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An important result in classical stochastic thermodynamics is the work fluctuation-dissipation relation
(FDR), which states that the dissipated work done along a slow process is proportional to the resulting work
fluctuations. We show that slowly driven quantum systems violate this FDR whenever quantum coherence
is generated along the protocol, and we derive a quantum generalization of the work FDR. The additional
quantum terms in the FDR are found to lead to a non-Gaussian work distribution. Fundamentally, our result
shows that quantum fluctuations prohibit finding slow protocols that minimize both dissipation and
fluctuations simultaneously, in contrast to classical slow processes. Instead, we develop a quantum
geometric framework to find processes with an optimal trade-off between the two quantities.
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Thermodynamics traditionally deals with macroscopic
systems at thermal equilibrium, and its laws relate averages
of quantities such as work and heat. When bringing the
theory to the microscale, fluctuations become significant
and can no longer be neglected with respect to average
quantities. As a consequence, a stochastic description of
thermodynamic processes is needed, which has triggered
enormous attention to the understanding of work (and heat)
fluctuations [1–4]. In the regime of slow but finite-time
classical processes, work fluctuations are governed by a
single relation, known as the work fluctuation-dissipation
relation (FDR) [5–8]:

Wdiss ¼
1

2
βσ2w: ð1Þ

Here, σ2w ≡ hw2i − hwi2 is the variance of the work dis-
tribution PðwÞ and Wdiss ≡ hwi − ΔF ≥ 0 the average
dissipated work along the protocol, i.e., the difference
between average work done and the change of equilibrium
free energy ΔF, which is always non-negative due to the
second law, and β ¼ 1=kBT, with T being the inverse
temperature of the environment. The work FDR (1) is one
of the pillars of classical stochastic thermodynamics; it
shows that near equilibrium work fluctuations are respon-
sible for dissipation, and conversely that any optimal
slow process that minimizes dissipation will subsequently
minimize the fluctuations [9,10]. For many slow
classical processes the work distribution PðwÞ is Gaussian
[11–15], and if the process also fulfills Jarzynski’s equality,
then this immediately implies Eq. (1) [8].
For quantum systems, developing a definition of

work and understanding how quantum effects influence
its statistics has raised much attention recently [16–26].

Previous studies on the nonclassicality of work distribu-
tions have considered the emergence of quasiprobabilities
due to weak measurement [27–29], contextuality [30], and
violations of macrorealism [31,32]. Despite the wealth of
research on this topic, a quantum generalization of Eq. (1)
has not been addressed.
Based initially on the two-projective-measurement

(TPM) distribution PðwÞ [1,16,17], in this Letter we derive
a quantum work FDR and find that it differs from Eq. (1)
through an additional contribution arising due to quantum
fluctuations generated along the protocol. This extra term is
positive definite, implying that slow quantum processes are
governed by the inequality Wdiss ≤ βσ2w=2, with equality
obtained when no coherences in energy are created during
the dynamics. We further demonstrate that the extra
quantum term in the FDR leads to a non-Gaussian
PðwÞ, and we show that the same quantum FDR is also
valid for work distributions accessed from weak measure-
ments of the system.
While quantum work fluctuations are of fundamental

interest, understanding their behavior also provides a
method for minimizing them in practical implementations.
Indeed, the design of reliable and minimally dissipative
thermodynamic engines is of utmost importance in quan-
tum thermodynamics. In the regime of slow processes, the
minimization of dissipation can be obtained using tech-
niques from a differential geometry: one can equip the
thermodynamic state space with a Riemannian metric
[33,34], and optimal protocols can be found by calculating
the associated geodesics [9,10,35–40]. Here, we show
that the quantum work fluctuations can also be related
to a Riemannian metric. However, owing to quantum
modifications, this new metric coincides with the metric
responsible for minimizing dissipation in the classical
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commutative regime only. While this result rules out
protocols that simultaneously minimize both Wdiss and
σw for quantum coherent processes, our framework can be
used to find optimal trade-offs between dissipation and
fluctuations.
These results are derived under three main assumptions:

(i) the coupling between system and bath is weak, (ii) the
system reaches thermal equilibrium when interacting with
the bath, and (iii) the driving is slow so that we can expand
the magnitudes of interest in the driving velocity and keep
only the leading terms. Under these assumptions, we now
derive a quantum version of the FDR in Eq. (1).
The quantum work FDR.—We study the thermodynam-

ics of an open quantum system S coupled to a thermal bath
B with total Hamiltonian HSBðtÞ ¼ HSðtÞ þHB þ VSB,
where HSðtÞ ¼ HSðtÞ ⊗ IB is the driven system
Hamiltonian and VSB a small but finite coupling
Hamiltonian. We take a finite-time interval t ∈ ½0; τ� and
consider processes where the two system Hamiltonian end
points are fixed, HSð0Þ ¼ H0 and HSðτÞ ¼ Hτ. We assume
that the initial density matrix of S and B is a product
ϱSBð0Þ ¼ πSð0Þ ⊗ πBð0Þ, where πSð0Þ ¼ e−βHSð0Þ=ZSð0Þ
and πB ¼ e−βHB=ZB are the respective Gibbs states for
the bare system and bath. The compound system evolves as
ϱSBðtÞ ¼ UðtÞϱSBð0ÞU†ðtÞ with the time-ordered exponen-

tial UðtÞ ¼ T⃖ exp½−ði=ℏÞ R t
0 dt

0HSBðt0Þ�. Work is required
to perform UðtÞ, and because only the system Hamiltonian
changes in time while coupling is weak, this work can be
associated with work on the system alone [17]. The work
statistics can be defined via the TPM scheme, where a
projective energy measurement of the total Hamiltonian is
performed at the beginning, HSBð0Þ, and the end, HSBðτÞ,
of the process, with the energy differences measured
identified as the work values w. From the statistics, the
work distribution can then be constructed and becomes
PðwÞ ¼ ð1=2πÞ R dλe−iλwGðλÞ with a moment generating
function GðλÞ ¼ TrSB½U†ðτÞeiλHSBðτÞUðτÞe−iλHSBð0ÞϱSBð0Þ�
[1,16,17], which directly gives the work moments via
hwki ¼ ð−iÞkðdk=dλkÞGðλÞjλ¼0. While in the following
we will use the TPM work distribution to establish the
quantum FDR, we show in Sec. C of the Supplemental
Material [41] that our results are also valid for alternative
work distributions based on weak measurements [27–29].
From now on we shall use the more compact notation

Xt ≡ XSðtÞ, with X ¼ ϱ, H, π, and denote Trð·Þ as the
trace over the system degrees of freedom. In general,
the reduced dynamics of the system can be written as
_ϱt ¼ −ði=ℏÞTrBf½HSBðtÞ; ρSBðtÞ�g ¼ Lt½ϱt�. Here, we will
assume that the system follows an adiabatic Markovian
master equation with a unique instantaneous steady state
given by the thermal state at each t ∈ ½0; τ�: Lt½πt� ¼ 0,
with πt ¼ e−βHt=Zt (a precise form of Lt½ϱt� is presented in
Sec. D of the Supplemental Material [41]). This is well
justified whenever the bath dynamics are fast compared to

the driving rate of the system Hamiltonian [42,43], and
the coupling between S and B is weak enough to satisfy
the Born-Markov approximation and the rotating wave
approximation [44]. Importantly, under these assumptions
the TPM statistics can be determined by unravelling
the master equation in terms of quantum jump trajectories
[45–47]. These trajectories can then be accessed via local
measurements of a quantum detector [48], circumventing
the need to perform global energy measurements. Under
these assumptions, we show in Sec. A of the Supplemental
Material [41] that the work fluctuations σ2w ≡ hw2i − hwi2
are given by

σ2w ¼ 2

Z
τ

0

dt1

Z
t1

0

dt2Trf _Ht1P⃖ðt1; t2Þ½Sϱt2
ð _Ht2Þ�g; ð2Þ

where P⃖ðt1; t2Þ ¼ T⃖ exp ðR t1
t2 dνLνÞ is the propagator

for the Lindbladian, and we have introduced the linear
mapping

SϱðAÞ ≔
1

2
fϱ;ΔϱAgþ; ð3Þ

with ΔϱA ¼ A − TrðAϱÞ and f·; ·gþ denoting the anticom-
mutator. We now assume that the total time τ of the process
is large with respect to the timescale(s) of thermalization,
which are encoded in Lt. Since the two end points of the
trajectory are fixed at H0 and Hτ, one has _Ht ∝ τ−1. In this
case, we can expand the relevant expressions in terms of
τ−1 and keep the leading orders, which we refer to as the
slow driving regime. This assumption allows us to further
simplify Eq. (2) in Sec. B of the Supplemental Material
[41], using techniques similar to the ones developed in
Ref. [49] for classical systems. To first order in τ−1 the work
fluctuations are

σ2w ≃ −2
Z

τ

0

dtTrf _HtL
þ
t ½Sπtð _HtÞ�g: ð4Þ

Note that the integrand is proportional to τ−2, so for the
whole integral σ2w ∝ τ−1, as desired. In Eq. (4), we have
introduced the so-called Drazin inverse Lþ

t of the Lindblad
operator Lt [40,50]. This inverse is defined as

Lþ
t ½A� ≔

Z
∞

0

dνeνLt ½πtTrðAÞ − A� ð5Þ

and satisfies three conditions [40]: (i) commutation with
the Lindbladian, i.e., LtL

þ
t ½A� ¼ Lþ

t Lt½A� ¼ A − πtTrðAÞ,
(ii) invariance of the thermal state, i.e., Lþ

t ½πt� ¼ 0, and
(iii) tracelessness, i.e., TrðLþ

t ½A�Þ ¼ 0.
An expression similar to Eq. (4) describes the dissipated

work, Wdiss, in slow quantum processes [40,51]
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Wdiss ¼ −β
Z

τ

0

dtTrf _HtL
þ
t ½Jπtð _HtÞ�g: ð6Þ

Note that, in place of Sπt in Eq. (4), the map Jπt appears,
with

JϱðAÞ ≔
Z

1

0

daϱaΔϱAϱ1−a: ð7Þ

In the special case in which A commutes with ϱ, the maps
SϱðAÞ and JϱðAÞ both reduce to SϱðAÞ ¼ ϱΔϱA ¼ JϱðAÞ.
Taking the expressions for work fluctuations σ2w and the

dissipated work Wdiss together, we obtain the quantum
work FDR:

1

2
βσ2w ¼ Wdiss þQw; ð8Þ

where Qw ¼ β
R
τ
0 dtTrf _HtL

þ
t ½ðJπt − SπtÞð _HtÞ�g is a quan-

tum correction coming from the difference between the
maps SϱðAÞ and JϱðAÞ.
In Sec. D of the Supplemental Material [41], we show

that Qw ≥ 0, with equality if and only if ½ _Ht;Ht� ¼ 0 for
β > 0 and ∀ t ∈ ½0; τ�. This implies that, for slow quantum
processes with ½Ht; _Ht� ≠ 0, the classical FDR in Eq. (1)
breaks down, and the work fluctuations are in fact greater
than dissipation. In general, one has an inequality:

Wdiss ≤
1

2
βσ2w: ð9Þ

We can then interpret the quantum work FDR (8) as
follows. During a slow process where the state remains
close to a thermal state πt, the work fluctuations βσ2w=2 can
be divided into two positive contributions: a thermal
contribution Wdiss, which arises from the thermal fluctua-
tions in πt, and a purely quantum contribution Qw, which
appears whenever quantum fluctuations are created in the
dynamics as ½πt; _Ht� ≠ 0.
Let us rewrite Qw ¼ β

R
τ
0 dtI tðπt; _HtÞ, where we have

introduced the dynamical skew information I tðπt; AÞ ≔
TrfALþ

t ½ðJπt − SπtÞðAÞ�g for an arbitrary observable A. To
further elaborate on the idea that Qw measures the quantum
work fluctuations, now suppose that S evolves under a
perfectly thermalizing map with a single timescale 1=Γ;
i.e., the Lindbladian satisfies

Lt½ϱt� ¼ ðπt − ϱtÞΓ; ð10Þ

which has the Drazin inverse Lþ
t ð·Þ ¼ ½Trð·Þπt − Ið·Þ�=Γ.

In this case, I tðπt; AÞ becomes proportional to the ave-
rage Wigner-Yanase-Dyson skew information [52–54],
I tðπt; AÞ ¼ − 1

2Γ

R
1
0 daTrð½A; πa�½A; π1−a�Þ, which can be

understood as a measure of quantum uncertainty in the
observable A [55]. It is positive and vanishes if and only if

½A; πt� ¼ 0, reduces to the usual variance for pure
πt ¼ jψihψ j, and decreases under classical mixing. For
more general Lindbladians, I tðπt; AÞ also takes into
account the presence of different timescales of therma-
lization through the additional dependence on Lþ

t .
Summarizing, in Eq. (8) we can interpret Qw as a measure
of the time-integrated quantum fluctuations in the
power _Ht.
Non-Gaussianity of the work distribution.—Here, we

show that these quantum coherences necessarily lead to a
non-Gaussian shape of the TPM work distribution PðwÞ.
For this PðwÞ the Jarzynski equality holds [17], which
relates the change in equilibrium free energy to the
cumulants of work done on the system that are computed
from PðwÞ:

ΔF ¼ −β−1 lnhe−βwi ¼
X∞

k¼1

ð−βÞk−1
k!

κðkÞw : ð11Þ

Here, κðkÞw are the cumulants of work, with κð1Þw ¼ hwi and
κð2Þw ¼ σ2w. After rearranging the terms in Eq. (11) and
combining this with the quantum FDR (8), we find that

X∞

k¼3

ð−βÞk−1
k!

κðkÞw ¼ Qw ≥ 0: ð12Þ

In fact, as we have seen, Qw vanishes if and only if
½ _Ht;Ht� ¼ 0 ∀ t ∈ ½0; τ�. Since a Gaussian work distribu-
tion has zero cumulants for k ≥ 3, we conclude that PðwÞ
necessarily becomes non-Gaussian whenever the process
generates coherences of the power operator with respect to
the instantaneous Hamiltonian. This contrasts with the
classical expectation that slow processes lead to
Gaussian work distributions [7,11]. Equality (12) further
demonstrates that measuring the work cumulants can
provide a direct witness of quantum fluctuations in power.
Thermodynamic geometry and optimal paths.—Now

that we have established a relationship between work
dissipation and fluctuations, we are in a position to
determine optimal protocols. In order to find protocols
with minimal fluctuations, one can take a geometric
approach similar to Refs. [9,10,40].
We consider a decomposition of the system Hamiltonian

of the form Ht ¼ X0 þ λ⃗t · X⃗, where λ⃗t ¼ (λ1ðtÞ; λ2ðtÞ;…)

is the vector of scalar controllable parameters and X⃗ ¼
∂Ht=∂λ⃗t ¼ ðX1; X2;…Þ are the corresponding generalized
conjugate forces. Then, Eq. (4) can be recast in the form
σ2w ¼ ð2=βÞ R τ

0 dt½dλ⃗t=dt�TΛðλ⃗tÞ½dλ⃗t=dt�, where Λðλ⃗tÞ has
the elements

Λijðλ⃗tÞ ≔ −
β

2
TrfXiL

þ
t ½SπtðXjÞ� þ XjL

þ
t ½SπtðXiÞ�g: ð13Þ
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It follows that since the rate of dissipated work and the
dynamical skew information are both positive, Λðλ⃗tÞ is a
positive-definite matrix. Since Λðλ⃗tÞ is also symmetric and
depends smoothly on πt, it induces a Riemannian metric on
the space of quantum thermal states [56]. Differential
geometry then provides an efficient and systematic
approach to find optimal protocols by solving Euler-
Lagrange equations for the functional σ2w of the curve λ⃗t.
Curves of minimal fluctuations are identified as geodesics
of constant velocity.
The work-fluctuation metric Λðλ⃗tÞ given in Eq. (13)

should be compared to the work-dissipation metric ξðλ⃗tÞ,
for which Wdiss ¼

R
τ
0 dt½dλ⃗t=dt�Tξðλ⃗tÞ½dλ⃗t=dt�, with ele-

ments [40]

ξijðλ⃗tÞ ≔ −
β

2
TrfXiL

þ
t ½JπtðXjÞ� þ XjL

þ
t ½JπtðXiÞ�g: ð14Þ

The two metrics Λðλ⃗tÞ and ξðλ⃗tÞ coincide whenever the
conjugate forces commute, i.e., ½Xi; X0� ¼ ½Xi; Xj� ¼
0 ∀ i; j. In this special case both metrics reduce to the
classical Fisher-Rao metric over the space of thermal states,
multiplied by kBT and an integral relaxation time related to
the open system dynamics [10].
In general, the fluctuation and dissipation metrics differ,

and hence their corresponding geodesics will no longer
coincide, in contrast to slow processes in classical thermo-
dynamics. In other words, for quantum processes, any slow
protocol λ⃗optt that minimizes dissipation will have non-
minimal fluctuations, and vice versa. To interpolate
between these two extremes, one can resort to minimizing
the objective function

Cα ≔ ασ̃2w þ ð1 − αÞWdiss for α ∈ ½0; 1�; ð15Þ

where α weights the relative importance of the fluctua-
tions versus dissipation and σ̃2w ¼ 1

2
βσ2w. The family of

metrics minimizing Cα for weights α is just the convex
sum gαðλ⃗tÞ ¼ αΛðλ⃗tÞ þ ð1 − αÞξðλ⃗tÞ. In Sec. E of the
Supplemental Material [41], we use Euler-Lagrange
methods to find the optimal protocol λoptt ðαÞ that minimizes
Cα when λt is a one-dimensional control parameter with
Ht ¼ X0 þ λtX. The optimal velocity takes the form
_λoptt ðαÞ ∝ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξðλtÞ þ αβI tðπt; XÞ
p

, which clearly depends
on α due to the presence of quantum coherence. This
contrasts with the classical case ½X0; X� ¼ 0, where the
optimal protocol can be obtained for any α by driving the
system at a constant dissipation rate [10].
Example.—Let us illustrate our results with a slowly

driven harmonic oscillator, Ht ¼ ℏωtða†ωtaωt
þ 1=2Þ, con-

nected to a perfectly thermalizing bath described by the
master equation (10). Here, ωt is the time-dependent
frequency of the oscillator, and aωt

and a†ωt are the

frequency-dependent creation and annihilation operators.
Taking the time derivative yields the power operator
_Ht ¼ ℏ _ωtfHt=ℏωt þ ½ða†ωtÞ2 þ a2ωt

�=2g, which does not
commute with the instantaneous Hamiltonian Ht, i.e.,
½Ht; _Ht� ≠ 0. In Fig. 1(a), we compare the expressions
forWdiss and βσ2w=2 for a slow linear ramp of ωt, and it can
be seen that the curves differ substantially at low temper-
atures (i.e., high β), where quantum fluctuations become
dominant, and become closer for higher temperatures,
where thermal fluctuations dominate and classical behavior
is recovered. The corresponding metrics ΛðωtÞ and ξðωtÞ
along with their difference, ΛðωtÞ − ξðωtÞ ¼ βI tðπt; XÞ,
are shown in Fig. 1(b) as a function of inverse temperature.
As expected, this difference vanishes in the high temper-
ature limit (β → 0). In the low temperature regime, thermal
fluctuations given by the dissipation metric ξðωtÞ decay,
while quantum coherences contribute more significantly to
the total fluctuations in power that are given by ΛðωtÞ. The
details of all of these calculations are provided in Sec. F of
the Supplemental Material [41].
Turning to optimization, we now use the metric gαðωtÞ ¼

αΛðωtÞ þ ð1 − αÞξðωtÞ associated with Eq. (15) to con-
struct geodesics that interpolate between minimally dis-
sipating and minimally fluctuating protocols (see Sec. F of
the Supplemental Material [41]). So-called Pareto fronts
can be used to bound the region of allowed protocols [57].
This is illustrated in Fig. 2, where Pareto front curves
indicate the trade-off between minimal fluctuation ðβσ2w=2Þ
and minimal dissipation (Wdiss) for various values of β.
Each curve is obtained by evaluating βσ2w=2 and Wdiss for
the geodesics minimizing Cα for all values α ∈ ½0; 1�. If the
classical FDR would hold, each curve would collapse into a
single point along the diagonal line βσ2w=2 ¼ Wdiss. The
quantum correction moves each Pareto front above this line
and expands it from a single point to a curve, parametrized
by α. As expected, this effect is most significant at low
temperatures where quantum fluctuations dominate.

FIG. 1. (a) Dissipated work Wdiss and work fluctuations 1
2
βσ2w

as a function of initial state inverse temperature β for the
harmonic oscillator example. The plots are for a protocol in
which the oscillator frequency ωt is increased linearly in time
from ω0 ¼ 0.1ω̃ to ω1 ¼ 10ω̃ for a fixed reference frequency ω̃.
(b) Plot of the metric tensors of fluctuations (Λ) and dissipation
(ξ), and of their difference (Λ − ξ), for the harmonic oscillator
example as a function of inverse temperature β at a given energy
gap ℏω (see Sec. F of the Supplemental Material [41]).

PHYSICAL REVIEW LETTERS 123, 230603 (2019)

230603-4



Conclusions.—In this Letter, we have studied the sta-
tistics of work in slowly driven open quantum systems
interacting with a thermal environment. We have derived a
quantum FDR for work as shown in Eq. (8), which
generalizes the well-known classical FDR given by
Eq. (1). This result implies that whenever quantum coher-
ence is generated during the dynamics of a slow protocol,
Wdiss <

1
2
βσ2w, which is a genuinely quantum effect. Let us

briefly comment on the generality of our results. While
Eq. (8) has been derived using the TPM approach with
thermal initial conditions, we prove in Sec. C of the
Supplemental Material [41] that Eq. (8) holds more gen-
erally for arbitrary initial states using alternative definitions
of work based on weak measurements [22,58–63]. This
follows directly because these measurement schemes give
rise to the same work average and variance. The validity of
the quantum FDR for various work definitions highlights
the fact that the quantum effects captured by Qw stem from
the coherent dynamics of the protocol, rather than arising as
the result of a measurement disturbance or a particular
choice of work definition (see the discussion in Sec. C of
the Supplemental Material [41]).
It is also interesting to discuss how breaking any of the

three main assumptions used to derive the quantum FDR—
namely, (i) slow driving, (ii) thermalization, and (iii) weak
coupling—can affect it. Both (i) and (ii) appear to be

crucial: in Sec. H of the Supplemental Material [41], we
compare Wdiss and σ2w for a spin in contact with a bosonic
bath and, while we verify the validity of Eq. (8) for
sufficiently slow driving, we do find violations of the
FDR for faster driving. Regarding assumption (ii), one can
demonstrate that the quantum FDR can break down if the
system is not close to thermal equilibrium even if the
dynamics are slow, as shown in Ref. [64] for closed unitary
evolutions. On the other hand, we believe that the quantum
FDR can remain valid away from the weak coupling regime
[i.e., if (iii) is broken]: a step toward proving this hypothesis
is done in Sec. G of the Supplemental Material [41]. By
using a discrete model of quasi-isothermal processes
[65,66], we derive an analogous quantum FDR for a
system strongly coupled to a thermal bath.
The quantum FDR also implies that it is fundamentally

impossible to simultaneously minimize dissipation and
fluctuations in slow coherent quantum processes. In the
second part of the Letter, we have derived a family of
metrics whose geodesics interpolate between minimally
dissipative and minimally fluctuating thermodynamic pro-
tocols, and our results unveil a new geometric structure
within quantum thermodynamics. A promising platform to
observe these effects experimentally involves quantum dots
[67–69] and superconducting qubits [70,71], where slowly
driven noncommuting protocols appear to be a realistic
possibility [72], and proposals for observing TPM work
statistics using a calorimeter have been made [48]. An
interesting future direction is to extend the FDR to many-
body closed systems [64,73,74], and to investigate how
these genuinely quantum effects can modify the thermo-
dynamic uncertainty relations in nonequilibrium steady
states [75–77] and FDRs in other contexts such as quantum
transport [78].
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