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The late nonlinear phase of the Rayleigh-Taylor instability is characterised by the self-similar expansion of the insta-
bility mixing layer given at late times by & ~ aAgt?. In this paper we present a new model of this mixing layer, based
on a piecewise step function approximation where the main constraint imposed is conservation of mass. This model
is used to predict the structuring of the mean density of the layer and the asymmetry of the layer for a given Atwood
number. By comparing to experimental data and simulation results we confirmed the predictions of the model for the
asymmetry of the o values. Our model leads to a simple correction to the formulation of the expansion of the mixing
layer which is consistent with an o for a given system that is independent of the density difference for both immiscible
fluids and miscible fluids with low mass diffusion. As the model predicts the mean density profile, it can be used to

state the energy released by the instability.

I. INTRODUCTION

The Rayleigh-Taylor instability (RTi)"> occurs when a
heavy fluid is supported above a light fluid against gravity or
a light fluid is accelerated into a heavy fluid. This instability
plays an important role in many systems including Supernova
mixing?, inertial confinement fusion* and solar prominences
plume formation>® making the nonlinear development of the
instability an important topic of research.

As the initial instability develops, nonlinearities form, then
after further development in this nonlinear regime the initial
conditions are forgotten by the system and the width of the
Rayleigh-Taylor mixing layer evolves in a self-similar fash-
ion. The first model of the self-similar evolution, based on
dimensional analysis, of this mixing’ predicts the mixing to
happen such that the height and depth of the mixing layer
evolves as:

h= aAgt?, D

where A = (p2 — p1)/(p2 + p1) is the Atwood number cal-
culated from the lower (subscript 1) and upper (subscript 2)
densities, g is gravitational acceleration and o is the non-
linear growth rate of the layer. Analysis of the Navier-
Stokes equation® shows that the self-similar evolution of the
Rayleigh-Taylor mixing results in the following ODE for the
mixing layer width,

h? = 4agAh. 2)
Equation (2) has the solution
h = aAgr® +2(aAgho)'*t + ho, 3)

where hyg is the height at which the self-similar evolution be-
gins. At late times this just reduces the model that comes
from dimensional analysis’. As the late time limit is hard
to achieve’, calculations of ¢ using this method can depend
heavily on the determination of the virtual origin, i.e. calcula-

tion hy.
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The value of & has been the subject of much study®'3. In
general, the equations presented in the previous paragraph are
used to determine its value, but there are a range of methods
that have been applied in the literature'?. Values of ~ 0.05
found in experiments'>!#, but values of 0.027 are found in
3D numerical simulations®!>1516_ The initial spectrum of the
perturbations can have a huge influence on the value of o ob-
tained, with a difference of a factor of 2 to 3117 as a result
of the initial spectrum. This can potentially explaining the
difference between experiments and simulations.

Dimonte and Schneider '* experimentally investigated the
difference between the measured o values in immiscible flu-
ids for the rising bubbles and falling spikes across a range
of Atwood numbers finding an increase in the o value calcu-
lated for downward falling spikes (o) as the Atwood number
increases. In miscible fluids, various levels of asymmetry be-
tween o and o (or the height Ay, and depth &g of the mixing
layer) have been found in the mixing layer. In some cases'®
the asymmetry was found to be similar to that of the immis-
cible case, but in other investigations'>1%1920 the asymmetry
of miscible fluids at large A was found to much less than that
of immiscible fluids. This difference may be attributed to the
importance of mass diffusion in different cases. For an overall
review, see Zhou et al.®.

The asymmetry in &, and what this implies for the density
distribution of the layer, represents a significant uncertainty
in the determination of the value for o. However, currently
only empirical models based on fits to simulations'® or exper-
imental data'# exist. In this paper we proposes an extension to
the late time model, & = OtAgtz, based on a hierarchy of self-
similar solutions that is applicable to immiscible fluids and
miscible fluids with small mass diffusion.

This model takes into account the asymmetries associated
with large Atwood numbers and can predict the density distri-
bution that result from these asymmetries.

Il. MIXING BY THE RAYLEIGH-TAYLOR INSTABILITY
AS A HIERARCHY OF SELF-SIMILAR SOLUTIONS

The fundamental situation we will study is for when two
layers (of densities p; and p, with the plane of the density
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discontinuity at y = 0) mix by the late-time behaviour of the
nonlinear evolution of the RTi. The model we propose to cap-
ture the mean-field evolution of the mixing layer is based on
two simple premises. Firstly that mass is conserved and sec-
ondly that any mixing layer is placed so that it releases the
most gravitational potential energy. Following these rules, we
create a mixing layer between the two constant density layers
of our initial conditions, where here a mixing layer is mod-
elled by a layer of constant average density (averaged in the
directions perpendicular to the acceleration) of width /.

To determine the layer position which maximises the re-
lease of gravitational potential energy (GPE) in the layer
is a simple exercise of placing the centre of the layer be-
tween y/l = [—1/2,1/2]. The initial GPE, calculated using
Egpe = mgh with m the mass of the layer, g the magnitude
of the constant gravity, and A the height of the centre of mass
from the position of discontinuity, is given by:

1y 2 1y 2 4
<2+l) P2—<2—1) pif- @

In the new layer formed by mixing, the mass is given by

B 1y Ly
mmix—l|:<2_l) P1+(2+l> PZ} @)

and with the centre of mass of the layer at y/! this gives a GPE

of
Egpe-mix = gZZX ! 42 P2+ L. p1 (6)
l 2 1 2 1 ’

We can therefore define the change in GPE (AEgpg) to be
given by

2
gl
EGpe-niT = TN

AEGpg =EGpE-Mix — EGPE—INIT @)

g (1 ¥
=5 <4 - 12> (p1—p2).

This has two important properties: 1) the distribution is sym-
metric around y = 0 and 2) it is negative (there has been energy
released) if pp > p1. As the value of AEgpg must be zero at
y==+1/2, then for p, > p; this gives y = 0 is a minimum and
this position for the layer placement releases the most energy.

Figure 1 shows the energy release normalised so the mini-
mum value is -1 and highlights that the most appropriate posi-
tion of the layer is that it is centred at the position of the orig-
inal discontinuity. Therefore, conservation of mass demands
the constant average density value is given by the arithmetic
mean of the two layers. In the late time RTi mixing, the lower
and upper edges of this layer as determined by the depths and
heights of the spikes and bubbles respectively are given by
hsp = +o,Agt? /2, where A is the Atwood number and o, is a
constant of the mixing. Note that the factor of 1/2 appears in
the equation for A, to signify that a layer centered on the po-
sition of the discontinuity is the placement that releases most
energy.

This average density profile now results in two density
jumps (both half the density difference of the original jump)
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FIG. 1. Calculation of the difference in the GPE between the
new layer created by mixing and the original density discontinuity
(AEgpg) for a mixing layer of width / against the normalised posi-
tion of the centre of the layer (y/I). The energy difference has been
normalised such that the largest difference has a value of —1.

that form between the mixing layer and the low density re-
gion at one end and with the mixing layer and the high den-
sity region at the other, and two local Atwood numbers as-
sociated with these jumps. These two layers mix in the
same self-similar fashion as the first layer over the same time
scale meaning these new mixing layer heights are given by
hsp = +04Al0ca8t? /2, Where Ajoeq is the local Atwood num-
ber for each mixing layer. This creates four density jumps of
one quarter the original density difference all characterised by
four local Atwood numbers. This process continues until the
jumps becomes infinitesimally small, i.e. a continuous density
profile has been achieved.

At each layer, the thickness of that mixed region is deter-
mined by the same self similar model as given by Equation
1. We propose that the values of ¢, (a universal mixing con-
stant), t and g are the same at each layer of the hierarchy which
implies that the only parameter that determines the relative
thickness of a given layer is the local Atwood number. For the
height of the m™ step of the n layer of the hierarchy from its
bottom to its top we have:

2
Hn,m = (XuAn,mgt s )

which will be A, ;m /A1 smaller than the thickness of the first
level of the mixing layer, where A, , is the local Atwood num-
ber associated with the mixing at that point in the hierarchy,
and Ay ; = A. It is worth noting that the maximum value of m
for a given n (and with it the number of layers being mixed at
that level) is given by 2"~

Figure 2 shows the development of the hierarchy of self
similar solutions for two different density jumps (Ap/p; = 16
on the top and Ap/p; = 0.1 on the bottom). This is shown up
to the n = 3 level. The black lines show the density distribu-
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FIG. 2. Up to the n = 3 level of the hierarchy for a difference of Ap/p; = 16 (top) and Ap/p; = 0.1 (bottom). At each level of the hierarchy,
the density jumps from the previous layer are mixed. After constructing the n level there are 2" surfaces to mix at the next level. The grey
lines show the regions of previous layers that have been eroded by the new mixing layer.

tion and the grey lines show the regions of previous levels that
are eroded away by the new level of mixing. It can be eas-
ily seen from the figure that the large density jump results in
a very asymmetric density distribution, but the small density
jump gives a linear profile. In the following subsections we
will describe mathematically why different Atwood numbers
result in different heights, depths and density profiles of the
mixing region.

A. The upper and lower edge of the mixing layer

The position of the upper edge of the mixing layer, the
height often denoted Ay, and the lower edge of the mixing
layer, the depth often denoted A, are given as the sum of the
half widths of the various layers of which they are composed.
For any density jump this is given by:

ho— %augtzzﬁi‘fz‘\m _ _%augtzAzﬁj"Aﬂ 2/)1?5:/21”1
- % o, g1 ATI=Y m ©)

Iy, :%augtzEﬁiTAn,zH = éo‘ug AT, TAT! zmAfgl/_zlnl
= %augtzAZZiTm (10)

1. Small density difference limit

In the limit A < 1 the heights of the left most and right most
n'h level mixed layer are given by:

A
2 2

(1)

H,1. =0,A tz =0y
n,L n,18 2,1,1(1 —A)+A

A
2 2
~ au—zn_lgt .

12)

— 2 —
Ho =Ouns8® = Q!

Therefore the position of the edges of the mixed layer is given
by:

1 _
hg ~ EaugtzAZ”*T

n=

1 1
= o gt? AL =S > = o Agr® (13)

n=oco

Iy ~ %augtzA n=s % = augtzAz;:;‘% = aAgt® (14)
i.e. the sum used to determine the position of the top and bot-
tom has become approximately a geometric series with com-
mon factor 1/2. and initial value ot,Agt”>/2. Note that only
half of the width of each layer is used to determine the dis-
tance of the edge of the mixing region from the midplane. In
this limit, the height and the depth of the mixing has the same
value and we can expect that the density profile will be lin-
early changing between the two density values over a region
of y =+ o, Agt?.
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2. Large density difference limit

In the large density limit, where A ~ 1, there is no longer a
symmetric mixing layer. Figure 2 shows this for the Ap /p; =
16 case (A = 16/18), especially that a long tail forms at the
lower end of the mixing region. This happens because even
though for each new level the difference in density between
p1 and the lower layer is reduced by a factor of two, for ini-
tially large Atwood numbers it takes a number of levels be-
fore the local Atwood number is significantly smaller than the
initial Atwood number. As such, the new layers still add sig-
nificantly to the thickness of the mixing layer. Conversely, for
the layers closest to p, they converge very quickly, resulting
in the asymmetry. Equations 9 and 10 can be used to calculate
the extent of the mixing region.

In the most extreme case, we can have p; = 0. Studying this
limit leads to two important bounds on the lower limit of the
height of the mixing layer and the upper limit of the depth of
the mixing layer. For the lower bound, as p; = 0 the Atwood
number at a given level A, ; will always equal unity. There-
fore, the width of the bottom-most layer added to the mixing
region at the n™ level will equal that of the layer added at
the first level. This results in the depth of the mixing layer
becoming infinite. An inifintely fast expansion is obviously
an unphysical solution, and shows the limits of this model as
A — 1, which could imply that a self-similar solution is never
achieved in this situation. As it is to be expected that A is
limited by freefall?! at s = gr?>/2, care must be taken in ap-
plying this model in situations where the Atwood number is
so large that the predicted #; is larger than this limit. However,
it should be noted that the amount of mass in the model that
has extended beyond this unphysical point is expected to be
very small.

The height of the upper layer is given by the following sum:

1 1.607
~ 7(xugt2. (15)

1 —0o0
hy == 04, gt* X5 T 5

2

In this case the prefactor becomes ~ 1.607/2 instead of 1 for
the small density limit case, highlighting the expected range
in the height of the mixing layer. This does mean that even
when comparing the measured value oy between low and high
density difference experiments or simulations care should be
taken.

3. Atwood number dependence

Now we turn our attention to the predictions of our model
across the spectrum of global Atwood numbers. Figure 3
shows the values of o (solid line) and oy, (dashed line) nor-
malised by ¢, of the mixing layer at different Atwood num-
bers. Our method for calculating o4, and ot is:

1

I
2=l on—1(1—A) + A’
1 1

oY 17
2=l on-T(1 L A)—A a7

Os = 0y (16)
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FIG. 3. Ratio of the value of o4/, and o /a, (bubbles shown in
dashed line and spikes in solid line) against global Atwood number.

The weak dependence of o, /0y on the Atwood number and
the strong dependence of o5/0y on the Atwood number are
clear.

Figure 4 shows the predicted values of ¢ and o, for o, =
0.055 and oy, = 0.065 compared to the experimental results
of o (open circles'* and diamonds'®) and o, (filled circles'*
and crosses'®). By setting a range of o, = 0.055 to 0.065,
chosen because of the clustering around these values at small
Atwood numbers, it was possible to take these values and use
our model to make a prediction of the change in the measured
value of o expected in these experiments. As can be see from
the figure, the similarity between the experimental results and
the model is striking. This is not just for predicting the huge
increase in @ with A, but also the gentle decrease of o that
also appears to exists. Clearly our model represents an impor-
tant improvement in the measurement of ¢ as it captures the
Atwood number related spread and asymmetry. Note that both
immiscible!* and miscible'® experimental results are shown
on this plot. The good correlation in behaviour between the
two sets of results likely implies that mass diffusion was not
important in instability development in the miscible experi-
ments.

B. Structure of the mixing layer

Another important result of the model is that it predicts the
horizontally averaged density distribution ({p(y))) of the mix-
ing layer. Though the distribution is required to be monotonic,
as can be seen in Figure 2, the more layers added into the hi-
erarchy, the greater complexity that can be seen in the pre-
dicted density distribution. In the remainder of this section
we will investigate some qualities of the density distribution
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FIG. 4. Experimental results for o, (filled circles!* and diamonds!8)
and oy (empty circles!* and crosses!®) as a function of global At-
wood number with the theoretical curves for these values using both
a, = 0.055 and o, = 0.065. Diamonds and crosses are taken from
Banerjee, Kraft, and Andrews 18, Journal of Fluid Mechanics, 659,
127-190, reproduced with permission.

our model predicts, and provide a polynomial approximation
of the model.

1. (p) gradient near the edges of mixing layer

To estimate the gradient at either edge of the mixing layer,
we need to see the rate at which the density converges to either
p1 or po with n compared to the rate at which the width of the
mixing layer is increased by the n™ mixing layer. For the
leftmost or rightmost of the nth levels the density is given as:

Ap

_ Ap —p,_ 2P
Pn,L = P1 + ?7 Pn,Rr = P2 on (18)

Assuming this density is characteristic of the centre position
of the layer, the distance between the n™ and the n+ 1™ den-
sity values is:

1., Ap/2r! 1, Ap/2r!
Ahgp = A" '8 Apg=-AT
"R 2p Ap T TR T op T Ap/an
(19)

Taking the density difference between the nM and n + 1" lay-
ers divided by the distance gives:

n+ly _ "
(P1+4p/2") — (p1 +Ap/2") —A<p1+Ap>a (20)
—Ahy L 2
(p2—4p/2""") — (pr—Ap/2") _ ap
Ahn?R =A <P2 - 2n> . (21)

Taking the limit of n — oo, we can calculate the gradient of the
density at the edges of the mixing layer, i.e.:

dip(L d{p(L
(p(L1)) _Ap,. {p(L2)) _Apy. 22)
dy dy
with
hy 1w 1
L= =3 ara 23)
and
=" Ly ! (24)

T2 e (1 A) - A

the nondimensional depth and height of the mixing layer, re-
spectively. We can see that this is the density value multiplied
by the global Atwood number. Repeating this process recur-
sively, we find for the m™ derivative:

d"{p(L1)) d"(p (L))

= Am ,
dym pl dym

= Ampz. (25)

2. Overlapping mixing layers and the existence of a (p)
inflection point

In this model, as each new set of layers are added the lower
levels are eroded. For some of these eroded levels, eventu-
ally the higher levels eroding them overshoot and completely
remove them. It is necessary to define what happens in this
situation.

We propose that once two layers meet, a new mixing layer
is formed between them with its width calculated by the lo-
cal Atwood number and the time remaining (fr) until 7 in the
mixing process. Panel (a) of Figure 5 shows the model den-
sity distribution at the fourth level (with a approximation of
the model from a polynomial distribution - see Section II B 3).
In this case the band at (p) = 9 has been completely overshot
by the layers above and below. Therefore the width of this
layer is determined by the process described in the previous
paragraph.

The existence of these points mean that the gradient of the
average density, when approaching from below, will steepen
as this point is approached. Above this point, the gradient will
reduce. The implication from our model is that we predict the
existence of an inflection point where (p) = p; +Ap /2.

3. Approximate functional form of density distribution

By imposing the appropriate conditions, we investigate if
it is possible to approximate the density distribution predicted
by the model with a polynomial distribution. Here we look to
approximate the density distribution by a k-th order polyno-
mial, i.e.:

(P()) = EoA" = 1Y), (26)

where y = y/I.
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Combining the conditions for the density value and gradient
at the two edges of the mixing layer with the condition that
the mass in the layer after mixing is the same as the mass
before mixing began we can determine the values of the k+ 1
coefficients. Firstly, conservation of mass implies that:

Ly
| fG)dy = Lipy + Lyps. 27
To make sure that the density is continuous, because with-
out this our model implies further mixing will occur until
this condition is satisfied, we know that (p(L;)) = p; and
(p(L2)) = p2. In Section IIB 1 we give the conditions on the
derivative, ie. the m™ derivatives of fatL; and L, are:

S (L) =A"py, f"(L2) =A"py (28)

Note that L; and L, are the normalised (by auAgtz) distances
of the two edges of the mixing region from y' = 0. f(y’) can
be easily determined by putting these conditions into matrix
form and finding the constants.

Figure 5 gives the comparison between the model and the
approximate polynomial (taken using k = 8) for the appropri-
ate model parameters. It is clear that for these two density
differences (16 with four levels in panel (a) and 0.1 with three
levels in panel (b)) that the polynomial is of sufficient order to
describe these distributions. To improve the match for larger
density distributions, as well as using larger k values, it may be
possible to use the inflection point described in Section II B 2.

I1l.  CONFIRMING THE PREDICTED DENSITY
DISTRIBUTION

In this section, we use comparisons to evaluate the accuracy
of the predicted mean density distribution. This is performed
through the comparison with both experimental results and
those from numerical calculations.

A. Comparison with experimental data

An important comparison for the density profile solution is
with various experimental profiles for the mean density. In
this section we will compare the volume fraction of fluid 2,
defined as

{p)—1.
Ap

between our prediction of the density distribution in the mix-
ing layer, and some published experiment results. To scale
the solution and the experimental data so they have the same
x-axis we set that the analytical solution and the experimental
data have the same mixing fraction of 0.2 at the same position
on the x-axis. No other scaling is performed.

Figure 6 shows a comparison between the analytic solution
and the experimental mixing fractions for Atwood numbers
of A=0.2 and A = 0.32!4. The experimental results (shown
in black) and the model (shown in red) match well. For the

VF = , (29)

experiment with A = 0.33, the «, value that is consistent
with the matching of the 0.2 volume fraction is ¢, = 0.055.
However, the comparison with the A = 0.2 experiment yields
o, = 0.037. For the case of A=0.2, if we had used the mix-
ing fraction of 0.1 as a reference, the o, value would have
been 0.047, and if we had used 0.8 it would have been 0.044.
These values are roughly consistent with the experimental val-
ues measured of ~ 0.047 (see Figure 4). Performing the same
analysis for the A = 0.33 case, we find o, = 0.055 for the mix-
ing fraction of 0.1, and 0.042 for the mixing fraction of 0.8.
Clearly the 0.8 result is different, but looking at the plot there
is a clear hump in the data at this mixing fraction (as there is a
clear depression at 0.2 in the A = 0.2 case) which means that it
is a region likely to give an under (over) estimate of o,. Note
that on top of the issues of fluctuations in the mean density
profile, as the method for determining ¢, used here is based
on assuming the virtual origin to be 0, this introduces an error
into this estimate.

Figure 7, shows the volume fraction of fluid 2 distribution
for a set of miscible gas mixing experiments!® (dot-dashed
line) compared with the model (solid red line). Again the y
axis has been rescaled so the experimental data and the model
volume fraction values are the same at the same y for a vol-
ume fraction of 0.2. This comparison has been performed for
A =0.04, and 0.47. Again, even though these experiments
are rather different to those presented in Figure 6, the model
has captured the asymmetrical distribution over the big range
of Atwood numbers. The match between the experiments and
the models was associated with o, = 0.064, and 0.061, re-
spectively. Note again that virtual origin effects (i.e. that they
are not being taken into account in these estimates) are likely
to play a role in the spread of values found here.

B. Comparison with numerical simulations

To further investigate the applicability of the model to pre-
dict the density profile and asymmetry as a result of RTi mix-
ing, we perform 3D hydrodynamic simulations of Rayleigh-
Taylor mixing. The basic equations we solve are:

ap B
S+ V- (pv) =0 (30)
2 (o) +V-(pv +P1) =pg G1)
% +V-[v(e+P)] =pg-v (32)

with g = —0.1, ¥ as the ratio of specific heats and set as 5/3,
ande=P/(y—1)+pv?/2.

These simulations are performed using the (PIP) code®? us-
ing a fourth order central difference method. To allow the
largest possible inertial range of any turbulent behaviour to de-
velop, we do not include explicit viscosity. However, for sta-
bility of the scheme we employ an artificial viscosity/diffusion
of the conserved quantities using a min-mod limiter with the
diffusion parameter 6 set to 1.8 (with 2 as the least diffusive
and 1 as the most)>3, implying that mass, momentum and en-
ergy diffusion are non-zero at the grid scale.
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FIG. 5. Comparison of the model with the polynomial approximation for density differences of 16 (panel (a) four levels) and 0.1 (panel (b)
three levels). In each panel the thick horizontal lines are the model densities and the continuous line is the distribution given by the polynomial.
Note that in panel (a) the bar at (p) =9 is determined by the secondary mixing processes described in Section II B 2.
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FIG. 6. Experimental mixing fractions for A = 0.2 (left panel), and A = 0.32 (right panel) taken from Dimonte and Schneider !4 shown in
black. These are compared with the model prediction for the mixing fraction shown in red.

The initial conditions are:

P2
P {Pl

where p; = 1, Py =2, and p, is 1.1 (Figure 8 (a)) and 17
(Figure 8 (b)). The instability is seeded by a random noise
perturbation in V), of the order of 1 per cent of sound speed.
We use periodic boundary conditions in the side boundaries
and reflective at the top and bottom.

if y>0;

Vi=V,=0, P=FR 33
ify<07 x z , o +pgy, (33)

The resolution of the simulations is 200 x 1000 x 200 tak-
ing the grid size in all directions to be the same. The horizon-
tal domain size is x = z = [—0.1,0.1] and y = [-0.5,0.5] for
the pp = 1.1 case. In the pp = 17 case we reduce the range
of the horizontal and vertical domains by a factor of 100. It is
worthwhile to note that though we have chose our initial con-
ditions to match exactly the initial conditions of the model,
the use of a compressible code means that the uniform den-
sity regions are not neutrally buoyant>* However, as the ver-
tical scale of the simulation compared to the pressure scale
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FIG. 7. Comparison between experimental data (dot-dashed line) taken from Banerjee, Kraft, and Andrews '8, Journal of Fluid Mechanics,
659, 127-190, reproduced with permission, and the model mixing fraction profile (red line) at A = 0.04 (a) and A = 0.47 (b)

height is small (1% or less), the timescale for these dynam-
ics is much longer than the simulation timescale and as such
will not play an important role in determining the mean den-
sity profile. Though these simulations are performed with a
compressible code, the simulations are in a regime where the
compressible effects are small.

Figure 8 shows a snapshot of the simulations during the
later evolution where the nonlinear mixing has developed In
this figure panel (a) is from a simulation with p, = 1.1 and
panel (b) is from a simulation with p, = 17. The asymmetry
that exists in the high density difference simulation compared
to the low density difference simulation is clear when compar-
ing panels (a) and (b).

Figure 9 shows two attempts to measure ¢, from the 3D
simulations. One using a revised version of Equation 1 and
the other using an equation similar to Equation 2. For the
revised version of Equation 1 we have

o) hy O hs
= = = — = — 34
O Ly Agt2L2 Ly Agtle (34)

Equation 2 can be revised to solve for ¢, in the following way

% M e
YLy AghyL, Ly Aghiy’

(35)

In fact this can be revised into a general equation for a given
value of the mean density ({p)) in the layer of

_ h(p))?
4Agh((p))L({p))’

where L({p)) is the non-dimension height of that particular
value of (p) in the mixing layer. The estimates of «, made
using the data in panel (b) of Figure 9 are shown in table I.

o (36)

TABLE I. Measured values of o, for the 3D simulations using the
results from panel b of Figure 9

Ap/p; measurement point o, error
0.1 top 0.028 0.013
bottom 0.025 0.011

whole width 0.026 0.009

16 top 0.033 0.016
bottom 0.021 0.010

whole width 0.023 0.008

These o, values are calculated at the 3% tolerance for the low
density case and the 10% tolerance for the high density con-
trast case.

The results here bare a strong similarity to those of other
studies of the mixing parameter'® where there is often a big
spread in the values obtained and a lot of noise. As such, the
errors presented for each measurement are a large proportion
of the o, value obtained. As such we look at the compari-
son of the simulated mean density profile to that of the model
for greater confirmation that the model is able to explain the
asymmetry of the simulation results.

The two panels Figure 10 show the comparison between
the mean density profile and the theoretically predicted den-
sity profile for 1/21 (panel a) and A = 16/18 (panel b) re-
spectively. To make this plot, the width of the mixing layer in
the mean density is normalised to the width of the predicted
layer. This is done by measuring the width of the simulated
mixing layer by determining the positions of variations from
the background values of 0.01Ap, and normalising the separa-
tion between these two values to the width of the model layer
at the same tolerance. For the high density difference case,
there are some differences between theoretical prediction and
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FIG. 8. 2D slice through 3D Simulations of hydrodynamic RT mix-
ing when the density difference is Ap/p; = 0.1 (a) and Ap/p; = 16
(b).

the simulations, but the general profile agrees well with the
simulation. For the low density difference case the theoret-
ical prediction agrees excellently with the simulated density
profile.

1. Comparison with incompressible RTi simulation
results*>26

We have presented a comparison between a set of simula-
tions and the model. However there are a number of simu-
lations in the published literature, some with very high reso-
lution, meaning there is greater opportunity for comparison.
Here we make a similar comparison between the model and
some simulation data for the mixing fraction as has been ap-
plied earlier in the paper to experimental data from one such
numerical study>2°. The study under comparison®-2¢ is of

9

the incompressible RTi using a grid of 10242 x 4608 and sim-
ulating the dynamics with the CFDNS code, which uses a
mixed spectral- 6 order compact finite differences scheme.
These simulations have both explicit viscosity and Fickian
mass diffusion.

Figure 11 gives the comparison between the model mixing
fraction curve and that found from the simulations using At-
wood numbers of 0.04, 0.5, 0.75 and 0.9. The simulation data
is shown by the solid black line with the model as the solid
red line. As with the previous comparisons with experimental
data, the x-axis of the simulation data has been re-normalised
so that the 0.2 mixing fraction of both the simulations and
the model have the same position. As can be seen from the
figure, over a large range of mixing fractions (~ 0.1 to 0.8)
the model captures the mean density distribution found in the
simulations. The most notable departures between the model
and the simulation data are seen at the mixing fractions close
to unity where the simulation presents more diffuse structures
than those predicted by the model.

It is this upper region where we could expect that the mass
diffusion is most effective, because this is where the second
derivative of the mean density is largest. From the model pre-
sented in the is paper the second derivative of the mean den-
sity would be infinite at the point where the two layers join
and just inside the mixing region where we predict the second
derivative to be

d*(p(L»
<Zy(2 D 2p,. (37)
At earlier times in the self-similar evolution, the increased dif-
fusion in this region is likely to spread out the mixing layer
around this point. However, at much later times, the size of the
diffusive region compared to the mixing region should shrink
(scaling approximately as ~3/2) which can be expected to in-
crease the accuracy of the model at these times. It would be
interesting to perform a set of simulations to confirm this hy-
pothesis.

IV. ENERGY AVAILABLE FOR TURBULENT FLOWS

The development of the nonlinear RTi by its very nature is
releasing gravitational potential energy from the initial density
distribution and using this to drive flows. Due to the generally
chaotic nature of the system, given a large enough Reynolds
number the flows will become turbulent!>. To investigate this
turbulence, high-resolution 3D numerical simulations are gen-
erally necessary. However, the model we propose allows the
determination of the energy extracted from the background
density profile, and with this an upper bound for the turbulent
energy can be determined.

Figure 12 (panel a) shows the energy release for different
A. Naturally the greater energy release occurs for larger A
values. However, when this value is normalised by the energy
release in the first layer of the expansion (panel b) then there
is only a growth of ~ 20 % trend with A. Therefore, larger A
releases more energy, but it is not significantly more efficient
at releasing energy than the smaller A situations.
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FIG. 9. Panel (a) shows the calculated value of o, in the simulations as calculated from hg/ (AgtzL]) for the spikes (dashed lines) and
hy,/(Agr*Ly) for the bubbles (solid lines) for the 3D simulations (A = 16,/18 in blue and A = 1/21 in green) and for reference 2D simulations
of the same horizontal and vertical resolution as their 3D counterparts (A = 16/18 in pink and A = 1/21 in red). The simulations appear to be
converging on a value of o, of o, ~ 0.025. Note that for the large A simulations the bubbles and spikes converge to the o, value at different

rates. Panel (b) uses the hy /(4o.gAhsL1) measure for the spikes and h},z /(4aegAhyL,) for the bubbles to determine o,. Colours and line types
have the same meaning as panel (a). There has been the addition of the dash-dot line which uses the full width of the layer to estimate o,.
Though this plot is quite noisy, the average values found for @, are close to 0.025 (see table I). Here 7 is given by T = /g/(W,A) with W, the
size of the domain in the x direction.
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FIG. 10. Simulations of hydrodynamic RT mixing when the density difference is Ap/p; = 0.1 (a) and Ap/p; = 16 (b). The panels show the
average in the x direction of the density over a wide range of times. The axis has been normalised by the self-similar variable o, Agr® so that
the solutions lie on top of each other. The black line in the each of these figures is the mean profile calculated over the different snapshots
used. The red line shows the model density distribution.

V. SUMMARY Taylor instability in an immiscible fluid or a miscible fluid in
the small mass diffusion limit. The method applied in this pa-
per should be understood as a form of energy minimisation
involving the mean density that allows the energy to be ef-
ficiently released based on local arguments for a monotonic

In this paper we have laid out a method to use a hierarchy
of self-similar solutions to describe the height, depth, and den-
sity distribution of the mixing layer as a result of the Rayleigh-
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FIG. 11. Comparison between simulation data (solid black line) taken from Livescu, Wei, and Petersen >, Journal of Physics: Conference
Series 318, 082007 (2011), reproduced with permission, and the model mixing fraction profile (red line) at A = 0.04 (a), A =0.5 (b), A =0.75

(c)and A =0.9 (d)

density profile.

This model leads to the following predictions:

1. The thickness of the layer has a more complex depen-
dence on the density than just being linearly dependent
on the Atwood number (as given in Equation 1), but
there is the value, o, that can describe the properties of
the mixing layer that is independent of the density ratio.

2. For very small density differences the density profile
becomes approximately linear with a thickness deter-
mined by 20, Agt>.

3. For large density differences the mixing of the lower
layer is more efficient that the upper layer resulting in an
asymmetric profile of the mixing with a large increase

in the measured o and a small decrease in g, as At-
wood number increases.

. A monotonically increasing density distribution in the

mixing layer with the m™ derivative of the distribution
at either edge of A”p; and A" p, which can be approx-
imated by a polynomial. This provides a reasonable
match to the density distributions found in experiments
and numerical simulations.

Beyond understanding the density distribution and energy re-
lease of the instability, one application of this model is clearly
as a benchmarking method for numerical codes.

An important corollary of this model is that it supports the
existence of a mixing parameter, which we call ¢,, that char-
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FIG. 12. Plot of the change in energy given by the nonlinear instability against Atwood number (a) and the change normalised by the energy
change given by the first step of the expansion against Atwood number (b).

acterises the mixing layer asymmetry as just being a function
of the Atwood number. This implies that a suite of related ex-
periments, or numerical simulations, over a large range of At-
wood numbers (for example those shown in Figure 3) where
the different o values exist for both bubbles and spikes and
for different Atwood numbers, a single mixing parameter o,
could be determined. This o, is independent of the initial
Atwood number though not other important aspects that de-
termine the mixing, e.g. initial flow perturbation or mass dif-
fusion are still crucial in determining ¢ and the asymmetry of
the layer®!%13,

As we have previously mentioned, miscible simulations
with sufficiently large mass diffusion!>'%20 show a different
asymmetry of the mixing layer than that found in the model
presented here. Changes in the asymmetry of the mixing layer
were also found to occur as the result of the inclusion of mag-
netic fields?’. One interesting and important development of
the model presented here would be to include these effects
to see if the asymmetry found in those situations can be re-
produced. The comparison with miscible simulations>-2¢ in
Section III B 1 highlight that the model can reproduce the gen-
eral structure of a miscible mixing layer. However, the upper
regions of the mixing layer show a consistent expansion of the
mixing layer in the simulations over the model. Determining
the role of mass diffusion in creating this overshoot could be
an important aspect in understanding the smaller asymmetries
found in miscible simulations.

In the model presented here, Eqns. 9 and 10 determine the
width of the mixing layer of the model. One question is: can
this be used in any way to assess the width of the mixing layer
found in experiments or simulations? The formulation pre-
sented here for determining the width of the mixing layer is
inherently determined by the conditions at the middle of the

layer. The implication being that a width defined as

-1
Whnix = ATp (;dy(<p>)> ; (38)
where the derivative is taken at y = 0, would provide an alter-
native measure of the width. Figure 13 shows the variation of
the non-dimensional width calculated from the model using
this formulation against Atwood number. Though the formu-
lation does not fully remove the Atwood number dependence
in calculating the width, it is reduced to be at the level of a
fluctuation of < 10%. To reduce noise affecting this calcula-
tion from real data, the derivative would have to be calculated
from the derivative of a curve (or straight line) fitted to the
data around y = 0. There are possible connections with this
method of measuring the width of the mixing layer and the
relation found of the mass flux at the centre of the y = 0 posi-
tion of the mixing layer and the growth of the mixing region®.
However, these are beyond the scope of the current work.

An alternative idea is that (assuming the conditions for this
model to be applied are satisfied) the use of Eqn 36 to deter-
mine o could be modified. The 4 and & values for a number
of values of (p) could be determined at a given time, and then
o, could then be calculated from these using

N IT)E
"= 3agh((p))L((p))

where L({p)) the normalisation factor for a given (p) calcu-
lated from the model, and the overline is used here to denote
averaging across different (p) values. As such the o, value
that is determined by / and / across a wide range of (p) could
then be averaged together, improving the statistics (and hope-
fully the accuracy) of this determination of c.

The ability to determine the mixed density profile of a the
layer allows the energy released by the instability to be cal-
culated. This in turn, by the conservation of energy, gives

(39)
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FIG. 13. Measure of the non-dimensional mixing width of the mixing
model as calculated using Equation 38 against Atwood number.

an estimate of the kinetic energy in the mixing layer at any
given time. This can be used as an upper bound on the turbu-
lent kinetic energy of the layer. Calculating this released en-
ergy could be an important addition to 1D models that should
include Rayleigh-Taylor mixing, for example those used to
model Supernovae.
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