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ABSTRACT
Ecological factors, host characteristics and/or interactions among microbes may all
shape the occurrence of microbes and the structure of microbial communities within
organisms. In the past, disentangling these factors and determining their relative
importance in shaping within-host microbiota communities has been hampered by
analytical limitations to account for (dis)similar environmental preferences (‘envi-
ronmental filtering’). Here we used a joint species distribution modelling (JSDM)
approach to characterize the bacterial microbiota of one of the most important disease
vectors in Europe, the sheep tick Ixodes ricinus, along ecological gradients in the
Swiss Alps. Although our study captured extensive environmental variation along
elevational clines, the explanatory power of such large-scale ecological factors was
comparably weak, suggesting that tick-specific traits and behaviours, microhabitat and
-climate experienced by ticks, and interactions among microbes play an important
role in shaping tick microbial communities. Indeed, when accounting for shared
environmental preferences, evidence for significant patterns of positive or negative
co-occurrence among microbes was found, which is indicative of competition or
facilitation processes. Signals of facilitation were observed primarily among human
pathogens, leading to co-infection within ticks, whereas signals of competition were
observed between the tick endosymbiont Spiroplasma and human pathogens. These
findings highlight the important role of small-scale ecological variation and microbe-
microbe interactions in shaping tick microbial communities and the dynamics of tick-
borne disease.

Subjects Biodiversity, Ecology, Microbiology, Parasitology
Keywords Tick-borne pathogens, Species distribution modelling, Community composition,
Borrelia burgdorferi, Lyme disease

INTRODUCTION
Microbial communities within organisms consist of symbionts, commensals, mutualists
and pathogens that co-occur simultaneously and potentially influence each other (Petney
& Andrews, 1998; Rigaud, Perrot-Minnot & Brown, 2010; Sofonea, Alizon & Michalakis,
2015). These microbial communities may be shaped by a range of factors and processes,
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including the environment, host and microbe genetics and the occurrence and abundance
of other microbial species (Adair & Douglas, 2017). For example, certain microbial species
might tolerate only specific abiotic conditions, which makes it more likely that species
with similar requirements co-occur within a host (‘environmental filtering’, Dallas &
Presley, 2014). Similarly, the host’s immune system can influence colonization success of
microbes (Hawley & Altizer, 2011), with cross-immunity preventing the colonization of
different microbes with similar antigenic properties (Durand et al., 2015). Furthermore,
mutualistic interactions between hosts andmicrobes can influence the structure of bacterial
communities within host individuals (Chu & Mazmanian, 2013; Lee et al., 2013). Finally,
direct interactions among microbes might affect colonization, or replication success after
colonization, through competition or facilitation processes. Competition may occur when
different microbes use the same, limited resources within a host (Lello et al., 2004), whereas
facilitation may occur directly through the production of public goods (West & Buckling,
2003) or indirectly through the modification of the host’s physiology (Abraham et al.,
2017) or immune defense (Rodríguez et al., 1999).

Ixodes ricinus is the most common tick species in Europe and an important vector
for a range of human, domestic animal and wildlife pathogens (Medlock et al., 2013).
Its distribution and abundance are strongly influenced by environmental conditions,
in particular temperature and humidity (Cortinas et al., 2002; Gatewood et al., 2009).
Previous studies that characterized the bacterial community composition of I. ricinus ticks
have found mostly environmental and free-living bacteria but also several endosymbionts
and human, domestic animal or wildlife pathogens, including Borrelia (Mannelli et al.,
2012), Rickettsia (Venclikova et al., 2014), Anaplasma (Jahfari et al., 2014) and Candidatus
Neoehrlichia (Kawahara et al., 2004).

Differences in the bacterial community structure and composition of ticks across
habitats (Estrada-Peña et al., 2018), geographical sites (Carpi et al., 2011), and tick life
stages and sexes (Carpi et al., 2011; Vayssier-Taussat et al., 2013) have been documented.
Large-scale biotic or abiotic factors such as vegetation structure, elevation, temperature or
rainfall may influence tick microbial communities directly, or indirectly through effects
on tick physiology or activity patterns (Van Treuren et al., 2015) or via influencing the
distribution and abundance of tick hosts species (Randolph et al., 1999; MacDonald et al.,
2017). Small-scale and/or tick-specific effects on microbial communities may be explained
by microhabitat or microclimatic conditions experienced by individual ticks (Gern, Morán
Cadenas & Burri, 2008), individual tick behavior or genetics (Hawlena et al., 2013), direct
biotic interactions among microbes (Moutailler et al., 2016) or parallel acquisition from
a host during a bloodmeal (Andersson, Scherman & Råberg, 2014; Belli et al., 2017; Swei &
Kwan, 2017).

Currently, the relative importance of these factors in shaping tickmicrobial communities
is not well understood, which hampers progress in our understanding of the processes
shaping microbial communities in nature and predicting the occurrence of specific
microbes (e.g., human pathogens). Elevational gradients are excellently suited to quantify
the importance of large-scale ecological variation in shaping tick bacterial microbiota
because they cover a large range of environmental conditions within a small geographical
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area. Furthermore, including replicated transects along gradients allow us to quantify
the robustness of ecological associations within sites and along elevational clines on tick
microbial communities.

Ixodes ticks are commonly found to be co-infected with several (human, domestic
animal and/or wildlife) pathogens (Andersson, Scherman & Råberg, 2013; Michelet et
al., 2014; Diuk-Wasser, Vannier & Krause, 2016; Moutailler et al., 2016). Currently, it
is unknown whether these co-infection patterns are caused by similar environmental
preferences of pathogens, parallel acquisition from host communities or direct microbe-
microbe interactions within ticks. Yet, previous studies suggest that the latter process,
(i.e., facilitation and competition processes among microbes) may play a role in shaping
microbial communities (Haine, 2008; Bonnet et al., 2017). For example, it has been found
that pathogenic Rickettsia species prevent co-infection with other Rickettsia species in
Dermacentor variabilis ticks (Macaluso et al., 2002), whereas the presence of Francisella sp.
endosymbionts increases the colonization success of pathogenic Francisella novicida in
D. andersoni ticks (Gall et al., 2016). Facilitation has also been suggested to promote co-
infectionwith differentBorrelia afzelii strains in Ixodes ricinus ticks (Andersson, Scherman &
Råberg, 2013).Most strikingly, dysbiosis in I. scapularis ticks (i.e., ticks with lowmicrobiotal
diversity) leads to a defective peritrophic matrix which decreases the colonization success of
B. burgdorferi s.s., suggesting that the pathogen requires the presence of an intactmicrobiota
to be able to invade ticks (Narasimhan et al., 2014). Thus, the microbial community may
have a crucial impact on vector competence of ticks and thereby on disease dynamics.

Yet, as outlined above, co-occurrence of microbes can be due to environmental filtering
or direct microbial interactions, and distinguishing between these processes is non-trivial.
Indeed, previous studies that have documented pathogen co-occurrence in ticks have not
accounted for potential confounding variables such as shared ecological requirements,
and are thus limited in their ability to differentiate between co-occurrences due to shared
environmental niches, and co-occurrence shaped by facilitation or competition among
microbes.

To address these gaps, we exploited the substantial environmental heterogeneity along
replicated elevational gradients in the Swiss Alps to quantify the relative importance of
environmental factors, tick characteristics and direct microbial interactions in influencing
the structure of bacterial communities in I. ricinus ticks in general, and the (co-)occurrence
of pathogens in particular, using a combination of 16S sequencing and joint species
distribution modelling (JSDM) (Warton et al., 2015). By taking shared environmental
preferences into account, JSDMs allows to identify residual co-occurrence patterns among
microbes that can result from unaccounted environmental effects or direct microbial
interactions. However, the correct spatial scale with regards to the focal biological
processes is of importance, as well as the type of the hypothesized biotic interaction (Araújo
& Rozenfeld, 2014; Zurell, Pollock & Thuiller, 2018) when interpreting JSDM patterns
(Dormann et al., 2018).

Specifically, we ask (i) how do large-scale abiotic factors and small scale tick-level
variables affect tick microbiota composition, (ii) which large-scale abiotic and small-scale
tick-level variables predict pathogen occurrence, and (iii) are there patterns of non-random
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Figure 1 Location of tick sampling sites in the Swiss Alps.Different shapes (i.e., circle, square and tri-
angle) represent the different locations and different colours represent elevation (white: low, grey: middle,
black: high). Rivers and motorway are shown in black. Map data c©2019 Google, GeoBasis-DE/BKG.

Full-size DOI: 10.7717/peerj.8217/fig-1

microbial co-occurrence that cannot be explained by environmental responses and might
be due to unmeasured variables, such as microbial interactions.

MATERIAL AND METHODS
Tick sampling
Questing Ixodes ricinus ticks were collected at three locations in the Swiss Alps (Kanton
Graubünden). At each location, one site at low (630–732 m above sea level, masl), one at
medium (1,094–1,138 masl) and one at high (1,454–1 673 masl) elevation were identified
(Fig. 1, Table 1, N = 9 sampling sites). At each site, questing ticks were sampled thrice,
once in June, once in July, and once in August 2014 by dragging a white blanket (1 m ×
1 m) over the ground vegetation as described previously (Lemoine, Cornetti & Tschirren,
2018). Ticks were collected from the blanket and stored in 95% ethanol. Tick species, sex
and life stage were verified by morphological features following (Hillyard, 1996) using a
stereomicroscope.

Environmental variables
For each sampling site, we compiled information on large-scale, site-level ecological
variables by obtaining data on elevation, slope and aspect using DHM25, land use data
from swissTLM3D (both from Federal Office of Topography swisstopo) and data on
temperature and precipitation from Landscape Dynamics (Swiss Federal Research Institute
for Water, Snow and Landscape Research WSL and Federal Office of Meteorology and
Climatology MeteoSwiss; Thornton, Running & White, 1997). Data on I. ricinus abundance
and the abundance of a key tick host, the bank vole (Myodes glareolus), as well as the
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Table 1 Tick sampling sites in the Swiss Alps.

Location Site Coordinates Elevation Succesfully sequenced Ixodes ricinus ticks

North East (masl) nymphs males females

1 Sagogn 46.783 9.233 693 0 9 15
Flims 46.827 9.280 1138 3 5 3
Ruschein 46.795 9.169 1454 0 1 1

2 Rodels 46.760 9.425 630 2 5 4
Tomils 46.772 9.453 1144 3 6 4
Feldis 46.789 9.453 1673 1 1 0

3 Passug 46.840 9.538 732 0 5 6
Castiel 46.826 9.569 1094 0 3 3
Praden 46.817 9.589 1582 1 0 1

ratio of bank vole to other rodents at our sampling sites were obtained from Cornetti et
al. (2016) and Cornetti et al. (2018). Details on the different variables and a justification
why they were included to characterise large-scale ecological conditions is provided in the
Supplemental Information.

Tick DNA isolation and quantification of neutral genetic diversity
The number of analysed ticks per site is presented in Table 1. Although we aimed to include
similar numbers of I. ricinus ticks from each sampling site and month, variation in the
number of ticks per site (Table 1) was unavoidable because of variation in tick abundance
across sites (Lemoine, Cornetti & Tschirren, 2018). To avoid contamination, we performed
DNA isolation and amplifications in a laminar flow cabinet. Each tick was washed thrice
with sterile water before sterilizing it with 3% hydrogen peroxide. Ticks were then cut in
half with a sterilized blade to facilitate DNA isolation. DNA was extracted using DNeasy
Blood & Tissue kit (Qiagen; Hilden, Germany).

Host genetics may affect pathogen and endosymbiont colonisation and replication
success (Archie & Ezenwa, 2011). In order to quantify individual and population-level
genetic diversity, we genotyped ticks at 11 microsatellite markers in two multiplexed
amplifications (see Supplementary Material for details). Not all markers were successfully
amplified in all samples, but none of the samples contained more than two failed markers.
We used package poppr (Kamvar, Tabima & Grünwald, 2014) in R 3.4.1 (R Core Team,
2013) to test for linkage disequilibrium and deviation from Hardy-Weinberg equilibrium.
Individual observed heterozygosity was determined for each tick as a proportion of
heterozygous markers to all successfully amplified markers. Expected population level
heterozygosity was determined with poppr. The former was used as a tick-level explanatory
variable (together with tick sex and life stage), the latter was used as a site-level explanatory
variable.

Tick microbiota sequencing
We characterized tick bacterial community composition by sequencing the hypervariable
V4 region of the 16S rRNA (16S) gene. Negative controls (extraction reagent blank, N = 2
and PCR controls, N = 3) were processed alongside the tick samples. Sequencing libraries
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were prepared following the Earth Microbiome 16S Illumina Amplicon protocol, using the
primers 515FB and 806RB (Carey, Walters & Knight, 2013) (see Supplemental Information
for details). Samples and negative controls were randomized across two plates. The libraries
were sequenced on Illumina MiSeq at the Functional Genomic Center Zurich with a target
length of 250 bp following the manufacturer’s protocol. The obtained sequence data were
analyzed following themothur pipeline with MiSeq standard operation procedures (Kozich
et al., 2013). Sequences have been deposited to the Sequence Read Archive under BioProject
PRJNA506875. The complete metadata of the samples and their matching sequence
accession numbers have been submitted to FigShare (doi:10.6084/m9.figshare.7380767).

As we are not able to assess whether individual OTUs are resident or not, and we do not
know their transmission routes, a special focus of our analysis was on tick endosymbionts
and tick-borne human, domestic animal or wildlife pathogens (Table 2), which are obligate
residents. This approach does not mean that the other OTUs would not have a substantial
effects on ticks and other tick symbionts. Identification of endosymbionts and pathogens
is described in the Supplemental Information.

Joint species distribution modelling of microbiota composition
Only samples with >500 reads and OTUs which were present in at least two samples were
included in the analyses (Table 1). As the most common OTU, the intra-mitochondrial
endosymbiont Candidatus Midichloria (Lo et al., 2006), was present in all samples, it was
not included in the modelling. For the occurrence matrix, an OTU was determined to be
present in a tick if >5 reads were identified in a sample (following Aivelo & Norberg, 2017).

We used a JSDM framework called Hierarchical Modelling of Species Communities
(HMSC, (Ovaskainen et al., 2017a) to examine how environmental variables correlate
with pathogen and tick endosymbiont occurrence in ticks, and whether there are non-
random residual associations among different OTUs and/or oligotypes, implying direct
facilitation or competition effects among microbes. This approach combines information
on environmental covariates, bacterial species traits, spatiotemporal context and sampling
design to explain the presence or absence of OTUs (Fig. S2). The associations among OTUs
are captured with the latent part of the framework, modelling the residual variance after
accounting for the effects of the environment. The estimates for these latent variables can
be then translated into residual correlations among response variables, i.e., OTUs and/or
oligotypes. These correlations thus reflect (dis)associations which cannot be explained by
shared responses to the environment.

We compiled occurrence matrices for OTUs for each individual tick as a response
variable. For each sampling unit, i.e., a row in our response variable matrix, we included
information on the identity of the sampling unit (tick ID), its location, sampling site (for
which we included also the spatial structure as coordinates) and month, describing the
study design. To reach a better resolutionwithin specific OTUs, we analyzed known human,
domestic animal or wildlife pathogens, tick endosymbionts and their close relatives within
the 100 most common OTUs with oligotyping pipeline (Eren et al., 2014). Oligotyping
uses all the sequences, which form an OTU, and performs Shannon Entropy Analysis
to regroup sequences based on within-OTU variation. This results in higher-resolution
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Table 2 Common tick endosymbionts and/or putative human pathogens observed in I. ricinus ticks.
See Supplemental Information for information on OTU assignment.

OTU Label Human pathogen/
tick endosymbiont

Occurrence
(% of analyzed ticks)

Otu0001 Midichloria endosymbiont 100
Otu0003 Spiroplasma endosymbiont 41
Otu0005 Rickettsiella endosymbiont 63
Otu0021 Lariskella endosymbiont 49
Otu0031 Rickettsia helvetica both 16

R. monacensis both 6
Otu0067 Rickettsia sp. both 25
Otu0076 Anaplasma both 33
Otu0086 Candidatus Neoehrlichia both 22
Otu0088 Borrelia afzelii pathogen 9

B. miyamotoi pathogen 10
B. garinii pathogen 6
B. valaisiana pathogen 2

grouping than OTUs as the different oligotypes might differ only by a single nucleotide
(Eren et al., 2014). We used the standard operation procedures of the oligotyping pipeline
software (http://oligotyping.org; Eren et al., 2013). We labelled the resulting oligotypes
through BLAST search (Camacho et al., 2009). For some species, such as Rickettsia spp.,
the V4 region of 16S might not have enough resolution (Greay et al., 2018), and thus, the
labels should not be considered as definite identifications.

Including a large number of explanatory variables in statistical models is inherently
challenging. To reduce the number of variables, while maintaining their information value,
we used two variable sets in the model: (a) a set of full-effect explanatory variables, and (b)
explanatory variables under variable selection (Ovaskainen et al., 2017b). The full-effect
variable set included an intercept, two tick-level variables (tick sex or life stage and individual
heterozygosity) and two site-level variables (tick abundance and elevation of the sampling
site). Additionally, we included information whether a specific OTU is an endosymbiont
and/or a human, domestic animal or wildlife pathogen (Abrego, Norberg & Ovaskainen,
2016). This allowed us to test if endosymbionts and/or pathogens respond differentially
to environmental conditions than other OTUs. The set of explanatory variables under
variable selection included additional information on the environmental conditions of the
sites (namely the number of days above 7 ◦C during the year, monthly precipitation, mean
monthly temperature, forest coverage, slope, aspect, bank vole abundance, the proportion
of voles to other rodents and expected tick heterozygosity) (Table S1). We considered all
parameter estimates, including associations among bacterial OTUs, having strong statistical
support and thus being ’significant‘ if the 90% central credible interval of the parameter
did not overlap with zero (see Supplemental Information for additional model details).
The model was run in Matlab R2017 (The MathWorks, Natick, MA, USA).
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RESULTS
Ixodes ricinus microbiota composition
We 16S sequenced the bacterial community of 92 Ixodes ricinus ticks which resulted in
13,214,477 reads. No amplification was observed in the five negative controls (i.e., their
sequencing did not result in any reads) and one tick was sequenced twice. After contig
assembly and quality control 1,656,287 reads were retained. Most of the discarded reads
were either shorter than 250 bp or chimeras. There was amedian of 1,562 quality-controlled
reads per sample, with an interquartile range of 6319. 82 samples with more than 500 reads
per sample, a plateauing accumulation curve and a Good’s coverage estimator ≥0.95 were
included in the subsequent analyses (Fig. S1). In total, 5,181 bacterial OTUs were identified.
The median number of OTUs when rarified to 500 reads per sample was 89 OTUs, with a
95% confidence interval of 78.3–98.5 OTUs.

Six OTUs were present in at least 90% of the samples: Ca. Midichloria (Otu0001),
Sphingomonas (Otu0002, 0006 and 0007), Pseudomonas (Otu0011) and Delftia (Otu0012).
Together, they represented 50.2% of all reads. We used oligotyping to further divide
OTU0031 ‘Rickettsia’ into two oligotypes labelled as ‘R. helvetica’ and ‘R. monacensis’, and
OTU0086 ‘Borrelia’ into four oligotypes labelled as ‘B. afzelii’, ‘B. valaisian a’ and ‘B. garinii’
and ‘B. miyamotoi’. 635 OTUs and oligotypes were used in subsequent analyses, including
14 endosymbionts and / or human, domestic animal or wildlife pathogens (Table 2).

Tick microbiota variance partitioning
Variance partitioning revealed that most of the variation in tick microbiota composition
explained by our model related to tick ID: for the hundred most common OTUs, tick ID
accounted for 64.1% of the variation explained by the model. Fixed effects (e.g., tick life
stage, elevation; see Table S1) accounted for 12.5% (tick-level: 7.3%, site-level: 5.2%) and
spatial and temporal randomeffects (i.e., location, site andmonth) explained 23.3% (Fig. 2).
This suggests that there is extensive tick-level variation which cannot be accounted for by
tick-specific characteristics included in our model (i.e., sex, life stage, genetic diversity)
or site-level environmental factors. The pattern differed slightly for endosymbionts and
human, domestic animal or wildlife pathogens: while tick ID was still the most important
variable explaining 49.9%, fixed effects explained 31.8% (tick-level: 17.5%, site-level:
14.3%) and spatial and temporal random effects explained 18.3% of the total variation
explained by the model, when averaged over all pathogens and endosymbionts (Fig. 2).
Thus, tick- and site-level fixed effects explained a larger proportion of the variation in the
occurrence of obligate resident pathogens and endosymbionts than the occurrence of other
(potentially non-resident) OTUs.

Tick-specific and environmental factors related to OTU occurrence
The occurrence of tick endosymbionts and pathogens was strongly associated with specific
explanatory variables, yet associations were typically microbe-specific rather than universal
(Table 3). The two most important variables explaining the presence or absence of
tick endosymbionts and human, domestic animal or wildlife pathogens were tick sex
and elevation of the sampling site: adult female ticks were less likely to harbour the
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endosymbionts Spiroplasma, Rickettsiella, Lariskella and Rickettsia spp. (Table 3), and ticks
at higher elevations had higher probability to harbour R. helvetica and R. monacensis, but
were less probable to harbour B. garinii (Table 3). Slope and aspect were also significant
predictors of tick endosymbionts and pathogen occurrence, with ticks from sites facing
northwards having a higher probability of harbouring Spiroplasma and B. afzelii, and
ticks from sites on steeper slopes having a higher probability of harbouring Rickettsia sp.
(Table 3). Furthermore, a higher tick abundance was associated with a higher probability
of Rickettsiella and Ca. Neoehrlichia occurrence (Table 3). Relationships between tick life
stage, mean temperature, the number of days >7 ◦C or forest cover and the occurrence of
specific OTUs were not strongly statistically supported.

The effect sizes of strongly statistically supported associations varied substantially (Figs.
S4A–S4I). For example, threefold increase in vole abundance corresponded to less than
one percentage point decrease of R. monacensis prevalence (Fig. S4B), whereas a threefold
increase in tick abundance corresponded to a threefold increase in Neoehrlichia prevalence
from 8% to 27% (Fig. S4E).
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Table 3 Associations between tick-specific and environmental variables and the occurrence of endosymbionts and human pathogens in I. ricinus ticks. A positive
sign indicates that higher variable values are associated with a higher probability of OTU occurrence. A higher aspect value means that a site is facing northwards. Only as-
sociations with strong statistical support (based on the 90% central credible interval) are presented.

Full variable set Variable selection set

Tick sex
(Female)

Tick life
stage (Nymph)

Tick
abundance

Tick
heterozygosity

Elevation Tick population
expected
heterozygosity

Number of
days >7 ◦C

Precipitation Mean
temperature

Forest
cover

Slope Aspect Vole
abundance

Vole/other
rodents ratio

Otu0003 Spiroplasma − + −

Otu0005 Rickettsiella − + − − + −

Otu0022 Lariskella − −

Otu0031 Rickettsia helvetica + −

R. monacensis + − −

Otu0067 Rickettsia sp. − +

Otu0076 Anaplasma

Otu0086 Ca. Neoehrlichia +

Otu0088 Borrelia afzelii +

B. miyamotoi

B. garinii −

B. valaisiana
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Figure 3 Residual association patterns among endosymbionts and human pathogens within ticks on (A) individual tick-level and (B) on site-
level after accounting for shared environmental preference. Red lines represent positive associations and blue lines negative associations. Only as-
sociations with strong statistical support (i.e., based on the 90% central credible interval) are presented. Darker colors indicate stronger associations.

Full-size DOI: 10.7717/peerj.8217/fig-3

Patterns of microbial association within ticks
Numerous bacterial OTUs were either significantly more or less likely to co-occur
within a tick than expected by chance after accounting for shared environmental
preferences (Fig. 3A; Table S2). At the level of the individual tick, the occurrence of
the tick endosymbiont Spiroplasma was negatively associated with the occurrence of the
endosymbiont Lariskella and several tick-borne pathogens, namely Rickettsia sp., Ca.
Neoehrlichia and B. miyamotoi (Fig. 3A). Associations among pathogens, if they occurred,
were all positive (Fig. 3A), suggesting that ticks are more likely to be co-infected with
several human, domestic animal or wildlife pathogens simultaneously than expected
by chance or based on shared environmental preferences. Borrelia oligotypes showed
positive co-occurrence patterns among each other, except for B. miyamotoi, which was
not associated with other Borrelia sp., but negatively with Spiroplasma and positively with
Lariskella. At the level of the sampling site, significant associations were sparser. Spiroplasma
was more likely to co-occur with Lariskella and Rickettsiella across sites, whereas the latter
two were less likely to co-occur across sites than expected by chance after accounting for
shared environmental preferences (Fig. 3B). At the level of month or location, there were
no significant associations.

DISCUSSION
We used a JSDM framework to quantify the relative importance of large scale, site-level
environmental variables, tick-level characteristics and interactions among microbes in
shaping tick microbiota composition along elevational gradients in the Swiss Alps. We
show that although our study captured extensive environmental variation, with sampling
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sites spanning across an elevational gradient from 630–1,580 masl, and a large number of
ecological variables was considered in ourmodels, the explanatory power of such large-scale
ecological factors was comparably weak. In contrast, individual tick ID explained over 60%
of the variation in microbiota composition. This substantial microbiota variation across
individual ticks may be partly explained by some of the bacteria present in ticks being
non-resident (i.e., bacteria that were by chance obtained from the environment through
the mouth, the anal pore or spiracles or during blood-feeding;Horner-Devine & Bohannan,
2006; Engel & Moran, 2013; Zolnik et al., 2016; Zolnik et al., 2018; Ross et al., 2018). Indeed,
there has been a debate whether ticks have a stable microbiota (Ross et al., 2018), mirroring
the wider debate on how common resident microbiota is in arthropod hosts (Hammer et
al., 2017).

However, also for endosymbionts and human, domestic animal or wildlife pathogens,
which are obligate resident, tick ID accounted for half of the variation in occurrence,
suggesting that microhabitat or -climatic conditions experienced by individual ticks, tick-
specific traits and behaviors not included in our models, as well as microbial interactions
within ticks such as facilitation and competition (Abraham et al., 2017; Gurfield et al.,
2017), play a crucial role in shaping microbiota composition and the occurrence of
endosymbionts and human or wildlife pathogens in I. ricinus. Focusing on such small-scale
variables, rather than large-scale climatic or environmental factors as is usually done when
modelling tick-borne pathogen prevalence (Norman, Worton & Gilbert, 2016; Rosà et al.,
2018), is thus likely a more fruitful approach to advance our understanding of microbiota
composition of natural populations as well as (tick-borne) disease dynamics.

Co-occurrence of human, domestic animal or wildlife pathogens in ticks has been
documented previously, both in I. ricinus (Lommano et al., 2012; Michelet et al., 2014)
and other tick species (Gurfield et al., 2017; Laaksonen et al., 2018). Yet, previous studies
did not control for environmental filtering, which limited their ability to disentangle
shared responses to the environment from direct microbe-microbe interactions. Our study
revealed that when accounting for shared environmental preferences, associations among
human or wildlife pathogens were often pronounced and mostly positive. These positive
associations may result from direct facilitation among microbes or parallel colonization
from co-infected tick hosts. Because our sampling unit was the whole tick, whereas bacteria
inhabiting a tick can be situated in different organs, co-occurrence at the tick-level does
not necessarily mean that there is direct interaction between co-occurring OTUs, although
indirect interactions, via, e.g., host immune system, can still occur.

Within ticks, the significant positive associations among the Lyme disease-causing
Borrelia genospecies (B. afzelii, B. garinii and B. valaisiana) were particularly striking. This
positive co-occurrence is surprising because B. garinii and B. valaisiana are bird specialists
(Hanincova et al., 2003b; Comstedt, Jakobsson & Bergström, 2011), whereas B. afzelii is a
rodent specialist (Hanincova et al., 2003a). Thus, the parallel colonization from co-infected
tick hosts cannot explain this pattern. Rather the positive co-occurrence is indicative
of facilitation processes among Borrelia genospecies, as has been suggested previously
(Andersson, Scherman & Råberg, 2013). Such facilitation, and the resulting co-infection
of ticks with several Borrelia genospecies has implications for the severity, diagnosis,
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treatment and control of Lyme disease. Finally, the co-occurrence of these different
Borrelia genospecies suggests that I. ricinus feeds on multiple, phylogenetically diverse host
species during its life cycle and does not show pathogen-mediated host specialization as
has been suggested previously (McCoy et al., 2005; McCoy, Léger & Dietrich, 2013).

Although associations among microbes were mostly positive, there were negative
associations between the tick endosymbiont Spiroplasma and several human or wildlife
pathogens, which may be explained by competition. The most common infection route for
Spiroplasma is maternal (i.e., vertical) transmission (Herren & Lemaitre, 2011), indicating
that horizontal or environmental transfer plays a minor role in its transmission. Protective
effects of Spiroplasma have been previously described inDrosophila spp., where Spiroplasma
is associated with a decreased probability of nematode and parasitoids infections (Xie,
Vilchez & Mateos, 2010; Jaenike et al., 2013). Although the exact mechanisms mediating
Spiroplasma-induced competition effects are currently unknown, this findingmay stimulate
further research into the potential of tick endosymbionts to manage tick-borne pathogens.

In contrast to the numerous positive or negative associations among microbes at the
tick-level, little statistical support for positive or negative microbial co-occurrence was
found at the site-level, with the exception of the associations among three endosymbionts.
Interestingly, the pattern of co-occurrence of Spiroplasma and Lariskella at the site-level
was opposite from what was observed at the tick-level. It suggests that Spiroplasma and
Lariskella are more likely to co-occur at the same sites but not within the same tick.
Co-occurrence at the site-level can be due to an environmental variable not included in
our model, for which the three OTUs had similar responses. It has also been suggested that
negative associations generate checkerboard patterns of co-occurrence that can be captured
at finer spatial scales but that are lost with increasing scales, but positive associations can
be captured across scales (Araújo & Rozenfeld, 2014).

Despite the large among-tick variation in microbiota composition, we identified a
range of environmental variables that significantly predicted the occurrence of specific
tick endosymbionts and human, domestic animal or wildlife pathogens. However, the
predictor variables as well as their effect were typically OTU-specific rather than universal.
For example, B. garinii was less likely to occur at higher elevations, whereas R. helvetica and
R. monascensis weremore likely to occur at higher elevations. Generally, the environmental
factors shaping Rickettsia spp. distribution are poorly understood, as is their range of host
species (Halos et al., 2010; Eremeeva & Dasch, 2015). Yet, it has previously been found that
spotted fever incidence in humans, caused by R. ricketsii, is highest in areas or regions,
where ticks are less common (Atkinson et al., 2013). This is in line with our findings and
suggests that Rickettsia spp. are more likely to colonize ticks living under suboptimal
conditions (e.g., at range edges).

The finding thatB. garinii is less likely to occur at higher elevations is in line with previous
observations (Jouda, Perret & Gern, 2004b; Cornetti et al., 2018) and may be explained by
changes in vegetation structure and associated changes in host communities (Halos et al.,
2010), in particular changes in the diversity and/or abundance of birds, the natural hosts
of B. garinii (Comstedt, Jakobsson & Bergström, 2011). In contrast, the occurrence of the
mammal specialist B. afzelii was not related to elevation, potentially because elevational
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clines inmammal diversity and/or abundance are less pronounced (McCain, 2005). Indeed,
we did not observe an association between elevation and bank vole abundance across our
study sites (ANOVA: F1,8= 0.357, p= 0.57, R2

= 0.05).
Interestingly, temperature and precipitation, which vary strongly across elevational

gradients (average temperature and precipitation: high elevation sites: 11.8 ◦C and 17.8mm
per month; in low sites: 16.5 ◦C and 12.1 mm per month), were not significant predictors
of the occurrence of endosymbionts or human or wildlife pathogens, with the exception
of precipitation correlating positively with the probability of Rickettsiella occurrence. This
may be partly explained by the temperature and precipitation measures included in our
models not fully capturing the microclimatic variation across sites and along elevational
clines. Indeed, slope and aspect, which are important determinants of the topography,
and thus microclimate (Bennie et al., 2008), were significant predictors of pathogen and
endosymbiont occurrence. The probability of Rickettsia sp. occurrence was higher on
steeper slopes. Furthermore, the probability of occurrence was higher on north-facing
slopes for B. afzelii and Spiroplasma and higher on south-facing slopes for Rickettsiella
(see also Stuen, Granquist & Silaghi, 2013). Microclimatic conditions may affect microbial
occurrence directly, or indirectly via affecting tick behavior or host community composition
(Swei, Meentemeyer & Briggs, 2011; Lawson et al., 2014). Furthermore, topography can
affect population connectivity and dispersal in metapopulation networks (Swei & Kwan,
2017).

Previous work has found that tick abundance is a strong predictor of Borrelia spp.
prevalence, potentially because larger tick populations facilitate co-feeding transmission
(Jouda, Perret & Gern, 2004a). No relationship between Borrelia spp. occurrence and tick
abundance was observed in our study. However, both Ca. Neoehrlichia and Rickettsiella
were more common at sites where ticks were more abundant, suggesting that co-feeding
transmission may also play a role in the life cycle of these microbes.

Finally, differences in host competence can lead to dilution effects and thus affect the
prevalence of tick-borne pathogens (Keesing, Holt & Ostfeld, 2006). Whereas for some
tick-borne pathogens the vertebrate hosts are known or suspected (e.g., small mammals for
B. afzelii (Hanincova et al., 2003a) and Ca. Neoehrlichia (Jahfari et al., 2012), birds for B.
garinii and B. valaisiana (Hanincova et al., 2003b), both forAnaplasma (Keesing et al., 2012)
andR. helvetica (Sprong et al., 2009), for others the host species range is less well understood
(e.g., B. miyamotoi; Wagemakers et al., 2015). The bank vole is a common tick host at our
study sites and their abundance was a significant negative predictor of R. monacensis and
R. helvetica occurrence. Interestingly, bank voles are not known hosts for either (Burri et
al., 2014). Most likely, the relation is thus indirect, explained by an unmeasured biotic or
abiotic variable that correlates with bank vole abundance. No evidence was found that the
proportion of bank voles to other rodents affects the prevalence of tick-borne pathogens.

A limitation of our sampling design is the uneven sample distribution across sites. We
collected ticks up to the upper elevational limit of tick distribution, which leads to a large
variation in environmental variables included in our models, but at the same times means
that we have a limited number of samples from the high elevation sites. Yet, adequatemodel
fit suggests that this uneven sample distribution did not compromise model performance.
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Furthermore, although JSDM is a powerful approach to model community structure, it
has a number of limitations. First, it assumes that interactions among microbes are similar
across environments (but see Tikhonov et al., 2017). This is not necessarily the case as both
environmental factors and tick host community may shape microbial interactions (Elliot,
Blanford & Thomas, 2002). Second, the model assumes that the explanatory variables affect
the microbial community composition (or rather, the presence or absence of individual
OTUs), but not vice versa. However, this is a valid assumption for most environmental
(e.g., elevation and temperature) and tick-related variables (e.g., tick sex, life stage) included
in our models. Thirdly, covariation among explanatory variables poses a problem to any
correlative modelling approach. Our model is built on two distinct variable sets to aid in
handling such covariation: the full variable set includes elevation, whereas the variables with
the strongest covariation (i.e., temperature and precipitation) are included in the variable
selection set. Fourthly, the inferred residual associations between focal taxa are assumed
to be symmetrical. If there are asymmetric interactions (e.g., predator–prey-relationships),
the sum outcome can be seen as either positive or negative correlation (Zurell, Pollock &
Thuiller, 2018). However, in our study, the expectation was facilitation or competition,
which are symmetric positive or negative interactions, respectively. Thus, given sufficient
signal, we expect that the focal interactions can be captured by our modelling approach.

CONCLUSIONS
Our study demonstrates that a JSDM framework can contribute to a better understanding
of the factors shaping bacterial communities in natural populations as well as patterns
of co-occurrence among microbes. Overall, our study highlights the role of small-scale,
tick-level characteristics rather than large-scale ecological variation in shaping microbial
communities of I. ricinus. We identified a number of ecological variables that predict
the occurrence of specific tick endosymbionts and human, domestic animal or wildlife
pathogens with strong statistical support, but these effects were typically microbe-specific
rather than universal. This highlights that environmental change can have different, even
opposite effects on different human pathogens, and thus disease risk. Furthermore, by
accounting for shared environmental preferences, our approach identified patterns of
microbial co-occurrence that are consistent with microbe-microbe interactions, which
result in pathogen co-infections within ticks, as well as competition between Spiroplasma
and a number of human, domestic animal or wildlife pathogens. The latter opens up new
and exciting avenues for the control and management of tick-borne diseases in regions
with high human disease incidence.
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