remote-sensing technologies and their application for mapping PSCs, we used a Chl-a dataset acquired from the Ocean and Land Colour Instrument (OLCI) on-board the recently launched Sentinel-3a satellite of the European Space Agency. An 8-day composite image for the period 28th February 2017 - 7th March 2017 was downloaded from the European Space Agency Copernicus Open Access Hub (https://scihub.copernicus.eu/). This dataset has a spatial resolution of 300 metres and was processed for the Red Sea using the regionally tuned algorithm developed by Brewin *et al.* (2015a).

2.5 Two-component phytoplankton size class model

Following Brewin *et al.* (2015a), we used a two-component size class model to characterise the pico-phytoplankton and combined nano/micro-phytoplankton assemblages in the Red Sea. The model assumes small phytoplankton cells (picophytoplankton) are incapable of growing beyond a specific Chl-a concentration, and the addition of extra Chl-a into the system beyond this concentration can be attributed to the addition of larger phytoplankton cells (*Chisholm*, 1992; *Raimbault et al.* 1988). The model is based on the exponential equation originally put forth by Sathyendranath *et al.* (2001) and used by Brewin *et al.* (2010) to relate the concentration of Chl-a in pico-phytoplankton (C_p, cells < 2 μm) to the total Chl-a according to
The parameter C_p^m represents the asymptotic maximum value of Chl-a associated with the pico-phytoplankton size class, whilst D_p determines the fraction of total Chl-a for the picophytoplankton assemblage as total Chl-a (C) tends to zero. The size-specific Chl-a concentration of the combined nano/micro-phytoplankton assemblage ($C_{n,m}$) can subsequently be derived according to

$$C_{n,m} = C - C_p$$

The model parameters C_p^m and D_p were estimated by fitting Eq. 6 to the parameters C_p and C, which were computed using the HPLC dataset. We used a non-linear, least squares fitting procedure (Trust-Region-Reflective algorithm, MATLAB Optimisation Toolbox, function ‘LSQCURVEFIT’), in conjunction with bootstrapping (Efron, 1979), to compute the model parameters and their associated uncertainties (Table 3). Bootstrapping was implemented by randomly sub-sampling the dataset (1000 iterations) and re-fitting Eq. 6 for each sub-sample. The median and 95% confidence intervals were then computed from the resulting parameter distribution. The parameter D_p was constrained to be less than or equal to 1, as size-fractionated Chl-a cannot exceed the total Chl-a concentration. The model parameters are presented in Table 3 and generally appear to lie within the range of values that have been computed for different regions of the global oceans.
Table 3. Model parameters derived from Equation 6 and comparisons with different studies.

<table>
<thead>
<tr>
<th>Study</th>
<th>Model Parameters</th>
<th>Location</th>
<th>N</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study</td>
<td>C_p^a (mg m$^{-3}$)</td>
<td>D_p</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.19 (0.16 - 0.23)</td>
<td>0.92 (0.85 - 1.0)</td>
<td>Red Sea</td>
<td>89</td>
</tr>
<tr>
<td>Brewin et al. (2012a)</td>
<td>0.17</td>
<td>0.82</td>
<td>Indian Ocean</td>
<td>686</td>
</tr>
<tr>
<td>Brewin et al. (2011)</td>
<td>0.15</td>
<td>0.75</td>
<td>Global</td>
<td>256</td>
</tr>
<tr>
<td>Brewin et al. (2015b)</td>
<td>0.13 (0.12 - 0.14)</td>
<td>0.80 (0.78 - 0.82)</td>
<td>Global</td>
<td>5841</td>
</tr>
<tr>
<td>Brewin et al. (2010)</td>
<td>0.11</td>
<td>0.73</td>
<td>Atlantic Ocean</td>
<td>1935</td>
</tr>
<tr>
<td>Brozas et al. (2013)</td>
<td>0.06</td>
<td>0.99</td>
<td>NE Atlantic Ocean</td>
<td>1100</td>
</tr>
<tr>
<td>Brewin et al. (2017a)</td>
<td>0.13 (0.12 - 0.13)</td>
<td>0.73 (0.71 - 0.76)</td>
<td>N Atlantic Ocean</td>
<td>2239</td>
</tr>
</tbody>
</table>

2.6 Statistical tests

For the assessment of satellite ocean-colour data and the validation of the reparameterised model, we primarily used the Pearson linear correlation coefficient (r), mean absolute difference (MAD (M)) and bias (δ) as performance metrics to compare in situ and modelled values of total Chl-a, size fractions and size-specific Chl-a. The MAD is suggested to be less sensitive to different dataset distributions and the presence of outliers, and provides a natural and unambiguous characterisation of model uncertainty (Willmott and Matsuura, 2005). The MAD has been extensively utilised in other studies that involve comparisons between in situ and satellite estimates of chlorophyll (e.g. Moses et al. 2012; O’Reilly and Werdell, 2019) and phytoplankton size structure (e.g. Brewin et al. 2012a; Corredor-Acosta et al. 2018). The root-mean-square-difference (RMSD, ψ) is also presented in order to allow comparisons of the model performance with previous studies. We note that the linear correlation coefficient and RMSD have
previously been utilised to compare *in situ* and modelled data (*Brewin et al.* 2015c, 2016; *Doney et al.* 2009; *Friedrichs et al.* 2009). Statistical tests based on Chl-a concentrations were conducted in log$_{10}$ space, as Chl-a tends to be log-normally distributed in the open ocean (*Campbell*, 1995). The MAD (M) was computed according to

\[M = \frac{\sum_{i=1}^{N} |X_i^E - X_i^M|}{N} \]

(8),

where N is the number of data points, X is the variable (total Chl-a concentration, size fraction or size-specific Chl-a) and the superscripts E and M correspond to the estimated variable from the model and the measured variable, respectively. The value of δ was calculated according to

\[\delta = \frac{1}{N} \left[\sum_{i=1}^{N} (X_i^E - X_i^M) \right] \]

(9)

and ψ was expressed as

\[\psi = \left[\frac{1}{N} \sum_{i=1}^{N} (X_i^E - X_i^M)^2 \right]^{1/2} \]

(10).
3. RESULTS AND DISCUSSION

3.1 Satellite validation of total Chl-a

To determine the best input of Chl-a for the phytoplankton size model, we first evaluate the performance of three different ocean colour algorithms (Fig. 2, Table 4). Irrespective of the type of algorithm, in situ values of Chl-a concentration are in good agreement with the satellite matchups and the relationships are characterised by high correlation coefficients ($r > 0.88$) and low mean absolute differences ($M < 0.2$). Using the correlation coefficient and RMSD (ψ) as a basis for comparison with previous studies, the model performance is similar, or in some cases better, to what has been previously observed in the Red Sea (Brewin et al. 2013, 2015a; Racault et al. 2015) and other regions of the global ocean (e.g. Bailey and Werdell, 2006; Brewin et al. 2015b; Siegel et al. 2013) (Table 4).

Table 4. Statistical results for the three ocean colour algorithms used in this study, and some comparisons with previous studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Satellite dataset</th>
<th>Algorithm</th>
<th>r</th>
<th>ψ</th>
<th>M</th>
<th>N</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study</td>
<td>OC-CI V3.1</td>
<td>OC5/OC4v6-OCI</td>
<td>0.88</td>
<td>0.14</td>
<td>0.12</td>
<td>14</td>
<td>Red Sea</td>
</tr>
<tr>
<td>This study</td>
<td>OC-CI V3.1</td>
<td>OCI-RG</td>
<td>0.89</td>
<td>0.22</td>
<td>0.19</td>
<td>14</td>
<td>Red Sea</td>
</tr>
<tr>
<td>This study</td>
<td>OC-CI V3.1</td>
<td>OC4-RG</td>
<td>0.88</td>
<td>0.17</td>
<td>0.13</td>
<td>14</td>
<td>Red Sea</td>
</tr>
<tr>
<td>Brewin et al. (2013)</td>
<td>MODIS-Aqua</td>
<td>OC3</td>
<td>0.69</td>
<td>0.2</td>
<td>-</td>
<td>85</td>
<td>Red Sea</td>
</tr>
<tr>
<td>Brewin et al. (2013)</td>
<td>MODIS-Aqua</td>
<td>OCI</td>
<td>0.56</td>
<td>0.13</td>
<td>-</td>
<td>85</td>
<td>Red Sea</td>
</tr>
<tr>
<td>Brewin et al. (2015a)</td>
<td>OC-CCI V1</td>
<td>OCI-RG</td>
<td>0.87</td>
<td>0.16</td>
<td>-</td>
<td>410</td>
<td>Red Sea</td>
</tr>
<tr>
<td>Brewin et al. (2015a)</td>
<td>OC-CCI V1</td>
<td>OC4-RG</td>
<td>0.83</td>
<td>0.17</td>
<td>-</td>
<td>410</td>
<td>Red Sea</td>
</tr>
<tr>
<td>Racault et al. (2015)</td>
<td>OC-CCI V1</td>
<td>OC4</td>
<td>0.84</td>
<td>0.29</td>
<td>-</td>
<td>392</td>
<td>Red Sea</td>
</tr>
<tr>
<td>Brewin et al. (2012a)</td>
<td>SeaWiFS</td>
<td>OC4</td>
<td>0.89</td>
<td>-</td>
<td>0.06</td>
<td>26</td>
<td>Indian Ocean</td>
</tr>
<tr>
<td>Lamont et al. (2018)</td>
<td>MODIS-Aqua</td>
<td>OCI</td>
<td>0.98</td>
<td>0.14</td>
<td>-</td>
<td>33</td>
<td>Southern Africa</td>
</tr>
<tr>
<td>Bailey and Werdell (2006)</td>
<td>SeaWiFS</td>
<td>OC4</td>
<td>0.91</td>
<td>0.41</td>
<td>-</td>
<td>271</td>
<td>Global</td>
</tr>
<tr>
<td>Siegel et al. (2013)</td>
<td>SeaWiFS</td>
<td>GSM</td>
<td>0.88</td>
<td>0.36</td>
<td>-</td>
<td>1380</td>
<td>Global</td>
</tr>
<tr>
<td>Siegel et al. (2013)</td>
<td>SeaWiFS</td>
<td>OC4</td>
<td>0.89</td>
<td>0.31</td>
<td>-</td>
<td>1543</td>
<td>Global</td>
</tr>
<tr>
<td>Brewin et al. (2015b)</td>
<td>OC-CCI V1</td>
<td>OC4</td>
<td>0.88</td>
<td>0.25</td>
<td>-</td>
<td>598</td>
<td>Global</td>
</tr>
</tbody>
</table>
Although the three algorithms exhibit a statistically similar performance (e.g. statistically similar values for the MAD (M) and RMSD (ψ) (95% confidence intervals overlap) and a statistically similar correlation coefficient (z-test)), the standard OC-CCI algorithm overestimates Chl-a concentration (δ = 0.08). This is analogous with the results of Brewin et al. (2015a) who found that the standard NASA OC4 and OCI algorithms

Figure 2. Satellite validation of total Chl-a concentration from three different empirical ocean colour algorithms; the standard OC-CCI algorithm and the regionally tuned OCI-RG and OC4-RG algorithms developed by Brewin et al. [2015a]. r is the Pearson correlation coefficient, M is the mean absolute difference, δ is the bias and ψ is the root-mean-square-difference. Statistical tests were computed in log_{10} space. Per-pixel uncertainties for the matchups obtained using the standard OC-CCI algorithm are provided as RMSD error bars. Overall, the in situ Chl-a matchups are within the uncertainty limits of the OC-CCI data. We also present the fixed RMSD uncertainties for OCI-RG and OC4-RG, which are based on a previous validation of those algorithms using OC-CCI data (see Fig 7 of Brewin et al. 2015a). Uncertainties associated with in
\textit{situ} Chl-a concentrations are expressed as percentages (~ +/- 4.6\%) and are represented by the black horizontal error bars.

systematically overestimate Chl-a in the Red Sea. They attributed this overestimation to increased chromophoric dissolved organic matter (CDOM) absorption per unit Chl-a. This hypothesis was recently corroborated by Kheiredidine \textit{et al.} (2018b), who analysed the spatial distribution of the absorption coefficient of CDOM (a\textsubscript{CDOM}), using \textit{in situ} measurements acquired during several cruises conducted in the Red Sea. Kheiredidine \textit{et al.} (2018b) observed that values of a\textsubscript{CDOM} for a specific Chl-a concentration were substantially higher in the Red Sea in comparison to the adjacent Mediterranean Sea (20 - 550\%) (Organelli \textit{et al.} 2014). The authors also revealed that CDOM concentrations were higher than what has been observed in other oligotrophic regions, such as the southeast Pacific and Mediterranean Sea (Bricaud \textit{et al.} 2010; Morel and Gentili, 2009).

The regionally tuned OCI-RG and OC4-RG algorithms are associated with negative biases (δ = -0.19 and -0.12 respectively), particularly the OCI-RG algorithm, which displays a consistent underestimation of Chl-a (Fig. 2). However, considering the improved performance of the regionally-tuned Red Sea algorithms previously obtained using a larger match-up dataset (Brewin \textit{et al.} 2015a), and it’s slightly higher statistical performance in comparison to OCI-RG, we opted to use the OC4-RG algorithm for input to the PSC model. On-going research is required to monitor the performance of all these algorithms, as and when more data become available in the Red Sea.
3.2 Re-parameterisation of the two-component phytoplankton size model

The re-parameterised size model was fitted to the Red Sea HPLC dataset (Fig. 3, black line), and for comparison, was plotted alongside the previous two-component model of Brewin et al. (2015a) (Fig. 3, red line). Overall, the re-parameterised model adequately captures the general trends in *in situ* derived size-specific Chl-a (C_p, $C_{n,m}$) as a function of total Chl-a ($r > 0.9, M < 0.1$). The contribution of Chl-a from the pico-phytoplankton assemblage is higher at low Chl-a concentrations and the model parameter D_p is representative of the increase in pico-phytoplankton as the total Chl-a concentration tends to zero ($D_p = 0.92$). Above an asymptotic Chl-a concentration of ~ 0.19 mg m$^{-3}$ for pico-phytoplankton (C_p), additional Chl-a in the system can be attributed to increases in Chl-a within the nano/micro-phytoplankton assemblage ($C_{n,m}$). The model also captures the general trends observed for the phytoplankton size fractions (F_p, $F_{n,m}$), where the fraction of small (larger) cells decreases (increases) with the total Chl-a concentration.
Figure 3. The two-component phytoplankton size model fitted alongside the Red Sea HPLC pigment data. The black and red lines represent the re-parameterised model and the original model of Brewin et al. (2015a) respectively. The top row shows the relationship between total Chl-a concentration and size-specific Chl-a, whilst the bottom row shows the relationship between total Chl-a and the fraction of total Chl-a from the two size classes.

Although the model of Brewin et al. (2015a) displays the same general trend, it underestimates C_p and F_p, and overestimates $C_{n,m}$ and $F_{n,m}$, for a given total Chl-a concentration (Fig. 3). We note that these differences are apparent regardless of the choice of regression coefficients for Eq. 2 (Supplementary Fig. 2). Prior to the re-tuning
of the size model, Brewin et al. (2015a) had set the value of the model parameter $C_{p,m}$ (the maximum Chl-a concentration reached by the pico-phytoplankton population) at 0.06 mg m$^{-3}$ (Table 3). Considering the updated model parameter in this study ($C_{p,m} = 0.19$ mg m$^{-3}$), the previous value of $C_{p,m}$ utilised by Brewin et al. (2015a), which was derived using HPLC datasets collected in the eastern North Atlantic Ocean (see Brotas et al. 2013), probably under-represents the contribution of the pico-phytoplankton population. Indeed, Brewin et al. (2015a) and Kheireddine et al. (2017) revealed that pico-phytoplankton constituted the dominant size class in the Red Sea, although in the case of the latter study, community structure was found to be fairly heterogeneous due to the mesoscale variability of the region.

3.3 Satellite validation of size-specific Chl-a concentrations and size fractions

Satellite-derived observations of Chl-a concentration from the independent matchup dataset were used as input to the re-parameterised two-component size class model, and accordingly, size-specific Chl-a and size fractions were derived. The resultant relationships between the satellite and in situ data are presented in Figure 4. Generally, satellite estimates of size-specific Chl-a concentration match the in situ observations well. For both C_p and $C_{n,m}$, high r values ($r > 0.80$) and low MAD ($M < 0.2$) are obtained. A slight negative bias occurs for both size classes (-0.11), which is most likely related to the underestimation of total Chl-a from the OC4-RG algorithm (Fig. 2). To further assess the performance of the re-parameterised model, we present the results of statistical tests computed for matchups obtained using the previous model parameters of Brewin et al.
(2015a) (Fig. 4). Overall, following model re-parameterisation, the bias is closer to zero, the MAD is smaller and the RMSD is approximately halved (excluding the RMSD associated with the size-specific Chl-a concentration of the combined nano-micro assemblage \(C_{n,m}\)). In addition, the RMSD of \(C_p\) presented here (\(\psi = 0.13\)) is lower than what has been observed in the global ocean (Brewin et al. 2015b), the North Atlantic (Brewin et al. 2017a) the waters off Central-Southern Chile (Corredor-Acosta et al. 2018) and South Africa (Lamont et al. 2018). Satellite-derived size fractions \(F_p\) and \(F_{n,m}\) are also in good agreement with the in situ observations \((r = 0.67)\) and the relationships are characterised by low MAD \((M = 0.09)\) and low biases \((\delta = \pm 0.02)\). We note that as \(F_{n,m} = 1 - F_p\) (see Eq. 3), the statistical parameters computed for the matchups of \(F_p\) and \(F_{n,m}\) are identical (although characterised by a change of sign for the case of \(\delta\)).

To investigate spatial gradients in satellite estimates of phytoplankton size structure, we present an 8-day composite image of the pico- and nano/micro-phytoplankton fractions in the CRS region, as well as total Chl-a concentration (Fig. 5). The composite image represents the period 1\(^{st}\) - 9\(^{th}\) April 2015, corresponding approximately to the sampling dates of the NC2 cruise conducted in the CRS (3\(^{rd}\) – 9\(^{th}\) April 2015, Table 1). For comparison, the in situ size fractions of the pico- and nano/micro- phytoplankton assemblage from the NC2 sampling stations are overlaid on the satellite image (Fig. 5, white circles).
Figure 4. Satellite validation of size-specific Chl-a concentrations (top row) and the fractional contribution of Chl-a to total Chl-a (bottom row) for the two size classes. Statistical tests were computed in log_{10} space for size-specific Chl-a concentrations and in linear space for the size fractions. The statistical parameters are the same as those described in Figure 2. For comparison, statistical tests are also presented (in red text) for matchups computed using the previous Red Sea model parameterisation of Brewin et al. (2015a).

The satellite data effectively capture the spatial variability of *in situ* size fractions. Lower fractions of nano/micro- phytoplankton (~20 - 25% of the total population) are
apparent in the northern region of the CRS (22 – 24°N), coinciding with reduced Chl-a concentrations and a higher fraction of pico-phytoplankton (75 – 80%). The fraction of nano/micro- phytoplankton increases to ~ 35% between 21 and 22°N, and this is observed by the most southerly in situ sampling station at ~ 21.75°N. This region of larger cells is characterised by higher Chl-a concentrations and extends from the eastern coast towards the western coastline. We speculate that this feature may be representative of a mesoscale anticyclonic eddy that is capable of transporting water masses across the basin. Large eddies are known to occur frequently in the CRS (~ 18 – 24°N) (Zhan et al. 2014, 2019) and previous research has demonstrated how these eddies transfer waters rich in Chl-a between the east and west coastlines of the Red Sea (Raitos et al. 2017). Coral reefs contain elevated concentrations of nutrients from processes such as grazing, sediment re-suspension and bacterial respiration (Acker et al. 2008; Erez, 1990; Rasheed et al. 2002) and instances of higher nutrient availability are known to correlate with larger phytoplankton cells (Marañón, 2015). Indeed, total Chl-a concentration and the fraction of larger cells is notably higher along the coastlines of the CRS, constituting 40 – 60% of the total phytoplankton population. The eddy may advect larger cells further offshore between 21 and 22°N at its periphery, whilst simultaneously driving a decrease in total Chl-a concentration, and an increase in the contribution of pico-phytoplankton at its core (~ 22.5°N), as a result of downwelling and enhanced oligotrophy.
Figure 5. 8-day climatology (1st – 9th April 2015) of total Chl-a (computed using the OC4-RG algorithm), and the fractional contributions of pico- and the combined nano/micro- phytoplankton assemblages generated using the updated model parameters.

In situ data points from the NC2 cruise, conducted during this 8-day period (Table 1), are overlaid on the satellite imagery and are represented by the white circles. The *in situ* samples are plotted with the same colour scale as the satellite image.

3.4 Potential caveats

3.4.1 *In situ* estimates of phytoplankton size structure

We utilised a Red Sea HPLC dataset, in conjunction with a diagnostic pigment approach, to derive *in situ* measurements of size-specific Chl-a concentration that would be used for the re-parameterisation of the two-component size class model of Brewin et al (2015a). We note that some diagnostic pigments may be shared by several phytoplankton groups that span a broad range of sizes, and thus may not always be precise biomarkers that enable the definitive differentiation between size classes. In consideration of this,
refinements have been made to infer size fractionated Chl-a from the HPLC data using the diagnostic pigment approach. Specifically, we followed the approach of Brewin et al. (2010) to compute in situ values of the pico-phytoplankton size fraction (F_p). This involved apportioning some of the 19′-hexanoyloxyfucoxanthin pigment to pico-phytoplankton at lower Chl-a concentrations, as some pico-eukaryotes contain this pigment. Considering that a two-component model was used to derive pico-phytoplankton and the combined nano/micro-phytoplankton assemblages, it was not necessary to implement further adjustments that have been previously used to account for the partitioning of pigments between micro-phytoplankton and nano-phytoplankton (e.g. Devred et al. 2011). Although we did not compare HPLC-derived estimates of size-fractioned Chl-a with those derived using other methods (e.g. size-fractionated filtration, flow cytometry or molecular analysis), systematic differences in size-fractionated Chl-a between HPLC and other methods have been observed (e.g. Brewin et al. 2014a). Future efforts should focus on collecting concurrent data on size-fractioned Chl-a in the Red Sea using multiple methods, for a more complete and accurate diagnosis of phytoplankton size classes (Nair et al. 2008). Until such datasets become available, the HPLC approach is our only in situ resource, and it has been shown to capture trends in phytoplankton size structure in other oceanic regions (Organelli et al. 2013; Uitz et al. 2008, 2015). Furthermore, the conceptual framework of the two-component model used here has been supported by multiple in situ methods, including: size-fractionated filtration measurements (Brewin et al., 2014b; Gin et al., 2000; Marañón et al., 2012;), measurements from flow cytometry and microscopy (Brotas et al., 2013), and
measurements of spectral absorption by phytoplankton and particle backscattering (Brewin et al., 2011, Brewin et al., 2012b; Devred et al., 2006, 2011).

3.4.2 Abundance-based phytoplankton size model

The abundance-based, three-component model conceptualised by Brewin et al. (2010), and adapted for the Red Sea by Brewin et al. (2015a), has been applied and validated both globally, and for individual oceanic regions (e.g. Brewin et al. 2010, 2012a, 2014a, 2015a, 2015b; Hu et al. 2018; Lamont et al. 2018; Lin et al. 2014). However, abundance-based algorithms infer phytoplankton size structure based on relationships between the total Chl-a concentration and size-fractionated Chl-a, and thus do not directly detect the presence of different phytoplankton size classes. Although these relationships have been shown to hold across the global oceans, deviations from these relationships occur (e.g. Goericke, 2011). Furthermore, for applications of the model to satellite data in optically-complex waters, satellite retrievals of Chl-a may be impacted by the presence of CDOM and non-algal particles (Hirata et al. 2011; Mouw et al. 2017). Modifications to ecosystem structure as a result of climate change may alter relationships between phytoplankton size structure and total Chl-a (Agirbas et al. 2015; Racault et al. 2014; Sathyendranath et al. 2017). Thus, as well as a need for increased in situ sampling efforts in the Red Sea, re-calibration of abundance-based algorithms may be necessary in the future, and may require tying model parameters (C_p and D_p) to other environmental variables amenable from space (see Brewin et al. 2015b, 2017a; Ward, 2015).
Abundance-based algorithms use total Chl-a from satellite remote sensing as input. Thus, the accuracy of satellite Chl-a observations is critical for the derivation of accurate size-fractionated Chl-a data. Per-pixel uncertainties in satellite size-fractionated Chl-a data can be derived in two ways: 1) by propagating errors in the input total Chl-a through to the output size-fractionated Chl-a, accounting for uncertainties in model parameters (Brewin et al. 2017b); or 2) through comparison of satellite size-fractionated Chl-a with in situ data (validation), by matching the two estimates in time and space (Brewin et al. 2017a). Each approach has its advantages and disadvantages. Model error propagation requires good knowledge of errors in model parameters and model input, and assumes the model is conceptually accurate. Validation generally assumes the in situ data are correct, when in reality the in situ measurements have their own uncertainties that should be considered in the analysis, but are difficult to estimate (Brewin et al. 2014b, 2017a; Nair et al. 2008). In addition, when comparing satellite data with concurrent in situ data, the scales of the observations differ by orders of magnitude (e.g. 1 litre HPLC sample and 4km satellite pixel), which can cause additional uncertainties. In our study we report the uncertainties based on validation (see Figure 4). It is envisaged that future work could improve on this, perhaps making use of optical water type classification methods (e.g. Brewin et al. 2017a), and by characterising uncertainties in the in situ data, through the collection of concurrent in situ size-fractioned Chl-a data using multiple methods.
Figure 6. 8-day climatology (28th February – 7th March 2017) showing the fractional contribution of the combined nano/micro-phytoplankton assemblage at a spatial resolution of 300 metres. The size fraction was computed using parameters from the re-parameterised model and observations of Chl-a concentration acquired via the Ocean and Land Colour Instrument (OLCI) on-board the SENTINEL-3 satellite (European Space Agency).

4. CONCLUSIONS

We re-parameterised the two-component phytoplankton size model of Brewin et al. (2015a) using HPLC pigment data collected in the Red Sea. The updated model effectively captures the relationships between in situ measurements of total Chl-a concentration and the Chl-a concentrations of the pico- and combined nano/micro-phytoplankton size classes, and was subsequently applied to remotely-sensed ocean
colour observations. Overall, satellite estimates of phytoplankton size structure correlate well with concurrent \textit{in situ} measurements and also capture the spatial variability in phytoplankton size structure related to an anticyclonic eddy.

To our knowledge, this analysis provides the first \textit{in situ} validation of satellite-derived estimates of phytoplankton size structure in the Red Sea and paves the way for further investigation on the seasonality, interannual variability and phenology of different PSCs. This is likely to be paramount for developing a better understanding of trophic relationships and fisheries dynamics in the region, contributing to the development and implementation of marine ecosystem management schemes. Finally, with the advent of more advanced remote-sensing capabilities, including the launch of next-generation satellite sensors such as OLCI on-board the Sentinel-3a spacecraft (European Space Agency), the large-scale spatiotemporal distribution of ecological indicators, as well as their linkages to mesoscale variability, can be resolved at much finer temporal scales (Fig. 6).
5. REFERENCES

Brotas, V., Brewin, R.J.W., Sá, C., Brito, A.C., Silva, A., Mendes, C.R., Diniz, T., Kaufmann, M., Tarran, G., Groom, S.B., Platt, T., Sathyendranath, S., 2013. Deriving phytoplankton size classes from satellite data: Validation along a trophic gradient in the

F.S., Robinson, W.D., Sarmiento, J.L., Swan, C.M., Werdell, P.J., Westberry, T.K.,
Wilding, J.G., Yoder, J.A., 2013. Regional to global assessments of phytoplankton
https://doi.org/10.1016/J.RSE.2013.03.025.

Sommer, U., Berninger, U.G., Bottger-Schnack, R., Cornils, a, Hagen, W., Hansen, T.,
Al-Najjar, T., Post, a F., Schnack-Schiel, S.B., Stibor, H., Stubing, D., Wickham, S.,

Observations of Phytoplankton Size Classes in the Entire Continental Shelf Sea, China. J.

at Jeddah Coast-Red Sea, Saudi Arabia in relation to some ecological factors. JKAU: Sci.
148(632), 1-34. doi:10.4197/Sci. 22-1.9.

Exploring the Red Sea seasonal ecosystem functioning using a three-dimensional

Ward, B. A., 2015. Temperature-correlated changes in phytoplankton community structure are restricted to polar waters. PloS one 10(8), e0135581.

ACKNOWLEDGMENTS

The authors are grateful to the Ocean Colour CCI team (European Space Agency) for providing and processing the Chl-a dataset. The authors also thank Nick Selmes for processing and providing the Sentinel-3 OLCI Chl-a dataset for the Red Sea. The authors express their gratitude to the scientists, officers and crews of the R/V Thuwal, the KAUST Coastal and Marine Resources Core Lab who provided logistical support and assistance during fieldwork, and the Analytical Core Lab for providing facilities for the analyses of
the samples collected during the fieldwork. The authors are grateful to Benjamin Kurten, Susana Carvalho, Sarma Yellepeddi, and Joanne Ellis for facilitating the sampling of optical and pigment samples for the research cruises listed. The authors also thank George Krokos for his useful discussions. This work was funded by the KAUST Office of Sponsored Research (OSR) under the Collaborative Research Grant (CRG) program (Grant # URF/1/2979-01-01) and the Virtual Red Sea Initiative (Grant # REP/I/3268-01-01). Fieldwork was supported by KAUST baseline funding (BAS/I/1032-01-01) attributed to Burton Jones.

AUTHOR CONTRIBUTIONS