The effect of freezing on stress-strain characteristics of granular and cohesive soils - A case study of Tabriz Subway

M. Esmaeili-Falak¹, H. Katebi² and A. A. Javadi³*

¹ PhD, Department of Civil Engineering, University of Tabriz, Iran
 Email: Mahzad.ef@tabrizu.ac.ir, Tel. +98 914 355 4670
² prof., Department of Civil Engineering, University of Tabriz, Iran
 Email: Katebi@tabrizu.ac.ir, Tel. +98 914 313 5291
³* Prof., Department of Engineering, University of Exeter, Exeter, UK
 Email: A.A.Javadi@exeter.ac.uk, Tel. +44 (0)1392 723640 (Corresponding author)

Abstract:
To investigate the stress-strain behavior of frozen soils, a program of triaxial compression tests was designed and carried out on samples of unfrozen and frozen cohesive (CL) and granular (SP) soils and pure ice. The experiments involved study of the influence of freezing, temperature reduction and loading rate on the stress-strain characteristics of the frozen ground. The aim of this study is to assess the possibility of using the Artificial Ground Freezing (AGF) technique in the excavation and tunneling in Line 2 of the Tabriz Subway project. The results show that freezing of the CL soil has no significant effect on the type of soil behavior (strain-hardening), while, freezing of the SP soil changes its strain-hardening behavior to strain-softening. The effect of freezing on the increase in shear strength of the saturated SP soil is much greater than that of the saturated CL soil; however, the rate of increase in the shear strength due to freezing and temperature reduction is much larger for the CL soil. Freezing and reduction in temperature cause an increase in the elastic modulus of all the materials tested in the present study. Also, the shear strength and elastic modulus of these materials increase with loading rate.
Keywords: Frozen ground, stress-strain characteristics, triaxial compression test, strain hardening, strain softening.

Introduction

The improvement of soil behavior by Artificial Ground Freezing (AGF) has been utilized by engineers in many construction projects. The technique involves excursion of a refrigerated coolant through subsurface freezing tubes in order to reduce the soil temperature below freezing point (Andersland and Ladanyi, 2004). The freezing process is conducted using two concentric pipes. A smaller diameter tube within each freezing tube permits the downward circulation of the coolant; the refrigerant fluid arrives into the double sleeve freeze tube and after reaching the lowest point of the inner tube, it returns through the annulus between the inner and outer tubes (Fig. 1) (Harris, 1995; Esmaeili-Falak et al., 2018). The pore water within the soil is then frozen and the soil becomes stronger and watertight. The frozen soil can be used as a sealing and soil support system in underground construction (Chamberlain, 1981; Lackner et al., 2005; Yang et al., 2015; Zhou et al., 2015; Esmaeili-Falak, 2017; Fei and Yang, 2018). Compared with other soil treatment techniques, AGF is an effective and stable method for controlling groundwater and improving soil strength (Braun et al., 1979). It is an efficient and green technique which poses no short-term or long-term threat to the environment (Frivik, 1981). AGF consists of two phases (Stoss and Valk, 1979). The first (active) phase involves cooling the ground until its temperature drops below the freezing point of the groundwater. The second (passive) phase involves maintaining the frozen body by circulating the coolant until the end of construction operations.

Although AGF has been used for decades, however compared to unfrozen soils, there is much limited literature concerning the mechanical properties and behavior of frozen soils.
The first use of AGF was reported on a mineshaft construction in UK (Li et al., 2006). Studies have shown that, under loading, frozen soils can experience plastic volumetric and shear strains. The concept of elasto-plastic deformation has been used to describe the behavior of frozen ground as well as other geotechnical materials (Youssef, 1988; Puswewala and Rajapakse, 1990; Wijeweera and Joshi, 1992; Nassr et al., 2018). AGF has been shown to be effective in loose and homogeneous soils that contain some pore water. AGF is particularly useful where the application of other conventional techniques is deemed unfeasible (Rupprecht, 1979). Changes in geological strata and layer permeability have some effect on freezing, while these factors can significantly influence the success of other soil improvement techniques (Jones and Brown, 1979).

Unlike unfrozen soils, the mechanical and physical properties of frozen soils have not been studied in great extent. This is due to remarkable complexity of frozen soils (Ting, 1983). Early investigations of AGF primarily focused on the creep behavior of frozen soils (Sayles, 1968; Sayles and Haines; 1974). However, in the recent years, with the developments in the laboratory equipment and techniques, the experimental investigation of various aspects of behavior of frozen ground has received greater attention. The influence of AGF on physical and mechanical characteristics of the frozen ground has been studied by many researchers (e.g., Andersen, 1991; Soo and Muvdi, 1992; Da Re, 2000; Zhao et al., 2013; Li et al., 2018; Torok et al., 2019). It has been shown that AGF could significantly improve the physical and mechanical properties of soils due to the formation of a rigid ice-soil matrix (Wang et al., 2006).

Although AGF is known as a cost-effective, environmentally friendly and practical method for soil stabilization, the application of this method has been limited to a few countries and companies. In order to utilize of this technology more universally, more studies should be conducted to improve the understanding of the mechanical behavior of
frozen ground. In this study, a program of triaxial compression tests has been designed and carried out to investigate the influence of freezing, temperature reduction and loading rate (strain rate) on the mechanical behavior of frozen soils. These are the most important parameters that affect the ground behavior in underground construction projects involving AGF. For the experiments, the soil samples were taken from the site of the second Line of the Tabriz Subway project. The present study also aims to verify the possibility of using the AGF technique in tunneling and underground construction of the subway station in the above case study.

Materials and Methods

Economic and safe use of AGF in geotechnical engineering and underground construction requires a comprehensive database obtained from accurate laboratory testing. Previous research has shown that unfrozen water can still be found in soil even at temperatures far below the freezing point of pure water (Ziegler et al., 2009). The amount of unfrozen water for various soils at different temperatures is shown in Fig. 2. One of the effective tools for analysis and design of AGF and its application in geotechnical engineering is numerical modeling. Experimental results are required for calibration and validation of numerical models for AGF. In this study, an extensive program of experimental research was designed and conducted to study the mechanical behavior of frozen soils subject to different conditions. The experimental program is described in the following sections.

Testing equipment and instrumentation

The test equipment used in this investigation is a triaxial apparatus for frozen soil, which was designed and manufactured at the University of Tabriz. The designed apparatus was registered as a patent in the Iranian Research Organization for Science and Technology with
ref. No. 9705036 (Fig. 3). This apparatus facilitated the study of constitutive modeling and determination of the stress-strain behavior of frozen ground and simulation of AGF techniques in real projects. All of the tests were conducted in a cold and insulated room in the Advanced Soil Mechanics laboratory of the University of Tabriz where the temperature was constantly monitored.

Test specimens

The required samples for the study were taken from the site of the site of the second line of the Tabriz Subway project (Fig. 4). The specimens tested included a cohesive soil (marl) obtained from L2T5 borehole and a non-cohesive soil obtained from L2T3 borehole (see Fig. 4). The physical properties of the above samples are shown in Tables 1 and 2, respectively. The cohesive and coarse grained soil specimens were classified as CL and SP according to the USCS (ASTM D2487, 2007). The soils gradation curves are shown in Fig. 5. According to Fig. 4, both SP and CL soils are located principally under the water table. Previous researchers have shown that, the length-to-diameter ratio of test specimens has a considerable effect on the stress distribution and mechanical behavior of triaxial test specimens. ASTM D2850 (2007) recommends length-to-diameter ratios between 2 and 2.5 for triaxial testing specimens. In the present study, cylindrical specimens with length-to-diameter ratio of 2 (height = 100 mm and diameter = 50 mm) were used. Since, obtaining undisturbed samples under the groundwater level was not possible, especially for the sandy soil, all of the soil samples were prepared by remolding in accordance with the unit weight, porosity and water content of the in-situ soils.

The sleeve molds of the frozen soils were radially rigid and hence, prevented the radial expansion of the samples. So, freezing induced heaving only occurred in the vertical direction from the top and bottom of the specimens which were then flattened. It is worth
mentioning that heat transfer could occur in the radial direction because of the insulation from the top and bottom. This process was adopted for accurate simulation of the frozen soil conditions around the freeze pipes in the AGF technique. Fig. 6 shows a sleeve curing mold for frozen soil which was used in this research.

Testing program

The mechanical tests were conducted under axisymmetric condition according to the ASTM D4083 (2016). The stress condition of the frozen soil in the triaxial compression apparatus is shown in Fig. 7.

Various factors affect the mechanical behavior of frozen soils. Also, the type of unfrozen soil affects the mechanical behavior of the soil after freezing. One of the main goals of this study is to investigate the influence of freezing and reduction in temperature on the stress-strain behavior of soils. The effects of loading (strain rate) on the frozen and unfrozen specimens are also investigated. After preparation, the specimens were placed in the triaxial chamber and a series of triaxial shear tests were performed.

Results and discussion

The variable parameters were temperature and loading (strain) rate of the soil. The experimental samples including the frozen SP soil, frozen CL soil and ice, before and after the test are shown in Figs. 8 to 10, respectively.

As shown in Figs. 8 and 9, and based on the laboratory observations, all the frozen SP and CL specimens exhibited ductile behavior during shearing. This was not observed in the ice specimens which showed a brittle behavior (Fig. 10). In what follows, the effect of each variable on the behavior of the tested materials is presented and discussed.
Effect of freezing on stress-strain behavior of saturated cohesive soils

To study the effect of freezing on the stress-strain characteristics of the soils, triaxial experiments were carried out on identical samples of SP and CL soils under the same cell pressure and strain rate but at different temperatures. Fig. 11 shows the effect of freezing and reduction in temperature on the saturated CL soil under cell pressure of 200 kPa and loading with displacement rate of 1 mm/min. It is seen that the behavior of the unfrozen CL soil is almost linear elastic up to the yield point after which the soil experiences elastoplastic behavior. The yield stress increases with decreasing the temperature. The general trend of behavior is nearly the same as that of the frozen CL soil in freezing temperatures close to 0°C. Decreasing the freezing temperature to -1°C, -4°C, -7°C and -11°C increases the shear strength of the CL soil by 591%, 1696%, 3027% and 4817%, respectively and the soil behavior gradually changes to strain hardening.

Fig. 12 shows the influence of freezing and decrease in temperature on the unfrozen CL soil, frozen CL soil and pure ice at cell pressure of 200 kPa and loading with displacement rate of 1 mm/min. The results show that, under the same conditions (cell pressure of 200 kPa and displacement rate of 1 mm/min), pure ice exhibits a strain-softening behavior and this softening increases with decrease in temperature. Following the softening after peak state, the pure ice reaches nearly the same residual state in all temperatures. The shear strength of frozen CL soil at temperatures -1°C, -3°C and -5°C is less than that of the pure ice at the same temperatures. However, at lower temperatures (-7°C and lower), the shear strength of the frozen CL soil is larger than the pure ice. The effect of freezing and temperature reduction on elastic modulus of the CL soil is presented in Table 3. The results show that freezing leads to a significant increase in the elastic modulus of the soils; by freezing, elastic modulus of the SP and CL soils shows increase of 1351% and 159%, respectively. This increase due to freezing is much greater for the SP soil. Also, reduction
of temperature from -1°C to -11°C causes to further increase in elastic modulus of 47% and 38% for the frozen SP and CL soils, respectively. This increase is slightly larger for the SP soil.

Effect of freezing on mechanical behavior of saturated granular soil

The influence of freezing and reduction in temperature on the performance of the saturated SP soil under cell pressure of 200 kPa and displacement rate of 1 mm/min is shown in Fig. 13. The results show that the behavior of the unfrozen SP soil is strain-hardening while the frozen SP soil reveals a strain-softening behavior. A peak state is realized in the behavior of the frozen SP soil which occurs at higher strains by decreasing temperature. Decreasing the freezing temperature to -1°C, -4°C, -7°C and -11°C increases the shear strength of the SP soil by 390%, 810%, 1174% and 1472%, respectively.

Fig. 14 shows the influence of freezing and decrease in temperature on the behavior of the unfrozen and frozen SP soil and pure ice at same cell pressure and loading (displacement) rate (200 kPa and 1 mm/min, respectively). The results show that the pure ice and the frozen SP soil exhibit strain-softening behavior. In contrast to the frozen SP soil, decreasing temperature leads to a peak state in the stress-strain behavior of pure ice occurring at lower strains. Under the same conditions (of temperature, cell pressure and loading rate) the shear strength of the frozen SP soil is much greater than that of pure ice. The effect of freezing and temperature reduction on modulus of elasticity of the SP soil is presented in Table 3. It is seen that freezing results in a significant increase in modulus of elasticity for both CL and SP specimens. Also, decrease in temperature leads to a significant increase in the elastic (Young’s) modulus of pure ice.
The results show that the shear strength of the frozen SP soil is significantly greater than that of the frozen CL soil, especially at low temperatures. However, the influence of freezing on the increase in shear strength of the CL soil is much greater than the SP soil.

Effect of strain rate

To examine the effect of loading (strain rate) on the behavior of the frozen ground, a set of triaxial experiments were conducted on the specimens of the unfrozen and frozen CL and SP soils and pure ice at constant cell pressure, temperature and ice saturation (according to the site conditions). Fig. 15 shows the influence of loading rate on the unfrozen and frozen CL soil and pure ice under cell pressure of 200 kPa at -3°C. For the loading, displacement rates of 0.2, 0.5 and 1 mm/min were selected for this study. The results show that the shear strengths of the unfrozen CL soil, frozen CL soil and pure ice increase with increasing the strain rate. The increase in strain rate from 0.2 to 0.5 mm/min and from 0.5 to 1 mm/min leads to 37.1% and 280.3% increase in shear strength of the unfrozen CL, respectively. For the same increases in strain rate, the corresponding values of increase in shear strength are 25.6% and 20% for the frozen CL and 11.5% and 11.4% for the pure ice, respectively. It is noted that the rate of increase in shear strength due to increase in loading (strain) rate, is larger for the unfrozen CL soil than the frozen CL soil and for the frozen CL soil than the pure ice. However, the magnitude of shear strength for pure ice is greater than the frozen CL soil and for the frozen CL soil is greater than the unfrozen CL soil. It is noted that the variation of strain rate has no effect on the type of behavior of the studied materials; so that, the frozen and unfrozen CL soils still show strain-hardening behavior and pure ice exhibits strain-softening behavior. Table 4 presents the effect of strain rate on the elastic modulus of the materials tested under cell pressure 200 kPa at -3°C. It is shown that the modulus of elasticity of these materials generally increases with increasing strain rate.
Fig. 16 illustrates the effect of loading rate on the behavior of the unfrozen and frozen SP soil and the pure ice under cell pressure of 200 kPa at -3°C. The results show that increase in loading (displacement) rate from 0.2 to 0.5 mm/min and from 0.5 to 1 mm/min leads to 27.4% and 15.8% rise in shear strength of the unfrozen SP soil, respectively. These values for the frozen SP soil are 21.7% and 36%, respectively. The increase in shear strength due to the increase in the strain rate is greater for the frozen SP soil at lower strain rates and for the unfrozen SP soil at higher strain rates. This increase in strength for pure ice is less than both the frozen and unfrozen SP soils. However, the shear strength of the frozen SP soil is greater than the pure ice and that of pure ice is greater than the unfrozen SP soil. The variation of strain rate has no effect on the type of behavior (strain-hardening or strain-softening) of the unfrozen and frozen SP soil. The observed influence of strain rate on shear strength of the unfrozen SP and CL soils shows a good agreement with the results reported by Svoboda (2013).

The results show that, overall, the AGF technique can be recommended for the CL and SP soils in Line 2 of Tabriz Subway, as freezing greatly improves the shear strength of both soils.

Conclusion

This paper presented the results from a comprehensive program of experimental investigation to study the effect of freezing on the stress-strain behavior of the ground in Line 2 of the Tabriz Subway. This was done for assessing the potential of using the AGF technique for excavation and tunneling projects in Tabriz Subway. Strain-controlled triaxial compression tests were carried out on unfrozen and frozen specimens of CL and SP soils, and pure ice. The influence of freezing, temperature reduction and strain rate on the mechanical behavior of these materials was investigated. All the soils exhibited ductile
behavior but the pure ice showed brittle failure. The unfrozen CL and SP soils and the frozen
CL soil showed strain-hardening behavior while the frozen SP soil and pure ice exhibited
strain-softening behavior. Under the same test conditions, the shear strength of the frozen
SP soil is greater than the frozen CL soil. However, the rate of increase in shear strength
due to freezing and reduction in temperature is much greater for the frozen CL soil. In all
cases, the shear strength of the frozen SP soil is greater than pure ice. At temperatures
between -1°C to -5°C, the shear strength of pure ice is greater than the frozen CL soil; but,
at lower temperatures, the strength of the frozen CL soil is greater. The modulus of elasticity
of the materials tested increase due to freezing and temperature reduction. Generally, the
Young’s modulus and strength of the frozen SP and CL soils increase with increasing the
strain rate. The occurrence of such a significant increase is likely to be due to reinforcing of
the soil with the ice matrix in frozen soil system. Finally, based on the obtained results, the
utilization of the AGF technique is endorsed for the CL and SP soils in Line 2 of Tabriz
Subway, as freezing greatly improves the shear strength and shear behavior of both soils.

Acknowledgment

The authors gratefully acknowledge the financial support from the Ministry of Science of
Iran.

References

Andersen, G. R. (1991). Physical mechanisms controlling the strength and deformation behavior of
frozen sand (Doctoral dissertation, Massachusetts Institute of Technology).
(uniﬁed soil classiﬁcation system). West Conshohocken (PA): ASTM International.
ASTM Standard, D4083-89 (2016) Standard Practice for Description of Frozen Soils (Visual-

Figures

![Illustration of a double sleeve freezing pipe (Zhou, 2013)](image_url)
Fig. 2 Influence of temperature on the unfrozen water of various frozen soils (Ziegler et al., 2009)
Fig. 3 Schematic layout of triaxial test apparatus for frozen soils: (1) confining pressure valve, (2) pedestal, (3) thermal isolators, (4) triaxial chamber, (5) rigid chassis, (6) drainage valve, (7) circulating brine, (8) ethanol, (9) heat transducer, (10) pump, (11) thermostat-thermometer, (12) refrigeration plant, (13) reverse fan, (14) cooling pump, (15) condenser, (16) compressor, (17) evaporator, (18) deviatoric stress, (19) frozen soil specimen, (20) LVDT, (21) Load cell.
Fig. 4 Underground stratification in the sampling borholes area
Fig. 5 Grain size distribution of the soils
Fig. 6 Aluminum sleeve mold for frozen soil
Fig. 7 Stress condition of frozen soil specimen; "A" is confining pressure (σ_c); "B" is deviatoric stress (σ_d); "C" is major principle stress (σ_a)
Fig. 8 Effect of freezing and temperature reduction on the CL specimens
Fig. 9 Effect of freezing and temperature reduction on the behavior of the unfrozen and frozen CL soil and pure ice
Fig. 10 Effect of freezing and temperature reduction on the behavior of the SP soil
Fig. 11 Effect of freezing and temperature reduction on the behavior of the unfrozen and frozen SP soil and pure ice
Fig. 12 Effect of strain rate on the shear behavior of the CL soil (UCL: unfrozen CL, I: pure ice and FCL: frozen CL)
Fig. 13 Effect of strain rate on the shear behavior of the SP soil (USP: unfrozen SP, I: pure ice and FSP: frozen SP)
Table 1 Physical properties of the SP soil

<table>
<thead>
<tr>
<th>Soil classification</th>
<th>(\gamma_{sat}) (KN/m(^3))</th>
<th>(\Phi) (°)</th>
<th>(G_s) (%)</th>
<th>(G_c) (%)</th>
<th>(S & M) (%)</th>
<th>(C_u)</th>
<th>(C_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>19.1</td>
<td>33</td>
<td>2.635</td>
<td>0</td>
<td>98.8</td>
<td>1.2</td>
<td>2.17</td>
</tr>
</tbody>
</table>
Table 2 Physical properties of the CL soil

<table>
<thead>
<tr>
<th>Soil classification</th>
<th>γ_{sat} (KN/m3)</th>
<th>G_s</th>
<th>G (%)</th>
<th>S (%)</th>
<th>S & M (%)</th>
<th>LL (%)</th>
<th>PL (%)</th>
<th>PI (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL</td>
<td>21.1</td>
<td>2.7</td>
<td>2</td>
<td>14</td>
<td>84</td>
<td>49</td>
<td>24</td>
<td>25</td>
</tr>
</tbody>
</table>
Table 3 Effect of freezing and temperature reduction on modulus of elasticity (kPa) of the SP and CL and pure ice at cell pressure 200 kPa and loading (displacement) rate 1 mm/min.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>CL (kPa)</th>
<th>SP (kPa)</th>
<th>Ice (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfrozen</td>
<td>7342</td>
<td>8882</td>
<td>-</td>
</tr>
<tr>
<td>-1</td>
<td>19033</td>
<td>128831</td>
<td>55483</td>
</tr>
<tr>
<td>-2</td>
<td>27686</td>
<td>135828</td>
<td>-</td>
</tr>
<tr>
<td>-3</td>
<td>33855</td>
<td>144230</td>
<td>69441</td>
</tr>
<tr>
<td>-4</td>
<td>41041</td>
<td>149834</td>
<td>-</td>
</tr>
<tr>
<td>-5</td>
<td>52129</td>
<td>154122</td>
<td>1044565</td>
</tr>
<tr>
<td>-6</td>
<td>67677</td>
<td>160191</td>
<td>-</td>
</tr>
<tr>
<td>-7</td>
<td>77233</td>
<td>171457</td>
<td>153113</td>
</tr>
<tr>
<td>-8</td>
<td>83165</td>
<td>180916</td>
<td>-</td>
</tr>
<tr>
<td>-9</td>
<td>92064</td>
<td>189994</td>
<td>-</td>
</tr>
<tr>
<td>-10</td>
<td>97352</td>
<td>194446</td>
<td>-</td>
</tr>
<tr>
<td>-11</td>
<td>102928</td>
<td>201442</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 4 Effect of freezing and temperature reduction on modulus of elasticity (kPa) of all specimens under cell pressure 200 kPa at -3°C.

<table>
<thead>
<tr>
<th>Strain rate</th>
<th>0.2mm/min</th>
<th>0.5mm/min</th>
<th>1mm/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfrozen CL</td>
<td>346</td>
<td>1297</td>
<td>7342</td>
</tr>
<tr>
<td>Frozen CL</td>
<td>31084</td>
<td>32814</td>
<td>33855</td>
</tr>
<tr>
<td>Unfrozen SP</td>
<td>5877</td>
<td>7196</td>
<td>8882</td>
</tr>
<tr>
<td>Frozen SP</td>
<td>122759</td>
<td>135960</td>
<td>144230</td>
</tr>
<tr>
<td>Pure ice</td>
<td>64706</td>
<td>72172</td>
<td>69440</td>
</tr>
</tbody>
</table>