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ABSTRACT 

The Amish communities of Ohio (USA) are a distinct group of endogamous, rural-

living Anabaptist Christians. An ancestral bottleneck, caused by migratory events 

in the 17th century and subsequent rapid population expansion, has led to the 

enrichment of a number of inherited conditions within these communities. This 

provides significantly enhanced power to identify genes responsible for rare 

monogenic disorders, as well traits with more complex inheritance patterns. The 

studies detailed in this thesis aims to provide diagnoses to individuals and their 

families for the underlying genetic causes responsible for the difficulties they 

experience and contributes to a long-running, non-profit community clinical-

genetic research programme called the Windows of Hope (WoH). 

 

Forming part of a wider Amish Hearing Loss Program the studies described in 

chapter three document the discovery of the genetic causes of hearing loss for 

eight Amish families. Through a combination of targeted gene sequencing, 

genome-wide SNP mapping and exome sequencing this study identified a variant 

in the Gap junction beta-2 (GJB2) gene, not previously reported in the Amish, as 

the cause of non-syndromic hearing loss in six families. Additionally, one family 

initially thought to be affected by a neurodevelopment disorder which included 

syndromic hearing loss, was found to possess two distinct genetic disorders; a 

16p11.2 microdeletion, responsible for the developmental delay, and a 

homozygous GJB2 variant, responsible for the hearing loss. Finally, this chapter 

proposes two novel hearing loss genes and details the functional work 

undertaken to assess the pathogenicity of one of these genes (SLC15A5). This 

work provided important diagnoses for many families and acquired significant 

information regarding the spectrum and frequency of hearing loss-associated 

gene variants across distinct Amish communities. 

 

Chapter four details work undertaken to define the clinical phenotype and 

molecular basis of a novel complex autosomal recessive neurological disorder. 

Work undertaken by one of our collaborators, Dr Zineb Ammous, was 

instrumental in precisely defining the clinical phenotype of this disorder. A 

combination of genome-wide SNP mapping and exome sequence identified a 

sequence variant in Smad Nuclear Interacting Protein 1 (SNIP1), which encodes 
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an evolutionary-conserved transcriptional regulator, as the likely underlying 

genetic cause. Due to its role as a transcription regulator whole transcriptome 

sequencing was undertaken to determine the impact of this gene mutation. This 

work provided important information regarding the specific biological role of 

SNIP1 and identified gene expression pathways of direct relevance to the clinical 

phenotype, highlighting therapeutic approaches likely to benefit affected 

individuals. Additionally, this study determined that SNIP1-associated syndrome 

is one of the most common conditions across many Amish communities.  

 

In recent years the WoH Project has accumulated extensive single nucleotide 

polymorphisms (SNP) and exome sequencing datasets from patients and 

individuals from the Amish community. Chapter five outlines a pilot, proof-of-

principle study undertaken to explore this data with the aim characterising the 

architecture of the Amish genome. The interrogation of 26 exomes identified the 

presence of 12 pathogenic variants known to cause autosomal recessive (AR) 

diseases that have not yet been reported in the Amish but are likely to be present. 

Additionally, a PLEXseq sequencing approach was implemented to determine 

the prevalence of 165 pathogenic variants in 171 unaffected Amish individuals. 

The findings indicated diverse carrier frequencies within the different Amish 

communities and contributed to the consolidation of two genes responsible for 

ultra-rare inherited AR diseases (CEP55, MNS1). By developing approaches to 

improve knowledge of the specific causes of inherited diseases in the community, 

this work has laid the foundation for the development of a new genetic-based 

approach to diagnostic testing in the community.   

 

This thesis, and the wider programme of work of Windows of Hope, occupies a 

privileged positioned at the interface between scientific research and clinical care. 

The findings described here have made a significant contribution to our 

understanding of the pathomolecular cause of a number of rare inherited 

disorders by increasing our knowledge of the nature and spectrum of inherited 

disease within the Amish laying the foundations to aid the future discovery of new 

disease genes and improving clinical outcomes by enabling focussed clinical 

diagnostic and management strategies to be implemented. 
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 Introduction 

 

1.1 The Amish  

 

1.1.1 A brief history of the Amish  

The Amish are a distinct group of rural-living Anabaptist Christians whose 

heritage dates back to 16th century Europe. Setting out to revive the Anabaptist 

movement one leader, Jakob Amman, suggested the implementation of stricter 

practices including; more regular communions, forbidding the trimming of beards, 

the wearing of fashionable clothes and advocating the shunning of    

excommunicated members. The practice of shunning or “Meidung” was not 

intended to be a punishment but instead used to show to an individual that they 

needed to repent their sin. Shunning could be demonstrated in a number of ways 

including; avoiding the individual, refusal of goods from offenders or refusing to 

share a meal with them. In 1693 these proposals caused a schism within a group 

of Swiss Anabaptists in Alsace; those members choosing to follow Amman 

became known as the Amish. 

Since the formation of the Anabaptist church, during the Protestant Reformation 

in 16th century Europe, the religious convictions of these individuals has created 

a social and cultural divide. Their rejection of infant baptism and belief in adult 

baptism, was one such division. The name Anabaptist itself means “rebaptisers” 

due to their practice of baptising adults who had previously been baptised as 

infants in a Catholic or Protestant church. The rapid spread of the Anabaptist 

movement and their request for a voluntary church separate from the state 

angered other religious leaders and civil officials. This unfortunately led to the 
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persecution of many Anabaptist followers and culminated in the social, cultural, 

and subsequently genetic, isolation of Anabaptists from the rest of the Europe. 

In 1737, as a consequence of continued persecution, twenty-one Amish families 

migrated to the USA, originally settling in the Mid-west, particularly Pennsylvania, 

Ohio and Indiana. Between 1815 and 1860, there was a second wave of 

immigration resulting in approximately 3000 Amish individuals from Europe 

settling in the US.  

 

1.1.2 Population bottleneck and the founder effect in the Amish 

These migrations created an ancestral bottleneck (Figure 1.1Figure 1.1) which 

further reduced the genetic diversity of the already modest gene pool that has 

established the now large Amish population, estimated to be 308,000.  

 

 

Figure 1.1: Ancestral bottleneck leading to the founder effect. Image hand-drawn.  
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As a result of a limited number of founder individuals the frequency of autosomal 

recessive (AR) alleles, present in these founders, may increase within that 

population meaning any two individuals, selected at random, from the community 

have an increased chance of being a carrier for a particular variant [1].  

As with any community arising in this way, including other genealogically-related 

Anabaptist communities, such as the Mennonites and Hutterites, a number of 

causal genetic variants have become enriched within the population. This has 

unfortunately led to a higher incidence of particular genetic diseases, compared 

to the general population, caused by a phenomena known as the “founder effect”. 

Dwarfism (Ellis–van Creveld syndrome) [2], Angelman syndrome [3] and various 

metabolic disorders, including maple syrup disease [4] and phenylketonuria [5] 

are examples of genetic diseases that have become enriched within the Amish 

population.  

 

Despite no longer being persecuted for their beliefs the Amish are still considered 

to be isolated, both culturally and geographically. The Amish are relatively 

immobile as a result of religious constraints on transportation (Figure 1.2). Very 

few members join their communities and the Amish advocate endogamous 

marriages, the practice of marrying within a specific social group rejecting those 

from others. This has resulted in little gene inflow into the population meaning 

that the current day gene pool is essentially the same as the original founders.  
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Figure 1.2: Amish horse and buggy transportation. Personal photograph provided 
by Professor Andrew Crosby, taken in Ohio, June 2014. 

 

The Amish Population has increased dramatically since the initial migrations; 

expanding by 18% between 2011 and 2016 [6]. It is estimated that the population 

doubles approximately every 18-20 years.  The driving force behind this growth 

can be attributed to the large nuclear families, frequently having more than five 

children, and the high retention rate of around 85% within the Amish faith. As a 

result of this growth the number of settlements (geographical communities) 

continues to increase with 138 new settlements being established from 2009 to 

2018. This included six new settlements in Canada and surprisingly two 

settlements in South America located in Argentina and Bolivia [6]. The 

establishment of new settlements is not solely to accommodate the increasing 

population. New settlements can arise for a variety of reasons including; the 

availability of affordable farmland or non-farm work in specialised occupations, to 

achieve rural isolation that supports the Amish lifestyle in terms of social and 
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physical environments, to move closer to family or similar Amish church groups 

(demes) or to resolve church or leadership conflicts. Conflicts can arise due to 

differing opinions on the practices within a particular group or affiliation (collection 

of church districts that have similar practices). 

As with any religious following there is diversity between the different groups 

within the Amish faith. One of the greatest sources of this variety is the differing 

views regarding the acceptance of technology. It is a common misconception that 

all Amish reject all forms of modern technology. Some affiliations choose to use 

battery powered lights and sewing machines where the more conservative decide 

to use kerosene lanterns and only permit the use of treadle (foot-powered) sewing 

machines. A more accurate description of the use of technology within the Amish 

is that is it used selectively in a manner that preserves their traditional way of life 

and prevents the introduction of foreign values into their communities. For these 

reasons many Amish groups reject technology that enables access to the mass 

media including the use of televisions, radios and the internet. 

There are four groups that carry the Amish name: Beachy Amish, Amish 

Mennonites, New Order Amish and Old Order Amish. Although practices 

between these groups display large amounts variation they can largely be 

separated into two distinct classes. The Beachy and Mennonite Amish own 

automobiles and use public utility electricity whereas the New and Old Order 

Amish use horse-and-buggy transportation and do not use public utility electricity. 

All families included within this study are from New or Older Order Amish 

communities.  
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1.1.3 Amish demes 

One aspect of this study involved undertaking the first large scale investigation of 

carrier frequencies within different Amish demes for the most commonly occurring 

pathogenic variants seen in the Amish. These studies have the potential to 

expedite diagnostic testing for families by helping identify the most likely 

causative genetic variants based on the community in which the affected 

individual belongs. 

Due to the circumstances under which new demes are typically formed 

(discussed above) each deme included in this study occupied a different 

geographical location. We hypothesised the allele frequencies observed in each 

region would reflect the ancestral histories and migration patterns of each deme. 

For this reason, the allele frequency data was grouped depending on the region 

in which an individual originated. This gave rise to four cohorts within our allele 

frequency data; Indiana, Ohio Holmes County, Ohio Geauga County and 

Wisconsin.  
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1.2 Other population isolates 

Population isolates can arise as a result of a founder effect, where a new 

population is established by a (relatively) small number of individuals from a 

larger population, or from the extreme reduction in size of a population resulting 

in a genetic bottleneck [7]. The Amish are not the only founder population that 

display an enrichment of particular diseases. Other founder populations include 

the Finns, the Samoans, the Orkney islanders and the Ashkenazi Jews.  

 

1.2.1 The Finnish population 

The Finnish population has been a target of extensive genetic studies since the 

1950s [8]. In 1973 a “landmark paper” describing 10 'Finnish' disorders was 

published and coined the term 'Finnish Disease Heritage' (FDH) to describe a 

group of rare hereditary diseases that are overrepresented in Finland [8, 9]  

The unique Finnish genetic architecture is explained by repeated population 

bottlenecks that have subsequently given rise to the large current day Finnish 

population of 5.5 million [10] from a small founder population. The initial founder 

effect arose as a result of two waves of colonisation that took place between 

4000-2000BP (years before present) in southern and western Finland. These 

areas remained populated at a low density until internal emigration occurred in 

the 15-16th century when small family groups, from the original colonisations of 

southern Finland, moved into the northern and eastern areas [10, 11]. These 

movements formed sub-isolate populations, isolated through distance, that are 

believed to be behind the presence of more than 35 recessive monogenic 

illnesses including Finnish nephropathy (NPHS1) and cartilage hair hypoplasia 

(RMRP) [9], that are more commonly seen in the Finnish population, particularly 

in eastern Finland [11]. These movements are also assumed to explain the 
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exceptionally low prevalence of other diseases such as cystic fibrosis, with an 

incidence a 10th of that in other parts of Europe, and phenylketonuria, which was 

reported at a carrier frequency of 1:180 [8]. 

Like the Amish, the Finnish population is well suited for gene mapping studies 

due to its reduced diversity and increased homogeneity. However, studies have 

reported substantial differences in genetic composition between different parts of 

Finland [11].   

 

1.2.2 The Samoan population 

It has been suggested that the Samoan populations of the Western Pacific are 

one of the best examples of an isolated population given the archaeological, 

cultural and linguistic evidence supporting the long-distance migration 

undertaken by the ancestors of today’s islanders [12, 13]. Samoan settlement is 

believed to have occurred 5000-4000BP after rapid migration from Southern 

China [12].  After ~1000years (3000BP) island culture was reportedly thriving and 

supporting an estimated population of 100,000 to 300,000 people [12, 14]. After 

European contact in the 1700s Samoa suffered significant population declined, 

attributed to the introduction of disease [12]. By 1900 the population was 

estimated to be as low as 30,000 people. After numerous epidemics throughout 

the 18th century the population recovered to an estimated 69,000 by the 1940s 

[12]. These historical events are likely to have influenced the Samoan genome.  

Over the last 35 years there has been a documented rise in the prevalence of a 

number of non-communicable diseases, including Type 2 diabetes mellitus (TD2) 

and cardiovascular disease (CVD) in addition to high levels of adiposity (obesity) 

[14, 15]. Although obesity is a complex phenotype with genetic and environmental 

factors impacting its presentation the relative isolation, large family sizes and 
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recent exposure to modernization of the Samoan population provide a unique 

opportunity to identify novel genetic contributors to obesity [14, 16].  

In the last decade a number of susceptibility loci for obesity have been identified 

within the Samoan population [14]. More recently one study has identified a 

variant (NM_153607.2:c.1370G>A, p.Arg457Gln) in the CREBRF gene 

associated with an extreme increase in body mass index (BMI), very rare in other 

populations but common in Samoans, that selectively decreases energy use and 

increases fat storage in adipocyte cell studies [16, 17]. Interestingly there is 

evidence that this variant has been positively selected in Samoan genomes, 

supporting the “thrifty” variant hypothesis proposed by James Neel in 1962, 

suggesting that this variant may historically have been an asset to the population 

during historical periods of “feast-or-famine” [18].  

 

1.2.3 Orkney Island population 

Located in an isolated position off the northern coast of Scotland, geographic 

distance has acted as a barrier to migration resulting in minimal movement in to 

and out of the Orkney Islands [19]. This has impacted the genetic structure of the 

population and led to individuals displaying higher levels of genetic similarity than 

would be expected in a non-isolated population [20]. This relatively low genetic 

variability, in addition to the comparatively low environmental variability, means 

this population is well suited to identify risk factors of diseases found within the 

community at a higher than expected prevalence [19].  

Over 30 years ago high rates of multiple sclerosis (MS) were reported in the 

Orkney Islands and northern Scotland. MS, a complex inflammatory autoimmune 

disorder, is the most common disabling neurological disorder in young adults [21] 

with strong evidence suggesting both genetic and environmental risk factors 
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effect disease susceptibility [19]. Recent epidemiological studies have shown that 

the prevalence of this condition on the island has continued to increase with 

Orkney now reporting the highest prevalence rate of MS in world [22, 23]. As a 

result the communities of the Orkneys have been involved in a number of studies 

investigating the role of both genetic [19] and environmental [21] factors on the 

presentation of the disorder.  
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1.3 Genetic studies in the Amish 

In 1962 the first genetic studies of the Amish were undertaken by Victor 

McKusick, a prominent figure in the formation of the medical genetics field, 

investigating dwarfism within the community. These investigations were based 

on ideas he had developed from reading an article written by David Krusen, a 

local family doctor, and a manuscript entitled “Amish Society” submitted by John 

Hostetler. The article mentioned achondroplasia was extremely common in the 

Amish and the manuscript highlighted the many characteristics of the Amish 

community that are advantageous to the study of genetic traits (Table 1.1) [24]. 

 

Table 1.1: Advantages of Studying Genetics in the Amish. Taken [24]  

Advantages of Studying Genetics in the Amish 

The Older Order Amish are a self-defined population 

It is a closed population; gene flow is almost exclusively centrifugal 

The Western European origins of the population are well known 

Extensive genealogic records 

The standard of living is high 

The standards of medical care are relatively high 

An evident interest in illness (and its cause) 

There is a high coefficient of inbreeding due to the relatively small number of founder 
couples 
The illegitimacy rate is apparently low 
The Amish are interested and knowledgeable about the health of their relatives. They 
seek out information on rare disorders shared by other Amish families 

Socio-economic and occupational circumstances are notably uniform 

Because of constraints on transportation, the Amish are relatively immobile 

Most Amish families are large, with an average of seven to nine children 

Children with birth defects or genetic disorders are usually kept at home rather than 
institutionalized 
The existence of several Amish isolates makes comparisons of sub-populations 
possible 

 

Taken together these factors greatly facilitate the discovery of genes responsible 

for inherited disease, which might otherwise have been impossible in studies of 
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other populations due to the genetic and environmental complexities of a 

condition. 

 

In 1962 McKusick was approached by a young doctor, Dr Harold Cross, who was 

raised in an Amish community in Indiana and wished to undertake a PhD. The 

resulting studies focused on neurological conditions in the Ohio Amish and 

produced publications describing a number of disorders including Troyer 

syndrome [25] and Mast syndrome [26] two novel forms of complex hereditary 

spastic paraplegia. However, at the time, it was not possible to identify the 

causative genes for these novel conditions.  

 

The work of McKusick in the early 1960’s led to the development and publication 

of the Mendelian inheritance in Man (MIM). First published in print in 1966 as a 

“comprehensive knowledge base of human genes and genetic disorders” [27] it 

contained a trilogy of catalogues detailing autosomal dominant (AD), autosomal 

recessive (AR) and X-linked phenotypes. Twelve print editions of this 

compendium were released between 1966 and 1998. These print versions have 

been superseded by an online version, the Online Mendelian Inheritance in Man 

(OMIM) which was first made available in 1987. Since 1995, and its distribution 

by the National Centre for Biotechnology Information (NCBI), it has been updated 

daily and become a critical, frequently used resource for anyone involved in the 

field of medical genetics [28]. 

 

Professor Andrew Crosby, who has a particular interest in neurological 

conditions, contacted Dr Cross in 2000 to suggest a collaborative research 

project with the aim of using genetic technologies, developed since the original 
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study, to identifying the underlying genetic causes of these conditions. These 

studies successfully identified the causative genes for both Troyer syndrome 

(SPG20) in 2002 [29] and Mast syndrome (SPG21) in 2003 [30].  

As a result of these successful investigations and realising the potential impact 

to the Amish community Crosby and Cross established the Windows of Hope 

Project (WoH) [31] which conducted the largest survey of inherited conditions 

amongst the Amish communities. In partnership with the non-profit Amish-led 

Windows of Hope Genetic Information Centre (WHGIC) the project has made a 

significant contribution to determining the underlying molecular causes and 

clinical manifestations of inherited diseases amongst the Ohio Amish community.  

 

1.3.1 Windows of Hope Project 

The Windows of Hope Project is a long-running, non-profit community genetic 

research program which has undertaken the largest survey of inherited conditions 

within Anabaptist communities. By working closely with the Anabaptist 

communities and local healthcare and special educational needs providers in 

both Ohio and Wisconsin the group has made significant progress in determining 

the molecular causes and clinical manifestations of inherited diseases. To date it 

has assisted in the identification and description of the genetic cause of over 30 

inherited disorders, including 16 novel conditions being described as a direct 

result of their work [31]. Almost all of these disease genes, initially identified in 

the Amish, have subsequently been found worldwide in other populations causing 

similar diseases. Highlighting the global significance of studying inherited 

conditions in genetic isolates such as the Amish.  

The high number of undiagnosed childhood development disorders among the 

Holmes County Amish population places a significant social and financial burden 
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on the community. Whilst community schemes are available to help with medical 

expenses, the rising costs of medical care means many Amish families are not 

supported so do not undergo important clinical investigations or receive 

treatment.  

The primary aim of the WoH project is to utilise modern genomic technologies, 

combined with clinical expertise, to advance the understanding of inherited 

disease within Anabaptist communities, improve healthcare outcomes and 

provide substantial cost savings for families affected by these conditions. 

Genomic findings from research studies enable these improved outcomes by 

empowering molecular diagnostic services, enabling focused disease-specific 

clinical management strategies and the development of new treatment strategies. 

The WoH undertakes studies of a wide range of inherited conditions including 

neurological, cardiovascular and developmental disorders. Clinical and 

diagnostic laboratory collaborations, supported by the WoH, have assisted 

families in receiving much-needed diagnoses for previously unrecognized 

conditions.  

 

The WoH Project now has a mature infrastructure including an Amish-led regional 

centre, WHGIC located in Ohio, the second largest Amish settlement in the US. 

The centre is a source of information and support for local families which, through 

collaborations with clinical partners, has developed an extensive community-

appropriate educational programme including family information days and 

disease-specific leaflets, and practical educational symposia.  In addition to this 

the WoH has established an extensive searchable clinical online database to 

provide information to medical practitioners about all the conditions currently 

known to be present in the Plain communities [31].  
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1.4 Genomic technologies  

The advent and widespread availability of next-generation sequencing (NGS) has 

decreased the cost and associated timelines of genetic and biological research 

[32]. A significant number of studies undertaken by the WoH project within the 

Amish have utilised various high-throughput NGS techniques including 

autozygosity mapping, in combination with whole exome sequencing (WES) to 

identify causative pathogenic variants.  

Outlined in this project is the first time the WoH project has employed the use of 

the PLEXseq process, to determine the allele frequencies of the most commonly 

occurring pathogenic variants seen within the various Amish communities. 

 

1.4.1 Autozygosity mapping 

Rare recessive mutations are predicted to occur in every population but are 

unlikely to achieve homozygosity in the general population. However, unions 

between closely related (consanguineous) or distantly related (endogamous) 

individuals dramatically increases the probability of resultant offspring being 

homozygous at any given genetic locus [33]. Endogamous and consanguineous 

unions often result in autozygosity, a special form of homozygosity, where two 

copies of a section of DNA, shared by two or more people, are identical by 

descent (IBD) as they have been inherited from a common ancestor, without any 

intervening recombination (Figure 1.3) [34]. 

The use of ‘autozygosity mapping’ to define the chromosomal location of a 

disease locus was first proposed in 1987 using consanguineous families based 

on the principle that affected individuals will be IBD for the disease causing 

variant and surrounding haplotype [35]. Over the last 30 years this approach has 
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become a powerful method for identifying recessively inherited disease genes 

within genetically isolated populations, such as the Amish.  

 

 

Figure 1.3: Simplified schematic presentation of the concept of autozygosity. An 
ancestral haplotype (red box) containing a variant of interest () is transferred 
through the generations. In each generation different haplotypes enter the 
pedigree represented with a different coloured bar. Recombination events 
(shown by dotted lines) in each generation shorten the size of the haplotype. 
(Modified from [36] and [34]). 

 

Advances in the experimental techniques used to generate and analyse data has 

dramatically increased the speed of detecting autozygous regions [37].  Early 

methods used highly polymorphic microsatellite, or small tandem repeat (STR), 

markers to identify autozygous regions. Despite these markers being more 

powerful at detecting homozygous chromosomal segments than single-
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nucleotide polymorphisms (SNPs) the increased time, cost and inability to identify 

smaller autozygous sections, due to the increased distance (10–12cM) between 

markers, led to them being superseded by SNP microarrays [38].  

 

SNP microarrays are silicon chips (SNP-chips), originally designed by Affymetrix 

and Illumina that detect SNPs across the whole genome in a single hybridisation 

reaction making them much more time and cost efficient than microsatellite 

analysis. Although each SNP, as mentioned previously, is far less powerful at 

detecting a homozygous region than a microsatellite marker, they offer a number 

of other benefits that have encouraged their increased and extensive use.  

SNP-chips offer greater coverage of the genome, due to their increased number. 

For example an early chip containing 10,913 SNPs is reported to be equivalent 

to a 3–4cM microsatellite marker map [39], enabling the identification of smaller 

autozygosity regions. The increased number of SNPs also enables the detection 

of heterozygous regions more effectively than with microsatellite markers. A 

single average microsatellite marker was projected to have a 70% chance of 

detecting heterozygosity. A genomic region of the same size on a SNP-chip 

containing approximately 30 SNPs would have a 99% chance of detecting a 

heterozygous region [39]. 

More recently it was suggested that exome sequencing could be used to 

concurrently define autozygous regions and identify possible causative variants. 

However, initial investigations found poor coverage, compared to SNP-chip 

genotyping, due to the uneven distribution of coding regions across the genome 

[40] and suggested that shorter autozygous regions could be missed should they 

be located within in gene-poor regions [37].  
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Today high-density and high-resolution SNP-chips, available from  Affymetrix and 

Illumina both containing more than 1 million genetic markers (Affymetrix SNP 

array 6.0 and Illumina 1M respectively), enable the detection of even the smallest, 

(54kb) structural changes [41, 42].  Copy number variation (CNV) is a type of 

genetic variation that is widely found in mammalian genomes and includes 

genomic deletion and duplication as well as complex rearrangements that range 

from 100 base pairs to several mega base pairs in size [43]. CNVs have been 

shown to have a significant impact on complex human diseases, such as autism 

[44] and cancer [45], due to the fact that they can disrupt gene structure and affect 

gene regulation. However, not all CNVs are linked to adverse phenotypes. To 

date, approximately 552,586 CNVs are included in the Database of Genomic 

Variants [http://dgvbeta.tcag.ca/dgv/app/home] [46]. A recent study mapping 

CNVs, not associated with disease, found around 100 genes that can be 

homozygously deleted without producing an adverse disease phenotype and 

estimated that up to 9.5% of the human genome contributes to CNV [47].  

 

These high-density SNP genotyping array platforms target biallelic SNPs. For 

each SNP, an array platform includes two types of hybridisation probes specific 

to two types of known alleles, usually coded as A and B, and the SNP genotype 

can be determined by the ratios of the hybridisation intensities for A and B probes. 

CNVs such as duplications and deletions increase or decrease the total 

measured intensities. Large CNVs, that span multiple SNPs, have intensity ratio 

patterns distinct from normal genomic regions (Figure 1.4). 
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Figure 1.4 CNV Analysis of Illumina Bead Chip Data. B allele frequency and log2 
R (normalised signal intensities) ratio are plotted over the entire genome for all 
SNPs. The plot exhibit diagnostic signature profiles of copy number. CN=2, 1; & 
3 shown (adapted from [48]). 

 

The number of SNP-chips now readily available allows users to select the array 

most suited to their research needs. The Illumina HumanCytoSNP-12 Bead Chip 

array was used in all studies outlined in this project. This platform permits the 

processing of up to 12 samples in parallel which increases sample throughput, to 

a level appropriate to the number of samples required for our studies, and 

decreases experimental variability [49]. It offers a low cost per sample, compared 

to other methods, and only requires 200ng of DNA per sample which is easily 

achievable when extracting DNA from whole blood lymphocytes and possible, 

though more variable, from extracting DNA from buccal swabs. Additionally this 

SNP-chip incorporates ~300,000 SNPs, offering dense coverage of ~250 disease 

regions shown to be important for detecting cytogenetic abnormalities most 

relevant to human disease.  
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Whilst it is generally accepted that SNP-chips are the best way to generate the 

data required to calculate regions of homozygosity (ROH) within samples and 

produce autozygosity maps there is currently a lack of consensus regarding how 

ROHs should be defined [50]. 

Although there are several computational methods for identifying ROHs within a 

dataset they can all be classified as either genotype-counting or model-based.  

 

Genotype-counting 

Genotype-counting software, such as PLINK [51], GERMLINE [52] or cgaTOH 

[53], all search for long, consecutive runs of homozygous genotypes that occur 

within a set of predefined parameters including the maximum number of 

heterozygous calls within a given region and the number of allowable missing 

genotypes.  

PLINK v.19, for example, uses a sliding window approach. This is where an 

algorithm scans each chromosome by moving a fixed sized window along the 

whole genome searching for consecutive homozygous SNPs [54]. To identify 

ROHs the location of each SNP is considered. This is achieved by calculating the 

proportion of completely homozygous windows that incorporate each SNP. If this 

proportion is higher than a defined threshold, a given SNP appears in more 

consecutive homozygous windows than expected, the SNP is considered to be 

in a ROH. The simplicity of this method permits large amounts of SNP data to be 

analysed efficiently [54].  

 

Model-based  

Model-based software, such as BEAGLE [55], FILTUS [56], BCFtools/RoH [57] 

and GARLIC [58], use probability to differentiate between autozygous and non-
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autozygous regions using the allele frequency of SNPs and recombination rate 

estimated from the data. Each of these methods utilise different algorithms which 

determines the achievable sensitivity, specificity and false positive rate of the 

resulting analysis. However, all current model-based methods use statistical 

modelling in the form of hidden Markov models (HMMs) to account for 

background levels of linkage disequilibrium [54]. 

HMMs were first introduced to computational biology during the late 1980s and 

are a class of probabilistic models [59] that represent probability distributions over 

linear sequences [60] and offer a consistent mathematical basis for assigning 

position-specific residue scores [61]. The central idea behind a HMM is that it is 

a finite model describing the probability distribution across an infinite number of 

possible sequences [61]. Being described as the “Legos of computational 

sequence analysis”, HMMs are now central to a diverse range of analysis 

programmes including; multiple sequence alignment, gene finding and regulatory 

site identification [62].  

 

In addition to the lack of consensus in how ROHs are delineated there is also a 

lack of standardisation regarding the sizing of ROHs which can be expressed 

using either a physical distance, in kilobases (kb) or megabases (Mb) or a genetic 

distance expressed in centimorgans (cM). A centimorgan is a measure of 

recombination frequency, with 1cM corresponding to a recombination frequency 

of 1% [63]. Whilst it has been suggested that the use of genetic distances to 

describe ROHs is preferable due its capacity to mitigate the effect of linkage 

disequilibrium (LD) [64], many studies still describe ROHs using a physical 

distance.  
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LD refers to the non-random association of alleles at two, or more, genetic loci 

[65]. Loci are said to be in LD when the frequency of association of their different 

alleles is higher or lower than what would be expected if the loci were 

independent and associated randomly. The degree of LD varies greatly across 

the human genome. Regions that have undergone little to no historical 

recombination, displaying high LD, are often referred to as “haplotype blocks” [66] 

and are commonly bordered by recombination hotspots [64]. As a result of these 

different regions it is not possible to accurately compare ROHs located in different 

genomic locations based solely on physical distances.  

A population that has accumulated many recombinations at every position in the 

genome would display little LD as there would be no correlation between the 

inheritance of alleles at any particular loci [67]. The amount of LD between two 

alleles is related to the time of the mutation event, the genetic distance between 

alleles and the history of the population in which they are located. Relatively 

young (<2000 years) populations arising from a small founder population, such 

as the Amish, tend to display higher levels of LD [67]. This means the genomes 

of individuals from this population are more likely to contain longer ROH, or 

haplotype blocks, compared to the general population.  

 

The ROHs in the studies outlined in this project where measured in physical 

distances and determined using an in-house genotype-counting method which 

allowed for regions to be confirmed manually, taking into consideration potential 

miscalled or missing genotypes. Regions >1Mb in size were preferentially 

interrogated, through cross-referencing with exome sequencing data.  
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1.4.2 Whole exome sequencing 

Since the completion of the Human Genome Project (HGP) in 2001, at a cost of 

~$3billion and in excess of 200 scientists working for over a decade [68], 

substantial improvements have been made in the approach to genome 

sequencing [32]. Current methodologies are far less laborious and offer 

significantly cheaper costs per sample when compared to BAC (bacterial artificial 

chromosome) based sequencing, used by the HGP, and first generation 

sequencing techniques such as chemical sequencing [69] and dideoxy chain 

terminator, “Sanger”, sequencing [70]. Second generation, or next generation 

sequencing (NGS) technologies implement massively parallel sequencing 

(MPS), the simultaneous sequencing of multiple variants within multiple samples, 

of short-read lengths of DNA (50–500bp) which are amplified then assembled, by 

alignment to a reference sequence, using a bioinformatic pipeline [71, 72]. The 

high-throughput nature of these short-read technologies has enabled the cost of 

sequencing, per megabase, to reduce at a rate exceeding that of Moore’s Law 

(which proposed technology reduces microprocessor costs by half every 18 

months) [73]. Recently the lowest cost of whole genome (WGS) and whole exome 

(WES) sequencing was estimated to be $1906 per genome and $555 per exome, 

which has facilitated their increased application within both a research and clinical 

setting [74]. There are now several types of NGS tests available for use in a 

clinical setting; exome, genome, and panel NGS, which offer varying degrees of 

genome coverage [75]. 

 

Despite WGS investigating sequence changes such as; single-nucleotide 

variants (SNVs), insertions and deletions (indels), chromosomal rearrangements 

and copy-number variation (CNVs), across the whole genome, WES is reported 
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to be the more popular technique [76] as it covers the “more actionable areas of 

the genome” [74].  

Protein coding genes only constitute ~1% of the human genome [76] but contain 

85% of disease-causing mutations responsible for Mendelian disorders [77] 

which result from the mutation of a single genetic locus. As WES only targets 

95% of the coding regions, or exons, of protein coding genes [77] across the 

genome it requires less sequencing space, allowing more samples to be 

analysed, and produces less, more interpretable data at a fraction of the cost of 

WGS [68, 76]. Even with the rapid and significant improvements in sequencing 

technologies identifying exonic variants that affect phenotypic expression through 

WGS is approximately four times more expensive than an exome sequencing 

approach [68, 74].   

Since its first successful use to diagnose and inform subsequent treatment of an 

infant patient with a rare form of inflammatory bowel disease [68] WES has been 

instrumental in revolutionising our understanding of rare and common human 

diseases and supporting the implementation of health-improvement projects 

throughout the world [77, 78].  With the increasing interest and drive towards 

personalised medicine the development of efficient targeted sequencing 

strategies is likely to continue. Currently WES methodologies can be classified in 

two ways; solution or array based [68].  

Array-based methods where the first used to enrich specific regions of the 

genome [79] and sequence a whole exome [80]. They involve the hybridisation 

of randomly sheared, adapter-ligated genomic DNA (target sequences) to 

synthetic oligonucleotides (probes) bound to a high-density microarray [81]. An 

additional array-based method, multiplex amplification, was also proposed that 

cleaved off and amplified, through a polymerase chain reaction (PCR), the 
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oligonucleotides synthesised on the microarray to perform a padlock and 

molecular-inversion reaction [82]. However, this method was initially reported to 

miss more than 80% of targeted exons, represent sequence targets unevenly and 

showed poor reproducibility between replicates [81]. Since these methods were 

introduced, increasingly powerful sequencing techniques requiring smaller 

amounts of template DNA and involving less manual work where in high demand 

[83].  

A solution-based method, proposed by Gnirke et al. in 2009 overcame some of 

the short-comings of previous methods utilising a hybrid-selection method for 

enriching specific genomic regions. It combines the robust performance of 

oligonucleotide synthesis on an array with the favourable kinetics of RNA-driven 

hybridisation in solution [81].  The first commercially available sample preparation 

kit using this method was the SureSelect Human All Exon capture kit (Agilent) 

closely followed by the NimbleGen with the SeqCap EZ Exome capture system 

(Roche). A systematic comparison of these two platforms, using the same 

Illumina sequencing machine and bioinformatics pipeline to annotate the 

sequences, found the NimbleGen kit aligned more accurately to the target regions 

whilst the Aligent kit had less duplicated reads. Alignment of the Aligent kit to the 

human reference genome was equal to that of the NimbleGen kit with neither kit 

capturing all of the consensus coding sequence (CCDS) exons [83].  

Available WES capture methods are constantly being improved and updated. 

Solution-based kits are currently the most commonly used with improvements to 

these platforms focusing on increasing the read depth, the number of aligned 

sequencing reads covering a specific genomic position [84], the coverage, the 

average raw or aligned read depth and the breadth of coverage, the percentage 
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of target bases that are sequenced a given number of times [85], increasing both 

sensitivity and specificity. 

Two solution-based WES platforms where used in this study; the SureSelect 

Human All Exon V4 (Agilent) exome enrichment kit sequenced on an Illumina 

HiSeq2000 sequencer and the BGISEQ-500 sequencing system both obtaining 

mean read depths and breadth of coverage sufficient for accurate variant calling 

for clinical purposes.  

Current technologies now generate accurate and reliable sequencing data 

covering the majority of the genome [75], removing the historical “sequencing 

bottleneck” [86], where the sequencing of genetic variants was the most time, 

labour and cost intensive aspect of providing a genetic diagnosis. This has 

allowed these technologies to be widely integrated into clinical settings but has 

posed several new challenges including [87]; 

 The setup, validation and implementation of appropriate bioinformatic 

analysis to accurately determine genotypes  

 The standardisation of variant interpretation and classification  

 The development of polices and guidelines to inform the identification and 

disclosure of secondary variants (incidental findings) not directly linked to 

the patient’s phenotype under investigation 

 The storage, accessibility and dissemination of sequencing data 

 

Quality control (QC) is an essential step in the analysis of sequencing data to 

ensure accurate genotyping when defining a variants pathogenicity. It can be 

difficult to determine a genotype due to errors introduced in the base-calling 

process, which can vary significantly across different sequencing platforms. In 

addition genotype calls are extremely dependent on the achieved read depth; 
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only genotypes with many reads can be reliably assigned [88]. A Phred, or Q, 

score (Error! Reference source not found.) is calculated using several 

predictors of possible errors and widely used by all major sequencing platforms 

to measure the probability that a base has been called incorrectly [88].   

 
Table 1.2: Phred quality scores with associated Q score. Q scores are 

logarithmically linked to error probabilities 

Phred Quality Score 
Probability of 

incorrect base call 
Base call accuracy 

Q10 1 in 10 90% 

Q20 1 in 100 99% 

Q30 1 in 1000 99.9% 

Q40 1 in 10,000 99.99% 

Q50 1 in 100,000 99.999% 

 
 
Once the reliability of the genotyping calls has been calculated the next important 

step of interpreting sequence variants is to determine their frequency in large 

population databases. The Genome Aggregation Database (gnomAD) is one 

such database which has complied the data of 125,748 exomes and 15,708 

genomes from human sequencing studies [89]. Pathogenic variants are expected 

to occur at extremely low frequencies or not have been previously observed in 

the general population. It has become widely accepted that for a variant to be 

considered rare it must have a frequency of <1% in the general population [71]. 

However, it has been reported that genetic studies show a high degree of 

population bias with a greater representation, ~80%, of participants being of 

European decent which should be considered when interpreting variants from 

underrepresented populations [90, 91]. 

Good quality variants occurring at a low frequencies can then be analysed 

through the use of in silico prediction tools such as SIFT [92], PolyPhen-2 
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(Polymorphism Phenotyping v2) [93] or MutationTaster2 [94] to establish if the 

variant is likely to alter protein function through disruption of the amino acid 

sequence. Whilst it is possible to undertake these investigations in isolation, 

investigating all variants from an individual’s exome sequencing data via a 

number of tools, would be far too laborious. It is far more common for the VCF 

files which is the standard  bioinformatics format for storing gene sequence 

variations, containing WES and WGS data to be annotated using a software 

application that integrates several prediction tools. In these studies the Alamut 

Software Suite (v1.4.4) was used to assess variants so that a small number of 

candidate variants could be selected to undergo further interrogation. Alamut 

complies with ACMG/AMP variant interpretation guidelines [95] and as a result is 

used extensively within clinical settings. 

 
 

1.4.3 The future of sequencing technologies 

NGS technologies have dramatically reduced the cost of DNA sequencing 

increasing its accessibility [96] and making the use of gene panels, WES and 

WGS in clinical diagnostics possible [72]. Despite this, the short-read sequences 

used by these techniques are not without issue. The dependence on clonal 

amplification and creation of clusters of DNA molecules requires read lengths to 

be short (50-500bp), providing an opportunity for errors in base incorporation to 

occur thus increasing noise within samples [72]. Furthermore these short lengths 

then require extensive assembly which can cause difficulties for complex regions, 

particularly those containing a high number of repeated sequences by producing 

misalignments or misassemblies and impairing the phasing of variants [71, 72].  

In 2011, Pacific Biosciences (PacBio) released the first commercially available 

third-generation sequencing (TGS) technology employing single molecule real-
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time sequencing (SMRT) [97] which has proved to be useful in sequencing 

extended repetitive regions of the genome [71]. 

The key differences of TGS is that sequencing is done in real-time, unlike NGS 

where sequencing is paused after the incorporation of each base, and that it 

utilises long-read technologies which are reported to be revolutionising genomics 

research [98].  

One such example is the development of nanopore sequencing introduced in 

2014 by Oxford Nanopore Technologies (ONT) [99] which identifies nucleotides 

by measuring their electrical conductivity as they pass through the nanopore 

membrane. In addition to its innovative sequencing chemistry an attractive 

feature of this sequencer is its incredibly small size and USB port connectivity 

making it the first fully portable DNA sequencer [71].  

 

Alongside the continued development and innovation in sequencing technologies 

there is growing interest in the increased incorporation of artificial intelligence (AI) 

platforms into clinical diagnostic practices. Being employed initially to cut costs 

associated with analysing the ever increasing volume of patient data by 

accelerating the annotation and prioritisation of sequence variants from WES. 

Whilst is it likely to be some time before AI technologies are commonplace in 

mainstream medicine a number of companies are already deploying aspects of 

AI technologies through clinician-friendly web-based interfaces that support the 

clinical prioritisation of variants [74].  
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1.5 Aims  

The studies detailed in this thesis can be summarised by two distinct yet 

connected aims. The first aim was to identify the underlying molecular cause of 

developmental conditions within Amish communities which included; 

investigating congenital forms of hearing loss in multiple families to provide 

genetic diagnoses and defining the clinical phenotype and molecular basis of a 

novel complex autosomal recessive neurological disorder.  The second aim was 

to conduct a pilot, proof-of-principle study to characterise the architecture of the 

Amish genome which included; determining the carrier frequencies of pathogenic 

and potentially pathogenic variants known to be present in the Amish 

communities in addition to identifying potentially pathogenic variants known to 

cause disease but yet to be reported in the Amish community. In order to meet 

these aims the following objectives where pursued:  

 To undertake in-depth genetic studies, including autozygosity mapping, 

traditional and next generation sequencing technologies, to identify the 

underlying molecular cause of congenital hearing loss in two families with 

multiple affected individuals.  

 To functionally characterise putative disease genes and elucidate the 

effect of the pathogenic variants identified.  

 To investigate the allele frequencies of variants known to cause hearing 

loss in different Amish communities (demes).  

 To interrogate exome sequencing datasets to identify coincidentally 

carried, potentially deleterious, autosomal recessive variants found in 

genes known to cause disease but yet to be seen in the Amish community. 

 To utilise a PLEXseq sequencing approach to determine the prevalence 

of variants associated with disease and present in the Amish communities.  
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   Materials and Methods 

 

2.1 Family recruitment and sample acquisition  

 

2.1.1 Recruitment to the Amish Windows of Hope (WoH) project  

All the WoH project studies were reviewed and approved by the Institutional 

Review Board of the Office for Responsible Conduct of Research, University of 

Arizona (Tuscon, Arizona, USA) (reference 10-0050-01) and by the University of 

Exeter Research Ethics Committee (reference 14/04/048).  

Research was carried out in compliance with the Code of Practice for Human 

Tissue and Research (code E) provided by the Human Tissue Authority (HTA), 

which defines human tissue as relevant material consisting of, or containing cells, 

therefore includes blood and buccal samples.  All blood and buccal samples, and 

subsequent DNA extractions, used in this project where used and stored in HTA-

licensed premises with research carried out in accordance with the Human Tissue 

Act 2004.  

Recruitment to the WoH project requires submission of the appropriately signed 

consent, clinical details and a blood or buccal sample. Signed consent is given, 

in accordance with the HTA’s code of practice, only when individuals, or parents 

of individuals, feel they are sufficiently informed, about the purpose of the 

research, how their samples are to be stored and used and satisfied with the 

purpose of the research in which they are to be involved. 
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2.1.2 Phenotyping of affected individuals 

Full medical and family histories for the purposes of the research study was 

obtained for all individuals. Individuals were examined with clinical phenotypes 

assessed and described by a member of our research group, Dr Emma Baple, 

Consultant Clinical Geneticist at the Royal Devon and Exeter Hospital. 

Phenotypic data for each family was then collated and reviewed for the purposes 

of the studies outlined in this thesis.  

 

2.1.3 Data management 

On receipt of blood or DNA samples each sample was assigned a sample ID. 

The tubes containing the samples were anonymised and labelled with the 

relevant sample ID. The clinical and molecular information was recorded 

alongside the samples ID in a password protected database.  

Family pedigrees are constructed using the online Swiss Anabaptist 

Genealogical Association (SAGA) database (www.saga-omii.org). 
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2.2 Molecular DNA methods  

All general-purpose chemicals were acquired from Fisher Scientific. All primers 

where supplied by IDT (Integrated DNA Technologies). Specialist kits, chemicals 

and consumables purchased from alternate sources are noted in the text where 

appropriate. Components of solutions made in-house are detailed in Table 2.1. 

 

All plastic ware was acquired from StarLabs or Sarstedt. Kits for DNA extraction 

where purchased from Promega. 

 

2.2.1 Buffers, Reagents and Stock Solutions 

 

Table 2.1 Buffers, reagents and stock solutions required for molecular DNA 
techniques and their constituents. 

Solution Constituents 

Agarose loading buffer 
40% (w/v) ficoll 
0.2% (w/v) xylene cyanol  
0.1% (w/v) bromophenol blue 

ExoSAP 

For 1 millilitre: 50 U/ml Exonuclease I, 50U/ml 
shrimp alkaline phosphatase (both bought from 
New England BioLabs), ddH2O to final volume 

50X LAB 
5.1% (w/v) lithium acetate dihydrate 
3.1% (w/v) boric acid 
ddH2O to final volume 

 

 

2.2.2 DNA extraction from whole blood 

DNA was extracted from whole blood lymphocytes using the ReliaPrepTM Blood 

gDNA Miniprep system (Promega) according to the manufacturer’s instructions 

which is summarised below.  

 

On arrival blood samples were stored at -20°C. Prior to extraction, blood samples 

were thawed completely and mixed thoroughly for 10 minutes at room 
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temperature on a rotisserie shaker. Filter tip pipette tips were used at all stages 

during the procedure to prevent contamination of samples and equipment. 

For each sample, 20μl of Proteinase K (10U/µl) was dispensed into a 1.5ml 

microcentrifuge tube. 200μl of blood was added to the Proteinase K and mixed 

by repeat pipetting. 200μl cell lysis buffer was added to the tube. The tube 

contents were vortexed for 10 seconds then incubated at 56°C for 10 minutes. 

Following incubation, 250μl of binding buffer was added to the tube with the 

contents vortexed for 10 seconds. The lysate was checked to ensure that it was 

dark green in colour. The contents of the tube were added to a ReliaPrepTM 

binding column placed in a collection tube and centrifuged at 16,200xg 

(13,000rpm), max speed of microcentrifuge) for 1 minute. If the lysate was still 

visible at the top of the membrane following centrifugation, the column was spun 

for a further 1 minute. The column was moved to a fresh collection tube, and the 

flow through from the old one was discarded as hazardous waste. The column 

was then washed by adding 500μl of column wash solution to the column and 

centrifuging it at 16,200xg (13,000rpm) for 3 minutes. If any of the solution 

remained visible on the membrane, the column was spun for a further minute. 

The flow through was again discarded as hazardous waste. This wash step was 

repeated a further two times to make a total of three washes. The column was 

then transferred to a clean 1.5 microcentrifuge tube and 50μl of 70°C nuclease 

free water added to the column which was centrifuged at 16,200xg (13,000rpm) 

for 1 minute to elute the DNA. The binding column was discarded.  

The DNA concentration and purity of the sample was measured using the 

NanoDrop 2000c UV-Vis Spectrophotometer (Thermo Scientific) by measuring 

absorption at 260nm (A260) in 1-2μl of undiluted sample. The NanoDrop software 

automatically uses a modified Beer-Lambert equation to calculate the 
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concentration (in ng/μl). DNA purity was assessed simultaneously by measuring 

absorption at 280 nm (A280). A ratio of A260 to A280 of ~1.8 indicates “pure” 

DNA. A secondary measure of absorbance at 230nm (A230) was also taken, 

values for a “pure” nucleic acid are often higher than the respective A260/A280 

values being within the range of 1.8-2.2. 

An aliquot of working stock of 10-30ng/μl was prepared by diluting the DNA with 

molecular grade water. Samples were then stored at -20oC. 

 

2.2.3 DNA extraction from buccal swabs 

DNA was extracted from buccal swabs using the Xtreme DNA Kit (XME-5/50, 

Isohelix) according to the manufacturer’s instructions which is summarised 

below. The composition of the buffers and solutions used in this protocol is 

proprietary information.   

 

Prior to extraction a hot block was preheated to 60oC. The proteinase K was 

reconstituted by adding 550μl ddH2O before first use (then stored at 4oC after 

reconstitution) and 60ml of 98-100% ethanol was added into the WB solution 

before first use. 

 

500µl LYS buffer was added to each sample which was then vortexed to ensure 

the solution covers the swab head. 20µl Proteinase K solution was added to each 

sample then mixed immediately by vortex. The tubes where then incubated at 

60oC for a minimum of 10minutes to lyse the sample. Following incubation, the 

liquid was transferred to a 5ml tube. 750µl CB buffer was then added to the 

samples and mixed by vortexing for 30 seconds. 1.25ml of ethanol was added to 

each sample then vortexed to mix. 
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100µl of EB buffer per sample, was preheated in a hot block, at 70oC. 

An Xtreme DNA column was placed into a collection tube, one per sample, with 

750µl of the sample was carefully added to the column without touching the rim. 

Samples were then centrifuged at 16,200xg (13,000rpm) for 1 minute. The flow 

through was discarded as hazardous waste. This step was repeated until all of 

the samples had been loaded onto the columns.  

The columns were then washed by adding 750µl of WB solution and centrifuged 

for 1 minute at 16,200xg (13,000rpm).  The flow through was again discarded as 

hazardous waste. This was step was then repeated, again discarding the flow 

through.  

Following the wash steps the columns were then placed into clean collection 

tubes and centrifuged at 16,200xg (13,000rpm) for 3 minutes to remove all traces 

of ethanol.  

The columns were then placed into clean 1.5ml microcentrifuge tubes. 100µl of 

preheated EB buffer was then added to the centre of the membrane of each 

column. The columns were left to stand at room temperature for 3 minutes then 

centrifuged at 16,200xg (13,000rpm) for 1 minute to elute the DNA.  

 

The DNA concentration and purity of the sample was measured using the 

NanoDrop 2000c UV-Vis Spectrophotometer (Thermo Scientific) as previously 

described with an aliquot of working stock of 10-30ng/μl prepared by diluting the 

DNA with molecular grade water and samples being stored at -20oC. 
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2.2.4 Single nucleotide polymorphism (SNP) genotyping 

SNP genotyping was carried out using Illumina CytoSNP-12v2.1 arrays following 

the Infinium® HD Assay Ultra manual protocol and assistance from Dr Barry 

Chioza, University of Exeter.  

The assay requires 200ng of DNA per sample at a concentration of 50ng/µl with 

each chip holding 12 samples. The protocol is carried out over three days 

following the Infinium HD Assay Ultra Manual Workflow which is summarised 

below. 

 

Day 1: DNA samples were denatured using a buffer containing 0.1N NaOH and 

then neutralised in preparation for amplification. Samples were incubated 

overnight at 37oC to amplify.  

 

Day 2: Amplified DNA samples were enzymatically fragmented using the Illumina 

FMS buffer which utilises end-point fragmentation (to avoid over-fragmentation). 

The DNA was then precipitated using 2-propanol and the Illumina solution PM1, 

then collected via a 20 minute centrifugation carried out at 4oC. Following 

resuspension, using the Illumina solution RA1, the DNA was denatured at 95oC 

for 20 minutes. The denatured samples were cooled then 12µl of each sample 

was loaded onto the BeadChip. This was then incubated in the Illumina 

Hybridisation Oven at 48oC for a minimum of 16 hours (but no more than 24 

hours).  

 

Day 3: The BeadChips were prepared for the staining process. This involved 

washing away any un-hybridised and non-specifically hybridised DNA using the 

PB1 Illumina buffer. Following the wash step, labelled nucleotides were 
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dispensed onto the BeadChip through the Flow-Through Chambers to perform 

single-base extension of primers hybridised to the DNA. The BeadChips where 

then stained using the Illumina XStain HD BeadChip process then imaged on an 

Illumina iScan Reader.  

The iScan Reader uses a laser to excite the fluorophores of the single-base 

extension product on the beads of the BeadChip. Light emissions from the 

fluorophores are recorded by the reader, taking high-resolution images of the 

BeadChip. The data from these images were analysed using the Illumina 

GenomeStudio Integrated Informatics Platform allowing for the genotype to be 

determined. Further analysis was then undertaking by exporting the data into 

Microsoft Excel and using a macro to highlight notable regions of homozygosity 

(>1Mb) and to compare genotyping across samples.  
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2.2.5 Whole-exome sequencing (WES) 

DNA Whole-exome sequencing of individuals was performed using two different 

sequencing platforms, Otogenetics and BGI, summarised below;  

 

Whole-exome Otogenetics sequencing platform Otogenetics Corporation using 

the SureSelect Human All Exon V4 (Agilent Technologies) 

Patient DNA was sent to Otogenetics Corporation (Norcross, GA, USA) where 

whole exome sequencing of genomic DNA was performed on an Illumina 

HiSeq2000 using the Agilent SureSelect Human All ExonV4 (51Mb) enrichment 

kit and a paired-end (2 × 100) protocol at a mean coverage of 30X. The exome 

sequencing produced 31,783,299 mapped reads, corresponding to 93% of 

targeted sequences covered sufficiently for variant calling (>10X coverage, mean 

depth 45X). 

 

Whole-exome BGI sequencing platform 

WES was also performed by BGI Tech Solutions (Hong Kong) on the BGISEQ-

500 sequencing system. A total of 1,403,229,858 clean reads were aligned to the 

human reference genome (GRCh37) using the Burrows-Wheeler Aligner (BWA). 

On average, 99.79% of the whole genome excluding gap regions had at least 

99.40% had at least 4X coverage and 98.20% at least 10X coverage. Average 

sequencing depth across the genome was 45.73X. 

 

Bioinformatics Pipeline 

The FASTQ files obtained from Otogenetics and BGI were mapped to the 

reference genome using the Burrows-Wheeler Aligner BWA-MEM algorithm [100, 

101]. This algorithm was used due to its improved performance, compared to 
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other BWA algorithms, being faster and more accurate than previous versions as 

well as providing higher quality queries. The sequence alignment map (SAM), 

was converted to binary SAM format (BAM) to produce a smaller file and to 

increase the processing speed. 

Duplicate reads were marked by Picard (version 1.46). The BAM file was then 

realigned, to account for indels, with variants called using GATK-HaplotypeCaller 

and subsequently quality filtered based on; mapping quality (MQ40), read depth 

(QD2), strand bias (FS60), the average position of a variant in a read (RPRS-8) 

and SNP quality (MQRankSum-12.5). The variant call file (VCF) file was 

annotated using the Alamut Software (v1.4.4) Suite. Variants were quality control 

(QC) checked and filtered for rare, non-synonymous exonic or splice variants, 

with a population frequency of <0.005 in control databases (including the 

Genome Aggregation Database; gnomAD, the Exome Aggregation Consortium; 

ExAC, and the 1000 Genomes Project) (Interactive Biosoftware). Annotated vcf 

files were then interrogated depending on the condition(s) under investigation 

(Figure 2.1).  

Support for analysis of exome sequencing data was provided by Matthew 

Wakeling based at the University of Exeter. 
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Figure 2.1: Summary of bioinformatics pipeline undertaken on exome 
sequencing. 
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2.2.6 PLEX-seq sequencing  

The genotyping of 176 Amish individuals for 165 variants commonly seen in the 

Amish communities (see Appendix A) was performed using the PlexSeq process 

by Plexseq Diagnostics. This process, previously described by Kayima et al [102], 

uses a multiplexed approach to amplify regions surrounding each SNP. The 

primers contain an additional sequence at the 5’ end to which universal barcoded 

Illumina primers were annealed during a secondary amplification reaction.  All 

samples, including negative and positive controls, were uniquely barcoded and 

sequenced simultaneously using the first DNA-to-data sequencing platform, 

MiSeq (Illumina). Genotype calls for all SNPs in each sample where determined 

through analysis of sequence data, in the form of FASTQ files, using Plexcall 

software (PlexSeq Diagnostics).  

 

2.2.7 Primer design 

The Ensembl Genome Browser (December 2013 (GRCh38/hg38) assembly) was 

used to obtain the gene sequences (website http://www.ensembl.org/index.html). 

Primers used for PCR amplification were designed using Primer3 software 

version 0.4.0 (website http://frodo.wi.mit.edu/primer3/).  

Primers were designed using the following criteria: 

 Primer sizes were between 18 and 22 nucleotides. 

 The difference in melting temperatures for the forward and reverse 

primers were no more than 1oC and between 55-65oC. 

 Guanine-cytosine (GC) base content was kept between 40-60%. 

 The primer sequences selected were specific and a 100% 

complimentary and unique to the region of interest to ensure only that 

region is amplified.  
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 Use of self-complimentary primers with inter or intra-primer efficiency 

extending more than 3 bases were avoided to reduce the formation of 

primer dimers and prevent the formation of secondary structures. 

 

In silico PCR and BLAST analysis were performed using the UCSC Genome 

bioinformatics website to ensure primers where specific to the region of interest 

and to confirm the corresponding primer sequence (available in Appendix B) 

contained no common SNPs (>1%). 

 

2.2.8 Resuspension of lyophilised primers 

Primers, designed as described in section 2.2.7, arrive lyophilised. They are 

resuspended in molecular grade water to a concentration of 100µM to produce a 

master stock, which is stored at -20oC. Before use in PCR reactions a 10µM 

working stock is produced by diluting the master stock 1 in 10 with molecular 

grade water. 

 

2.2.9 Optimisation of primer conditions 

To determine the optimal annealing temperature for a primer pair a PCR reaction 

was carried out using a temperature gradient of 52-64oC across the PCR block 

of an Eppendorf Mastercycler thermocycler.  

This involved setting up 12 reactions for each primer pair; each reaction had a 

different annealing temperature which increased incrementally across the PCR 

block from 52°C to 64°C by approximately 1°C. For these reactions a control DNA 

of high concentration and quality which had amplified well in a previous reaction 

was used.  
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If the PCR reaction produced weak or no product across the range of 

temperatures the contents of the mix and amplification conditions were altered. 

This might involve increasing the primer concentration or if the GC content was 

high, above 60%, a second gradient using 10% dimethyl sulfoxide (DMSO, Fisher 

Scientific) was performed. DMSO is an organic sulphur compound which binds 

to cytosine residues on DNA, this changes its conformation making it more liable 

to heat denaturation. Fortunately the primers used in the studies included in this 

thesis (Appendix B) did not require the conditions to be altered, standard 10µm 

concentrations of each primer were used without the addition of DMSO.  

 

2.2.10 LabTAQ Polymerase Chain Reaction (PCR) 

PCR is an in vitro laboratory technique used to selectively amplify DNA 

sequences. The process involves subjecting a small quantity of DNA to repeated 

temperature cycles permitting the exponential amplification of specific sequences 

of DNA, located between the forward and reverse primers, by up to 109 times.  

 

A master reaction mix was made for each primer pair, which includes all of the 

reaction components, with the exception of the sample DNA. The master mix 

volume is dependent on the number of reactions required. This is dictated by the 

number of samples (patients) plus positive and negative controls. The PCR 

reaction for each sample was either 10 or 20µl depending on further downstream 

analysis required (for example Sanger sequencing or sequencing by restriction 

digestion) (Table 2.2). 
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Table 2.2: Components of a 10µl and 20µl LabTAQ PCR reaction 

Component  
Volume (µl) 

(10µl reaction) 
Volume (µl) 

(20µl reaction) 

ddH2O 6.85 13.7 

5x labTAQ  reaction 
buffer 

2 4 

10µM forward primer 0.3 0.6 

10µM reverse primer 0.3 0.6 

labTAQ enzyme 0.05 0.1 

DNA 0.5 1 

Total volume 10µl 20µl 

 

 

The master reaction mix was aliquoted into reaction tubes (individually, on a strip 

or on a plate, depending on the number of samples). The sample (patient) DNA 

was then added to the master reaction mix. For the negative control, ddH2O was 

added in place of DNA to ensure that the desired DNA template was being 

amplified, and not DNA from a contaminant in one of the reaction constituents. 

 

The PCR mix was then placed in an Eppendorf 96-well Mastercycler thermocycler 

and exposed to repeated heating cooling in order to separate the strands the 

template DNA (denaturation), allow the primers to bind to their complementary 

sequence (annealing) and permit the Taq enzyme to replicate the DNA strands 

within the region of interest through the addition of dinucleotides (elongation).  

To reduce the amplification of non-specific products, and therefore improve 

specificity of primer binding, a touchdown (TD) PCR protocol was implemented. 

This involves using an initial annealing temperature 4oC higher than the optimum 
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annealing temperature (Tm), then incrementally lowering the annealing 

temperature by 2oC every two cycles until the desired Tm is reached (Table 2.3). 

 

Table 2.3: LabTAQ PCR reaction thermocycler program 

NUMBER OF CYCLES TEMPERATURE (OC) TIME (S) 

1 95 120 

2 
95 

Tm +4 
72 

15 

15 

15 

2 
95 

Tm +2 
72 

15 

15 

15 

35 
95 

Tm 72 

15 

15 

15 

1 72 120 

 

 

2.2.11 Agarose gel electrophoresis 

To determine if the amplification of the DNA was successful, and adequate for 

sequencing, the resulting PCR products underwent agarose gel electrophoresis. 

Agarose gel electrophoresis is a technique used to separate DNA (PCR 

products), according to their size, using an electric current. The agarose gel forms 

a matrix through which the negatively charged DNA travels when an electric 

current is applied across the gel. The smaller DNA molecules migrate faster 

towards the positive electrode so therefore travel further down the gel than the 

larger molecules in a given time.  

 

For resolving smaller DNA fragments, such as PCR products which are typically 

500bp a 1% agarose gel was made by mixing 1g of agarose powder (Sigma-
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Aldrich) with 100ml 1X LAB (Table 2.1) and heating the mixture in a microwave 

for 2-3 minutes. After checking the powder had completely dissolved, 2µl of 

10mg/ml ethidium bromide solution was added to the gel and swirled gently to 

mix evenly. Ethidium bromide (EtBr) is a DNA intercalating agent that fluoresces 

brightly when exposed to ultraviolet (UV) light.  

 

The gel was then left to cool while the casting tray was set up. This involved 

securing a rubber gasket to each end of the gel tray and placing a 28-toothed 

comb at the top of the gel (the number of rows of combs is dependent on the 

number of samples being run). The molten gel was then carefully poured into the 

casting tray and left to set for 10-15 minutes. Once set, the rubber gaskets and 

comb(s) were removed from the gel creating the wells. The gel was then placed 

into an electrophoresis tank and submerged in 1X LAB.  

The first well of each row (if using multiple combs) was then loaded with 2µl DNA 

ladder (Gene Ruler 100bp DNA Ladder, Thermo Scientific) to allow the size of 

PCR product to be estimated. 5μl of each PCR product was mixed with 2μl 

agarose loading buffer, and loaded into one of the wells alongside the DNA 

ladder.  

A power pack was used to apply a 130V across the gel for 20 minutes. The gel 

was removed from the gel tank and the gel plate then placed on the illuminator 

(UV light box with a camera). This causes the EtBr to fluoresce under the UV light 

visualising the PCR products in which it is intercalated.  

The PCR reaction can be deemed as successful if a band, of the correct size, is 

seen in the lanes containing sample DNA with no band being visible in the 

negative control lane. If a band (therefore DNA/PCR product) is visible in the lane 

containing the negative control it shows the presence of contamination. As the 
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source of contamination is not clear it must be assumed that all samples have 

been contaminated and therefore the reaction must be repeated.  

 

For larger DNA fragments (>500bp), PCR products a lower concentration 

agarose gel (0.8%) was used; prepared as above with less (0.8g) agarose 

powder dissolved in the same volume (100ml) of 1xLAB. 

 

2.2.12 PCR product purification 

Prior to sequencing a PCR product it is important to remove any unincorporated 

primers and dNTPs. This was achieved by undertaking an ExoSAP reaction 

containing exonuclease-1 (Exo) and shrimp alkaline phosphatase (SAP). 

Exonuclease-1 is an enzyme capable of degrading the single stranded DNA of 

the unincorporated primers in a 3’-5’ direction. This step produces dNTPs which 

are subsequently removed by the shrimp alkaline phosphatase.  

For this reaction 2µl of ExoSAP was added to 5µl of each of the PCR products. 

This mixture was then incubated at 37oC for 30 minutes, the optimum 

temperature for enzyme activity, and then at 85oC in order to inactivate the 

enzymes by denaturation.  

 

2.2.13 Sequencing reaction 

Purified PCR products underwent a sequencing reaction using the BigDye 

Terminator Cycle Sequencing Kit v3.1 (ABI, Applied Biosystems) which uses a 

classic chain termination PCR method to incorporate ddNTPs labelled with 

fluorescent dyes into the resultant PCR products. These dyes emit light at 

different wavelengths which are read by the sequencing machine. A master 

reaction mixture, containing the BigDye Terminator, BigDye Terminator buffer, 
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primer and ddH2O, was made for each region of interest. 7µl of this mixture was 

aliquoted into appropriately labelled 0.2ml tubes and mixed with 3µl of the 

appropriate PCR product. For each sample two separate 10µl sequencing 

reactions were carried out for the forward and reverse primers ( 

Table 2.4).  

 

Table 2.4: Sequencing reaction components and quantities 

Component Volume (µl) 

BigDye Terminator 
(Applied Biosystems) 

0.5 

BigDye Terminator Buffer 
(Applied Biosystems) 

1.7 

Primer  
(Forward or reverse) 0.5 

ddH2O 4.3 

Cleaned PCR product 
3.0 

Total Volume 10 

 

The reaction mixtures where placed into an Eppendorf 96-well Mastercycler, 

thermal cycler machine and run through following programme (Table 2.5) for 25 

cycles: 

 

Table 2.5: Sequencing Reaction Thermocycler Program 

Process Temperature (oC) Time 

Denaturation 96 30 seconds 

Annealing 50 15 seconds 

Elongation 60 4 minutes 
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2.2.14 Sequencing reaction purification 

In order to prepare the sequencing reaction products for automated DNA 

sequencing, they were first be purified. Purification of was carried out using the 

BigDye® XTerminator™ Purification Kit (Applied Biosystems) according to the 

manufacturer’s instructions. 

Unincorporated BigDye, salts and other charged molecules from sequencing 

reactions may interfere with base calling and electrokinetic sample injection 

during DNA sequencing. The BigDye® XTerminator™ Purification Kit cleans 

samples by utilising two reagents; XTerminator™ Solution which scavenges 

unincorporated dye terminators along with other charged molecules and SAM™ 

Solution that enhances the performance of the XTerminator™ Solution and 

stabilises the post-purification reactions.  

 

Sequencing reaction products were loaded into a 96-well plate with 5μl 

XTerminator™ Solution aliquoted into each well (containing the sequencing 

reaction products) and vortexed briefly. 30μl of SAM™ Solution was then added 

to each well. The plate was sealed using clear adhesive film (Thermo Scientific) 

and vortexed for 30 minutes then briefly centrifuged. The plate was then placed 

into a 16-capillary 3130xl Applied Biosystems® Automated DNA Sequencer for 

sequencing on a 36cm array POP7 polymer programme setting. 
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2.2.15 Genotyping by restriction digest 

A restriction digest can be used to detect variation in a DNA sequence providing 

a genotype. This method can only be used for DNA polymorphisms that create 

or destroy the restriction site of a restriction enzyme, commonly known as a 

restriction fragment length polymorphism (RFLP). 

RFLP analysis can be a cheap and effective way to genotype a large number of 

samples. As the polymorphism under investigation will interrupt the palindromic 

recognition sequence of a restriction enzyme, DNA fragments of differing lengths 

are produced depending on the presence or absence the variant. After carrying 

out the restriction digest reaction, at the optimum conditions, agarose gel 

electrophoresis can be used to size the fragments and then determine the 

genotype of individuals.  

 

A restriction digest reaction mixture contains PCR product of the area of interest, 

the appropriate 10X restriction digest buffer, the appropriate restriction 

endonuclease and ddH2O.  

To determine the most appropriate restriction enzyme to use the sequence, 

containing the variant and the wild type sequence, was entered into NEBcutter 

V2.0 online software (http://tools.neb.com/NEBcutter2/).  

A restriction digest master mix was made with all the constituents, except for the 

PCR product with 12.5μl aliquoted into appropriately labelled 0.2ml 

microcentrifuge tubes. 2.5μl PCR product was then added to each tube, and the 

tubes were incubated at 37˚C overnight (8+ hours). In addition to sample DNA, a 

negative control (water replacing DNA) and a known homozygote and 

heterozygote for the variant were included to provide control bands to confirm 

digestion and aid the interpretation of results. Following incubation samples were 
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loaded, along with a loading buffer, onto a 3% agarose gel (3g Agarose powder, 

100ml 1XLAB) and were electrophoresed for 60mins at 100V. The resultant 

bands were visualised in an illuminator to identify if the specific variant under 

investigation was also present any DNA samples.   
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2.3 Molecular cloning techniques 

The pCMV6-entry-SLC15A5 clone was transformed into E.coli DH5-alpha 

bacteria through the incubation of the bacteria with the clone and applying a heat 

shock. Liquid bacterial culture was inoculated to amplify the plasmid DNA which 

was then extracted through mini and midi preps. Restriction digests of the plasmid 

DNA where undertaken to check the plasmid DNA was what it was expected to 

be which can be determined by the fragment pattern seen after digestion.  

Initial immunocytochemistry experiments were undertaken using the pCMB6-

entry vector but due to low levels of expression a construct using a pCAGGs 

plasmid was produced, to increase mammalian expression, this included a YFP 

tag in place of the Flag (DDK) tag, to avoid potential issues with SLC15A5 

antibody binding. The transfection process was repeated with the new pCAGGs-

SLC15A5-YFP plasmid DNA.  

The methods used for these experiments are detailed below. 

 

2.3.1 Buffers, reagents and stock materials 

All general-purpose chemicals, with exception of alcohols (purchased from Fisher 

Scientific) were acquired from Sigma-Aldrich. All solutions for cell culture were 

supplied by Lonza, except and penicillin/streptomycin from PAA laboratories. 

Components of solutions are detailed in (Table 2.6). 
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Table 2.6: Solutions for molecular cloning techniques 

Solution Constituents 

10% APS 10% (w/v) APS 

10% SDS 10% (w/v) SDS 

100X SOC 
2M glucose, 1M MgCl2, 250mM KCl, sterilised by push 
filtration (0.22µm filter)  

2X PFA 8% (w/v) paraformaldehyde, in PBS, pH adjusted to 7.4 

3X Laemmli sample 
buffer 

10% (v/v) glycerol, 2% (w/v) SDS, 5% (v/v) β-2 
mercaptoethanol, 0.002% (w/v) bromophenol blue, 
0.125M Tris-Cl (pH 6.8) 

Ampicillin 100 U./ml 

Destain 40% (v/v) MeOH, 10% (v/v) acetic acid, in dd.H20 

DMEM 10 % serum 
(HEK) 

10% (v/v) heat-inactivated FBS, 100 U./ml penicillin, 
100ug/ml streptomycin, in DMEM 

6X DNA loading 
buffer 

30% (v/v) glycerol, 0.25% (w/v) bromophenol blue, 0.25% 
(w/v) xylene cyanol 

HE lysis buffer 
25 mM HEPES, 5 mM EDTA, 1 mM MgCl2, 10% (v/v) 
Glycerol, 1% (v/v) Triton-X100, 100 μM PMSF 

Kanamycin 50 μg/ml 

LB agar 15 g/L agar, 10 g/L tryptone, 10 g/L NaCl, 5 g/L yeast 
extract 

Luria Bertani Broth 10 g/L tryptone, 10 g/L NaCl, 5 g/L yeast extract 

Lysine block 
5% (v/v) horse serum, 5% (v/v) goat serum, 50 mM poly-
D-lysine, 0.2% (v/v) Triton X-100 

Running buffer 25 mM Tris-base, 192 mM glycine, 0.1% (w/v) SDS 

TAE 40 mM Tris-base (pH 7.6), 20 mM acetic acid, 1 mM EDTA  

TBS 20mM Tris-Cl, 150mM NaCl 

TBS-T 20mM Tris-Cl, 150mM NaCl, 0.1% (v/v) Tween-20 

Transfer buffer 
25mM Tris-base, 192mM glycine, 0.1% (w/v) SDS, 20% 
(v/v) MeOH 

 

Plastic ware for tissue culture was acquired from Greiner Bio-one, with other 

general laboratory consumables purchased from Alpha-Labs and Fisher 

Scientific. Kits for deoxyribonucleic acid (DNA) amplification and gel extraction 

were purchased from Qiagen, restriction enzymes were supplied by Promega 

and New England Biolabs.  

Specialist kits, antibodies, chemicals and consumables bought from alternate 

sources are noted in the text where appropriate. 
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2.3.2 DNA Plasmid preparation  

 

Constructs 

The SLC15A5 plasmid for expression studies was purchased from Origene. 

SLC15A5 fusion genes were subcloned by PCR (primer details outlined in  

Table 2.7) from its original cytomegalovirus (CMV) vector into a pCAGGS 

backbone (gift of Dr John Chilton) to increase expression efficiency [103]. Full 

length SLC15A5 was excised from the pCMV6-Entry vector by HindIII overnight 

digestion and inserted into the corresponding sites of pCAGGS-mycFLAG. Maps 

for key expression vectors and cloning schemes can be found in Appendix C. 

Constructs were checked at all steps by restriction enzyme digest using unique 

sites within the inserts and analysis by agarose gel electrophoresis. 

 

Primer design 

 

Table 2.7 describes all primers that were designed, following the general rules of 

primer design [104], to have flanking sequences containing convenient sites for 

restriction digest and to omit the proteins native stop codon. 

 

Table 2.7: Details of custom designed primers 

Description Sequence 

Complement 
Length 

(bp) 
Restriction 
digest site Forward Reverse 

CMV6BamF 
GAC TGG ATC CGG 

TAC CGA GGA G 
  22 BamH1 

FLAGSalR 
ATA TGT CGA CTT AAA 
CCT TAT CGT CGT CAT 

C 
  31 Sal1 

SLC15BamF 
ATA TGG ATC CAT 
GTC TGT TAC AGG 

CTT TAC C 
  31 BamH1 
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SLC15SalR 
AAT TGT CGA CTC ATA 

GGG CTG TCT CCC 
AAA GAT C 

  34 Sal1 

2.3.3 Mini preps: Inoculating a liquid bacterial culture and recovering 

plasmid DNA from bacterial culture  

Small amounts of plasmid DNA, usually around 10μg per ml of bacterial culture, 

were extracted using the QIAprep Spin Miniprep Kit. These plasmids were used 

for restriction mapping, ligations and transient transfections to confirm 

fluorescence for fluorescent protein-tagged plasmids. 

 

A 5ml culture of bacteria was grown overnight in LB broth (Sigma) with 5μl of 

kanamycin (30mg/ml) selective antibiotic. This produced a LB broth with a final 

kanamycin concentration of 0.03. 

A 1.5ml aliquot of overnight bacterial culture was removed and centrifuged at 

16,200xg (13,000rpm) for 1 minute at 20oC. The supernatant was discarded and 

the pellet resuspended in 250μl of Buffer P1 (a resuspension buffer; 50mM 

Tris.HCl, pH8.0; 10mM EDTA; 100μg/ml RNAse A, without LyseBlue reagent). 

250μl of Buffer P2 (a lysis buffer; 200mM NaOH; 1% w/v SDS) was added to the 

suspension, and mixed via 4-6 inversions, to rupture the bacteria by alkaline lysis. 

Cellular debris was precipitated by the addition of 350μl Buffer N3 (a proprietary 

neutralization Buffer) and mixed by further 4-6 inversion until the flocculent 

precipitate was evenly dispersed. The mixture was then centrifuged at 16,200xg 

(13,000rpm) for 10 minutes. The supernatant was removed then added to a 

QIAprep spin column and centrifuged at 16,200xg (13,000rpm) for 1 minute. The 

column was washed by addition of 500μl Buffer PB (a proprietary binding buffer) 

which was then centrifuged at 16,200xg (13,000rpm) for 1 minute. A second wash 

was undertaken by the addition of 750μl Buffer PE (a low salt, high ethanol 
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proprietary solution) to the column which was then centrifuged at 16,200xg 

(13,000rpm) for 1 minute.  The flow through was discarded and the column 

centrifuged for a further 1 minute at 16,200xg (13,000rpm) (to remove residual 

ethanol). The column was then transferred to a fresh microcentrifuge tube. 55μl 

of molecular biology grade water (Sigma-Aldrich) was added to the column which 

was then incubated for 1 minute before a final spin at 16,200xg (13,000rpm) for 

1 minute to elute the DNA. Molecular biology grade water is 0.1mm filtered, has 

been analysed for the absence of nucleases and proteases and has undergone 

bioburden analysis.  

 

2.3.4 Midi preps: Inoculating a liquid bacterial culture and extracting 

plasmid DNA from bacterial culture  

Midipreps were used in the purification of up to 300μg of plasmid DNA using 

HiSpeed Midi Prep Kit (Qiagen) which was then used for expression and 

functional studies. 

 

A 5ml starter culture was grown overnight in LB broth with kanamycin a selective 

antibiotic. This was diluted 1:1000 in 50ml of LB broth with the kanamycin 

selective antibiotic and grown overnight. The bacteria were harvested by 

centrifugation at 1,900xg (4,500rpm) for 15 minutes at 4oC then resuspended in 

6ml of Buffer P1 (without LyseBlue added). The bacteria were lysed by the 

addition of 6ml of Buffer P2, mixed thoroughly by 4-6 inversions and incubated at 

room temperature for 5 minutes. Cellular debris was precipitated by the addition 

of 6ml of Buffer P3 (a neutralization Buffer; 3M potassium acetate, pH5.5) and 4-

6 inversions. This was then added to a QIAfilter Midi Cartridge and incubated at 

room temperature for 10 minutes. During this incubation, an anion-exchange 
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resin column (Qiagen HiSpeed Midi Tip) was prepared by the addition of 4ml 

Buffer QBT (an equilibration Buffer; 750mM NaCl; 50mM MOPS, pH 7.0; 15% v/v 

isopropanol; 0.15% v/v Triton X-100) which was allowed to empty under gravity. 

The cell lysate was push filtered in to the column and allowed to move through 

under gravity. The column was washed by the addition of 20ml Buffer QC (a wash 

buffer; 1M NaCl; 50mM MOPS, pH7.0; 15% v/v isopropanol). 5ml Buffer QF (an 

elution buffer; 1.25 M NaCl; 50 mM Tris.HCl, pH 8.5; 15% v/v isopropanol) was 

added to the column to elute the DNA and precipitated by the addition of 0.7 

volumes of isopropanol, inverted 4-6 times and incubated at room temperature 

for 5 minutes. Precipitated DNA was bound to a QIAprecipitator module, washed 

with 2ml 70% v/v ethanol and dried by pushing air through the module. DNA was 

recovered by the addition of 350μl of Buffer TE (a resuspension and storage 

buffer; 10 mM Tris.HCl, pH 8.0; 1 mM EDTA). 

 

The concentration of DNA recovered was quantified using a NanoDrop 2000c 

UV-Vis Spectrophotometer (Thermo Scientific) as previously described.  
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2.3.5 Pfu PCR of extracted bacterial DNA 

DNA, containing the gene of interest, was amplified via PCR using Pfu DNA 

polymerase (Promega). The highly thermostable DNA polymerase (from the 

hyperthermophilic archaeum Pyrococcus furiosus) was used in placed of labTAQ 

DNA polymerase due to its 3’5’ exonuclease (proofreading) activity, which 

enables the Pfu polymerase to correct nucleotide incorporation errors. 

 

The reaction mixture (outlined in Table 2.8) was combined in a sterile, nuclease-

free microcentrifuge tube on ice. It is critical to add Pfu DNA Polymerase after the 

addition of dNTPs or the proofreading activity of the polymerase may degrade the 

primers which may result in nonspecific amplification and reduced product yield. 

 

Table 2.8: Components Pfu PCR reaction mixture 

Component 
 Final 

concentration 

Pfu DNA Polymerase 10X Buffer with MgSO4 5μl 1X 

dNTP mix, 10mM each 1μl 200µM (each) 

Upstream primer 25 pmol 0.1–1.0µM 

Downstream primer 25 pmol 0.1–1.0µM 

DNA template Variable <0.5µg/50µl 

Pfu DNA Polymerase (2–3u/µl) Variable 1.25u/50µl 

Nuclease-Free Water (to final volume of 50μl) Variable  

 

 

The mixture was mixed gently then placed into the SimpliAmp Thermal Cycler 

(Applied Biosystems by Life Technologies) and heated to 95oC for an initial 2 

minute denaturing step. This was followed by 35 cycles of; 30 second DNA strand 

melting, 30 second annealing at 50oC, 2 minute extension at 72oC (which required 

1 minute per kilobase (Kb) of final PCR product). Finally a 5 minute extension 
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step at 72oC was carried out before samples were cooled to 4oC until the tube 

was collected. A 5μl aliquot of PCR product was mixed with 6X Agarose loading 

buffer (Table 2.1) and loaded onto a 0.8% w/v agarose gel to undergo 

electrophoresis and a verify the amplicon was of the predicted size. 

 

2.3.6 PCR product purification 

QIAquick PCR Purification Kit was used to remove any impurities such as salts, 

unincorporated nucleotides, agarose, or dyes and unincorporated nucleotides 

which can affect subsequent processing.  

Five volumes of buffer PB to one volume of PCR product was added to 10µl was 

added to 3M sodium acetate (pH5) and mixed by slowly pipetting up and down. 

The sample was when added to a QIAquick column which was placed inside a 

collection tube. The sample was centrifuged at 16,200xg (13,000rpm) for 13 

minutes. The flow through was discarded and the column placed back into the 

collection tube. 750µl buffer PE was added to the column then centrifuged at 

16,200xg (13,000rpm) for 1 minute. The flow through was again discarded. This 

time the column was placed into a clean 1.5ml centrifuge tube with 50µl of 

molecular grade water added to the centre of the QIAquick membrane. The tube 

was then centrifuged for a further minute at 16,200xg (13,000rpm).  

 

Purified PCR products underwent overnight restriction digest with an appropriate 

restriction enzyme at 37oC. The digested product was combined with 6X DNA 

loading buffer and loaded onto a 0.8% w/v agarose gel which was run for 40 

minutes at 80V to undergo electrophoresis. Afterwards the gel was stained in 

GelRed® nucleic acid gel stain for 20 minutes on the rocker at room temperature.  
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2.3.7 Gel purification of DNA  

QIAquick Gel Extraction Kit was used to clean the DNA fragments from enzymatic 

reactions and remove unwanted impurities such as salts, agarose, or dyes which 

can affect subsequent processing. 

After suitable restriction digestion, DNA was electrophoresed at 100V on a 0.8% 

w/v agarose gel in TAE buffer containing 1:20,000 Sybr Safe (Life Technologies) 

until DNA bands could be resolved and the appropriate fragment excised and 

placed into a microcentrifuge tube. The DNA was purified using a QIAquick Gel 

Extraction Kit. 

The volume of gel was estimated by weight, with 100 mg ≈ 100 μl. Three volumes 

of buffer QG were added and incubated at 50oC for 10 minutes, vortexing every 

3 minutes. If the colour of the mixture is orange or violet, then 10μl of 3M sodium 

acetate was added to the dissolved gel solution to ensure the correct pH as 

indicated by a yellow colour. The solution was then added to a QIAquick column 

and spun at 16,200xg (13,000rpm) for 1 minute. The column was washed with 

750μl buffer PE (a low salt, high ethanol proprietary solution) and the column 

centrifuged at 16,200xg (13,000rpm) for 1 minute. The flow through was 

discarded and the column was spun for a further minute at 16,200xg (13,000rpm) 

to remove residual ethanol. The column was transferred to a fresh 

microcentrifuge tube and 30μl of molecular biology grade water was added to the 

column and incubated for 1 minute before a final spin at 16,200xg (13,000rpm) 

for 1 minute to elute the DNA. 
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2.3.8 Ligation  

The reaction mixture (Table 2.9) was made up to a total of 10μl in molecular 

biology grade water then incubated overnight at 14oC.  

 

Table 2.9: Ligation reaction mixture 

Component  Final Concentration 

10X T4 ligase buffer* (Promega) 1 μl  

Restriction digested backbone  ~80ng 

Restriction digested insert  ~240ng 

T4 DNA ligase (Promega)  2U 

*(300mM Tris.HCl, pH 7.8; 100 mM MgCl2; 100 mM DTT and 10 mM ATP) 

 

The amount of cDNA was estimated by comparison to known amounts of DNA in 

standard size marker ladders in an agarose gel. 1μl of ligation product was used 

to transform bacteria.  

 

2.3.9 Bacterial transformation 

All bacterial transformations were carried out using standard sterile practice in a 

designated category 2 laminar flow containment hood. A 40μl aliquot of competent 

DH5α Escherichia coli (E.coli, NEB) was thawed on ice. 1μl of plasmid DNA was 

then added and mixed to the E.coli and mixed by gentle tapping. The bacteria 

were left on ice for a further 15 minutes.  

A heat shock method was used to allow the bacterial cells to take up the plasmid 

DNA. During heat shock transformation a sudden increase in temperature 

creates pores in bacterial plasma membranes allowing for plasmid DNA to enter 

the cell. This method involved cells being incubated at 42oC for 45 seconds, then 

returned to the ice for a further 2 minutes.  
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The bacteria were then added to 1ml of SOC (LB containing 20mM glucose, 

10mM MgCl2 and 2.5mM KCl) and placed in a shaker at 37oC for 1 hour, to allow 

expression of antibiotic resistance proteins. The bacteria cells were collected by 

centrifugation at 1,500xg (4,000rpm) for 2 minutes at 4oC. 800μl of the 

supernatant was removed, the bacteria were gently resuspended in the 

remaining liquid which was then plated out on an agar culture plate containing 

the ampicillin selection antibiotic.  

 

2.3.10 Human Embryonic Kidney (HEK) 293 cell culture 

HEK 293 cells were originally transformed in 1977 by Frank Graham, a post-doc 

in Alex Van der Eb’s laboratory. They are named after the cell type, human 

embryonic kidney, and the fact that this transformation was Graham’s 293rd 

experiment. The cells were transformed through exposure to sheared fragments 

of human adenovirus type 5 (Ad5) DNA which lead to the incorporation of Ad5 

into chromosome 19 of the kidney cell genome [105].  

 

Cell lines used were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM), 

containing 100U/ml penicillin and 100μg/ml streptomycin and 10 % (v/v) foetal 

calf serum. HEK 293 cells were incubated at 37oC, 5% CO2, and were routinely 

passaged at 80-90 % confluency.  

The plasmid DNA was then used to transfect HEK 293 cells.  After cells had been 

grown to 80-90 % confluency they were counted using a Neubauer chamber then 

seeded onto cover slips at a concentration of 30x104. Overnight lipofectamine 

transfections were carried out with cells then fixed to the cover slips (4% PFA at 

room temperature for 15 minutes). Immunocytochemistry was then carried to 
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stain the cells ready for visualisation under the confocal microscope. Details of 

the methods used are outlined below; 

 

2.3.11 Transient transfection 

Lipofectamine LTX (Invitrogen) transfections where undertaken following the 

manufacturer’s protocol. Cells were grown until 40-80% confluency. An 

appropriate amount of sterile DNA (2.5µg per 35mm dish) was diluted in Optimem 

(Gibco), to a suitable volume for the size of the culture dish being used. If multiple 

constructs were to be expressed, plasmids were combined prior to addition to 

enhance co-expression efficiency. The specified amount (3.75-8.75μl) of 

Lipofectamine LTX reagent required was added and the contents mixed by gently 

tapping the microcentrifuge tube. The transfection mixture was incubated for a 

minimum of 30 minutes at room temperature (Table 2.10).  

 

Table 2.10: Transfection mixture composition 

Component  
Volume (µl) 

per 35mm dish 

Plain DMEM 493 

DNA (1µg/µl) 2.5 

Lipofectamine LTX 4.5 

Total  500 

 

 

Following incubation, the transfection mixture was added to the cell culture 

medium and the cells returned to the incubator at 37oC and 5% CO2 overnight. 

  



92 
 

2.3.12 Immunocytochemistry 

Cells were seeded on to coverslips at a density of approximately 1 x 104 cells per 

13mm diameter coverslip, and cultured for a minimum of two days prior to 

staining. All washes were carried out at room temperature. Cells were fixed by 

adding matching volume of 4% w/v paraformaldehyde (PFA), pre-warmed to 

37oC, to the culture medium. This was then removed and replaced with fresh PFA 

(pre-warmed) with cells fixed for 15 minutes at 37oC.  

 

After fixing, the coverslips underwent three 5 minute washes with PBS. Non-

specific binding was pre-blocked by incubation at room temperature in lysine 

block for 1 hour. The primary antibodies (Table 2.11) was diluted in lysine block 

with 50μl applied to each coverslip to cover it completely. This was then left for 1 

hour at room temperature.  

 

Table 2.11: Details of primary antibodies used for immunocytochemistry (ICC) 
and Western blot (WB) analysis 

Antigen Host Dilution Supplier Application 

SLC15A5 Rabbit 1:100 Atlas Antibodies ICC & WB 

Myc Mouse 1:100 Abcam ICC & WB 

FLAG Mouse 1:100 Abcam ICC & WB 

 

The coverslips were then underwent three further 5 minute washes with PBS. 

The appropriate fluorescently conjugated secondary antibodies (Table 2.12) were 

diluted in lysine block and applied as with the primary antibodies and incubated 

for a minimum of 1 hour at room temperature. 
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Table 2.12: Details of secondary antibodies used for immunocytochemistry 
(ICC) and Western blot (WB) analysis 

Target Host Conjugate Dilution Supplier Application 

Rabbit IgG Goat AlexaFluor 568 1:400 Invitrogen ICC 

Mouse IgG Goat AlexaFluor 488 1:400 Invitrogen ICC 

Mouse IgG Goat AlexaFluor 633 1:400 Invitrogen ICC 

Rabbit IgG Goat 
Horseradish 
Peroxidase 

1:5000 Sigma WB 

Mouse IgG Goat 
Horseradish 
Peroxidase 

1:5000 Sigma WB 

 

Coverslips were then washed three more times with PBS for 5 minutes. When 

appropriate the final wash was replaced with 4, 6- diamidino-2-phenylindole 

(DAPI, Invitrogen) at 1:1000 in PBS to stain nuclei. After removing excess PBS, 

by blotting, coverslips were mounted on Superfrost slides (VWR) in Fluorsave 

(Calbiochem) and left to cure for 24 hours, in the dark, at room temperature. 

Images were captured using a Leica SP8 confocal microscope.   
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2.4 Western blotting 

To detect and analyse endogenous proteins and expression of fusion protein 

products from exogenous DNA transiently transfected in cell lines as previously 

described, the proteins were first extracted then subjected to Western blot 

analysis.  

 

2.4.1 Preparation of cell lysates 

Cells were typically seeded in 6-well plates one day prior to experimentation. 

Where appropriate, cells were transfected and allowed to express the exogenous 

constructs for 18-24 hours. Growth media was removed from culture vessel prior 

to being placed on ice. Cells were washed with chilled PBS then 150μl of HE lysis 

buffer was added. The dish was swirled to ensure coverage then left on ice for 

10 minutes. The bottom of the culture vessel was scraped, the lysates collected 

in 1.5ml microcentrifuge tube and then spun at 16,200xg (13,000rpm) for 10 

minutes at 4oC. The supernatant was carefully transferred to a fresh 

microcentrifuge tube, without disturbing the pellet of non-solubilised cellular 

material. The supernatants were retained for further analysis. 

 

2.4.2 Protein quantification  

A Pierce bicinchoninic acid (BCA) Protein Assay Kit (Thermo Scientific) was used, 

according to the manufacturer’s protocol to estimate the amount of protein 

present in cell lysates.  

Working reagent was prepared by combining 50 parts of BCA reagent A with 1 

part of BCA reagent B. Bovine serum albumin protein standards (0.2-1.2 μg/ml) 

were prepared in a 96-well plate by diluting 2mg/ml stock with the same diluent 

as the samples. As HEPES-EDTA (HE) lysis buffer contains more EGTA than the 
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microplate assay can accommodate, it was necessary to first dilute the lysis 

buffer 1:10 with PBS before preparing the standards. The samples were also 

diluted 1:10 in PBS and 10μl of both samples and standards were loaded into 

wells in triplicate.  

Following an 8 minute incubation at room temperature on an orbital shaker (LSE 

Low Speed Orbital Shaker, Corning), absorbance was measured at 562nm using 

a PHERAstar FS microplate reader (BMG Labtech). Concentrations of each 

sample were calculated against the standard curve. Each sample was then 

diluted in appropriate lysis buffer and 1x Laemmli sample buffer to give 1mg/ml. 

Samples were then stored at -20oC until required.  

 

2.4.3 SDS-PAGE separation of proteins  

Sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis (SDS-PAGE) 

was used to separate proteins according to their molecular weight. 

SDS is an anionic detergent with a net negative charge across a wide pH range 

that denatures proteins, eliminating the influence of the structure and charge of a 

polypeptide. During electrophoresis proteins are separated based solely on chain 

length when a voltage is applied and they migrate through the acrylamide gel 

matrix towards the positively charged electrode.  

The resolution of the resolving gel required is determined by the length of the 

polypeptide (Table 2.13). A 10% resolving gel was used to investigate SLC15A5 

due to its size of 65.2kDa (65,263Da).
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Table 2.13: SDS-PAGE gel percentage recommendation based on protein size. 

Protein size (kDa) Gel Percentage (%) 

4-40 20 

12-45 15 

10-70 12.5 

15-100 10 

25-200 8 

 

The 10% SDS-PAGE gels were prepared according to the recipe outlined in 

Table 2.14 using the Mini-PROTEAN™ Tetra Handcast System (BioRad). 

Ammonium persulphate (APS) and N,N,N',N'-tetramethylethane-1,2-diamine 

(TEMED) were added last to initiate polymerisation (setting) of the acrylamide. 

 

Table 2.14: SDS-PAGE gel composition. 

Component Stacking Gel (4%) Resolving Gel (10%) 

40% Acrylamide/Bis 0.7 6.3 

1M Tris-HCl pH 6.8 0.88 - 

1.5M Tris-HCl pH 8.8 - 6.25 

10% SDS 0.07 0.25 

10% APS 0.07 0.125 

ddH2O 5.28 12.1 

TEMED (μl) 2.5µl 2.5µl 

Total volume*  7 25 

*Volumes (in ml, unless otherwise stated) are for 40% Acrylamide/Bis solution 
37.5:1 ratio and makes 2 gels.
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Each well was loaded with 25μg of protein in Laemmli sample buffer and 5μl 

BLUeye Prestained Protein Ladder (Gene Flow) was loaded at either end of the 

gel. The loaded gel was then immediately run at 200 mA on ice for 90 minutes in 

running buffer (detailed in Table 2.6).  

 

2.4.4 Membrane transfer 

Following the separation of proteins by SDS-PAGE, gels were incubated in 

transfer buffer for 10 minutes to reach stability. This step was required to allow 

expansion of the gel as the polyacrylamide takes on water. Gels that do not 

undergo this equilibration step can swell during transfer resulting in poor protein 

resolution.  

Proteins were then transferred to Immobulon-P polyvinylidene difluoride (PVDF) 

transfer membrane (Merck) by sandwiching the two together between 

chromatography-grade blotting filter paper (GE Healthcare) and applying a 

constant current of 200mA over the stack to enable efficient migration of the 

proteins towards the anode and binding to the PVDF membrane. 

 

2.4.5 Immunodetection and visualisation  

After transfer, PVDF membranes were blocked with 5% (w/v) skimmed milk in 

tris-buffered saline with 0.1% Tween-20 (TBS-T) for 1 hour at room temperature 

to prevent non-specific binding of the detection antibodies. Blocked membranes 

were then incubated in primary antibody solution (primary antibodies listed in 

Table 2.11). 

Membranes were then removed from the primary antibody and washed in TBS-T 

three times for 5 minutes. Incubation for 1 hour at room temperature with 

appropriate secondary antibody (detailed in Table 2.12) conjugated to horse-
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radish peroxidase (HRP) followed with another set of washes. Proteins were 

visualised using enhanced chemiluminescence (ECL) detection reagent. This 

method involves the breakdown of the ECL detection reagent by the HRP 

conjugated to the secondary antibody. 
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2.5 Gene expression methods 

 

2.5.1 RNA extraction 

RNA was extracted from whole blood collected in PAXgene Blood RNA Tubes 

(BRT) and purified for sequencing using the Qiagen PAXgene blood RNA kit 

according to the manufacturer’s instructions. 

The RNA concentration of samples was measured using the NanoDrop 2000c 

UV-Vis Spectrophotometer (Thermo Scientific), as previously described, with the 

quality of the RNA measure by the Agilent 2200 TapeStation System (Agilent 

Technologies).  

Assessing RNA quality is a critical step as the integrity of the RNA determines 

the success of downstream experiments including cDNA library construction and 

qPCR. The Agilent 2200 TapeStation System compares relative ratios of signals 

to produce an RNA integrity number (RIN) equivalent (RINe) score. This RINe 

uses the 1-10 scale as RIN where a score of 10 describes the highest quality 

RNA and 1 indicates the RNA is completely degraded. 

 

2.5.2 Whole transcriptome sequencing  

Experiments outlined below were undertaken by the Exeter Sequencing Service 

(Exeter Sequencing Service and Computational core facilities at the University of 

Exeter. Medical Research Council Clinical Infrastructure award (MR/M008924/1). 

Wellcome Trust Institutional Strategic Support Fund (WT097835MF), Wellcome 

Trust Multi User Equipment Award (WT101650MA) and BBSRC LOLA award 

(BB/K003240/1). 

Reverse transcription is the process by which single stranded complementary 

DNA (cDNA) is synthesized using a reverse transcriptase enzyme and an RNA 
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template. A TruSeq stranded total RNA sample preparation with RiboZero Globin 

kit (Illumina) was used to prepare whole-transcriptome sequencing libraries from 

blood-derived RNA by depleting rRNA, via a bead-based method, and 

synthesising cDNA. The quality of the cDNA was checked using the High 

Sensitivity D1000 ScreenTape system (HS D1000) (Aligent).  

Accurate quantification of the library was undertaken using the NEBNext® Library 

Quant Kit (Illumina) in conjunction with the StepOnePlus™ Real-Time PCR 

System prior to undergoing NGS sequencing. This quality control (QC) step is 

vital to obtain maximum, high quality NGS sequencing data.  

The NGS data was then analysed by Dr Ryan Ames (University of Exeter) to infer 

transcriptome wide expression levels.   
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CHAPTER 3 

INVESTIGATING INHERITED FORMS OF 

HEARING LOSS IN THE AMISH COMMUNITY 
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 Investigating inherited forms of hearing loss in the 

Amish community 

 

3.1 Hearing 

 

3.1.1 The mammalian ear 

Consisting of the three basic parts; the outer ear, the middle ear and the inner 

ear [106], the mammalian ear is an intricate physiological apparatus that collects 

a wide spectrum of sounds of various frequencies and intensities from the 

environment. By transferring this information to the brain, as an electrical signal, 

it facilitates the interpretation of sound enabling them to not only be identified but 

their relative distance and direction to be determined [107].  

The outer ear consists of the visible auricle and the ear canal (Figure 3.1a). Its 

primary function is to collect sound waves from the environment, funnel them into 

the ear canal and onto the tympanic membrane (ear drum), a thin, circular layer 

of tissue. Sound waves cause this thin membrane to vibrate, passing the sound 

waves into the middle ear.   

The middle ear contains three small bones, or ossicles, called the malleus 

(hammer), the incus (anvil) and the stapes (stirrup). The malleus, being attached 

to the inside surface of the tympanic membrane, vibrates when sound waves hit 

the membrane. This is turn causes the subsequent bones to vibrate, passing the 

waves through the middle ear. Upon vibration the stapes makes contact with the 

oval window, a membrane covered opening leading into the cochlear, that divides 

the middle and inner ear.  
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Figure 3.1: Schematic illustration of the human ear. (a) The ear consists of the 
outer, middle and inner ear. (b) A section through the cochlear. (c) The organ of 
Corti. Image adapted from [107]. 

 

The inner ear occupies the cavity in the temporal bone and houses the sensory 

organs for hearing and balance. This location serves as an acoustic chamber 

enabling the capture of low intensity sounds [107].  

The cochlear is a snail-shaped organ consisting of a spiral canal that turns 2.5 

times around an axis, the modiolus, ending in the helicotrema [108]. This canal 

is divided by two membranes the Reissner’s, or vestibular, membrane and the 

basilar membrane which forms three fluid-filled ducts; the scala vestibular and 

the scala tympani, filled with perilymph, and the scala media (Figure 3.1b). The 

scala media, also called the cochlear duct, is an endolymph-filled cavity that 

houses the organ of Corti, commonly referred to as the organ of hearing, which 

sits on the basilar membrane (Figure 3.1c). 
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Mechanical vibration of the oval window, initiated by the stapes, causes the 

endolymph to move through the cochlear duct and vibrate the basilar membrane 

against the tectorial membrane [107]. Embedded within the basilar membrane 

are specialised cells called hair cells which, through a process of 

mechanoelectrical transduction (MET), are responsible for transferring this 

mechanical stimuli into an electrochemical signal which is the basis of hearing. 

 

3.1.2 Mechanoelectrical transduction in the mammalian ear 

There are two types of hair cell; inner hair cells (IHC) and outer hair cells (OHC) 

that are arranged in a highly order pattern [109] consisting of one row of IHCs 

and three rows of OHCs supported by various other non-sensory cells [110] 

forming the organ of Corti (Figure 3.1c). The IHCs are the main sensory cells 

which convert the sound-induced motion of the endolymph into an 

electrochemical impulse that is transmitted to the auditory cortex of the brain, via 

the auditory nerve, capturing information regarding the frequency, intensity and 

timing of sounds. The role of the OHCs is to act as amplifiers modifying the 

sensitivity and selectively to sound [111].   

 

Both hair cell types have a hair bundle located on its apical surface, consisting of 

between 20-300 actin-rich projections called stereocilia and a single microtubule-

based kinocilium, [112]. The hair bundles of the IHCs extend into the scala media 

whereas the stereocilia of the OHC bundles are connected to the tectorial 

membrane [111].  

The stereocilia undergo a precise assembly process that gives the hair bundle an 

asymmetric, staircase appearance [113] (Figure 3.2a). Each stereocilia within in 

a hair bundle is connected to an adjacent stereocilia via a cadherin tip link (Figure 
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3.2bi) which connects the tops of the small and middle row stereocilia with the 

sides of the taller neighbouring stereocilia [110]. These connections are 

considered to be an essential part of the MET machinery [114, 115].  

 

 

Figure 3.2: (a) Scanning electron microscopy showing the organisation of the 
IHCs viewed from the top of the organ of Corti. Schematic representation of an 
IHC with relaxed tip links and closed MET channels (bi) and with tip links under 
tension and MET channels open as a result of mechanical deflection by a sound 
wave (bii). Adapted from Benjamin Cummings, Pearson 2008. 

 

Small (1-100nm) mechanical deflections of the hair bundle in the direction of the 

taller stereocilia [110, 116] increases tension in a gating spring [114] that leads 

to the opening of MET ion channels located atop the stereocilia (Figure 3.2bii). 

Although much is known about the MET channels of the HCs, the molecular 

identity of the gating spring and the MET channel protein and how these channels 

are activated is yet to be confirmed [114, 116]. However, current literature 

suggests the MET channel may belong to the transient receptor potential (TRP) 

channels [117].  
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The opening of these channels initiates an influx of sodium (Na+), potassium (K+) 

and calcium (Ca2+) ions into the hair cells. This depolarises the basolateral 

membrane of the hair cells and triggers the calcium dependent exocytosis of the 

neurotransmitter glutamate [111] via synaptic ribbons. These ribbons tether 

synaptic vesicles permitting synchronous auditory signalling [118]. The release 

of glutamate into the synaptic cleft excites adjacent afferent auditory neurones 

signalling the auditory centres in the brain [111].  

 
 

3.1.3 Ion Homeostasis in the mammalian ear 

Ion homeostasis is the maintenance of highly asymmetric concentrations of the 

major inorganic ions [119]. MET is heavily reliant on ion homeostasis to maintain 

the specific ionic gradient between the perilymph and endolymph, unique to the 

inner ear [120]. The ion composition of the perilymph is similar to other 

extracellular fluids, such as cerebrospinal fluid and blood plasma, consisting of 

5mM K+ and 150mM Na+. However, the endolymph, in addition to protein, Mg+ 

and Ca2+, comprises of high (150mM) K+ and low (5mM) Na+ which results in a 

highly positive endocochlear potential (EP) of +80mV compared to the perilymph 

[121, 122].  The function of IHCs is highly dependent upon this EP [123] which 

greatly enhances the flow of ions into the cells during MET permitting greater 

sensitivity to sound [121].  

The non-sensory epithelium cells of the stria vascularis generate the high 

concentration of K+ and in turn the highly positive EP with virtually no input of 

metabolic energy [120]. These cells also play a key role in the recycling of the K+ 

(Figure 3.3).  
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Figure 3.3: Potassium ion (K+) recycling in the inner ear. MET of the IHCs causes 
an influx of K+ into the hair cells. These ions are then secreted back into the 
endolymph by the stria vascularis (SV) via supporting cells and the spiral ligament 
(SL). Image taken from [114]. 

 

Several recycling pathways have been suggested comprising of a system of 

channels, transporters and gap junctions with many of the molecules involved 

identified via mutations in mice and humans that have led to hearing loss [120].  

Any genetic mutation leading to an imbalance of K+ in the endolymph and loss of 

EP can cause a number of hearing deficits including deafness [114, 117, 120, 

121].  
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3.2 Hearing Loss 

The World Health Organisation has reported that ~466 million people worldwide 

experience disabling hearing loss and predict this to rise to over 900 million by 

2050 [124]. Hearing loss is the most prevalent sensory deficit disorder in 

developed societies [125] with congenital hearing loss affecting at least 1 in 500 

new-borns [126, 127] and more than 50% of the population over the age of 80 

suffering from presbyacusis (age-related hearing loss) [107].  

 

3.2.1 Types of hearing loss 

Hearing loss is an extremely heterogeneous condition [128, 129] and can be 

classified in a number of ways depending on the age of onset, type, severity, 

progression, frequency affected and laterality, if it affects one (unilateral) or both 

(bilateral) ears. It can also be grouped according to its aetiology (genetic or 

environmental factor) and whether the hearing loss occurs with (syndromic) or 

without (non-syndromic) other clinical features [128] (Table 3.1).                          
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Table 3.1: Characteristics for classifying hearing loss [128-130]. 

Classification Description of hearing loss 

Age of Onset 
Congenital (present at birth), prelingual (0-5years of 
age), or postlingual (>5 years of age) 

Type Sensorineural, conductive or mixed 

Severity 
Mild (20-40dB), moderate (41-55dB), moderately 
severe (56-70dB), severe (71-90dB), or profound 
(>90dB) 

Progression Progressive or stable 

Tone frequency affected 
Low (<1000Hz), middle (1000-2000Hz) or high 
(>2000Hz) 

Laterality Unilateral or bilateral 

Aetiology Environmental/acquired or genetic 

Additional clinical features Syndromic or non-syndromic 

Inheritance Recessive, dominant, X-linked or mitochondrial 

Presence of vestibular 
disorder 

Hearing loss with or without vestibular dysfunction 

 

 

Sensorineural hearing loss (SNHL) occurs when the conversion of mechanical 

sound waves into an electrical signal is impaired due to malfunction of the inner 

ear [131] including the membranous labyrinth, the organ of Corti or the 

vestibulocochlear nerve [132]. SNHL most commonly has an underlying genetic 

cause. There are currently over 6000 causative variants in more than 110 genes 

linked to non-syndromic SNHL (NS-SNHL) [131] with additional genes being 

responsible for syndromic hearing loss. Conductive hearing loss is caused by 

abnormalities of the outer ear or the ossicles of the middle ear preventing the 

conduction of sound waves and is most commonly caused by an environmental 

factor [131]. Mixed hearing loss is when both the sensorineural and conductive 

parts of the ear are impaired. 
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Environmental factors such as exposure to ototoxic chemicals, for example 

aminoglycosides, exposure to excessive noise and neonatal insults including 

prematurity, jaundice or prenatal infection [125, 133] account for approximately 

20% of prelingual hearing loss with genetic causes giving rise to the remaining 

80% [134] (Figure 3.4). 

 

 

Figure 3.4: Causes of prelingual hearing loss in developed countries figure 
adapted from [131].  

 

It is widely accepted that early identification and accurate diagnosis of the 

underlying genetic cause is crucial for selecting the most appropriate therapeutic 

option. This is of particular importance when assessing cochlear implant 

candidacy [111, 125] and when monitoring potential future health concerns of 

genetic syndromes allowing for the implementation of protective management 

strategies [132]. Discovering the underlying cause also allows families to receive 

more targeted genetic counselling and be provided with information on the 

prognosis for their child and the predicted chance of recurrence in future offspring 

[111]. 



111 
 

3.2.2 Impact of hearing loss 

Despite hearing loss being ranked as the fifth leading cause of years lived with 

disability by the Global Burden of Disease Study in 2103, it receives limited 

funding and public awareness [135]. Elucidating the underlying genetic cause 

and pathophysiology of congenital hearing loss presents numerous benefits to 

affected individuals, their families and to communities as a whole.  

The social costs of untreated hearing loss is ~$1.1million dollars per individual 

[111], presenting a huge economic burden. Early intervention, in the form of 

Universal Newborn Hearing Screening (UNHS), is predicted to reduce these 

costs ~75% and most importantly improve the life opportunities of affected 

individuals [136]. The impact of hearing loss on an individual is profound effecting; 

speech development and language acquisition, cognitive and psychosocial 

development, independence and overall quality of life [135, 137, 138] resulting in 

substantial negative effects on educational achievement and work life 

opportunities [135, 138]. Interventions implemented before 6 months of age 

provide the greatest chance of developing age-appropriate speech and language 

skills, [137] making it imperative for the genetic cause to be identified as early as 

possible [125]. During the past 20 years UNHS has become a standard of care 

throughout the US and UK [139, 140] reducing the age of diagnosis, enabling the 

implementation of proactive intervention efforts [125, 137, 139, 141] and 

informing treatment options such as cochlear implantation candidacy [142].  
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3.2.3 Diagnosing hearing loss 

It is widely accepted that hearing loss is an extremely heterogeneous condition 

[143]. Approximately 1% of all human genes are predicted to be involved in the 

hearing process and therefore could be responsible for the diverse phenotypes 

observed in hearing loss [137].  

For a number of years this clinical and genetic heterogeneity slowed the 

discovery of new causative genes [125] and prevented comprehensive genetic 

testing and large scale population screening [133] thus making molecular 

diagnosis very difficult [128]. With more than 110 genes and in excess of 6000 

mutations [131] reported to cause NS-SNHL traditional strategies involving single 

mutation screening using Sanger sequencing were not feasible due to cost and 

time constraints [131]. The advent of next generation sequencing (NGS) 

technologies, whole exome sequencing (WES) and whole genome sequencing 

(WGS), has increased the speed and proficiency of detecting hearing loss genes 

with 21 new genes identified between 2010 and 2015 [125].  

In addition to expediting the discovery of causative genes these new technologies 

have also permitted the implementation of improved diagnostic testing increasing 

diagnostic rates by approximately 50% [128, 143]. This enables families to be 

counselled appropriately, with regard to the progression and prognosis of the 

condition, receive the most suitable treatment [111] and facilitates affected 

individuals in achieving optimal cognitive development [137].   

In the UK the British Association of Paediatricians in Audiology (BAPA), whose 

aim is to maintain standards in audio-vestibular medicine [144], have published 

guidelines to standardise the investigations undertaken to diagnosis childhood 

hearing impairment after a failed UNHS. These guidelines (summarised in 
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Appendix D) utilise a gene panel approach to identify causative mutations for 

non-syndromic and syndromic hearing loss [145].  

 

The new challenge for genetic investigations and genomic research no longer 

comes from the sequencing of variants, which has become the cheapest and 

simplest part, but instead resides in the accurate interpretation of identified 

variants which currently incurs the highest expense due to the time and expertise 

required from a number of highly qualified individuals [125].  

 

3.2.4 Treatments 

Hearing impairment is the only sensory defect that can be successfully treated, 

even when hearing loss is complete [137] due to the one of the most significant 

advances in modern medicine, the cochlear implant [146]. 

 

Cochlear implants 

Cochlear implants (CIs) are a surgically placed electronic stimulus prostheses 

that can restore the missing, or impaired, function of the IHCs by taking on the 

role of transforming an acoustic signal into an electrical impulse capable of 

activating the auditory nerve (Figure 3.5) [141].  
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Figure 3.5: A typical modern cochlear implant system that converts sound to 
electric impulses delivered. Image shows the location of the; microphone (1), 
speech processor (2), transmitter (3), receiver (4), stimulator (5),  electrodes 
(6&7) and the auditory nerve (8) [147].  

 

However, to achieve the maximum therapeutic benefit of this treatment, and to 

minimise the effect on language development, it is necessary to detect and 

diagnose hearing loss as early as possible [141]. Studies have observed a 

negative correlation between outcomes with CIs and the duration of hearing loss. 

This indicates that those individuals that experience prolonged periods of auditory 

deprivation, for example those with congenital hearing loss who are implanted 

after the age of three years or individuals with postlingual hearing loss that 

experience a long period of severe hearing loss prior to implantation, are more 

likely to experience negative outcomes compared to those implanted earlier in 

life or within a year of developing substantial hearing loss for individuals affected 

by postlingual hearing loss [148].  

Candidacy for CIs is comprehensively assessed via medical and audiological 

examination [146]. Conventionally children with severe to profound hearing loss 

with speech recognition <12-30% where considered CI candidates [149]. 
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However, due to improvements in CI technology and surgical approaches, the 

criteria for CI implantation has expanded, with the FDA now approving children 

as young as one year of age and individuals with residual low-frequency hearing 

impairment [146].  

 

Biological treatments  

Although there is currently no biological treatment for hearing loss there is an 

apparent need for a treatment that restores auditory function without the need for 

a prosthesis or at the cost of any residual hearing [150, 151]. Within the auditory 

research community there is increasing interest into a variety of techniques that 

look to regenerate mammalian hair cells and restore their function [151].  

 

For a number of years gene therapy, the treatment of human disease using 

genetic material, was the focus of many research groups (Reviewed in [151]). 

Recent advances in this field including improved methods of gene delivery and 

improvements in hair cell regeneration [150] have demonstrated exciting proof-

of-principle studies in animal models which continues to suggest gene therapy as 

a possible treatment for some forms of hearing loss [152].  

However, the clinical application of gene therapy, for hearing loss and other 

conditions, is currently limited by the perceived risk of side effects which are still 

under investigation [153]. With almost 2600 clinical trials, in 38 countries, having 

been completed, underway or approved [154] there is hope that the findings from 

these studies will aid the translation of gene therapy to human patients and the 

development of an effective treatment for individuals with hearing loss [152].  
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In addition to gene therapy, genome editing technologies are an exciting new 

area of research. Genome editing technologies modify the genome at a targeted 

locus to correct genetic variants, known to cause hearing loss (and other 

disorders), by restoring the wild-type sequence in native DNA through the use of 

programmable nucleases [151]. The CRISPR/Cas9 system, derived from 

prokaryotic immune systems, is the most recent and advanced programmable 

nuclease that is considered to be the most prevalent and easy-to-use system with 

multiple applications [153]. 

Currently there are considerable concerns about the use of this technology in a 

clinical setting due to the potential for off-target editing and the unknown resultant 

side effects [151]. Although, to date, there is no way to identify or prevent them 

given the increasing interest in this area it is likely these complications will be 

overcome in the future. 

 

Public Health Awareness  

In conjunction with developing therapies to treat hearing loss there a number of 

strategies that could be employed to help mitigate hearing loss in children. 

Improvements in public health awareness and the application of simple measures 

such as; avoiding the use of ototoxic drugs, immunisation and the early 

identification and intervention for acute and chronic ear conditions, have shown 

to reduce the contribution of environmental factors in the development of hearing 

loss [133, 135].  
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3.3 The genetics of hearing loss 

 

3.3.1 Syndromic hearing loss 

There are 600 conditions, cited in the London Medical Database V.1.0.31, linked 

to SNHL [128]. These account for approximately 20% of genetic causes of 

hearing loss. In a number of cases the hearing impairment may be the most 

obvious symptom, and therefore the first to be diagnosed, with other clinical 

features developing later [129]. Often a genetic diagnosis is the only way to 

determine if an individual will develop future complications, such as renal failure 

in Alport syndrome [132]. 

Perhaps one of most important syndromes to diagnose is the autosomal 

recessive Jervell and Lange-Nielsen syndrome where congenital, profound 

hearing loss occurs in conjunction with Long QT syndrome [131]. This syndrome 

is associated with a high rate of syncope, where individuals lose consciousness 

as a result of a sudden drop in blood pressure, and if left untreated, can lead to 

sudden death [128]. 

Some of the most common syndromes, grouped by inheritance pattern, are 

summarised in Appendix E.  

Interestingly mutations in some genes associated with syndromic forms of 

hearing loss can also cause non-syndromic forms such as CDH23 and MYO7A 

(Usher syndrome), SLC26A4 (Pendred syndrome), WFS1 (Wolfram syndrome) 

and COL11A2 (Stickler syndrome). 
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3.3.2 Non-syndromic hearing loss 

Determining the underlying genetic cause of an individual’s hearing loss can 

exclude the presence of a hearing loss syndrome or confirm the presence of non-

syndromic hearing loss. This information is useful for determining and 

implementing the most effective management strategy including potential 

treatments and for providing informed genetic counselling to families.  

 

There are currently over 110 genes linked to non-syndromic hearing loss which 

can be referred to by the genes involved or by the genetic locus. Non-syndromic 

deafness loci are referred to by DFN (DeaFNess) followed by a letter, which 

classifies the mode of inheritance (DFNA autosomal dominant, DFNB autosomal 

recessive, DFNX X-linked) and a number representing the order of gene 

mapping/discovery [131].  

 

GJB2 

The most common genetic cause of congenital NS-SNHL are mutations in the 

gap junction beta 2 (GJB2) gene [130], which was first identified as a cause of 

hearing loss in 1997 [155] and is commonly referred to as DFNB1. For European 

populations, mutations in this gene account for approximately 50% of hearing 

loss cases [130]. The GJB2 gene is located at 13q12.11 and encodes the gap 

junction protein connexin 26 (Cx26) which is expressed in the non-sensory 

epithelial cells of the inner ear [155].  

Connexins are integral membrane proteins which are generally referred to by 

their predicted molecular weight. For example, connexin 26 is predicted to be 

~26kDa [156] and exhibits the characteristic topological structure of a connexin 

protein containing; four transmembrane domains, two extracellular loops and one 
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intracellular loop, with both the N- and C- termini exposed to the cytoplasm 

(Figure 3.6) [157]. 

 

 

Figure 3.6: Topological structure of a typical connexin protein. Showing the four 
transmembrane (TM) domains, the two extracellular loops (E1 and E2) and the 
single cytoplasmic loop (CL). 

 

Six connexin molecules join to form a pore-like transmembrane oligomer called 

a connexon, or hemichannel [107] (Figure 3.7). These gap junctions are 

intercellular channels that permit the passage of ions and small molecules (up to 

~1.5kDa) [158]. It is widely accepted that these molecules play an important role 

in the recycling of K+ during the process of ion homeostasis, which is essential 

for normal hearing [111].  
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Figure 3.7: Connexins, connexons and gap junctions. Simplified diagram showing 
the assembly of a gap junction from the intercellular joining of two connexons, on 
adjacent membranes, each consisting of six single connexin molecules [156].  

 

More than 100 mutations located within GJB2 have been associated with hearing 

loss [158]. Most GJB2 mutations display a recessive (DBFB1) inheritance pattern 

with a few being dominant (DNFA3) in nature [155, 159]. A wide spectrum of 

hearing loss phenotypes ranging from profound congenital deafness [158] to 

mild, progressive, late-onset hearing loss starting in childhood [160] are 

observed. This diversity in phenotype suggests that hearing loss arising from 

mutations in GJB2 may involve several different underlying pathological 

mechanisms [158]. However, to date, there is no clear, demonstrable relationship 

between specific changes in Cx26 function and the observed phenotypes [158]. 

New evidence suggests that congenital hearing loss caused by mutations in 

GJB2 are associated with cochlear development disorders, as opposed to EP 

generation [161] or K+ recycling impairment [162]. This means that disruption of 
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K+ recycling is not the principle mechanism causing Cx26 mutation-induced 

hearing loss as predicted [160, 161]. 

 

The most frequently occurring GJB2 mutation, c.35delG (NM_004004.5: 

c.35delG), accounts for ~70% of cases worldwide [163, 164] with almost 4% of 

the white population in Southern Europe reported to be heterozygous [165, 166]. 

The high frequency of the c.35delG mutation could be due to a mutational hotspot 

resulting from its position in a T(G)6T sequence which, during DNA replication, 

may favour slippage and mispairing [167]. However, data from multiple other 

studies show strong evidence of linkage disequilibrium [168, 169] suggesting that 

c.35delG represents a common founder mutation and not a mutational hotspot. 

Other common GJB2 mutations are observed in specific populations, including 

c.235delC in East Asia and Japan [170], c.167delT in Ashkenazi Jews [171], 

p.V37I in Southeast Asia [172], p.W24X in India [173], IVS1+1G>A in Mongolia 

[174] and del(GJB2-D13S175) in Russia [175]. 

 
Mutations in GJB2 are often classified as either truncating or non-truncating 

depending on their possible effect on Cx26 [166]. Large systematic analysis of 

the GJB2 genotype has determined that mutations in this gene do display 

genotype-phenotype correlation with the type of mutation significantly impacting 

the severity of hearing impairment [176]. Truncating, or inactivating mutations 

(nonsense, frameshift, indels) prevent synthesis of Cx26 and, in homozygotes, 

are associated with severe to profound SNHL [163]. Non-truncating mutations 

(missense, in-frame) only modify one or several amino acids meaning that the 

protein may retain its function [166]. Individuals with homozygous non-truncating 
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mutations, or compound heterozygotes with one non-truncating and one 

truncating mutation, typically express mild to moderate hearing loss [163]. 

 

Other genes responsible for NSHL 

In addition to those seen in GJB2, mutations in other connexin genes can also 

lead to NSHL including, Cx30 (GJB6), Cx31 (GJB3) and Cx43 (GJA1). As with 

GJB2, GJB6 is predominately expressed in the cochlea and is considered a major 

deafness gene [157]. Whilst mutations in both Cx26 and Cx30 can independently 

induce hearing loss, digenic Cx26 and Cx30 heterozygous mutations are more 

frequently observed and are the second most common cause of recessive 

hearing loss [162]. Interestingly mutations in GJB6 have been shown to be 

responsible for both recessive (DFNB1) and dominant (DFNA3) forms of hearing 

loss. Connexin 30 is 30kDa protein, containing 261 amino acids, with the typical 

structure of a connexin (Figure 3.7). It is involved in gap junctional intercellular 

communication (GJIC) and is essential for maintaining homeostasis of the 

epidermis and inner ear [157].  

Further to the connexion family, mutations in a wide array of other molecules 

have also been associated with inherited forms of hearing loss; information 

regarding these molecules may be accessed through extensive online databases 

including the Hereditary Hearing Loss Homepage OMIM, ClinVar and HGMD.  
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3.4 Causes of HL known in the Amish community 

Genetic studies have previously defined a number of gene founder alterations as 

causes of inherited hearing loss in the Amish, including PCNA [177], SLITRK6 

[159, 178], HARS [179], YARS [180], KCNQ1 [181], ST3GAL5 (GM3 synthase 

deficiency) [182], LONP1 [183], HYAL2 [184] and COL1A2 [185, 186].  Details of 

these variants are summarised below (Error! Reference source not found. and 

Error! Reference source not found.) with a more detailed description of each 

variant available in Appendix F.
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Table 3.2: Summary of genes associated with syndromic SNHL hearing loss identified in the Amish. 

Gene  Variant Hearing Loss Other clinical features 

PCNA 
c.683G>T; p.Ser228Ile 

(NM_002592.2) 
chr20:g.5115472C>A 

Prelingual onset, 
moderate to profound 
high frequency SNHL 

Ocular/cutaneous telangiectasia, premature aging, 
photophobia/photosensitivity with predisposition to sun-induced 

malignancy, short stature, learning difficulties, neurodegeneration with 
cerebellar atrophy 

SLITRK6 
c.1240C>T; p.Q414X 

(NM_032229.2) 
chr13:g.85795269G>A 

Bilateral, prelingual 
moderate to severe 

SNHL 
Severe congenital myopia 

HARS 
c.1361A>C; p.Tyr454Ser 

(NM_002109.5) 
chr5:g.140674776T>G 

Postlingual, severe 
progressive SNHL 

Childhood progressive visual impairment, horizontal nystagmus, optic 
pallor, photosensitivity, bull’s eye macula, retinitis pigmentosa, delay in 

gross motor development, lower limb brisk reflexes, ataxia, normal 
intellect 

YARS 
c.499C>A; p.Pro167Thr 

(NM_003680.3) 
chr1:g.32806493G>T 

Bilateral SNHL 
Severe nystagmus, visual impairment, developmental delay, pancreatic 
insufficiency, cholestatic liver disease, hypoglycaemia and subcortical 

white matter abnormalities 

ST3GAL5 
c.862C>T; p.R288X 

(NM_003896.3) 
chr2:g.85844542G>A 

Variable onset & severity 
SNHL 

Refractory infantile onset epilepsy, developmental delay, developmental 
regression, generalised irritability, feeding difficulties, dystonic arm 
movements, hypotonia, cortical blindness, optic nerve defects, skin 

pigment abnormalities 

LONP1 
c.2161C>G; p.Arg721Gly 

(NM_004793.3) 
chr19:g.5694546G>C 

Mild to moderate SNHL 

Developmental delay, facial dysmorphism, bilateral cataracts, dental 
anomalies, short stature, delayed epiphyseal ossification, metaphyseal 
hip dysplasia, vertebral abnormalities, hypotonia, scoliosis, laryngeal 
obstruction, swallowing difficulties, imperforate anus, omphalocele, 

rectovaginal fistula, cryptorchidism and tongue hemiatrophy 
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Table 3.3: Summary of genes associated with syndromic, conductive and mixed hearing loss identified in the Amish. 

 

Gene Variant Hearing loss Other clinical features 

Conductive Hearing Loss 

HYAL2 
c.443A>G; p.K148R 

(NM_003773.4) 
chr3:g.50320047T>C 

Mild to moderate, unilateral/ 
bilateral and pre or 

postlingual  
(one individual with SNHL) 

Cleft lip or palate (CLP), facial dysmorphism, congenital cardiac 
abnormalities, pectus excavatum, single palmar creases, 2,3 toe 

syndactyly, myopia, staphyloma and cataract 

Mixed Hearing Loss 

COL1A2 
c.2237G>T; p.Gly610Cys 

(NM_000089.3) 
chr7:g.94420590G>T 

Progressive mixed hearing 
loss 

Bone fractures with minimal or no trauma, bone deformity, short 
stature, dentinogenesis imperfecta and connective tissue 

abnormality 
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3.5 Results 

As part of the Windows of Hope Project families with multiple individuals 

affected by hearing loss, with no genetic diagnosis, were recruited into the 

Amish Hearing Loss Programme. The aim of the program was to provide 

diagnoses for the underlying genetic cause of the hearing loss within these 

families. To date 19 families with between one and four siblings affected by 

SNHL have been identified and recruited into the program through the use 

of a community-appropriate newsletter and family support groups. Although 

GJB2 gene mutations had not previously been described in the Amish, our 

initial studies included evaluation of this gene due to the high prevalence of 

GJB2-related hearing loss worldwide. The screening process for affected 

individuals was initially dependent on whether the hearing loss presented 

with or without additional clinical phenotypes (Figure 3.8).  

 

 

Figure 3.8: Initial screening strategy implemented for individuals recruited 
to the Amish Hearing Loss Programme. 
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Individuals presenting with no other clinical phenotypes (at the time of 

assessment) where considered to have a non-syndromic form of hearing 

loss so where screened, via Sanger sequencing, for variants within GJB2. 

If no variants were found further genetic investigations involving genome-

wide SNP mapping in combination with whole exome sequencing was 

undertaken. If individuals were presenting with additional clinical features, 

and considered to have to syndromic form of hearing loss, screening for 

GJB2 variants was omitted.  

 

3.5.1 Molecular studies of a large Amish family with multiple 

individuals affected by a neurodevelopmental disorder and hearing 

loss  

A family presented with six children affected by a neurodevelopmental 

disorder in form of intellectual disability (ID), four of whom also presented 

with pre-lingual SNHL (Figure 3.9).  

 

Figure 3.9: Simplified pedigree of the extended Amish family investigated 
for a syndromic form of hearing loss presenting with developmental delay. 
Development delay represented by black symbols, hearing loss denoted by 
red segments. 
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Hearing tests were carried out to confirm the individuals affected and to 

determine the extent of the hearing loss (Figure 3.10). Both air and bone 

conduction tests were carried out as part of these assessments. Although 

the audiograms do not display a characteristic audiometric configuration, so 

could not be used to aid the identification of an underlying genetic cause, 

they were able to confirm the type and severity of the hearing loss. 
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Figure 3.10: Audiograms showing the two 
siblings unaffected by hearing loss (A and 
B) and the four affected individuals (C-F). 
Different symbols are used to plot the 
results of the different conduction tests for 
each ear. Air conduction tests in the right 
() and left () ear are performed first 
with sounds being played through 
headphones. Masking can be used to 
prevent sound from the ear under test 
being detected by the other ear. This 
involves a noise being played into the left 
ear when the right ear is being tested () 
or the right ear when the left ear () is 
being tested. Bone conduction tests, used 
if the air conduction test identifies a 
hearing impairment, involve the use of an 
instrument that vibrates the bones of the 
skull and determines the function of the 
right (<) or left (>) cochlear. Again masking 
can be used to prevent the problem of 
“crossover” and ensures only the right ([) 
or left (]) ear is tested at one time. Sound 
field testing may be also be used, this is 
where a sound stimuli is played via a loud 
speaker, so is not ear specific, and can be 
conducted with (A) or without (S) masking. 
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Two of the audiograms (Figure 3.10, D-E) confirm the type of hearing loss 

as sensorineural (SNHL) as the thresholds for air ( and) and bone (<) 

conduction are similar. If normal thresholds (<25dB HL) were obtained in 

the bone conduction tests with the threshold for air conduction being poorer 

(>25dB HL) this would indicate the cochlear is still functional and a 

conductive form of hearing loss, where deformity of the outer or middle ear 

is preventing sound waves from entering the middle ear is responsible for 

the hearing impairment. If both thresholds where impaired, with the bone 

conduction thresholds being significantly better than those in air, this would 

suggest a mixed type of hearing loss [187].  

The thresholds obtained in these tests show that the hearing loss 

experienced ranges from moderate (41-55dB HL) to profound (>90dB HL).  

 

After confirming the degree of hearing loss in the four affected siblings a 

genome-wide SNP microarray, using the Illumina Human CytoSNP-12v2.1 

330K array, was undertaken on DNA from all six siblings. Interrogation of 

the resultant genotypes identified a 0.56Mb microdeletion delimited by 

markers rs2549956 to rs35967690 (NC_000016.10: g.29622891-

30188484) located on chromosome 16p11.2 common to all the affected 

family members (Figure 3.11).  

Deletions and duplications in this region are one of the most frequently 

reported genetic cause of autism spectrum disorder (ASD) and other 

neurodevelopmental disorders [188]. The 16p11.2 microdeletion syndrome 

is characterised by speech articulation abnormalities, limb and trunk 

hypotonia with hyporeflexia, abnormal agility, sacral dimples, 

seizures/epilepsy, large head size/macrocephaly, lower brain herniation 
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(Chiari I/cerebellar tonsillar ectopia) and an increased tendency to be 

overweight [188]. The affected individuals in this family were not overweight 

and did not display a number of these characteristic phenotypes however, 

they did exhibit hyperactivity and social communication issues. 

 

 

Figure 3.11: Output from KaryoStudio software (Illumina) showing ideogram 
of chromosome 16 and the presence of a hemizygous microdeletion at 
16p11.2. Microdeletion is 0.56Mb spanning rs2549956 to rs35967690.       

 

Whilst it is likely that this microdeletion is responsible for the 

neurodevelopmental delay seen in this family it is unlikely to be the cause 

of the inherited hearing loss. In order to identify other putative genetic 

causes of the hearing loss the CytoSNP microarray data was further 

investigated to identify regions of homozygosity specific to the four siblings 

affected by hearing loss. This lead to the identification of a 0.96Mb 

homozygous region on chromosome 13 (Figure 3.12, Aii) that encompassed 

the connexin 26 (GJB2) gene. Dideoxy sequencing analysis of the GJB2 
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gene identified a c.229T>C substitution (NM_004004.5:c.229T>C, p.W77R) 

(Figure 3.12, Ai) in exon 2. This is a well-established pathogenic variant that 

has been previously reported [155, 189] to cause autosomal recessive 

hearing loss so is the most likely cause of AR-SNHL observed in this family.   

 

 

These findings confirm the presence of two distinct genetic disorders in the 

same family. Thus highlighting; the challenge of disentangling the genetic 

cause of complex phenotypes within the Amish community and the need to 

screen all individuals, recruited into the Amish Hearing Loss Programme, 

for variants within GJB2, even if the hearing loss presents with other clinical 

features.  
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Figure 3.12: (Aii) Simplified 
pedigree of the extended Amish 
family investigated with pictorial 
representation of genotypes 
across a ~8Mb region of 
chromosome 13 encompassing 
the disease locus. Bold red box 
denotes the 0.96Mb region 
unique to the four affected 
siblings (and four other more 
distantly related individuals; 
XIII:1, XIIII:2, XIII:3 and XII:3) 
affected by hearing loss 
containing GJB2. Dashed red box 
highlights a homozygous region 
shared by all affected individuals 
and one unaffected sibling. 
Patient XI:13 appears to have a 
recombination event occur 33kb 
away from GJB2 preventing him 
from developing hearing loss, this 
also permitted the shared region 
containing GJB2 to be refined to 
0.35Mb (Ai) Sequencing 
chromatograms showing the 
position of the GJB2 c.229T>C 
mutation.  
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3.5.2 GJB2 gene mutation is a common cause of NSHL in the Amish 

Families recruited to the Amish Hearing Loss Programme presenting with non-

syndromic hearing loss where initially screened for variants in GJB2, the most 

common genetic cause of congenital NS-SNHL. This initial screening process 

identified seven families with variants in GJB2 (Table 3.4) including four families 

with affected individuals homozygous for NM_004004.5: c.229T>C; p.Trp77Arg 

variant and one family with an affected individual homozygous for the common 

NM_004004.5: c.35del; p.Gly12Valfs variant (Figure 3.13, Family 6,). In the 

remaining two families affected individuals were found to be compound 

heterozygotes for both c.35del and c.229T>C variants. 

 

Table 3.4: Summary of families in which GJB2 variants were found during initial 
screening. 

Variant(s) 
Identified 

Genotype Region  
Number of 
affected  

Family ID  
(Figure 3.13) 

NM_004004.5:c.229T>C; 
p.Trp77Arg 

Homozygous 

Geauga 1 Family 1 
Indiana 3 Family 3 
Indiana 4 Family 4 
Indiana 2 Family 5 

NM_004004.5:c.35del; 
p.Gly12Valfs 

Heterozygous Geauga 1 Family 6 

NM_004004.5:c.229T>C; 
p.Trp77Arg 

& 
NM_004004.5:c.35del; 

p.Gly12Valfs 

Compound 
heterozygous 

Geauga 2 Family 7 

Geauga 2 Family 8 

 

Figure 3.13 details all families in the Amish Hearing Loss Programme where a 

variant in GJB2 has been found to be responsible for the observed hearing 

impairment, this includes the family with two distinct genetic disorders described 

in section 3.5.1 (Figure 3.13, Family 2).  

There have been no previous studies published reporting specific GJB2 variants 

and their frequencies in the Amish community. These findings suggest both the 
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c.35del and c.229T>C GJB2 variants are likely to represent founder mutations. 

Interestingly the p.W77R variant has previously been reported in two interrelated 

families of Israeli-Arab origin [189], where both homozygosity and compound 

heterozygosity with c.35delG were observed.  
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Figure 3.13: Simplified pedigrees of eight Amish families with hearing loss caused by variants in GJB2. Hearing loss observed in families 
1-5 is caused by the c.229T>C variant. Family 1 reside in Geauga, Family 2 are from Wisconsin and Families 3-5 are located in Indiana. 
Genotypes of sequenced individuals are shown below (in green). A wildtype allele for this variant is shown by WT. Hearing loss in family 
6, from Geauga, is caused by a c.35del variant with the genotypes for sequenced individuals shown below (in black). A wildtype allele for 
this variant is shown by WT. Affected individuals in families 7 and 8, both located in Indiana, are compound heterozygous for both the 
c.229T>C (in green) and c.35del (in black) variants. 
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3.5.3 Investigating SLC15A5 as a candidate molecule responsible for AR 

NS-SNHL 

 

Genetic and Clinical data 

A family presented with two siblings affected by non-syndromic hearing loss 

(Figure 3.14). The two siblings were initially screened for variants in GJB2 but 

none were found. Due to the inheritance pattern observed in the family it was 

evident that the hearing loss experienced by the two affected individuals was a 

result of an autosomal recessive genetic abnormality. Hearing tests were 

conducted to determine the type and extent of the hearing loss (Figure 3.15).  

 

 

Figure 3.14: Simplified pedigree of the extended Amish family investigated for 
inherited hearing loss. 
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Figure 3.15: Audiograms showing the two siblings affected by hearing loss. 
Different symbols are used to plot the results of the different conduction tests for 

with sounds being played through headphones. Masking can be used to prevent 
sound from the ear under test being detected by the other ear. This involves a 

air conduction test identifies a hearing impairment, involve the use of an 
instrument that vibrates the bones of the skull and determines the function of the 
right (<) or left (>) cochlear. Again masking can be used to prevent the problem 
of “crossover” and ensures only the right ([) or left (]) ear is tested at one time. 
Sound field testing may be used, this is where a sound stimuli is played via a loud 
speaker, so is not ear specific, and can be conducted with (A) or without (S) 
masking. 

 

The audiograms (Figure 3.15Figure 3.10) confirm the type of hearing loss as 

sensorineural (SNHL) as the thresholds for air ( and) and bone (<) conduction 

are similar. The thresholds obtained in these tests indicate that the hearing loss 

experienced by sibling A ranges from mild (20-40dB) to moderately severe (56-

70dB) in their right ear and mild (20-40dB) to severe in their left ear (56-70dB). 

Sibling B appears to be experiencing a more severe hearing impairment with 

severity ranging from moderate (41-55dB) to profound (>90dB) in both ears.  
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To define the genetic abnormality responsible, genome-wide SNP mapping on 

affected family members was undertaken, using the Illumina CytoSNP-12 (330k) 

BeadChip platform in combination with whole exome sequencing, on a carrier 

parent (due to limitations in DNA availability from affected family members),  

using the Agilent Human exome V4 (51Mb) capture. The genome-wide SNP data 

identified a number of homozygous regions. Table 3.5 details the size and 

location of the four largest regions of homozygosity shared by the siblings.  

 

Table 3.5: Regions of shared homozygosity between affected siblings. 

SNPs Flanking Region Genomic Positon of SNPs 
Size of Region of 
Homozygosity 

rs4763845;rs1472874 chr12:12728803-24575272 11.8Mb 

rs4736695;rs11167068 chr8:134556752-142549778 8Mb 

rs2824733;rs2830165 chr21:19689082-27676592 8Mb 

rs408307; rs4876938 chr9:136892523-141213431 4.1Mb 

 

Whole exome sequencing filtering for rare (frequency) and novel heterozygous 

variants in the carrier parent identified no candidate variants in known disease-

associated genes. However, cross-referencing these datasets identified a single 

candidate nonsense variant (NM_001170798.1:c.865G>T; p.Glu289Ter) (Figure 

3.16) located in a 8.2Mb homozygous block common to the affected individuals, 

in SLC15A5, a gene of unknown function not previously associated with inherited 

disease, as a candidate cause of this condition. The variant was validated using 

dideoxy sequencing, and found to cosegregate appropriately within the family.  
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Figure 3.16: Sequencing chromatograms comparing the identified SLC15A5 
mutation to the wildtype reference sequence.  

 

In-silico investigations predicted the variant to be disease-causing as a result of 

nonsense mediated decay (NMD) of the protein product. Whilst the variant was 

listed in the Genome Aggregation Database (GnomAD) 16 times; in 14 individuals 

of European origin (MAF 0.0001989) and 2 of African descent (MAF 0.0001231), 

no homozygotes were reported. The variant was not reported in 1000 genomes 

database.  

 

Genotyping studies of the variant was initially undertaken in 164 unaffected 

control Amish samples using dideoxy sequencing and identified 15 heterozygous 

individuals, corresponding to an allele frequency of 0.0457. Additional genotyping 

studies of the variant in 167 unaffected control Amish from different Amish 

communities (Table 3.6), using PlexSeq, a multiplexed amplicon sequencing 

approach (Illumina) [102], as described in chapter five, identified eight 

heterozygous individuals, corresponding to an allele frequency of 0.0227.  
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Table 3.6: Allele frequency data for SLC15A5 variant determined from an Amish 
population cohort of 167 unaffected individuals. 

Gene Variant 
AF  

(by region) 
AF  

gnomAD Freq.  
(March 2019)*  

SLC15A5 
c.865G>T; p.Glu289Ter 

(NM_001170798.1) 
Chr12:g.g.16244690C>A 

Indiana - 

0.0001915 

Ohio Holmes 0.0221 

Ohio Geauga 0.0273 

Wisconsin 0.0400 

Total 0.0234 

*Allele frequency quoted from gnomAD refers to European (non-Finnish) AFs 
correct as of March 2019. 

 

Given this finding the SLC15A5 variant remained a candidate cause of the 

condition, although no other individuals with SNHL were found to be homozygous 

for the SLC15A5 variant.  

  

Existing functional information on the SLC15A5 protein 

Given the candidacy of SLC15A5 as a cause of this condition, additional 

bioinformatic and molecular information was sought regarding the function of this 

molecule. The solute carrier family 15 member 5 (SLC15A5) gene is located on 

chromosome 12p12.3 comprising nine exons. SLC15A5 predicted to encode a 

579 amino acid proton oligopeptide cotransporter within the superfamily of solute 

carriers. The SLC15A5 polypeptide sequence is predicted to contain 11 helical 

transmembrane domains (Figure 3.17).  
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Figure 3.17: TMHMM Server v. 2.0 output. Showing the prediction of 
transmembrane helices in SLC15A5. 

 

Very little is currently known about the specific function of SLC15A5 [190] as very 

few studies have been undertaken to characterise or determine its expression. 

Reviews detailing the expression of other family members, particularly SLC15A1 

(PEPT1) and SLC15A2 (PEPT2), are available in the literature detailing their 

roles in; 

 the absorption and conservation of dietary protein digestion products 

 maintaining homeostasis of neuropeptides in the brain 

 the absorption and disposition of a number of pharmacologically important 

compounds [190-193]  

 

However, as the most distantly related member of the SLC15A proton-peptide 

exchange transporter family, sharing approximately only 50% amino acid identity 

with its other family members [194] it is hard to draw direct comparisons with 

regard to its expression or function.  
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Preliminary studies of SLC15A5 gene product  

Functional studies were carried out through a number of collaborations. Dr Morag 

Lewis, from The Wolfson Centre for Age-Related Diseases, King's College 

London, kindly undertook the Immunohistochemical investigations in the inner 

mouse ear and Dr Barbara Vona (University of Tübingen), undertook the RT-PCR 

studies. The aim of these studies was to ascertain the subcellular localisation of 

wildtype SLC15A5 to gain further insight into the molecular role of this molecule. 

 

Immunocytochemistry experiments in HEK293 cells 

A pCMV6-entry SLC15A5 clone was transformed into E.coli DH5-alpha bacteria 

via heat shock. Initial immunocytochemistry experiments in HEK293 cells 

transfected with epitope tagged SLC15A5 showed SLC15A5 in a vesicular 

pattern (Figure 3.18). However, wide-field microscopy showed that the 

transfection efficiency of this construct was low. As approximately 70% 

fluorescence is required to ensure enough protein is produced to carry out a 

Western blot it was necessary to take steps to improve the uptake of the construct 

into cells. To do this is was necessary to determine what was causing the low 

transfection rate.  

The first step was to rule out issues with the cell line being used for the 

transfections. To do this mouse fibroblast cells, NIH/3T3, where transfected with 

the pCMV6-SLC15A5 construct. This cell line, named after the number of days 

the cells were originally allowed to grow (3) and the number of hundreds of 

thousands of cells (3) transferred (T) onto a new plate during each passage,  are 

well known for being highly transfectable by DNA. Unfortunately, these 

transfections did not significantly improve the transfection efficiency indicating the 

cell type was not the cause of the low transfection rate.   
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To determine if aspects of the pCMV6-SLC15A5-myc-FLAG construct itself were 

affecting transfection a yellow fluorescent protein (YFP) tag was added to the C-

terminal of the protein in place of the FLAG epitope and sub-cloned into a 

pCAGGs vector, creating pCAGGs-SLC15A5-myc-YFP. This construct did 

produce higher transfection levels and permitted some co-expression studies to 

be undertaken. When co-expressed with Rab7-RFP, a widely used marker of 

recycling endosomes [195], SLC15A5 showed extensive, but not complete, 

overlap (Figure 3.19). This may indicate that SLC15A5 is associated with 

lysosomes and/or endosomal trafficking and not the outer cell membrane. 

However, due to persistently low expression of the SLC15A5 antibody it was 

proposed that constructs with the epitope tags at the N-terminus of the protein be 

created to rule out the possibility the large YFP epitope were preventing the 

antibody from binding properly and to determine if antibody binding to the C-

terminus of the antibody was affecting the protein’s native structure and/or cell 

localisation. 

Advice regarding the binding efficiency of the commercially available polyclonal 

SLC15A5 antibody was sought from Dr Francesco Rao, Chief Scientific Officer 

at Dundee Cell Products. It was suggested the peptide sequence being targeted 

by the commercial antibody was relatively long (28 residues) so may be 

condensing to form an aggregate structure thus preventing antibody binding. It 

was also reported that our protein of interest (SLC15A5) shared some similarities 

to a proton-coupled transporter, nitrate transporter (NRT1.1).  

Based on this information it was suggested further immunocytochemistry 

experiments be conducted using a custom monoclonal antibody targeting new 

epitope regions (Dr Francesco Rao, Dundee Cell Products/Dr John Chilton, 

personal communication).   
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Figure 3.18:  Distribution of tagged SLC15A5 in HEK293 cells. Cells were transfected with pCMV6-SLC15A5-myc-FLAG (origene) fixed in 4% PFA and 
immunolabelled with anti-FLAG (green) and anti-SLC15A5 (magenta) antibodies. Nuclei are counterstained with DAPI (blue). Scale bar = 7.5µm 

 

 

Figure 3.19: SLC15A5 partially associates with late endocytic structures in live cells. SLC15A5-myc-YFP (green) associates with Rab7-RFP (magenta). 
HEK 293 cells were transfected with SLC15A5-myc-YFP and viewed on the wide field microscope. Scale bar = 7.5µm
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Western blot analysis 

Western blot analyses were performed on lysed HEK 293 cells transfected with 

pCAGGs-SLC15A5-myc-YFP with membranes probed with rabbit polyclonal anti-

SLC15A5 and anti-cmyc to detect the presence of SLC15A5 in transfected cells. 

Unfortunately, no SLC15A5 protein was detected (Figure 3.20a). The membrane 

was then post stained with Anti-GAPDH (Figure 3.20b), a protein integral for 

glycolysis and plays many roles in nuclear function, known to be expressed in 

HEK 293 cells. The result of this staining showed that protein was present on the 

membrane. 

 

 

Figure 3.20: SLC25A5 Western blot 

 

A lack of signal being detected by the SLC15A5 antibody could be a result of 

there not being enough SLC15A5 protein in the samples as a result of the low 

transfection efficiency or antibody binding issues, mentioned previously, which 

indicates a custom antibody for this protein or experiment type may be required.  
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Investigating the expression of Slc15a5 in the mouse ear 

Experiments to investigate the expression of murine Slc15a5 in mouse tissue 

sections at various time points of embryonic development in the mouse using RT-

PCR were undertaken (Figure 3.21). These experiments yielded promising 

results, showing cochlear expression. 

 

 

Figure 3.21: RT-PCR analysis of Slc15a5 in the P7 C57BL/6J mouse. A) RT-PCR 
amplification of Slc15a5 was obtained using primers in exons 5 and 6 
(NM_177787). A 294 bp product is observed in the cochlea, hippocampus, 
cerebellum, whole brain, kidney, eyes, and liver. B) PCR amplification of 
ubiquitously expressed Hprt is shown below as a positive control. Amplification 
products were confirmed via Sanger sequencing. Image depicts results obtained 
from investigations carried out by Barbara Vona. 

 

To investigate this further, studies were undertaken in collaboration with 

Professor Karen Steele’s lab to determine the expression of Slc15a5 in paraffin 

sections of inner ear mouse tissue at embryonic day 16.5 (E16.5). Unfortunately 

however, no protein could be detected (Appendix G). As the peptide sequence 

targeted by the custom antibody appears to be located within a transmembrane 

(residues 542-570)   
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New genotyping data as part of a high-volume sequencing program excludes 

mutation of SLC15A5 as a cause of NSHL.   

Towards the latter stages of this study, new information became available 

regarding the frequency of the SLC15A5 (NM_001170798.1:c.865G>T; 

p.Glu289Ter) variant in other Amish communities, through a recently developed 

data exchange collaboration with workers investigating the causes of inherited 

diseases in the Pennsylvanian Amish community. This study involved WES in 

>1000 Amish individuals from this community, including affected and unaffected 

individuals, in order to provide important gene variant annotation data. As part of 

this collaborative study, we recently received data which identified two individuals 

with no known NSHL to be homozygous for the c.865G>T; p.Glu289Ter variant. 

These findings likely exclude this SLC15A5 variant as being causative of this 

condition.  
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3.5.4 Genetic studies define variant frequencies of causative gene 

mutations in distinct Amish communities 

To learn more about the prevalence of the two GJB2 variants, and other founder 

gene mutations linked to hearing loss in different Amish communities, genotyping 

studies were undertaken of each variant in 167 unaffected control Amish 

individuals from Ohio (Holmes County), Ohio (Geauga County), Indiana, and 

Wisconsin communities using PlexSeq sequencing. As expected, this defined 

remarkably divergent allele frequencies (AF) for each gene (Table 3.7), reflecting 

the distinct ancestral histories of each Amish community. 

 

The most common genetic causes of hearing loss identified across all the Amish 

communities related to ST3GAL5 (GM3 synthase deficiency) and GJB2 gene 

variants. The severe neurodevelopmental disorder GM3 synthase deficiency is 

known to be common in both Ohio Amish communities, corroborated by the 

relatively high AF seen for this variant of 0.022% (Geauga County) and 0.055% 

(Holmes County). Corroborating our GJB2 gene data (above), GJB2 variants 

(c.229T>C; p.Trp77Arg and c.35del; p.Gly12Valfs) were also identified 

particularly in Amish families from Wisconsin and Ohio (Geauga County) in whom 

the combined AF for both GJB2 variants is approximately 0.08% and 0.02% 

respectively. However, it was notable that the p.Trp77Arg GJB2 variant, which is 

a common disease allele in white Caucasian families [196] was absent in controls 

from Ohio (Holmes County), indicative of a low incidence of NSHL due to this 

variant in this region.  

The HYAL2 founder variant (c.443A>G; p.Lys148Arg) is common in both Ohio 

communities with frequencies of 0.029% (Holmes County) and 0.018% 

(Geauga). Whilst hearing loss is not a cardinal feature the exclusion of any 
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known, or potentially deleterious, variants in all currently reported hearing loss 

genes, through the interrogation of WES from affected individuals, is highly 

suggestive that hearing impairment is a variable feature of this disorder 

(Appendix F).  

The most common single gene variant detected overall was the ST3GAL5 GM3 

synthase deficiency founder variant which underlies a syndromic form of infantile 

epileptic encephalopathy with hearing loss present at birth [197].  
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Table 3.7: Summary of genes associated with hearing loss identified in the Amish community. Allele frequency was determined from an 
Amish population cohort of 167 unaffected individuals 
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3.5.5 Identification of novel hearing loss gene 

As the above data was being compiled for publication, ongoing studies in two 

interlinking Amish families comprising five affected individuals with autosomal 

recessive syndromic SNHL and neurodevelopmental delay, identified a gene 

variant as a putative candidate (Figure 3.22).  

Affected individuals underwent GJB2 screening which identified no known 

pathogenic variants within the gene. A combination of genome-wide SNP 

mapping and exome sequencing studies was then undertaken in these families. 

Interrogation of the WES excluded variants in all genes currently reported to 

cause hearing loss.   

A nonsense variant in a gene encoding a microtubule-associated molecule 

located on chromosome 13q was identified as the only candidate cause of the 

condition. The variant cosegregates as appropriate for an autosomal recessive 

condition in all family members, and is not listed in online genome databases 

(gnomAD, ExAC, 1000 genomes). Ongoing genotyping studies in the Amish has 

identified only two carriers of the variant in 300 Amish control chromosomes.  

Although not previously linked to hearing loss the gene has been linked to a 

recessive form of intellectual disability (ID) [198, 199]. Interestingly this variant 

was also, initially, identified as a potential cause of ID in the Amish, through a 

novel, proof-of-principle study described in Chapter 5 that set out to identify 

potentially deleterious coincidentally carried heterozygous variants, that had yet 

to be reported in the community.  

Further studies of this gene lie beyond the scope of this thesis, and are currently 

ongoing within the WoH research group.
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Figure 3.22: Simplified pedigree linking two Amish families comprising of five individuals affected with AR SNHL and neurodevelopmental 
delay. 
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3.6 Discussion 

The work described in this chapter investigates the nature, aetiology and 

frequency of genetic causes of hearing loss in families from the Amish 

community.  

 

The Amish hearing loss programme itself stems from a long running clinical-

research study, the Windows of Hope programme which aims to learn more about 

the molecular basis of inherited disease, in this instance hearing loss, within the 

Amish community and provide important information to aid much needed 

diagnoses for affected individuals and their families. This is achieved through the 

translation of research findings to directly benefit patients in the form of improved 

diagnostic information, supporting genetic counselling and aiding the 

implementation, or development of novel, targeted therapies for use within this 

community and the general population.  

 

As a result of the work outlined here, and through previous studies carried out by 

this group [177, 178, 184], 11 of the 19 families recruited to the Amish Hearing 

Loss Programme, with no previous genetic diagnosis, have now received 

confirmed genetic diagnoses (Figure 3.23). Additionally, the genetic cause of the 

observed hearing loss in two further families is under investigation and likely to 

be confirmed in the near future (section 3.5.5). Investigations are ongoing within 

the six families unfortunately still awaiting diagnoses.  
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Figure 3.23: Summary of families recruited into the Amish Hearing Loss Programme. Variants responsible for the hearing loss have been 
detailed where possible. Green boxes denote families where the investigations undertaken form part of this thesis. The yellow box 
highlights a family where the variant believed to be responsible was identified as part of this thesis (Chapter 5) despite the family studies 
being carried out by another group member (not included in this thesis). Blue boxes denote families where novel variants where discovered 
by other group members (not included in this thesis). Red boxes represent families that have not yet received a diagnosis with investigations 
ongoing. 
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Certain characteristics of the Amish population, including origins from relatively 

few founder individuals, endogamy, large family size, and detailed genealogical 

records, enabling the construction of impressive family pedigrees empower 

genetic studies. However, these characteristics may also result in certain 

disorders, particularly those inherited in an autosomal recessive pattern, 

occurring more frequently in the community. These factors, in addition to the 

reducing cost and increasing availability of NGS technologies and high density 

whole genome SNP mapping (and associated linkage analysis) greatly facilitate 

the discovery of genes responsible for inherited disease, which might otherwise 

have been impossible in studies of other populations due to the genetic and 

environmental complexities of a condition. All of the conditions known in the 

Amish and described in the current study are recessively inherited with the 

exception of COL1A2 and the mitochondrial disorders. As a result six new genes 

associated with HL in the Amish population (PCNA, HYAL2, SLITRK6, HARS, 

LONP1, ST3GAL5) have been discovered, several of which were identified by 

our group including a very recently discovered microtubule-associated molecule 

(section 3.5.5).   

 

3.6.1 Identification of two distinct genetic disorders within the same Amish 

family 

Neurodevelopmental disorders (NDD) are a group of disorders involving the 

abnormal development of the central nervous system. Affecting 1-3% of the 

population of children under 5 years of age it is one of the most common 

conditions presenting in paediatric clinics [200]. Due to its extreme heterogeneity 

and overlapping clinical outcomes of many distinct genetic causes of these 

conditions, reaching a specific diagnosis may be difficult. Although the diagnosis 
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of NDD has improved in recent years as a result of advances in genetic 

technologies [201] the cause of the condition remains undetermined in 

approximately half of affected individuals [202]. To ensure the best overall 

outcomes for affected children and their families it is important clinicians establish 

a diagnosis so they can implement the most appropriate therapeutic 

management strategy [200]. 

The Windows of Hope team were asked to assist in reaching a diagnosis for a 

family with six individuals displaying NDD, four of whom also had SNHL. Due to 

the broad range of genetic abnormalities known to result in a highly diverse 

spectrum of inherited neurodevelopmental disabilities, which often give rise to 

other disabilities, including visual and hearing impairment, it was not clear if the 

same, or two distinct genetic causes, were responsible for the difficulties 

observed in these children. Genome-wide SNP microarray identified a 0.56Mb 

microdeletion located on chromosome 16p11.2, previously shown to result in a 

clinically variable neurological phenotype [203], with dideoxy sequencing 

confirming the presence of a p.W77R GJB2 variant, a well-documented cause of 

AR-SNHL, common to all affected individuals. This confirmed the presence of two 

distinct genetic disorders in the same family. 

 

Copy number variations (CNVs) within 16p11.2 are one of the most common 

structural chromosome disorders [188] with a prevalence of ~3/10,000 in the 

general population [204]. Recurrent ~600kb deletions or duplications are the most 

common genetic aetiologies of NDD and autism spectrum disorders (ASD), with 

a prevalence of ~1% in ASD patients [188]. The phenotype is characterised by a 

spectrum of neurodevelopment impairments including; developmental delay, 

language impairments, mild to moderate intellectual disability, schizophrenia, 
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altered body mass index, epilepsy and ASD [203, 205]. Whilst hearing 

impairment, both SNHL and conductive, has previously been reported in up to 

11% of individuals with this microdeletion [204], a more recent study 

characterising the range and frequency of neurological variation within the 

phenotype did not associate hearing loss with this CNV. This study concluded 

that the a 16p11.2 deletion is characterised by; 

• Highly prevalent (>75%) speech articulation abnormalities 

• Hypotonia (low muscle tone) with hyporeflexia (below normal or 

absent reflexes. 

• Poor agility 

• Sacral dimples 

• Seizures/epilepsy 

• Large head size  

• Chiari I/cerebellar tonsillar ectopia [188] 

The affected individuals in this family were not did not display all of these 

phenotypes though they did display hyperactivity and social communication 

issues. The notable absence of any form of hearing impairment as a cardinal 

feature of this syndrome, indicated that it was unlikely to account for the hearing 

loss seen in the family which was subsequently shown to be due to GJB2 

mutation. 

 

Due to the unique genomic architecture of the Amish population, as a result of a 

genetic bottleneck leading to the enrichment of certain disease-associated 

alleles, the co-occurrence of distinct two genetic disorders in the same family is 

not uncommon and is likely to occur more frequently than in the general 

population. The Windows of Hope team have assisted a number of families in 



159 
 

which three distinct inherited conditions are present amongst different family 

members, with some individuals being affected by all three disorders 

(Crosby/Baple personal communication). Due to this, and the outcome of this 

study all families recruited into the Amish Hearing Loss Programme are now 

screened for variants in GJB2, irrespective of any additional clinical phenotypes 

reported in affected individuals. Figure 3.24 summarises the screening strategy 

now implemented for new patients recruited to the programme. 

 

 

Figure 3.24: Updated screening strategy implemented for individuals recruited to 
the Amish Hearing Loss Programme.  
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3.6.2 GJB2 variants in the Amish occur on a distinct SNP genomic 

haplotype 

In addition to these genes, other genetic causes of HL are also present in the 

Amish community. This work described in this thesis documents that GJB2 

variants are a common cause of NSHL, and within the HL cohort 8 of 19 families 

suffer hearing loss due to two previously reported GJB2 variants (c.35delG and 

p.W77R). The c.35delG variant has also been reported in Hutterite [206] and 

Mennonite populations [207], which are distinct Anabaptist groups originating 

from Europe at the time of the radical reformation of the 16th century.  

Mutations in GJB2 are recognised as the most common cause of NSHL 

worldwide, and account for ~50% of NSHL cases in European populations [130]. 

More than 100 mutations located within GJB2 have been identified [158], with the 

c.35delG mutation being the most common pathogenic variant in most Caucasian 

populations accounting for up to 70% of GJB2 mutations [163]. Notably several 

studies have confirmed through haplotype analysis that the c.35delG variant 

represents a common ancient founder that arose in European and Middle Eastern 

populations, rather than a mutational hotspot [168, 169, 208]. The p.W77R GJB2 

variant was originally identified in a family of Israeli-Arab origin [189] and has 

subsequently been described in other populations in Europe, Australia, South 

America and the Middle East [209, 210]. The genetic data here confirms that both 

GJB2 variants in the Amish occur on a distinct SNP genomic haplotype, indicating 

that each occurred, or more likely was introduced, via a single ancestor. Both 

gene mutations are also likely to represent the same ancestral mutations present 

in European and Middle Eastern populations [169, 208, 210].  
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3.6.3 Exclusion of the SLC15A5 variant as a cause of NSHL  

Genetic studies in families with individuals with forms of hearing loss excluded 

from known causes of disease identified SLC15A5 as a potential candidate gene 

for NSHL. Genome-wide SNP studies in two affected siblings identified only four 

notable (>1Mb) genomic regions of homozygosity common to both siblings. In 

parallel with this whole exome sequencing in a parental carrier identified only a 

single candidate variant, a nonsense variant in the SLC15A5 gene, located in the 

largest homozygous region. The family identified originated from Ohio, the 

community from which most families in this study were recruited, in which the 

SLC15A5 variant was detected at modest allele frequency. A notably higher allele 

frequency for the SLC15A5 variant was identified in the Wisconsin community. 

Although these studies relate to a single family, our exome and whole genome 

SNP mapping studies excluded other known genetic causes of HL, and identified 

the SLC15A5 as the sole candidate gene.  

 

While it currently has no known function and is the first SLC15A family member 

to be linked to hearing loss another family member, SLC15A2, has been shown 

to be expressed in the otic vesicle of zebrafish. The otic vesicle is an embryonic 

structure that goes on to form the auditory and vestibular organ of the fish which 

is the homolog to the inner ear of mammals [191].  

Work to characterise atypical solute carriers showed that SLC15A5 is only found 

in mammals which is suggestive of a function related to the specific features of 

vertebrates [194]. This study also revealed that SLC15A5 showed negligible 

expression in the pituitary, liver, spleen and thymus (Figure 3.25) and was one of 

only two genes to not be differentially expressed in the CNS. Additionally, a study 

carried out by Scheffer et al. in 2015 investigating gene expression in inner ear 
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mouse hair cells during development did report expression of SLC15A5 in 

utricular hair cells [211]. Furthermore, studies by our colleagues in Tübingen also 

detected SLC15A5 gene expression in mouse cochlea (section 3.5.3) supporting 

a possible role for SLC15A5 gene mutation as a cause of SNHL.  

 

 

 

Figure 3.25: Results from quantitative real-time PCR data for SLC15A5. The data 
has been normalized against the detected expression levels for that particular 
gene in 25 ng of mouse genomic DNA (Taken from [194]). 

 

Due to very little being known about SLC15A5 preliminary functional studies were 

undertaken to discover more about the expression and function of the molecule 

and its potential role in hearing loss. As expected for the nature of the variant in 

silico prediction software analysis predicted the candidate variant 

(NM_001170798.1:c.865G>T; p.Glu289Ter) to be pathogenic, due to the 

introduction of a premature termination codon (PTC), likely leading to protein 

truncation. While transcriptional outcomes were not assessed such aberrant 

mRNA transcripts may typically be subjected to the sophisticated quality control 
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monitoring mechanism, nonsense-mediated mRNA decay (NMD), that prevents 

the production of truncated polypeptides that could be toxic to normal cellular 

functions [212] resulting in the absence of any functioning protein product.  

Initial immunocytochemistry experiments appeared to show a vesicular pattern 

inside the cell cytoplasm. This was not surprising due to the localisation of the 

SLC15A family member PEPT1 (SLC15A1) which was previously reported to 

localise primarily to the outer cell membrane and in adjacent vesicles [213]. Due 

to the lack of SLC15A5 in the cell membrane co-expression experiments were 

undertaken, alongside Rab7, a marker of recycling endosomes. The extensive, 

but not complete, overlap of SLC15A5 with Rab7 suggests it may be associated 

with lysosomes and/or endosomal trafficking and not the outer cell membrane. 

However, further investigations would need to be undertaken in order to 

reproduce and confirm these findings.  

 

The lack of expression detected during immunohistochemical analysis of paraffin 

sections of inner ear mouse tissue at embryonic day 16.5 (E16.5) could have 

arisen due to a variety of reasons. Firstly the protein may not be expressed as 

this specific embryonic stage. Preliminary ISH experiments carried out by Dr John 

Chilton indicated that low levels of the protein were expressed in chick embryos 

at stage 20, corresponding approximately to E9.5 in a mouse, seven days prior 

to the sections used in these experiments. It would have been preferable to 

conduct these experiments at an early time point as it is possible, due to what is 

now know about GJB2 [161], that a mechanism involved in the development 

hearing loss is likely to be disrupted during early development. Equally, the lack 

of staining could be a result of the SLC15A5 antibody not working on paraffin 

sections.  
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The inability to detect SLC15A5 protein via Western blotting could be due to a 

lack of SLC15A5 protein being expressed in the transfected HEK293 cells, which 

may have arisen due to the low transfection efficiency observed, or issues with 

antibody binding. However, this, coupled with a lack of detection in 

immunohistochemical experiments, indicates there may be an issue with the 

SLC15A5 antibody binding to the target sequence, epitope, on the protein. It was 

suggested that the target sequence used by the original (Origene) SLC15A5 

antibody was quite long and, despite having good solubility in water, may 

condense into a folded, or aggregate structure, leading to variable success in 

different applications. To overcome this, a custom antibody targeting two regions 

of the protein could be used in future studies.  

 

Another possible cause of the issues experienced with antibody binding may 

reflect a lack of conservation between human and murine protein sequences. 

Although it would be straightforward to identify regions that are similar between 

mouse and human, there would be a bias towards the more conserved 

membrane embedded portion of the protein, which means its use would be limited 

to experiments where the membranes are isolated/denatured. This may not help 

in determining the subcellular localisation of the protein, particularly given the 

initial results indicating the protein is not present on the outer cell membrane 

(Francesco Rao, Dundee Cell Products/Dr John Chilton, personal 

communication). 

Whilst these studies were ongoing, exclusion of the SLC15A5 variant as a cause 

of NSHL was achieved through a new collaborative arm providing additional 

genotyping data in other Amish communities as part of a high-volume sequencing 

program. This identified two individuals to be homozygous for the SLC15A5 
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variant, who apparently displayed no features of SNHL. Thus, while the specific 

cause of SNHL in this family remains unknown, this finding likely excludes the 

SLC15A nonsense variant as the likely cause.  

This study provides has important lessons to consider when investigating 

potential, novel candidate pathogenic variants in endogamous communities. This 

study provides important lessons to consider when investigating potential, novel 

candidate pathogenic variants in endogamous communities, in which it is 

important to remain cautious when defining candidate variants, including those 

likely to be deleterious (nonsense), identified via small family studies. It is 

imperative that allele frequency datasets, both from within and outside the 

community, are thoroughly and regularly investigated, as conducted in this study. 

This permits the identification of additional variants in other families to aid 

confirmation of a gene as causative. 

 

As demonstrated with this family, and other families within the Amish community 

[177], the interpretation and clinical significance of novel or rare variants may be 

challenging. This may be aided through the curation and dissemination of 

knowledge regarding rare gene variants. 

Initiatives such as the Anabaptist specific variation database and MatchMaker 

Exchange (MME), launched in 2013, has significantly expedited the matching of 

unrelated cases with variants in the same gene and overlapping phenotypes. 

Whilst the genomic data collected by the Windows of Hope programme over the 

last 19 years is an invaluable source of information to the Amish community itself, 

its importance extends far beyond this into the general population. This data can 

be utilised by the “matchmaking community” in both a clinical and research setting 

to facilitate human disease gene identification, to aid genomic variant 
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classification and provide a valuable source of phenotypic and prognostic data 

on otherwise rare inherited disorders.  

However, this study also demonstrates the utility of a community-specific dataset 

which shares, otherwise unpublished information on nonsense and frameshift 

variants that may have become enriched in the community but, like the SLC15A5 

variant, are known to be non-pathogenic.  These concepts are explored and 

highlighted further in chapter five of this thesis. 

 

3.6.4 Allele frequencies of SHL in the Amish population 

Several syndromic presentations of SNHL have also been identified in the Amish 

population, including the previously well characterised conditions Usher 

syndrome [214] infantile Refsum disease [215] Jervell-Lange-Nielson (JLN) 

syndrome[181], COL1A2-related osteogenesis imperfecta [186], metabolic and 

mitochondrial disorders. JLN syndrome was described in the Amish population 

by [181] who reported a family with two affected siblings both with SNHL and long 

QT syndrome (LQTS), with the parents displaying borderline LQTS and normal 

hearing. DNA sequencing identified a homozygous 2bp deletion in KCNQ1 

predicted to result in a frameshift and premature termination as the likely cause 

in the affected siblings (NM_000218.2:c.451_452del; p.Leu151fs). While at low 

frequency, our studies confirmed the presence of this gene variant in both the 

Holmes and Geagua county Ohio Amish communities. Given the serious 

implications of sudden cardiac death associated with this disorder, it is crucially 

important to consider this genetic diagnosis in individuals with congenital SNHL 

in the Amish to ensure appropriate counselling, follow-up and management.  
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Several genetic causes of congenital SHL have also been identified in the Amish 

community in association with specific syndromic conditions. These include 

PCNA, SLITRK6, YARS, GM3 synthase deficiency and CODAS (Cerebral, 

Ocular, Dental, Auricular and Skeletal anomalies) syndrome (see supplementary 

paper), each of which should be considered depending on the accompanying 

clinical features. Mitochondrial disorders associated with SNHL have also been 

described within the Amish population [216] and this group of disorders along 

with infantile Refsum disease [215], should be considered particularly in the 

context of SNHL associated with neurological and ophthalmological features. In 

Mennonite and Hutterite groups other conditions associated with SHL have been 

described, including mutation of PCDH15 and MYO7A with Usher syndrome 

[214, 217], ALMS1 in Alstrom syndrome [218, 219] and EDNRB in Waardenburg 

syndrome [220]. It is likely that other well characterised causes of both SHL and 

NSHL have been identified within the Amish population by local clinicians and 

researchers which remain unpublished. 

 

 

3.6.5 Future work and considerations 

As the data reviewing the causes and frequencies of hearing loss in the Amish 

community was being compiled for publication, ongoing studies identified a 

candidate new cause of SNHL and NDD in a large extended Amish family 

(section 3.5.5). This study investigated the molecular cause of hearing loss in two 

interlinking families in which known genetic causes of NSHL had been excluded, 

comprising five affected individuals, due to a nonsense mutation in a microtubule-

associated molecule. The genetic power of this study was notably greater than 

the SLC15A5 family study, due to the greater size of this family. Additionally, the 
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same p.Arg1197Ter nonsense variant was identified as a candidate cause of 

hearing loss and NDD by a collaborator of the Exeter team investigating families 

from the Middle East. Together, these studies provide strong evidence that the 

microtubule-associated molecule is responsible for this syndromic form of 

hearing loss. While beyond the remit of this thesis, future studies should be 

tailored to corroborate these findings and further explore the cellular and 

developmental role of this molecule about which little remains currently 

understood.  

Such studies would entail undertaking molecular studies to more precisely define 

binding partners and subcellular localisation of the gene product to define its 

molecular role in hearing loss. In addition to this immunohistochemical and RT-

PCR studies in mouse brain and inner ear at different developmental time points 

would be carried out to describe the pattern of gene expression in different tissues 

known to be linked to the development of hearing loss. Finally, mouse knockout 

studies could be conducted to investigate the phenotypical outcome in 

comparison with humans. 

There are numerous significant benefits of elucidating the genetic basis of a 

condition such as HL in any community setting. These include providing a specific 

diagnosis for affected individuals and their families, identifying relevant therapies 

and treatments (for example consideration for CI), screening for the presence of 

other features that may develop in the condition, and to inform parents for 

reproductive counselling. As with other inherited conditions originally identified in 

the Amish, the identification and clinical and molecular definition of HL disorders 

in the community has been of notable benefit globally, enabling informed disease 

diagnosis, counselling and management for patients and families worldwide 

subsequently diagnosed with these conditions. With the exception of mutation of 
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PCNA, all conditions defined in the Amish have ultimately been described in other 

populations highlighting the global relevance and importance of studies of 

inherited conditions in such genetic isolates. Further studies to elucidate the 

molecular mechanisms of HL-related disorders is crucial, and will ultimately 

facilitate the development of new treatments to alleviate the burden associated 

with these disorders.   
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CHAPTER 4 

DEFINING THE PHENOTYPE AND 

PATHOMOLECULAR BASIS OF A NOVEL FORM 

OF NEURODEVELOPMENTAL DISORDER 

ASSOCIATED WITH THE MISSENSE MUTATION 

OF SMAD NUCLEAR INTERACTING PROTEIN 1 

(SNIP1) 
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 Defining the phenotype and pathomolecular basis of 

a novel form of neurodevelopmental disorder 

associated with the missense mutation of Smad 

nuclear interacting protein 1 (SNIP1) 

 

4.1 Introduction 

As previously described, neurodevelopmental disorders (NDD) are a group of 

disorders involving the abnormal development of the central nervous system 

which often display a spectrum clinical features. Global developmental delay 

(GDD) is commonly observed in NDD and is defined as the failure of an individual 

to achieve developmental milestones within the expected age range. Whilst GDD 

can occur in isolation it is also often observed alongside other neurological (and 

potentially non-neurological) features including epilepsy and behavioural 

problems (autism spectrum disorder and attention-deficit hyperactivity disorder) 

[221]. 

 

A collaboration between five Amish-based clinics (The Windows of Hope, the 

Community Health Clinic, New Leaf Center, LaFarge Medical Clinic and The 

Clinic for Special Children) identified 35 individuals (20 males; 15 females) which, 

whilst displaying a broad spectrum of neurological phenotypes, also showed a 

striking number of overlapping clinical features. A review of the phenotypes 

displayed by these individuals identified global developmental delay, hypotonia, 

abnormal skull shape and the presence of seizures as the most consistent 

features. To investigate if a common genetic cause was responsible for the 
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difficulties experienced by these individuals a combination of autozygosity 

mapping and exome sequencing was undertaken on a small subset of families. 

This revealed a p.Glu366Gly missense mutation of SNIP1 (Smad nuclear 

interacting protein 1), a widely expressed transcriptional suppressor of the TGF-

β signal-transduction pathway, common to all affected individuals. This variant 

had previously been reported as a puatative novel candidate in three individuals, 

from a different Amish community, displaying phenotypes overlapping with 

individuals from our cohort including epilepsy and skull dysplasia [179]. This 

finding further corroborates the likely pathogenicity of this variant and its role in 

the observed disorder.  

Due to its role as a transcription regulator, gene transcript studies where 

undertaken to elicit the effect of this variant on gene expression. These studies 

showed altered gene expression profiles for a number of molecules with well 

characterised roles in neurodevelopment, providing potential explanations for the 

source of the clinical phenotypes observed.  This study consolidates phenotypic, 

genetic and gene expression data in support of the mutation of SNIP1 as the 

cause of a novel autosomal recessive neurodevelopmental disorder in addition 

to providing insight into the molecular basis of the disorder and the role of SNIP1 

as a transcription factor. 

 

4.1.1 Cell signalling 

Cell signalling, or signal transduction, is the fundamental process of cells 

communicating and responding to external cues in their environment [222]. Cells 

communicate via membrane-associated proteins or through the secretion and 

detection of molecules, such as hormones, cytokines, chemokines and growth 
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factors that influence cell behaviour and responses including proliferation, 

differentiation and metabolism [223].  

The transforming growth factor–β (TGF-β) family is a well-studied example of a 

secreted growth factors that govern many developmental processes. Aberrant 

signalling within this pathway is well characterised, and shown to be associated 

with a number of human disorders including cancer, cardiovascular and 

musculoskeletal disease [223, 224]. 

 

4.1.2 TGF-β signalling pathway  

In mammals, the TGF-β superfamily of growth factors are encoded by 33 genes 

that are widely expressed in a variety of tissues [223, 225]. They are essential 

throughout the life of an organism orchestrating critical processes ranging from 

gastrulation and the onset of body axis asymmetry in early embryonic 

development, to adult tissue homeostasis [226]. 

The TGF-β family contains a large group of cytokines , ~60 members [227], which 

can broadly be divided into four subgroups; TGF-βs that comprises of the three 

mammalian TGF-β isoforms, the Müllerian inhibitory factors (MIF), the 

activins/inhibins, and the bone morphogenetic proteins (BMP) and growth and 

differentiation factors (GDFs) which contains all 20 BMPs and the majority of 

GDFs, [226, 228] (Figure 4.1). 
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Figure 4.1: Members of the TGF-β family. Major families of the TGF-β superfamily 
include TGF-β, BMP, MIF and activin–inhibin. Image taken and modified from 
Drabsch & Dijke, 2012 [229]. 

 

Control of over the broad range of functions associated with members of the TGF-

β family is achieved through signalling specificity and differential ligand affinities 

to different cell surface TGF-β receptors (TGFβR) as well as the co-regulation of 

the various pathways by a number of transcriptional co-activators and co-

repressors [224]. TGF-β signal transduction includes Smad transcription factor 

mediated pathways (section 4.1.3: Smad proteins) which induce a transcriptional 

response, and non-Smad mediated pathways which evoke transcriptional 

responses as well as other direct cellular responses, not involving the regulation 

of transcription [224]. 

There are three main types of TGFβR present in all cell types, TGFβRI, TGFβRII 

and TGFβR-III. TGFβRI and TGFβRII mediate Smad dependent signal 
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transduction and contain a serine/threonine kinase domain, a transmembrane 

domain and a ligand-binding domain which associate in a homo- or heteromeric 

complexes and act as tetramers. [228, 230]. Binding of a homodimer TGF-β 

ligand to TGFβRII initiates the formation of a stable hetero-tetrameric complex 

with TGFβRI, where TGFβRI receptors are activated through phosphorylation by 

TGFβRII. Once activated TGFβRI receptors phosphorylate cytosolic Smad2 and 

Smad3 (receptor-regulated Smads, R-Smad) proteins at C-terminal serines. 

Activated R-Smads then form a trimer with Smad4, a common-partner Smad (co-

Smad) enabling the complex to be imported into the nucleus. Inside the nucleus 

the R-Smad-co-Smad complex associates with sequence specific transcription 

factors at regulatory sequences in target genes regulating gene expression [231] 

(Figure 4.2B). 
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Figure 4.2: TGF-β signalling pathway. Summarising the different signal 
transduction pathways initiated by the different TGF-β ligands. A) Signalling by 
activin ligands. B) Signalling by TGF-β ligands and C) signalling by BMP ligands. 
Image taken and modified from (https://reactome.org/PathwayBrowser/#/R-HSA-
9006936&DTAB=DT).   

 

4.1.3 Smad proteins 

Smad proteins are a small family of structurally similar intracellular proteins that 

act as transcription factors in the transforming growth factor-beta (TGF-β) 

pathway (Error! Reference source not found.B) [232]. The name originates 

from the contraction of the names of homologous genes, Sma and Mad, 

originally discovered in Caenorhabditis elegans (C.elegans) and Drosophila 

melanogaster (Drosophila) respectively.  
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The Smads are a well characterised signalling pathway initiated by activated 

TGF-β receptors. There are eight Smad family members in mammals [233] 

which can be grouped into three classes; receptor-regulated Smads (RSmads), 

common-partner Smads (Co-Smads), and inhibitory Smads (I-Smads). All 

Smad proteins are 500 amino acids in length and contain two globular domains; 

Mad-homology 1 (MH1) and Mad-homology 2 (MH2), joined by an unstructured 

linker (Figure 4.3). The MH1 domain, involved in nuclear import and cytoplasmic 

anchoring, DNA binding, and regulation of transcription, is highly conserved in 

all R-Smads and Smad4 but is not present in I-Smads. Due to the addition of 30 

amino acids in the MH1 domain, encoded by an extra exon, Smad2 is unable to 

directly bind to DNA. The linker regions, whilst all containing important 

phosphorylation and recognition sites, are diverse in the different Smad 

proteins. For example the linker region in Smad3 contains a trans-activation 

(TA) domain which permits the binding of transcription co-regulators with the 

Smad4 linker region containing a nucleus export signal (NES). The MH2 

domain, responsible for the regulation of Smad oligomerization, cytoplasmic 

anchoring and transcription of target genes, is highly conserved and considered 

to be one of the most versatile protein-interacting domains in signal transduction 

[232-234]. 
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Figure 4.3: Domain structure of Smads. MH1 domain of Smad2 contains an 
additional 30 amino acids (dark green box). Smad3 contains a trans-activation 
(TA) in its linker region. Smad2, 3 and Smad4 contains a Nucleus Localization 
Signal (NLS) in their MH1 domain. Smad 7 lacks MH1 domain. Figure taken and 
modified from Samanta and Datta, 2012 [234]. 

 

As describe above, R-Smads are activated through phosphorylation by a TGFβRI 

receptor. Once activated, and in a complex with the co-Smad, Smad4, the 

complex is translocated into the nucleus where Smad4 associates with 

interacting transcription factors and p300/CBP enabling it to bind to the Smad 

binding element (SBE) in a target gene promoter driving transcription of these 

genes [235] (Figure 4.4).    
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Figure 4.4: TGF-β/Smad signalling pathway from activation upon TGF-β ligand 
binding to translocation to the nucleus and effect on gene expression. Image 
taken and modified from Jiang et al. 2015 [235]. 

 

Defects in TGF-β proteins, or disruption of the Smad signalling pathway by other 

molecular means, has been linked to a number of human diseases including 

cancer [235], chondrodysplasias [236], chronic kidney disease (CKD) [237] and 

pulmonary hypertension [228, 236]. 
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4.1.4 SNIP1 

The SNIP1 (Smad nuclear interacting protein 1) gene is located at 1p34.3 and 

encodes a widely expressed nuclear protein, SNIP1, which acts as a 

transcriptional suppressor of the TGF-β signal-transduction pathway. This 

evolutionary conserved protein, consisting of 396 amino acids, contains a two-

part nuclear localisation signal (NLS) and a forkhead-associated (FHA) domain 

[238, 239] (Figure 4.5). 

 

 

 

Figure 4.5: Schematic diagram of SNIP protein depicting the location of the two 
functional domains 

 

The C-terminal FHA domain has been shown to bind to the N-terminus of c-Myc, 

a key regulator of cell proliferation and transformation, enhancing its 

transcriptional activity by stabilizing it against proteosomal degradation and by 

bridging the c-Myc/p300 complex [240]. Functional studies have demonstrated 

the N-terminal NLS inhibits Smad-dependent transcription by binding to 

p300/CBP co-activators [238, 241]. This interaction prevents Smad4 in the R-

Smad-Co-Smad complex binding to the co-activators rendering it unable to bind 

to the Smad binding element (SBE) in target gene promoters [235], thus 

supressing transcription (Figure 4.6). 

 

Orthologues of SNIP1 have been identified in organisms ranging from Homo 

sapiens to Caenorhabditis elegans (C. elegans), displaying varying degrees of 

conservation with 86% homology observed in murine SNIP1 compared to only 
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47% homology with the C. elegans homologue (C32E8.5) [242]. The most highly 

conserved domain within the SNIP1 protein is the FHA domain which is 

consistent with a role in growth regulation. Knock-down experiments in C. 

elegans showed that loss of SNIP1 resulted in embryonic lethality with growth 

defects and sterility observed in knockdown experiments involving adult worms 

[242]. 

 

 

Figure 4.6: TGF-β/Smad signalling pathway from activation upon TGF-β ligand 
binding to translocation to the nucleus and repression of gene expression on 
SNIP1 binding to the p300/CBP transcription co-activator. Image taken and 
modified from Jiang et al. 2015 [235].  
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4.2 RESULTS 

 

4.2.1 Identification of a pathogenic variant in SNIP1 

Assuming that a founder mutation was responsible a genome-wide SNP 

microarray, (Illumina Human CytoSNP-12v2.1 330k array) performed using DNA 

from six affected individuals (Figure 4.7), was undertaken in conjunction with 

WES, performed using the DNA from one affected individual.  

 

 

Figure 4.7: Simplified pedigree of the four Amish families initially investigated 
showing the six affected individuals initially genotyped using a genome-wide SNP 
microarray. 

 

Inspection of resultant genotypes identified a single notable region of 

homozygosity of 1.65Mb on chromosome 1p34.3 shared by the affected 

individuals, delimited by SNP markers rs6667450 and rs10889902 

(NC_000001.11: g.36, 492,230-38,143,653; (Figure 4.8) containing 17 genes and 
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likely to corresponding to the disease locus. No other notable regions (of >0.5Mb) 

of autozygosity were observed.  

 

In parallel with the genome-wide SNP mapping, DNA from a single affected 

individual (Figure 4.7) underwent WES, to identify variants within this region as 

well as other candidate variants located genome-wide. After filtering the identified 

variants for call quality, potential pathogenicity, population frequency, and 

prioritisation for localisation within the candidate interval, a single potentially 

pathogenic sequencing variant (NM_024700.3: c.1097A>G; p.Glu366Gly) in 

exon four of SNIP1 remained as the only candidate variant. Dideoxy sequence 

analysis of all family members confirmed that, as expected, all six affected 

individuals were homozygous for this variant, while the parents and unaffected 

siblings were all heterozygous. The variant, predicted to be disease causing in 

MutationTaster2 [94] and probably damaging in PolyPhen-2 [93], results in the 

substitution of a highly conserved (Figure 4.8) glutamic acid residue at position 

366 for glycine (p.Glu366Gly). 
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Figure 4.8: Pictorial representation of the (A) identified 1.65Mb disease locus on chromosome 1 containing 17 genes, with SNIP1 indicated 
(red circle).  (B) sequence chromatogram corresponding to the SNIP1 c.1097A<G variant (C) multi-species amino acid alignment around 
the Glu366 region, showing stringent conservation of this region (D) schematic showing domain architecture of SNIP1 polypeptide 
sequence with regard to Glu366 , located alongside the forkhead-associated domain (F).



185 
 

4.2.2 Defining the clinical phenotype of a neurological disorder displaying 

severe psychomotor delay with seizures, epilepsy and dysmorphic features 

A collaboration between Windows of Hope, the Community Health Clinic, New Leaf 

Center, LaFarge Medical Clinic, and Clinic for Special Children identified 35 

individuals originally diagnosed with a broad range of genetic disorders including 

glycogen storage disorders, sialidosis, Crouzon syndrome, mitochondrial 

disorder/myopathy, and GM3 synthase deficiency.  

The spectrum of clinical features of this condition includes severe psychomotor 

delay with seizures, (decreased muscle tone), absent reflexes, and strabismus 

(improper alignment of the eyes) with horizontal nystagmus (involuntary eye 

movement), as well as neonatal hypotonia with poor feeding and characteristic 

dysmorphic features (Figure 4.9). 

 

 

Figure 4.9: Three siblings displaying characteristic craniofacial features. 
Photograph provided by Dr Zineb Ammous from the Community Health Clinic, 
Topeka, US. Written consent granting permission for publishing was obtained 
locally. 
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Dr Zineb Ammous, a Clinical Geneticist from the Community Health Clinic, Topeka, 

US, conducted a survey of all 35 individuals and through historical and physical 

examination was able to precisely define the clinical phenotype (Table 4.1).  

 

Table 4.1: The clinical presentation in the 33 affected individuals; ADHD, 
attention deficit hyperactivity disorder 

 
ADHD, attention deficit hyperactivity disorder. VSD, ventricular septal defect. 

ASD, atrial septal defect. CoA, coarctation of the aorta. Ao valve 

 

All affected individuals investigated displayed an abnormal MRI showing an 

abnormal skull shape (skull dysplasia) and hypomyelination (Figure 4.10). 



187 
 

 
Figure 4.10: Axial brain MRI of a normal control (left) compared to an affected 

patient (right) showing skull dysplasia and hypomyelination. 

 

Approximately 70% of patients suffered from respiratory complications such as 

laryngomalacia, stridor, and/or apnea which, in some cases, required a 

tracheostomy (Figure 4.11A). The condition also includes a number of additional 

features including talipes equinovarus (Figure 4.11B) and craniosynostosis (Figure 

4.11C&D). 

 

Figure 4.11: A) Infant patient with tracheostomy tube fitted as a result of respiratory 
complications. Atypical features talipes equinovarus (B) and craniosynostosis (C, 
D). Photograph provided by Dr Zineb Ammous from the Community Health Clinic, 
Topeka, US. Written consent granting permission for publishing was obtained 
locally. 
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4.2.3 Effect of SNIP1 mutation on gene expression and cellular pathways   

The SNIP1 protein is an evolutionary conserved inhibitor of the TGF-β signal 

transduction pathway [238, 242]. However, it is not yet fully understood which 

genes it regulates specifically, nor which regulatory mechanisms it may be 

involved. To discern the impact of the SNIP1 p.Glu366Gly sequence variant on 

gene expression, and through which pathways it operates, whole transcriptome 

sequencing of RNA extracted from whole blood was undertaken on samples from 

six affected and six unaffected, age and sex matched control individuals. 

Whole transcriptome sequencing enabled the characterisation of all RNA 

transcripts present within the samples by identifying differentially expressed genes 

and produced data on genes where expression was either increased (upregulated) 

or decreased (downregulated) in affected individuals (disease group) compared to 

the control group. This RNA-seq data underwent gene set enrichment and pathway 

analysis using the integrative web-based software application Enrichr [243] which 

collates a summary of the most biologically relevant enriched genes within a 

dataset [244]. This is done by comparing the frequency of individual annotations 

in the each gene list, from 102 available gene set libraries, with a reference list of 

genes. As this study utilised genome-wide, whole transcriptome sequencing the 

reference list contained all genes in the genome. For this analysis the “Reactome 

2016” gene set library, the largest, most comprehensive and best characterised 

gene set list, was used to functionally annotate the differentially expressed genes 

within >2250 pathways. Table 4.2 and Table 4.3 summarise the top ten pathways, 

and associated genes, that were up- or down- regulated in the disease group 

compared to the control.  
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Table 4.2: Top ten pathways and associated genes identified by Enrichr as being upregulated in the disease group compared to controls 

Enrichr 
code 

Enrichr Pathway Genes P-value 
Z-

score 
Combined 

score 

R-HSA-
181429 

Serotonin neurotransmitter release 
cycle 

SYT1 SYN3 0.002096 -2.01 12.41 

R-HAS-
212676 

Dopamine neurotransmitter release 
cycle 

SYT1 SYN3 0.003424 -2.03 11.56 

R-HAS-
266738 

Developmental biology 
DUSP2 

CDH4 
 EPAS1 

CHL1 
LAMC1 
ROBO1 

0.009831 -2.37 10.94 

R-HAS-
500931 

Cell-cell communication 
CDH4  

PARD3 
PTK2 0.01364 -1.99 8.55 

R-HAS-
373752 

Netrin-1 signalling PTK2  ROBO1 0.01112 -1.88 8.46 

R-HAS-
983695 

Antigen activates B Cell Receptor 
(BCR) leading to generation of 

second messengers 
BLK  BLNK 0.01379 -1.87 8 

R-HAS-
112310 

Neurotransmitter release cycle SYT1 SYN3 0.01611 -1.92 7.94 

R-HSA-
421270 

Cell-cell junction organisation CDH4 PARD3 0.02257 -1.94 7.35 

R-HAS-
000178 

ECM proteoglycans PTPRS LAMC1 0.01858 -1.81 7.21 

R-HAS-
422475 

Axon guidance 
DUSP2 

CHL1 
LAMC1 

PTK2 
ROBO1 

0.04623 -2.17 6.68 
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Table 4.3: Top ten pathways and associated genes identified by Enrichr as being downregulated in the disease group compared to controls 

Enrichr 
code 

Enrichr Pathway Genes P-value 
Z-

score 
Combined 

score 

R-HSA-
2672351 

Stimuli-sensing channels 
TRPC3 
TRPC1 
ANO9 

SGK1 
RPS27A 
 

0.0002381 -1.92 16 

R-HSA-
418890 

Role of second messengers in 
netrin-1 signalling 

TRPC3 TRPC1 0.001334 -2.16 14.29 

R-HAS-
69298 

Association of licensing factors 
with the pre-replicative complex 

E2F3 RPS27A 0.003057 -1.91 11.03 

R-HAS-
2173791 

TGF-beta signalling EMT 
(epithelial to mesenchymal 

transition) 
F11R RPS27A 0.003482 -1.89 10.71 

R-HAS-
983712 

Ion channel transport 
TRPC3 
TRPC1 
ANO9 

SGK1 
RPS27A 
 

0.005615 -2 10.42 

R-HAS-
3295583 

TRP channels TRPC3 TRPC1 0.08426 -1.95 
9.5 

 

R-HAS-
2559585 

Oncogene induced senescence  SGK1 RPS27A 0.01358 -1.96 8.42 

R-HAS-
6804757 

Regulation of TP53 degradation SGK1 RPS27A 0.01612 -2.09 8.66 

R-HAS-
6806003 

Regulation of TP53 expression 
and degradation 

E2F5 RPS27A 0.01701 -2.11 8.58 

R-HAS-
382551 

Transmembrane transport of 
small molecules 

RNASEL 
TRPC3 
TRPC1 
ABCC6 

CYBRD1 
ANO9 
RPS27A 
SGK1 

0.01767 -2.066 8.31 



191 
 

The pathways described in these tables were selected by obtaining the highest 

combined score ranking (>5) of all the pathways analysed by this gene set library. 

The combined score multiples the log of the p-value, a statistical method using the 

Fisher’s exact test to assess the probability of any gene belonging to any set 

(Fisher exact test based ranking), by the z-score, which computes the deviation 

from an expected rank (rank based ranking). This combined score ranking allows 

for the slight bias of the Fisher exact test which was reported to affect the ranking 

of terms based exclusively on the length of the gene sets in each of the gene-set 

libraries [243]. 

 

A number of the pathways identified through the Enrichr analysis are evidently, 

highly relevant to the observed phenotype. The two most impacted biological 

pathways, involving serotonin and dopamine release, showed the highest level of 

enrichment (highest combined score) within the upregulated gene list. Both 

serotonin and dopamine are monoaminergic neurotransmitters that have been 

associated in the regulation of seizures [245, 246], a cardinal characteristic feature 

of the condition observed in our cohort (Error! Reference source not found.). 

This makes two genes, SYT1 (synaptotagmin 1) and SYN3 (synapsin III), identified 

in these pathways interesting candidates.  

CHL1 (cell adhesion molecule L1-lLike) and ROBO1 (roundabout guidance 

receptor 1) also stand out as potential candidates as a result of their involvement 

in the developmental biology pathway. This pathway, which obtained the third 

highest combined score, is of interest due to the broad spectrum of phenotypic 

features of the disorder under investigation.  
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4.3 Discussion 

The genetic and gene expression data described in this study strongly implicates 

mutation of SNIP1 as the cause of a novel autosomal recessive 

neurodevelopmental disorder and offers insight into the potential underlying 

molecular mechanisms responsible for the observed phenotypes. The extensive 

review of available phenotypic data provided a unique opportunity to more 

precisely define the clinical spectrum and cardinal features of this novel disorder 

which was only possible due to the high frequency of the condition within the Amish 

community. These findings will ultimately aid diagnosis and treatment, and reduce 

the number of misdiagnoses of affected individuals within the Amish community. 

 

4.3.1 SNIP1 variant (p.Glu366Gly) responsible for novel autosomal recessive 

neurodevelopmental disorder  

This study was only possible due to the extremely high prevalence of this rare 

condition within the Amish, particularly the communities of Indiana where an allele 

frequency of 0.0870 has recently been estimated (Chapter 5). The large number 

of affected individuals with our cohort permitted the collection of robust genetic 

evidence supporting the pathogenicity of this SNIP1 variant (NM_024700.3: 

c.1097A>G; p.Glu366Gly). 

 

Although samples from only six affected individuals were available for genome-

wide SNP mapping the data identified a single, common, very modestly sized 

genomic region (1.65Mb) on chromosome 1. Assuming a founder mutation was 

responsible for the condition this region was believed to be the likely disease locus. 

Exome sequencing was undertaken on one of the genome-wide SNP mapped 

individuals. As expected, the cross-referencing of this data with the SNP mapping 
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data identified a single candidate variant in SNIP1 within the shared region of 

homozygosity. No other candidates, predicted to be deleterious by in silico 

prediction software tools, were identified within the region of interest or genome-

wide. A total of 17 genes were found to be located within the homozygous critical 

region (Figure 4.8). Whilst none have previously been reported to cause 

seizures/epilepsy, hypotonia/hyporeflexia or dysmorphic facial features, two 

genes, GRIK3 and MANEAL, within the region have been linked to a neurological 

phenotype.  

 

A 2.6-Mb microdeletion in 1p34.3, encompassing GRIK3, has been associated 

with severe developmental delay, presenting with mild retrognathia and down-

slanting palpebral fissures in a single female proband [247]. GRIK family members 

are described as playing an important role in synaptic potentiation, a crucial 

process for learning and memory. Therefore the reported haploinsufficiency of 

GRIK3, as result of the microdeletion, is likely to be the cause of the developmental 

delay in this individual [247]. Although GRIK3 is present in the 1.65-Mb region of 

homozygosity shared by all the affected individuals in our cohort (Figure 4.8) there 

is only a small overlap between these two regions. This, in addition to the absence 

of variants within GRIK3 in our exome sequencing data, excluded this gene as a 

possible candidate.  

 

The second gene, MANEAL, was previously suggested as a novel cause of a 

complex infantile-onset neurodegenerative disorder observed in a single male 

proband, born to consanguineous parents from Saudi Arabia. A loss-of-function 

variant in MANEAL was found to co-occur with a homozygous splice defect in 

OSTM1, considered likely to be responsible for infantile malignant osteopetrosis. 
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The neurological features of this phenotype are characterised by developmental 

delay, optic nerve atrophy, dyskinetic movement disorder and neurodegeneration 

determined through the appearance of brain iron accumulation (NBIA)-like pattern 

on a brain MRI. However, this small family study was the first, and currently only, 

association of this gene with a human disease. As such further investigation and 

evidence will be required to confirm the clinical significance of this variant. 

Examination of our exome sequencing data and the absence of variants within 

MANEAL, excluded it as a possible candidate.  

 

The finding that mutation of SNIP1 is causative of the neurodevelopment disorder 

described in our patients is in agreement with a previous study defining five 

candidate genetic causes of NDD in the Amish, including SNIP1. This study 

identified three affected individuals from two sibships with a condition referred to 

as ‘PMRED’ (psychomotor retardation, epilepsy, and craniofacial dysmorphism). 

Exome sequencing identified the SNIP1 c.1097A.G (p.Glu366Gly) alteration as a 

candidate genetic cause [179]. This, together with the data presented as part of 

this PhD thesis, corroborates the c.1097A.G SNIP1 variant as the cause of this 

condition. 

 

4.3.2 Defining the clinical phenotype of a neurological disorder displaying 

severe psychomotor delay with seizures, epilepsy and dysmorphic features  

The work undertaken by Dr Zineb Ammous and our collaborating clinical teams 

has been instrumental in precisely defining the clinical phenotype of this condition, 

and enabling the cardinal features to be determined.  

 



195 
 

The authors of the PMRED study described the characteristic phenotype of this 

condition as neonatal hypotonia with poor feeding [179]. Both of which are 

universal features observed within our cohort. Puffenburger et al., also reported 

characteristic dysmorphic features including; a bulbous nose, wide mouth and 

tongue, broad jaw with protuberant angles, short hands, short tapered fingers, and 

broad thumbs [179] with cranial MRIs showing irregular skull surface, white matter 

abnormalities and ventriculomegaly. All of these features were observed in at least 

50% of patients within our cohort (Table 4.1).  

 

Neurological and neurodevelopmental difficulties were major features of the 

disorder described by Puffenburger. This included the presence of psychomotor 

delay, epilepsy and absent reflexes. Affected individuals did not learn to walk, 

develop speech or engage socially and developed seizures by 6 months of age, 

with either focal or generalised seizures of varying types that may be intractable. 

Electroencephalograms (EEGs) showed multifocal spike-wave discharges from 

central, occipital and temporal regions [179]. Whilst most individuals in our study 

achieved independent ambulation it was significantly delayed, compared to 

unaffected individuals, and all individuals are non-verbal however, several can 

communicate through signs, gesticulation or sounds. Hypo- or areflexia were also 

observed to be universal features with our cohort.  

 

The three individuals described by Puffenburger et al. all displayed ophthalmic 

features described as strabismus with horizontal nystagmus [179]. Although not a 

universal feature in our cohort 45% of individuals we assessed displayed some 

degree of strabismus or nystagmus with myopia also being observed.  
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In addition to the features described above we identified a number of additional 

features, not identified in the Puffenburger study. Congenital cardiac defects are a 

common feature observed in 60% of individuals within our cohort. These defects 

include hypoplastic left heart syndrome (HLHS), with two individuals dying in the 

neonatal period, aortic stenosis and bicuspid aortic valve (BAV) of varying severity, 

coarctation (narrowing) of the aorta seen in one individual, aortic root dilatation, 

atrial septal defect (ASD), ventricular septal defect (VSD), patent ductus arteriosus 

(PDA), pulmonary artery stenosis and mitral valve regurgitation. In addition to 

these features 11% (4/35) of individuals presented with cardiomyopathy.  

Several respiratory difficulties were also observed in the 35 patients assessed as 

part of this study. Around 75% of individuals displayed upper airway respiratory 

difficulties in the neonatal period, including laryngomalacia, pharyngomalacia and 

subglottic stenosis of variable severity causing a weak cry, stridor and apnoea 

where also observed. Several patients required tracheostomy procedures and 

supplementary home oxygen. Another reported respiratory feature was asthma.  

Finally, approximately 25% of the individuals assessed as part of this study 

presented with endocrine features, that were not previously reported in the three 

PMRED patients including hypoglycaemia, hypothyroidism and, in one individual, 

dyshormonogenesis.  

 

4.3.3 Gene expression and cellular pathway data analysis 

The high frequency of this condition within the Amish provided the opportunity to 

investigate how mutation of SNIP1 affects its role as a transcriptional regulator, 

and define the impact of gene mutation on these functions, by undertaking whole 

transcriptome sequencing. RNA samples were extracted from whole blood 

obtained from six affected individuals, which were age and gender matched to form 
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a control group of six samples in which the presence of the SNIP1 gene alteration 

was excluded. While a relatively modest number of samples were available for 

whole transcriptome sequencing, we hypothesised that the unique genomic 

architecture and wider homogeneity of Amish individuals may likely be beneficial 

and increase the statistical power of this study, especially given the fact that all 

individuals are homozygous for the same founder gene mutation.  

As with any neurological or neurodevelopmental disorder it was not possible to 

undertake gene expression profiling on the primary tissue of interest, the brain, 

instead whole blood, an accepted proxy, was used. Since the first blood-based 

transcriptomic study of the neurological disorder Huntington’s disease in 2005 

[248] many gene expression studies using whole blood have been undertaken to 

elicit the pathophysiological mechanisms of neurological conditions supporting 

whole blood as a useful proxy measure for gene expression in the central nervous 

system [249].  

Further evidence in support of using whole blood to undertake gene expression 

studies to investigate the effect of the SNIP1 mutation is the expression profile of 

SNIP1 reported by the Genotype-Tissue Expression (GTEx) project. The GTEx 

project was supported by the Common Fund of the Office of the Director of the 

National Institutes of Health (and by NCI, NHGRI, NHLBI, NIDA, NIMH, and 

NINDS) which set out to create a resource enabling the study of genetic variation 

and the regulation of gene expression in multiple reference human tissues [250]. 

Figure 4.12 shows the gene expression profile for SNIP1 in multiple human tissues.  
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Figure 4.12: Gene expression for SNIP1 in multiple human tissues. The data used for this analysis obtained from: 
https://gtexportal.org/home/gene/SNIP1, the GTEx Portal on 21/10/2019 using GTEx Analysis Release V8 and dbGaP accession number 
phs000424.v8.p2 on 21/10/2019.   Sorted according to tissue type with the outliner function switched off. 
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The data obtained from the GTEx portal indicates that whole blood provides a 

median TPM (transcript per million) for SNIP1 expression of 3.795 obtained from 

755 samples. These values are within the broad range of median TPM units 

(2.929-9.948) obtained from the 13 different types of brain tissue analysed from 

a minimum of 139 samples as part of the GTEx project. It has been suggested 

that genes expressing more than two transcripts per million transcripts (TPM>2) 

are highly likely to be actively transcribed genes [251]. A reported TPM of 3.795 

for SNIP1 expression in whole blood indicates that SNIP1 is being actively 

transcribed in blood. This data supports the approach taken in this study and 

validates the use of RNA extracted from whole blood to investigate the impact of 

SNIP1 mutation on transcription and gene expression.   

 

Despite the limitations of sample size and the use of a proxy tissue sample, this 

gene expression study has been valuable in providing further insight into the key 

molecular signalling pathways potentially influenced by SNIP1 mutation. 

Importantly, the developmental and biological pathways which were found to be 

most notably impacted by gene mutation were of direct relevance to the cardinal 

clinical features of the condition. Of immediate interest were the pathways 

involved in serotonin and dopamine release, which where the most highly 

enriched (highest combined score) within the upregulated gene list, and have well 

reported links associating their dysregulation with the onset of seizures, an 

invariable feature of SNIP1-related syndrome [245, 246]. 

 

Epilepsy affects ~65 million individuals globally [252] and whilst some epilepsies, 

or seizures, have well defined aetiologies, the underlying cause remains 

undefined in many cases. Correctly diagnosing an epilepsy syndrome has 
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significant implications with regard to treatment options [253]. A lack of 

knowledge regarding the underlying molecular basis of these syndromes is a 

contributing factor as to why epilepsy has been reported to be the leading 

neurological cause of reduced quality-adjusted life years (QALY), a measure of 

the quantity and quality of life as a result of healthcare interventions (Johnson 

2019). Determining the underlying molecular cause of the SNIP1-related 

syndrome here, may provide an opportunity for clinicians to find the most suitable 

treatment option in order to achieve the greatest improvement in the quality of life 

experienced by affected individuals within our cohort, and others elsewhere 

affected by this condition.    

 

Serotonin and dopamine and neurotransmitter release pathways 

Both serotonin and dopamine are monoaminergic neurotransmitters that have 

been associated with the regulation of seizures [245, 246], a cardinal 

characteristic feature of this condition (Table 4.1). Two genes in the serotonin 

and dopamine and neurotransmitter release pathways, SYT1 (synaptotagmin 1) 

and SYN3 (synapsin III), are members of pre-synaptic protein families (the 

synaptotagmins and synapsins) responsible for regulating synaptic vesicle traffic 

and neurotransmitter release [254] by playing important roles in the process of 

normal calcium ion (Ca2+) regulated neurotransmitter release [255, 256] (Figure 

4.13).  
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Figure 4.13: Showing the location of synaptic proteins in the synapses. 
Highlighted () are the two families of proteins identified due to genes of their 
family members being upregulated in our disease group (compared to controls) 
via enrichment analysis. Image taken (and modified) from Osimo et al. [257]. 

 

Normal brain function is critically reliant on the stringent regulation and timing of 

neurotransmitter release [256]. An action potential of +30mV within the 

presynaptic neurone will open voltage-gated Ca2+ channels, located in the 

presynaptic active zone (Figure 4.14A), initiating the release of a neurotransmitter 

filled synaptic vesicle. The influx of Ca2+ diffuses towards the synaptic vesicle and 

is detected by Ca2+ sensing proteins, from the synaptotagmin family 

(synaptotagmin 1 or synaptotagmin 2), located on the surface of the vesicle 

causing it to fuse with the presynaptic plasma membrane [258].  

Synaptotagmin 1, encoded by the SYT1 gene and responsible for the fast 

(millisecond) synchronous release of neurotransmitter [259], contains six different 

domains which are capable of acting mostly independently by sensing different 

molecules involved in different cell physiology pathways  [260]. The C2A and C2B 

domains are the regions of the protein responsible for detecting Ca2+ ions; the 

C2A domain is capable of binding three Ca2+ ions with the C2B domain binding 

two Ca2+ ions (Figure 4.14B) [260]. The binding of Ca2+ to synaptotagmin 1 
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causes a conformation change within the protein that permits its interaction with 

the membrane fusion machinery [258]. Along with syntaxin binding protein 1 

(MUNC18), Ca2+-dependent activator proteins for secretion (CAPs) and the 

complexins (Figure 4.13), synaptotagmin 1 regulates the assembly of the SNARE 

(soluble N-ethylmaleimide-sensitive factor attachment) complex which is 

responsible for mediating exocytosis [261], the fusion of the synaptic vesicle with 

the presynaptic membrane and subsequent release of neurotransmitter into the 

synaptic cleft [262].  

 

 

Figure 4.14: A) Schematic drawing of a synapse indicating the location of the 
active zone (image adapted from Südhof [263]). B) A schematic view of 
synaptotagmin1, with each functional domain is coloured differently, showing the 
location of Ca2+ binding to the C2A and C2B domains (image replicated and 
modified from Brachya et al. [260]). 

 

In 2018, Baker et al. described 11 individuals with de novo heterozygous 

missense mutations in SYT1 with neurodevelopmental delay (NDD) displaying a 

range phenotypic features (Appendix H), many overlapping those seen in 

SNIP1-related syndrome patients (Table 4.4).  

Important differences between the presentations of these two disorders, is the 

absence of seizures and skull dysplasia in individuals affected by SYT1-
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associated NDD. These cardinal features of SNIP1-related syndrome may relate 

to a more global developmental role of SNIP1.  

Whilst other non-neurological features, such as congenital heart defects and 

respiratory issues are common to both SYT1-associated and SNIP1-related 

disorders endocrinological features, such as hypothyroidism and hypoglycaemia 

appear to be completely absent from the SYT1-associated disorder (Table 4.4). 

 

Table 4.4: Comparison of the clinical presentation in the 33 affected individuals 
and SYT1- associated NDD. 
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Interestingly, SYT1 over expression, a possible outcome from the upregulation of 

SYT1 in our disease group, has been reported to repress tumor necrosis factor-

alpha (TNF-α)-dependent nuclear factor-kappa beta (NF-κβ) transcriptional 

activation [264].  Notably, the NF-κβ signalling pathway is the same pathway the 

SNIP1 protein has been shown strongly to inhibit [238]. 

Synapsins are a family of evolutionary conserved, neuron-specific 

phosphoproteins [265]. Being present in all synapses in the brain, with the 

exception of ribbon synapses, they comprise ~1% of all proteins found in the brain 

making them one of most abundant families of synaptic proteins [266]. As a result 

of alternative splicing three synapsin genes, SYN1, SYN2 and SYN3, encode a 

number of synapsin proteins generating distinct isoforms displaying isoform-

specific distribution [255] [265]. Amino acid analysis of synapsin I and II, the first 

of the synapsins to be identified, showed that the N-terminus of each protein is 

highly preserved between the different isoforms whereas the C-terminus is more 

variable (Figure 4.15) reflecting their different functional properties and 

distribution [267, 268]. 
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Figure 4.15: The synapsin family protein domains. Domain A, a short N-terminal 
region, is shared by all synapsin isoforms and contains a phosphorylation site 
that controls the reversible association with synaptic vesicles. Domain B is rich in 
small amino acids, varies between isoforms and is considered as a linker region 
connecting domain A to domain C. Domain C is a large region (~300 amino acids) 
believed to stabilise the interaction with the synaptic vesicle by penetrating its 
lipid bilayer. After domain C, the amino acid sequence diverges in the different 
synapsin gene products. However, all isoforms bear a proline-rich domain within 
the C-terminal region (within domains D, G, H or J). The amino acid scale is 
shown along the top. Image taken and modified from Cresca et al. [268]. 

 

The synapsin proteins have five major functions (Figure 4.16) with synapsins I 

and II playing similar roles in cellular processes. The later characterised synapsin 

III isoforms are predominantly expressed in early neuronal development but do 

maintain a role in synaptogenesis, neurogenesis and neuronal plasticity [266]. 

The synapsin proteins act over longer period of time, compared to the 

synaptotagmins, ranging from minutes to days when undertaking a role involved 

in in neuronal plasticity [260]. 
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Figure 4.16: The major functions of synapsins taken from Mirza and Zahid, 2018 
[266]. 

 

Mutation of synapsin genes have been associated with a number of neurological 

disorders including; Alzheimer’s disease, schizophrenia, bipolar disorder, 

multiple sclerosis, Huntington’s disease and of most relevance to this study, 

epilepsy [266]. Molecular analysis has implicated both synapsin I and II with the 

development of epilepsy. Nonsense and missense mutation of SYN1 has been 

reported in individuals with autism spectrum disorders (ASDs) and epilepsy [269] 

and a polymorphism (rs37733634) in SYN2 was shown to be significantly 

associated with idiopathic generalized epilepsy (IGE) [270].  

Mutation of SYN3 has not yet been reported to cause epilepsy. However, a study 

conducted in 2006 proposed synapsin III as a candidate for familial partial 

epilepsy with variable foci based on protein-protein interactions, described in the 

human protein reference database (HPRD), with synapsin I, a protein previously 
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linked with epilepsy [271]. Furthermore, in 2015 Zaltieri et al. presented evidence 

that synapsin III is involved in the regulation of dopamine neuron synaptic function 

[272]. The link between altered dopaminergic systems and epilepsy is well known 

[246] with a direct link between increased hippocampal extracellular 

concentrations and seizure activity previously demonstrated [273]. Taken 

together this information places SYN3 upregulation, as a result of mutation in 

SNIP1, as a strong possible cause of the observed epilepsy and/or NDD aspect 

of the phenotype in the affected individuals within our cohort. 

 

Interrogation of the disorders associated with these genes identifies putative 

treatments and therapies that may be of benefit to individuals with SNIP1-

associated syndrome [256, 271]. In 2018, Baker and Gordan et al. described the 

use of pramipexole, a non-ergot dopamine agonist (NEDA) widely used in the 

treatment of Parkinson’s disease (PD), in a single patient open-label treatment 

experiment to treat SYT1-associated disorder. It was reportedly associated with; 

rapid and sustained reduction of the movement disorder, reduction in the 

frequency and severity of agitated and self-injurious behaviours, and increased 

responsiveness to social and environmental stimuli. In addition a reduction in 

EEG abnormalities was observed. Although this treatment has not yet been 

trialled on a second patient and further validation is required to assess the true 

effectiveness of this treatment, it is a promising finding that has the potential to 

reduce some of the clinical features of SNIP1-associated syndrome patients 

[256]. Additionally, the identification of serotonin and dopamine release pathways 

as the possible cause of epilepsy in our patients suggests the use of anti-epileptic 

drugs targeting these pathways may alleviate symptoms in SNIP1-associated 

syndrome individuals. For example phenytoin, carbamazepine, valproic acid, 



208 
 

lamotrigine and zonisamide have all been shown to cause an increase in 

extracellular serotonin levels inhibiting the onset of many types of seizures [274]. 

 

Developmental biology pathways   

Due to the broad spectrum of phenotypic features another enriched pathway of 

interest is the developmental biology pathway which achieved the third highest 

combined score, for upregulated pathways. Interestingly, a few genes identified 

have been linked to disorders displaying overlapping characteristics of SNIP1-

associated syndrome. The gene with the most notable overlap of phenotypic 

features is CHL1 (Cell Adhesion Molecule L1 Like). In 2012, Chen et al. described 

an infant with partial monosomy 3p (3p26.2 --> pter) and partial trisomy 5q (5q34 

--> qter) presenting with psychomotor retardation, developmental delay, 

clinodactyly of the thumb, coarctation of the aorta, patent ductus arteriosus, 

peripheral pulmonary stenosis, atrial septal defect, microcephaly, brachycephaly, 

a small oval face, almond-shaped eyes, a down-turned mouth, a widened nasal 

bridge, hypertelorism, epicanthic folds, long philtrum and low-set large ears [275].  

Important differences between the presentation of this individual and SNIP1-

associated syndrome is the absence of craniosynostosis, which to date has been 

observed in all our patients. Additionally, a number of CNVs impacting the CHL1 

gene have been linked to learning and language difficulties, another common 

feature of SNIP1-associated disease [276-278]. The prominent overlap of 

phenotypes may be suggestive of a link between a mutation in SNIP1 affecting 

the CHL1 protein and its associated functions. 

 

The CHL1 (close homolog of L1) gene, located at 3p26.3, encodes a protein 

belonging to the L1 family of neural cell adhesion molecules (NCAM), forming 
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part of the larger immunoglobulin superfamily (IgSF) [276, 277]. Members of the 

L1 family, often referred to as immunoglobulin cell adhesion molecules (IgCAMs), 

are essential for normal brain development. IgCAMs facilitate a range of 

developmental processes including cell proliferation and migration, 

neuritogenesis, axonal fasciculation, synaptogenesis, and stabilization of 

synapses. Disruption of IgCAM genes and subsequent disturbance of these 

processes has been linked to a number of neuropsychiatric disorders such as 

schizophrenia and mood disorders [279]. 

Members of the L1 family may either be a transmembrane glycoprotein, such as 

CHL1, or linked to the cell surface by a glycosylphosphatidyl inositol (GPI) 

anchor. They are characterised by the presence of six Ig-like domains located at 

the N-terminal and at least four fibronectin type III (FN3) repeats (Figure 4.17) 

[280].  

 

 

Figure 4.17: The schematic structure of CHL1 demonstrating the characteristic 
structure of a transmembrane immunoglobulin cell adhesion molecules (IgCAMs) 
containing six Ig-like domains and five FN3 repeats. Image modified from 
Irintchev and Schachner, 2012 [279]. 

 

CHL1, is expressed in most neurones within the central nervous system (CNS) 

and display higher levels of expression in embryonic brains compared to adult 

brains [279]. CHL1 regulates neurite overgrowth, axonal guidance, migration, 
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differentiation of neurones and in the mature brain accumulates at the axonal 

membrane to regulate synapse function [276]. Murine models of CHL1 function 

have shown Chl1 deficiency causes aberrant neurotransmission, motor co-

ordination and behaviour providing further evidence of its importance in normal 

brain functioning [276].  

 

A further gene of interest enriched in the developmental biology pathway is 

ROBO1 (roundabout guidance receptor 1) a transmembrane receptor involved in 

signal transduction, located at 3p12. Like CHL1, ROBO1 is a member of the 

NCAM family however, its role in axon guidance defines a separate, novel IgSF 

subfamily [281]. 

SLIT-Roundabout (SLIT/ROBO) signalling is now known to be involved a number 

of processes including, kidney induction and heart tube formation [282]. There 

are four members of the ROBO family (ROBO1, ROBO2, ROBO3 and ROBO4) 

three of which are expressed in human brain cells each containing five Ig 

domains, three FN3 domains and four conserved cytoplasmic domains. ROBO2 

and ROBO3 are only seen in the nervous system but not in the vascular system 

where ROBO1 is known to be expressed in both systems making it an interest 

candidate for both the neurological and cardiac phenotypes observed in SNIP1-

related syndrome [282, 283] (Figure 4.18). 
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Figure 4.18: The schematic structure of ROBO family members. ROBO1-3 
showing the typical structure wiht five Ig domains, three fibronectin type III (FN3) 
repeats and four conserved cytoplasmic domains and ROBO4 comprising of only 
three Ig domains, two FN3 domains and two cytoplasmic domains. Image 
modified from Ypsilanti et al., 2010 [283] and Yadva and Narayan, 2014 [282]. 

 

Disruption of ROBO1 expression has been linked to learning difficulties 

particularly dyslexia susceptibility [284]. Although SNIP1-associated syndrome 

affected individuals experience learning difficulties the clinical feature of most 

relevance is that the disruption of ROBO1 has been reported to give rise to a 

relevant cardiac phenotype [285].  

Loss of function (LOF) ROBO1 variants were identified in three unrelated 

probands displaying different cardiac phenotypes including; ventricular septal 

defect (VSD), tetralogy of Fallot (a combination of four heart defects; VSD, 

pulmonary valve stenosis, a misplaced aorta and right ventricular hypertrophy) 

and congenital heart disease (CHD).  Additionally, two mouse models with Robo1 

variants have been found to exhibit an atypical slit-Robo signalling pathway 

leading to the development of septation and outflow tract defects and, 

interestingly, craniofacial abnormalities [285], a cardinal feature observed in our 

cohort.  
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Although requiring further validation, the identification of molecules known to be 

involved with brain development (CHL1 and ROBO1) and neurotransmitter 

release (SYT1 and SYN3), previously linked to neurodevelopment and 

neurological condition and displaying considerable overlap with SNIP1-

associated syndrome phenotypes provides insight into the function of SNIP1 as 

a transcriptional regulator. 

 

4.3.4 Future work 

The genetic and transcriptomic studies defined here have laid important 

foundations for a greater understanding of the pathomolecular basis of a novel 

form of neurodevelopmental delay. Currently the p.Glu366Gly amino acid 

alteration identified in the Amish is the only known cause of this condition. As no 

other families are reported elsewhere with this or other SNIP1 alterations, it is 

important to work with genome sequencing teams worldwide to identify additional 

families with this and other candidate SNIP1 mutations to learn more about 

genotype-phenotype outcomes associated with this condition.  

An additional important next step is the validation and further investigation of the 

genes and developmental pathways identified as altered through whole 

transcriptome sequencing. This could be achieved through the use of a Taqman 

low density array (TLDA) which will perform real-time PCR detection and relative 

quantitation of expression for the genes of interest (targets). The TLDA platform 

is a closed system utilising a validated singleplex PCR methodology. The TLDA 

card, capable of running 24 duplicates, is designed with targets pre-allocated to 

reaction wells enabling fast and simultaneous detection of multiple gene targets 

[286]. Patient and control samples for these studies have been obtained, and this 

work is now in progress. 
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In parallel with this functional studies, using (for example) murine models and 

transgenic cell lines, could be conducted to assess the expression of SNIP1 in 

the brain and to more precisely describe the binding partners and subcellular 

localisation of the SNIP1 protein, and define its molecular role including potential 

downstream impacts. Due to its likely involvement in developmental pathways, 

studies in embryonic mice, <E8.0, may determine its potential role in formation of 

the nervous plate and heart tube, given the presentation of related neurological 

and cardiac phenotypes. Additionally, as craniosynostosis is a cardinal clinical 

sign of this condition these studies may identify molecules of relevance to skull 

development and suture formation/closure, and provide important insights into 

these poorly understood biological processes.  

There are numerous potential benefits to this work involving the broadening of 

the clinical spectrum of this disorder and elucidating the functional outcomes of 

mutations in SNIP1. The SNIP1 mutation has now been incorporated into regional 

molecular diagnostic sequencing panels utilised by the Amish communities. This 

will enable early diagnosis, aiding early intervention and patient management as 

well as preventing the future misdiagnosis of this condition. Together this will 

ensure affected individuals and their families are provided with adequate genetic 

counselling and access to potential therapies and treatments that may help 

reduce the observed phenotypes of SNIP1-related syndrome and improve the 

quality of life for those affected by the disorder. The enrichment of SNIP1-related 

syndrome within the Amish communities of Indiana has provided a unique 

opportunity to not only confirm the genetic cause but to investigate the functional 

consequences of the identified mutation which can be used to inform possible 

future treatment options. 
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CHAPTER 5 

INTERROGATION OF AMISH AGGREGATED 

EXOME DATA TO IDENTIFY POTENTIALLY 

DELETERIOUS COINCIDENTAL HETEROZYGOUS 

SEQUENCE VARIANTS AND DETERMINE THE 

ALLELE FREQUENCIES OF PATHOGENIC 

VARIANTS SEEN WITHIN THE VARIOUS AMISH 

COMMUNITIES 

  



215 
 

 

 Interrogation of Amish aggregated exome data to 

identify potentially deleterious coincidental 

heterozygous sequence variants and determine the 

allele frequencies of pathogenic variants seen within 

the various Amish communities 

 

5.1 Aims 

Over recent years the WoH Project has accumulated extensive single nucleotide 

polymorphisms (SNP) and exome datasets from patients and individuals from the 

Amish community. The aim of this project was to begin to explore these datasets 

more widely, to describe and characterise the architecture of the Anabaptist 

genome. The overarching objectives of the study were; 

 To interrogate exome datasets to identify potentially deleterious autosomal 

recessive variants in genes already known to cause disease, 

coincidentally carried by individuals enrolled on the study, to learn more 

about the spectrum of inherited diseases present in the community.  

 To more precisely determine the allele frequencies (AF) of the pathogenic 

variants identified across the various Amish communities. 

 To share information gained from the analysis of the Anabaptist genome 

within the healthcare system locally and with the scientific and clinical 

communities more widely. 
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5.2 Introduction 

Sequence variations (variants) occur throughout the genome. Some arising at 

positions that alter the DNA sequence in a way that changes the amino acid 

sequence of the encoded protein (non-synonymous) where other variants will 

have no effect on a resultant protein (synonymous). Non-synonymous variants 

effect the function of protein and therefore the phenotypic characteristic of an 

individual, often effecting susceptibility towards a genetic disorder [287].  

There are several types of non-synonymous variants including; nonsense, 

frameshift and missense. Nonsense variants are single nucleotide changes that 

result in the introduction of a premature stop codon (pre termination codon, PTC). 

Frameshift variants are caused by the insertion or deletion (indels) of a number 

of nucleotides within a DNA sequence altering the reading frame (triplet codon 

pattern). Missense variants are point mutations that do not introduce a PTC but 

still alter the amino acid sequence of resultant protein and have the potential to 

affect its functionality. Nonsense and frameshift variants are considered the most 

likely to be disease causing (pathogenic) due to their ability to dramatically alter 

the function of a protein. In some cases, due to a cellular quality control 

mechanism known as nonsense-mediated decay (NMD),  an aberrant protein is 

abolished completely through degradation of its mRNA transcript [288]. 
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5.2.1 Variant annotation  

Online genomic databases are one way the scientific and clinical communities 

have gone about collating information on variants identified in many laboratories 

across the globe to facilitate data sharing and enable standardisation of variant 

classification. However, determining the clinical significance of (particularly novel) 

sequence variants which is vitally important for rare disease diagnostics, is still 

extremely challenging [289].  

In 2015, the American College of Medical Genetics and Genomics (ACMG) and 

the Association for Molecular Pathology (AMP) published standards and 

guidelines as an educational resource to aid clinical laboratory geneticists in the 

interpretation of sequence variants [289]. Although compliance to these 

standards is voluntary its use has been widely endorsed globally proving 

instrumental in the promotion of consistency and agreement of sequence variant 

classification across the clinical genetics community [290]. The ACMG/AMP 

guidelines incorporate several types of evidence that are used to classify variants. 

Figure 5.1 summaries how this evidence is used during the process of variant call 

file (VCF) annotation.
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Figure 5.1: Schematic showing an overview of the different sources of information used during the process of variant call file annotation. 
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The first step in annotating a VCF file involves determining if a variant has been 

previously reported, at what frequency and in which populations (Figure 5.1). 

There are a number of publically available databases containing this information 

which can be used depending on which is best suited to the research or clinical 

needs of a particular study [291]. The two commonly used databases are the 

Single Nucleotide Polymorphism Database (dbSNP) [292] and the Genome 

Aggregation Database (gnomAD) [89].  

 

The Single Nucleotide Polymorphism Database (dbSNP) 

The Single Nucleotide Polymorphism database (dbSNP) was established in 1999 

by the National Centre for Biotechnology Information (NCBI) as a freely available 

catalogue of simple genetic polymorphisms [293]. Collated as a tool to aid the 

understanding of human variation and molecular genetics  for use in a broad 

range biological applications including large scale association studies, gene 

mapping, functional analysis, pharmacogenomics and evolutionary biology [287].  

 

The name of this database, dbSNP, is slightly contradictory given the variety of 

variants included in the database including; single-base nucleotide substitutions 

(SNPs), small-scale multi-base deletions or insertions (indels), retroposable 

element insertions and microsatellite repeat variations (short tandem repeats or 

STRs).  The name probably reflects the fact that single nucleotide variants are 

the largest class of variants with in dbSNP, comprising ~99.7%, of the database 

[287, 292, 293]. However, this too is confusing as single nucleotide variants are 

not always polymorphisms. A polymorphism, by definition, is a variant that occurs 

in >1% of the population [294]. The spectrum of variants included in dbSNP 
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ranges from neutral polymorphisms to disease-causing clinical mutations and 

provides information on clinical actionability.   

 

In terms of variant annotation the dbSNP database is a useful source of 

information reporting; the context of a variant (showing the surrounding 

sequence), the frequency of the variant in different populations and the 

experimental method used to assess the possible functional implications the 

variant [287].  

 

The Genome Aggregation Database (gnomAD)  

The Genome Aggregation Database (gnomAD) is a large-scale reference data 

set cataloguing genetic diversity observed across 125,748 human exomes and 

15,708 human genomes [89]. This data set builds on the work of its predecessor 

the Exome Aggregation Consortium (ExAC) which collated variant data from 

60,706 exomes [295].  

 

GnomAD has now become a vital tool for both the clinical interpretation of 

variants. As the largest database of high-quality variant calls it permits the filtering 

of candidate variants by frequency at the highest resolution, which is particularly 

important for analysis low-frequency variants [295].  

An important point to consider when using frequency data from gnomAD is the 

origin of the exome and genome data included in the database. Although 

individuals, and first-degree relatives, known to be affected by severe paediatric 

disease have been removed, included individuals were sequenced as part of a 

number of different disease-specific and population studies. This means the 

database may contain individuals with severe disease which should be taken into 



221 
 

consideration when investigating the number of reported homozygotes for a given 

variant to assess its likely pathogenicity.  

 

Two other databases; ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/) [296] at the 

National Centre for Biotechnology (NCBI), an open access database, and Human 

Gene Mutation Database (HGMDPro), a commercially available database 

(http://www.hgmd.cf.ac.uk/ac/index.php), [297] are also now routinely utilised by 

researchers, clinical laboratory staff and clinicians to ascertain and aid 

interpretation of genetic variation [298]. 

  

ClinVar 

Initially released in 2013, populated predominantly by variants described in 

OMIM® and GeneReviewsTM, this freely accessible archive of germline and 

somatic variants now holds over 600,000 submitted records from ~1000 

submitters, from 60 countries on five continents [299], providing information on 

>430,000 unique variants [300]. Although not the first centralised database of 

human genetic variation, ClinVar was the first to aggregate data from many 

different sources, including clinical testing laboratories [300], and to include both 

germline and somatic variants of any size, type or genomic location [301] unlike 

other databases such as HGMD or the Catalogue of Somatic Mutations in Cancer 

(COSMIC) [302].  

Another benefit of ClinVar, particularly for those in a clinical setting, is its use of 

the specific standardised terminology recommended by the American College of 

Medical Genetics and Genomics (ACMG) to classify the clinical significance of 

variants causing Mendelian disorders as; “pathogenic,” “likely pathogenic”,  

“uncertain significance”,  “likely benign”,  or “benign” [95]. Although the accuracy 

http://www.ncbi.nlm.nih.gov/clinvar/
http://www.hgmd.cf.ac.uk/ac/index.php
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of individually submitted variant interpretations is not evaluated, ClinVar 

calculates an aggregated interpretation based on those provided by each 

submitter and reviews the level of supporting evidence used to ascertain the 

clinical significance by allocating a review status to each variant, taking into 

account the type of submitter [301].  The review status is summarised on each 

variation report in the form of gold stars. Table 5.1 provides definitions of each 

review status and the corresponding number of gold stars.  

Whilst this process ensures the quality and reliability of submitted variants 

included within the database the requirement of expert panels and steering 

committees to assess evidence and award any status higher than two stars may 

hinder variants obtaining relevant review statuses within appropriate timeframes. 

An example of this would be the GJB2 gene variant, NM_004004.5 

(GJB2):c.35delG; p.Gly12Valfs, which although first identified as a genetic cause 

of hearing loss in 1997 [155] and subsequently being found to be responsible for 

~50% of all hearing loss in European populations (Smith, Bale et al. 2005), was 

only recently (September 20 2018) granted a three star review status by an expert 

panel. 
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Table 5.1: ClinVar review status, assignment of stars and description of each 
when each status is awarded. 

Gold 
stars 

Review status Description 

Four 
Practice 
guideline 

Evidence for a variant has been included in 
practice guidelines for a particular genetic 
disorder. Evidence is reviewed by the ClinGen 
Steering Committee who award practice guideline 
status for clinical assertions. 

Three 
Reviewed by 
expert panel 

The evidence for a particular variant has been 
reviewed by expert panel and a consensus of 
clinical significance has been agreed.  

Two 

Criteria provided 
Multiple 
submitters 
No conflicts 

Obtained when two (or more) submitters with 
assertion criteria* and evidence independently 
provide the same interpretation. 

One 
Criteria provided 
Conflicting 
interpretations 

Assigned to a variant when multiple submitters 
provide assertion criteria* and evidence but there 
are conflicting interpretations.  
The independent values are enumerated for 
clinical significance. 

One 
Criteria provided 
Single submitter 

Allocated to variants where one submitter has 
provided an interpretation with assertion criteria* 
and evidence  

None 
No assertion for 
the individual 
variant 

The allele has not interpreted directly in any 
submission for example, it has been submitted to 
ClinVar only as a component of a haplotype or 
a genotype. 

None 
No assertion 
criteria provided 

The variant submission included an interpretation 
but no assertion criteria* or evidence was 
provided. 

None 
No assertion 
provided 

The allele was included in a submission that did 
not provide an interpretation. 

 *Assertion criteria refers to a publication that describes the criteria used by the 

submitter to assign the variant to an ACMG category 

 

 

ClinVar has been instrumental in facilitating the sharing of variant interpretations, 

particularly within the clinical genetics community. Its use is encouraging 

communication and debate regarding differences in variant interpretations in 
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different laboratories as well as helping promote the standardisation of reporting 

the clinical significance of variants [300]. 

 

HGMD  

First made publicly available in April 1996 [303], HGMD was the first 

comprehensive and publicly available database of germline mutations underlying 

human inherited disease [304]. It was recently reported to contain >203,000 

different genetic lesions, in over 8000 genes that have all been manually curated 

from more than 2600 journals. [305].  

HGMD is available in two versions. The public version of HGMD is freely available 

to registered users, but is updated with newly reported mutations twice a year. 

The professional version is only available via paid subscription (via QIAGEN) but 

is updated more regularly being curated and populated with newly reported 

mutations every quarter. It also includes a number of additional functions making 

it possible to interrogate particular variants, providing links relevant publications, 

and is available as a flat file permitting its use in exome and genome VCF 

annotation [305].  

 

Unlike ClinVar, HGMD does not use standardised ACMG terminology to classify 

variants. Instead variants in HGMD are assigned to one of six classes (Table 5.2) 

depending on the strength of the clinical and functional evidence provided in the 

peer-reviewed scientific literature in which the variant was described. A further 

difference between HGMD and ClinVar is that HGMD do not regularly review or 

remove variants, or genes, no longer considered to be disease-causing meaning 

it contains a lot of historical data providing out of date interpretations. One 

example is a missense variant of CASR, linked to familial hypoparathyroidism 
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and hypocalciuric hypercalcemia, which is still reported as DM in HGMD but was 

awarded a two star reviewed clinical significance of benign/likely benign in 

ClinVar in February 2018. In addition a number of genes, CDKN1A, CDKN2B and 

CDKN2C, are also still regarded as containing disease-causing mutations, even 

though the genes themselves are no longer considered disease causing. 

 

Table 5.2: Summary of the six variant classes used by HGMD [305]. 

Variant Class Symbol Class description 

Disease-causing 
mutations 

DM 
Variants that are very likely to be causing the 
observed clinical phenotype 

Probable/possible 
pathological 
mutations 

DM? 
Variants where there is some degree of 
uncertainty regarding the interpretation of 
clinical significance in the scientific report 

Disease-
associated 

polymorphisms 
DP 

Variants with evidence to support a significant 
association with a disease/clinical phenotype in 
addition to evidence that the variant is likely to 
be of some functional relevance although there 
may not currently be any direct evidence of a 
functional effect 

Functional 
polymorphisms 

FP 
A direct functional effect has been 
demonstrated but there is currently no reported 
associated disease 

Disease-
associated 

polymorphisms 
with supporting 

functional 
evidence 

DFP 

Variants should not only have been reported to 
be significantly associated with disease, but 
should also display direct evidence of being of 
functional relevance  

Retired records R 

Variants that have been removed from HGMD. 

 Found to have been erroneously 
included 

 If the variant has been subject to 
retraction/correction in the literature 
resulting in the record becoming 
obsolete, merged or otherwise invalid 
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Despite this HGMD data is considered an extremely useful resource and is used 

extensively to aid classify variants according to their pathogenicity and to perform 

meta-analyses on different types of gene mutation causing human inherited 

disease improving our understanding of the mutation spectrum and molecular 

mechanisms underlying hereditary disease. With more than 100,000 registered 

users of its public version, and in excess of 7.8 million queries successfully served 

since 2007, it is an essential tool for many researchers and diagnostic 

laboratories when annotating sequencing data so much so that NHS England 

currently holds a licence accessible to all NHS clinical scientists and clinicians 

[305]. 

 

5.2.2 International effort to share genomic variant data  

The development and maintenance of online genomic databases is not only 

important for obtaining evidence to determine the clinical significance of genetic 

variants or reviewing the mutational spectrum of specific genes, it is a vital 

repository of information for use in bioinformatic projects that will underpin 

personalised genomic medicine. Despite the considerable progress in disease 

gene identification since the advent of NGS technologies, the majority of 

annotated genes have yet to be assigned a function, in the context of human 

disease traits [306]. In recent years there has been an enormous international 

effort within the genomics community to identify the best ways of sharing genomic 

data, including benign variants, to maximise the utility of the available data and 

increase our knowledge of annotated genes by more precisely defining their role 

in disease. Several programmes, at both a national and international level, have 

been established in an effort to achieve a comprehensive understanding of the 

molecular basis of disease biology and disease gene function [306]. 
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In the US, two National Institutes of Health (NIH) projects, ClinVar and ClinGen, 

have formed a partnership to improve knowledge of clinically relevant genomic 

variation through the sharing, archiving, curation and dissemination of genomic 

data. ClinVar, as detailed in section 2175.2.1 is an online database that collates 

information on genetic variants and its relationship to human health. Whereas 

ClinGen is a central clinical genome resource that works to define the clinical 

relevance of genes and variants for use in precision medicine and research. The 

overall aim of this partnership is to “improve patient are through genomic 

medicine” (Figure 5.2). 

 

 

Figure 5.2: Schematic illustrating the overall aims of the NIH ClinGen project 
describing it hopes to improve patient care through genomic medicine 
reproduced from https://www.clinicalgenome.org/about.  

 

Other NIH-supported programmes include the establishment of Centres for 

Mendelian Genomics (CMGs) which have been responsible for the development 

https://www.clinicalgenome.org/about
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of a number of gene-matching tools including; GeneMatcher, MyGene2 and 

Matchbox. Gene-matcher tools were designed to connect clinicians with 

researchers in human and model organism genetics [306]. These gene-matcher 

tools are now able to communicate through the use of a common application 

programming interface (API) [307] hosted by the Matchmaker Exchange (MME). 

This initiative, launched in October 2013, aimed to internationally unify efforts in 

gene-phenotype matching by facilitating the interaction between multiple 

disconnected projects (Figure 5.3) to by providing a robust and systematic 

approach to rare disease gene discovery.  

 

Figure 5.3: Member Organizations of the MME project reproduced from 
https://www.matchmakerexchange.org/ 
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One example of the power of the MME initiative is demonstrated through the work 

of Bruel et al. who over a period of 2.5 years used the application to successfully 

matched 84% of the genes they submitted (60/71) and enabling confirmation of 

the pathogenicity of 39% of these matched genes (23/60) [308].  

 

5.2.3 Contribution of Amish knowledge to the international genetic 

community 

As well as greatly expediting disease diagnosis, the increased availability and 

widespread use of NGS technology for clinical genetic testing generates large 

amounts of genomic data on the individuals investigated. When undertaken in a 

community setting, this provides an opportunity to greatly advance knowledge of 

the architecture of genetic disease of direct relevance to that population. 

Research undertaken by the WoH and other research groups, including research 

undertaken by the Clinic for Special Children (CSC), has led to the accumulation 

of a large body of genomic information regarding known and candidate new 

pathogenic variants present within the Anabaptist communities. Together with 

other groups working with Anabaptist communities, WoH is leading the creation 

of an “Anabaptist specific mutation database” to support clinical services 

managing patients. To increase the clinical utility of Anabaptist variant data it is 

being shared with existing public variant databases, including ClinVar, to aid 

variant interpretation globally.  

 

Genomic data from the Anabaptist community, which display a higher incidence 

of some rare genetic variants due to the presence of founder mutations, is 

beneficial in a number of ways. For example, it may enable the matching of cases 

with families with similar phenotypic and genotypic profiles located elsewhere. An 
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early example is that of Ellis-van Creveld (EVC) syndrome, which was first 

described in 1940 by Richard Ellis and Simon Van Creveld [2]. Ellis-van Creveld 

syndrome is a rare form of dwarfism involving skeletal and chondroectodermal 

dysplasia with an incidence in non-Amish populations of 7/1000000. However, 

the condition is present at greatly increased frequency in some Amish Demes 

reaching ~1/5000 [309] where it has been possible to trace the lineage of the 

variant back to a single founder couple, Samuel King and his wife, who 

immigrated to Eastern Pennsylvania in 1744 [310]. After the initial discovery and 

description of this condition in the Amish, other cases of EVC syndrome occurring 

globally were more easily recognised; a number of other more recent examples 

of this stem from the work of the WoH Project including GM2 and GM3 synthase 

deficiencies, HERC2 (Blue eye delay) syndrome, KPTN (MASD) syndrome, 

Troyer (SPG20) syndrome and Mast (SPG21) syndrome. Thus, the willingness 

of the Amish communities to partake in genetic studies, such as those conducted 

by WoH, has been paramount to the increased understanding within the medical 

genetic field of rare genetic disease.  
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5.3 Results  

 

5.3.1 Identifying potentially deleterious coincidental heterozygous 

sequence variants 

Exome data from 26 individuals with moderate-severe intellectual disability 

with/without additional syndromic features was de-identified, aggregated and 

analysed to identify potentially deleterious heterozygous variants, not thought to 

be responsible for the difficulties experienced by the individuals but being 

coincidentally carried. This work was undertaken as a proof-of-principle study to 

ascertain the utility of such an approach for facilitating the identification of 

candidate disease associated variants within a community setting (summarised 

in Figure 5.4). Variants were initially filtered to prioritise only heterozygous 

variants predicted to be of high functional impact (nonsense and frameshift) that 

passed stringent quality control constraints (PASS, Filter [VCF]). Only variants 

with high Phread scores (Q scores) were included in the analysis in order to 

reduce the likelihood of false positive variant calls. 

As an additional quality metric only variants with good quality calls were included 

in our analysis. This involved reviewing the allele depths for each heterozygous 

call in each individual to ensure the proportion of the alternative allele was ~50%, 

compared to the reference allele. Concerns over the quality of a heterozygous 

call, due to uneven allele ratios, were investigated using the Integrative Genomics 

Viewer (IGV) software. IGV, a desktop visualisation tool for large integrated 

genomic datasets [311], permits the interrogation of variant calls by displaying 

the coverage and quality of read alignments.  
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Figure 5.4: Summary of the Amish exome data analysis including filtering criteria, number of variants and 
location of results. 
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Variants previously described as associated with human genetic disorders 

Initial findings identified seven nonsense variants, responsible for autosomal 

recessive disease, reported as pathogenic, or likely pathogenic, in ClinVar or 

described as a disease-causing mutation (DM) in HGMDPro (Table 5.3). A further 

five frameshift variants reported as pathogenic, or likely pathogenic, in ClinVar or 

described as a disease-causing mutation (DM) in HGMD were also identified 

(Table 5.4). Eight, of a total of 12 (nonsense and frameshift) variants identified in 

our cohort had previously been seen in the Amish community (shown in blue in  

Table 5.3 and  

Table 5.4), six of which (KPTN, WDR73, SPG21, TMCO1, SLITRK6 and 

ST3GAL5) where identified through the work of the WoH.  

Of the four variants not yet reported in the Amish, three have strong evidence in 

support of their pathogenicity due to the fact they are reported in ClinVar as 

pathogenic; with two variants, located in CYP1B1 and RAD50, receiving two star 

Phenotype/ 
Disorder 

Gene MOI 
HGVS 

Nomenclature 
dbSNP 

gnomAD ClinVar HGMD 

Freq. 
(March 2019) 

No. of 
homs 

Clinical 
sig. 

Review 
Status 
(March 
2019) 

Last 
Reviewed 

Accession 
No. 

Variant 
Class 

Amish infantile epilepsy 
syndrome 

ST3GAL5 AR 
NM_003896.3: 

c.862C>T;  
p.(Arg288Ter)  

rs104893668 0.00005425 0 Pathogenic 1 
Apr 24, 
2018 

CM043092 DM 

Craniofacial 
dysmorphism, skeletal 
anomalies and mental 

retardation 

TMCO1 AR 
NM_019026.4: 
c.292_293del; 
p.(Ser98Ter)  

rs752176040 0.0002768 0 Pathogenic 2 
Jul 5, 
2017 

CD100153 DM 

Deafness and myopia SLITRK6 AR 
NM_032229.2: 

c.1240C>T;  
p.(Gln414Ter)  

rs587777069 0.000008884 0 Pathogenic 0 
Nov 24, 

2014 
CM133801 DM 

Glycogen storage 
disease type 1A 

G6PC AR 
NM_000151.3: 

c.1039C>T;  
p.(Gln347Ter)  

rs80356487 0.0003813 0 Pathogenic 2 
May 3, 
2018 

CM940797 DM 

Mental retardation, 
autosomal recessive 41 

KPTN AR 
NM_007059.3: 

c.776C>A;  
p.(Ser259Ter)  

rs374298314 0.00007807 0 Pathogenic 1 
Sep 14, 

2017 
CM140085 DM 

Coenzyme Q10 
deficiency, primary, 8 

COQ7 AR 
NM_016138.4 

c.422T>A 
p.(Val141Glu) 

rs864321686 . . Pathogenic 0 
Nov 1, 
2015 

  

Intellectual disability FRY  
NM_023037.2: 

c.3589C>T;  
p.(Arg1197Ter) 

. . . . . . CM118305 DM 
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review statuses indicating multiple submitters have independently provided 

evidence in supporting the same interpretation. However, the pathogenicity of the 

fourth variant in FRY is uncertain as there is insufficient evidence to support it 

being a disease gene as it is not reported in ClinVar and has only been observed 

in one family, in the literature, where it was described in one large family with 

poor phenotype data.  

Phenotype/ 
Disorder 

Gene MOI 
HGVS  

Nomenclature 
dbSNP 

gnomAD ClinVar HGMD 

Freq. 
(March 2019) 

No. of 
homs 

Clinical  
sig. 

Review Status 
(March 2018) 

Last 
Reviewed 

Accession 
No. 

Variant 
Class 

Mast 
syndrome 

SPG21 AR 
NM_016630.6: 

c.601dupA;  
p.(Thr201Asnfs)  

rs387906275 0.0001147 0 Pathogenic 1 
Mar 5, 
2018 

CI033303 DM 

Familial partial 
lipodystrophy 

LIPE AR 
NM_005357.2: 

c.3203_3221del; 
p.(Val1068Glyfs*102) 

rs587777699 . . 
Pathogenic/ 

Likely 
pathogenic 

1 
Jun 2, 
2016 

CD146280 DM 

Epidermolysis 
bullosa, Herlitz 

LAMC2 AR 
NM_005562.2: 

c.2006_2012del; 
p.(Ile669Lysfs) 

rs778012079 . . 
Likely 

pathogenic 
1 

Aug 26, 
2016 

CD068382 DM 

Buphthalmos CYP1B1 AR 
NM_000104.3: 

c.1064_1076del; 
p.(Arg355Hisfs*69) 

rs72549380 0.0004189 0 Pathogenic 2 
Apr 30, 
2018 

CM014174 DM 

Nijmegen 
breakage 

syndrome-like 
disorder 

RAD50 . 
NM_005732.3: 
c.2156dupT; 

p.(Glu723Glyfs*5) 
rs397507178 0.0004818 0 Pathogenic 2 

Aug 1, 
2018 

. . 
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Table 5.3: Nonsense variants classified as pathogenic or likely pathogenic in ClinVar or with a disease-causing mutation (DM) in HGMD® 
reported to cause an AR disorder/phenotype. Variants previously reported in the Amish are highlighted in blue. The variant in FRY is 

shown in grey there is less robust evidence in support of its pathogenicity. 

 

Phenotype/ 
Disorder 

Gene MOI 
HGVS 

Nomenclature 
dbSNP 

gnomAD ClinVar HGMD 

Freq. 
(March 2019) 

No. of 
homs 

Clinical 
sig. 

Review 
Status 
(March 
2019) 

Last 
Reviewed 

Accession 
No. 

Variant 
Class 

Amish infantile epilepsy 
syndrome 

ST3GAL5 AR 
NM_003896.3: 

c.862C>T;  
p.(Arg288Ter)  

rs104893668 0.00005425 0 Pathogenic 1 
Apr 24, 
2018 

CM043092 DM 

Craniofacial 
dysmorphism, skeletal 
anomalies and mental 

retardation 

TMCO1 AR 
NM_019026.4: 
c.292_293del; 
p.(Ser98Ter)  

rs752176040 0.0002768 0 Pathogenic 2 
Jul 5, 
2017 

CD100153 DM 

Deafness and myopia SLITRK6 AR 
NM_032229.2: 

c.1240C>T;  
p.(Gln414Ter)  

rs587777069 0.000008884 0 Pathogenic 0 
Nov 24, 

2014 
CM133801 DM 

Glycogen storage 
disease type 1A 

G6PC AR 
NM_000151.3: 

c.1039C>T;  
p.(Gln347Ter)  

rs80356487 0.0003813 0 Pathogenic 2 
May 3, 
2018 

CM940797 DM 

Mental retardation, 
autosomal recessive 41 

KPTN AR 
NM_007059.3: 

c.776C>A;  
p.(Ser259Ter)  

rs374298314 0.00007807 0 Pathogenic 1 
Sep 14, 

2017 
CM140085 DM 

Coenzyme Q10 
deficiency, primary, 8 

COQ7 AR 
NM_016138.4 

c.422T>A 
p.(Val141Glu) 

rs864321686 . . Pathogenic 0 
Nov 1, 
2015 

  

Intellectual disability FRY  
NM_023037.2: 

c.3589C>T;  
p.(Arg1197Ter) 

. . . . . . CM118305 DM 
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Table 5.4: Frameshift variants classified as pathogenic or likely pathogenic in ClinVar or with a disease-causing mutation (DM) in 
HGMD® reported to cause an AR disorder/phenotype. Variants previously reported in the Amish are highlighted in blue. 

 

Phenotype/ 
Disorder 

Gene MOI 
HGVS  

Nomenclature 
dbSNP 

gnomAD ClinVar HGMD 

Freq. 
(March 2019) 

No. of 
homs 

Clinical  
sig. 

Review Status 
(March 2018) 

Last 
Reviewed 

Accession 
No. 

Variant 
Class 

Mast 
syndrome 

SPG21 AR 
NM_016630.6: 

c.601dupA;  
p.(Thr201Asnfs)  

rs387906275 0.0001147 0 Pathogenic 1 
Mar 5, 
2018 

CI033303 DM 

Familial partial 
lipodystrophy 

LIPE AR 
NM_005357.2: 

c.3203_3221del; 
p.(Val1068Glyfs*102) 

rs587777699 . . 
Pathogenic/ 

Likely 
pathogenic 

1 
Jun 2, 
2016 

CD146280 DM 

Epidermolysis 
bullosa, Herlitz 

LAMC2 AR 
NM_005562.2: 

c.2006_2012del; 
p.(Ile669Lysfs) 

rs778012079 . . 
Likely 

pathogenic 
1 

Aug 26, 
2016 

CD068382 DM 

Buphthalmos CYP1B1 AR 
NM_000104.3: 

c.1064_1076del; 
p.(Arg355Hisfs*69) 

rs72549380 0.0004189 0 Pathogenic 2 
Apr 30, 
2018 

CM014174 DM 

Nijmegen 
breakage 

syndrome-like 
disorder 

RAD50 . 
NM_005732.3: 
c.2156dupT; 

p.(Glu723Glyfs*5) 
rs397507178 0.0004818 0 Pathogenic 2 

Aug 1, 
2018 

. . 
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Variants not previously described as associated with human genetic disorders  

There were 94 genes containing 95 nonsense variants and 170 genes containing 

202 frameshift variants within the aggregated exome data that had not previously 

been reported in either ClinVar or HGMD. To assess the potential pathogenicity 

of these variants, the genes in which these variants were located were 

investigated via a PubMed literature review. This literature review involved 

looking for any association with a human disease including model organisms or 

cell line studies which proposed an associated link with a human disease 

phenotype.  

This analysis indicated 61 genes, housing nonsense variants, and 122 genes, 

housing frameshift variants, within our cohort, where a putative link to a human 

disease phenotype had been proposed in the literature (Appendix I). Out of these 

61 genes only nine genes, containing a nonsense variant in our cohort, were 

putatively linked to an autosomal recessive disorder reported in humans. 

However, some of these genes have been linked to more than one 

phenotype/disorder in the literature, such as TIMP4, which has been associated 

with both focal epilepsy and Kawasaki disease (Table 5.5). Similarly, ten genes 

out of the 122 identified in our cohort as containing a frameshift variant were 

linked to 11 autosomal recessive disorders (Table 5.6).  
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Table 5.5: Candidate novel heterozygous nonsense variants identified in genes previously associated with an autosomal recessive 
disorder in humans identified in our Amish aggregated exome dataset. 

 

Chromosomal variant 

(hg38)
cNomen

Chromosomal variant  

(hg38)
cNomen

Carboxylesteras

e 1 deficiency
AR CES1

NC_000016.10:

g.55819579G>A

NM_001025194.1:

c.859C>T; 

p.Arg288Ter

NC_000016.10:

g.55823658C>T

NM_001025194.1:

c.428G>A; 
Zhu,2008

Coenzyme Q10 

deficiency, 

primary, 8

AR COQ7
NC_000016.10:

g.19072005C>T

NM_016138.4:

c.151C>T; 

p.Arg51Ter

NC_000016.10:

g.19075775T>A 

NM_016138.4:c.422T>A; 

p.Val141Glu
Freyer, 2015

Glutamate 

pyruvate 

transaminase 

polymorphism

AR GPT
NC_000008.11:

g.144506253T>G

NM_005309.2:

c.978T>G; 

p.Tyr326Ter

NC_000008.10:

g.145729727C>G

NM_005309.2:c.40C>G; 

p.His14Asp
Sohocki, 1997

Thyroid hormone 

metabolism, 

abnormal

AR SECISBP2
NC_000009.12:

g.89328674C>T

NM_024077.4:

c.589C>T;

p.Arg197Ter

NC_000009.12:

g.89348095G>A

NC_000009.12:

g.89341356A>T

NC_000009.12:

g.89338609G>A

NM_024077.4:c.1619G>A; 

p.Arg540Gln 

NM_024077.4:c.1312A>T; 

p.Lys438Ter

NM_024077.4: 

c.1212+29G>A

Dumitrescu, 2011

Dumitrescu, 2005

Focal epilepsy AR TIMP4

NC_000003.12:

g.12153599_12153602de

l

NM_003256.3:

c.588_591del; 

p.Cys197Ter

 NC_000003.12:

g.12159406C>T

NM_003256.3:

c.-566G>A
Haerian, 2015

Phenotype MOI Gene
First Author, 

Year

Identified in Amish Exome Cohort Variants in Literature
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Kawasaki 

disease
AR TIMP4

NC_000003.12:

g.12153599_12153602de

l

NM_003256.3:

c.588_591del; 

p.Cys197Ter

NC_000003.12:

g.12159406C>T

NM_003256.3:

c.-566G>A
Ban, 2009

Autosomal 

recessive 

hearing loss 

AR TMPRSS5
NC_000011.10:

g.113700030C>T

NM_001288751.1:

c.11G>A; 

p.Trp4Ter

NC_000011.10:

g.113690928C>A

 NC_000011.10:

g.113689810G>T

 NC_000011.10:

g.113690928C>T

NM_030770.3:c.976G>T;

p.Ala326Ser

 NM_030770.3:c.1314C>A; 

p.Tyr438Ter

NM_001288751.1:c.949G>T;

p.Ala317Ser

Guipponi, 2008

CAKUT)

and VACTERL
AR TRAP1

NC_000016.10:

g.3658137G>A

NM_016292.2:

c.2107C>T; 

p.Arg703Ter

NC_000016.10:

g.3664437C>T 

NM_016292.2:

c.1406G>A;

p.Arg469His

Skinner, 2014

Westland, 2014

Familial Focal 

Segmental 

Glomerulosclero

sis (FSGS)

AR TTC21B
NC_000002.12:

g.165907746G>A

NM_024753.4:

c.2500C>T; 

pGln834Ter

NC_000002.12:

g.165941111G>A

NM_024753.4:c.626C>T; 

p.Pro209Leu

Huynh Cong, 2014

Bullich,2017

Short-rib thoracic 

dysplasia 4 with 

or without 

polydactyly

AR TTC21B
NC_000002.12:

g.165907746G>A

NM_024753.4:

c.2500C>T; 

pGln834Ter

NC_000002.12:

g.165929290G>A

NC_000002.12:g

.165911404A>G 

NM_024753.4:c.1231C>T;

p.Arg411Ter

NM_024753.4:c.2384T>C; 

p.Leu795Pro

Davis, 2011
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For variants reported in more than one transcript in our data, only the canonical (Refseq) transcript has been used. For transcripts that did 
not have a Refseq transcript available the NCBI database was used to find the longest isoform was used as the predicted effect of the 
variant was the same in all transcripts. Variants found in the literature that are reported in ClinVar as pathogenic or likely pathogenic are 
highlighted in red. 

 

  

Parkinson 

disease 23, 

autosomal 

recessive, early 

onset

AR VPS13C
NC_000015.10:

g.61929675C>A

NM_020821.2:

c.6112G>T; 

p.Gly2038Ter

NC_000015.10:

g.61915631A>C 

NC_000015.10

:g.61882652C>A

NC_000015.10:

g.61958608C>G

NM_020821.2:

c.8445+2T>G

NM_020821.2:c.9568G>T;

 p.Glu3190Ter

NM_020821.2:c.4165G>C;

p.Gly1389Arg

Lesage, 2016
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Table 5.6: Candidate novel heterozygous frameshift variants identified in genes previously associated with an autosomal recessive 
disorder in humans identified in our Amish aggregated exome dataset. 

 

 

Chromosomal variant (hg38) cNomen Chromosomal variant (hg38) cNomen

Reticular dysgenesis AR AK2
NC_000001.11:

g.33013400_33013401insATGTC

NM_001625.3:

c.500_501insGACAT;

p.Ile167Metfs*8

NC_000001.11:

g.33036828T>C

NC_000001.11:

g.33014526T>C

NC_000001.11:

g.33013353A>T

NC_000001.11:g

.33013345G>A 

NC_000001.11:

g.33021616G>A

NC_000001.11:

g.33013204T>A

 NC_000001.11:

g.33036804C>A

NM_001625.3:c.1A>G;

p.Met1Val

NM_001625.3:c.494A>G;

p.Asp165Gly

NM_001625.3:c.548T>A;

p.Leu183Ter

NM_013411.4:c.556C>T;

NM_013411.4:c.307C>T;

 p.Arg103Trp

NM_001625.3:c.697A>T;

p.Lys233Ter

NM_001625.3:c.25G>T;

p.Glu9Ter

Pannicke, 2009

Nephronophthisis 15 AR CEP164
NC_000011.10:

g.117351942del

NM_014956.4:

c.347del;

p.Lys116Argfs*22

NC_000011.10:

g.117338618A>C 

NC_000011.10:

g.117351872C>T

NC_000011.10:

g.117381864C>T

NC_000011.10:

g.117387204C>T

NM_014956.4:c.32A>C; p.Gln11Pro

NM_014956.4:c.277C>T;

p.Arg93Trp

NM_014956.4:c.1573C>T; 

p.Gln525Ter

NM_014956.4:c.1726C>T;

p.Arg576Ter

Chaki, 2012

First Author,

Year

Variant identified Variants in Literature
Phenotype MOI Gene
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Adenocarcinoma of 

lung, response to 

tyrosine kinase inhibitor 

in

AR EGFR
NC_000007.14:

g.55191810_55191811del

NM_005228.3:

c.2561_2562del;

p.Thr854Argfs*42

NC_000007.14:

g.55191822T>G

NC_000007.14:

g.55174014G>T 

NC_000007.14:

g.55174014G>A 

NC_000007.14:

g.55181378C>T

NM_005228.4:c.2573T>G;

p.Leu858Arg

NM_005228.4:c.2155G>T;

p.Gly719Cys

NM_005228.4:c.2155G>A;

p.Gly719Ser

NM_005228.4:c.2369C>T;

p.Thr790Met

Lynch, 2004

 Kobayashi, 2005

Inflammatory skin and 

bowel disease, 

neonatal, 2

AR EGFR
NC_000007.14:

g.55191810_55191811del

NM_005228.3:

c.2561_2562del;

p.Thr854Argfs*43

NC_000007.14:

g.55157738G>A

NM_005228.4:c.1283G>A;

p.Gly428Asp
Campbell, 2014

Retinitis Pigmentosa 

25
AR FAM46A

NC_000006.12:

g.81752072_81752073insGCCG

NM_017633.2:

c.69_70insCGGC;

p.Gly24Argfs*171

NC_000006.12:

g.81752068C>T

NM_017633.2:c.74G>A;

p.Gly25Asp
Barragan, 2007

Encephalopathy due to 

defective mitochondrial 

and peroxisomal 

fission 2

AR MFF
NC_000002.11:

g.228205096ins28

NM_001277061.1:

c.518_518+1ins28;

p.Trp174Profs*20

NC_000002.12:

g.227330777C>T

NC_000002.12:

g.227355756C>T 

NM_020194.5:c.190C>T;

p.Gln64Ter

NM_001277061.1:c.892C>T;

p.Arg298Ter

Shamseldin, 2012

Koch, 2016

Xanthinuria, type II AR MOCOS
NC_000018.10:

g.36205146_36205147del

NM_017947.2:

c.1088_1089del;

p.Leu363Profs*16

NC_000018.10:

g.36213402C>T

NC_000018.10:

g.36195283G>C

NC_000018.10:

g.36260092C>T

NM_017947.3:c.1255C>T;

p.Arg419Ter

NM_017947.3:c.169G>C;

p.Ala57Pro

NM_017947.3:c.2326C>T;

p.Arg776Cys

Ichida, 2001

 Zhou, 2015

Yamamoto, 2003

Peretz, 2007

Iminoglycinuria, 

Digenic
AR SLC6A18

NC_000005.10:

g.1243571dup

NM_182632.2:

c.1148dup;

p.Leu384Profs*54

n/a IVS1, G-A, +1 Bröer, 2008

Osteogenesis 

Imperfecta, Type XII
AR SP7

NC_000012.12:

g.53329306_53329307del

NM_001173467.2:

c.135_136del;

p.Lys46Alafs*7

n/a 1-BP DEL, 1052A Lapunzina, 2010
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For variants reported in more than one transcript in our data, only the canonical (Refseq) transcript has been used. For transcripts that did 
not have a Refseq transcript available the NCBI database was used to find the longest isoform was used as the predicted effect of the 
variant was the same in all transcripts. Variants found in the literature that are reported in ClinVar as pathogenic or likely pathogenic are 
highlighted in red.

Uncombable hair 

syndrome 3
AR TCHH

NC_000001.11:

g.152111961_152111962del

NM_007113.3:

c.1255_1256del;

p.Leu419Glufs*258

NC_000001.11:

g.152112226G>A

NC_000001.11:

g.152110849A>C

NC_000001.11:

g.152110849A>C

NM_007113.3:c.991C>T;

p.Gln331Ter

NM_007113.3:c.2368T>G;

p.Leu790Val

NM_007113.3:c.2368T>G;

p.Leu790Val

Basmanav, 2016

Wu, 2016

Night blindness, 

congenital stationary 

(complete), 1C, 

autosomal recessive

AR TRPM1
NC_000015.10:

g.31002174del

NM_001252020.1:

c.4577del;

p.Tyr1526Serfs*37

n/a

n/a

n/a

NC_000015.10:

g.31028454A>T

NC_000015.10:

g.31070213G>A

NC_000015.10:

g.31068010A>G

NC_000015.10:

g.31042140G>T

NC_000015.10:

g.31042102G>A

NC_000015.10:

g.31032930G>T

IVS16DS, T-C, +2

1-BP DEL, 412G 

36.4-KB DEL, EX2-7

NM_002420.5:c.3105T>A;

p.Tyr1035Ter

NM_002420.5:c.31C>T;

p.Gln11Ter

NM_002420.5:c.296T>C;

p.Leu99Pro

NM_002420.5:c.1832C>A;

Pro611His

NM_002420.5:c.1870C>T;

p.Arg624Cys

NM_002420.5:c.2645C>A;

p.Ser882Ter

Li, 2009

Audo, 2009

van Genderen, 

2009

Nakamura, 2010
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Next, heterozygous missense variants identified within the aggregated Amish 

exome dataset were analysed. Given the large number of variants (10,767) only 

those previously reported as pathogenic or likely pathogenic in ClinVar were 

initially prioritised for further evaluation. A total of 32 missense variants were 

identified as pathogenic. However, upon further investigation 16 had been 

reclassified in ClinVar (to “conflicting interpretations of pathogenicity”, “benign”, 

“uncertain significance” or “other”) with one variant in a gene now reported to  

show an X-linked mode of inheritance, so these were subsequently removed from 

this dataset. Table 5.7 summarises the remaining 15 missense variants, found in 

14 different human disease genes, grouped by primary system affected by the 

disorder. Additional information in the summary table includes; associated 

disorders, ClinVar significance, and the frequency (in European, non-Finnish; 

which was used due to the Finnish population being a population isolate with a 

different enrichment of variants compared to the rest of Europe) and number of 

homozygotes (Total) reported in gnomAD.  

Eight of the variants identified have previously been reported in the Amish 

community, indicating that there are seven additional rare (AF ~1% or less) 

heterozygous missense variants previously associated with an autosomal 

recessive disease in humans present within the Amish community that have yet 

to be reported to cause disease within the community. Further work is required 

to establish the pathogenicity of these variants.
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Table 5.7: Rare (AF ~1% or less) heterozygous missense variants identified in the aggregated Amish exome data that have previously 
been associated with autosomal recessive disease in humans and are reported as pathogenic or likely pathogenic in ClinVar. Grouped 

by primary system affected. Variants previously reported in the Amish in association with the disease are highlighted in blue. 

 

Clinical 

significance:

Review 

Status

(March 2019)

Last 

Reviewed
Feq. 

No. of 

Homs

Deafness, autosomal recessive 1A AR GJB2 NM_004004.5:c.229T>C;p.(Trp77Arg) Pathogenic 2 Oct 4, 2017 0.00002638 0

Congenital glucose-galactose malabsorption AR SLC5A1 NM_000343.3:c.1673G>A;p.(Arg558His) Pathogenic 1 Dec 9, 2016 0.00003099 0

Myeloperoxidase deficiency AR MPO NM_000250.1:c.995C>T;p.(Ala332Val) Pathogenic 0 May 1, 2004 0.01791 45

Myeloperoxidase deficiency AR MPO NM_000250.1:c.752T>C;p.(Met251Thr) Pathogenic 0 Nov 15, 1997 0.01365 26

von Willebrand disease, recessive form AR VWF NM_000552.3:c.2561G>A;p.(Arg854Gln) Pathogenic 2 Nov 21, 2018 0.005343 5

Pyruvate kinase deficiency, amish type AR PKLR NM_000298.5:c.1436G>A;p.(Arg479His) Pathogenic 1 Apr 14, 2017 0.00009292 0

Progressive intrahepatic cholestasis AR ATP8B1 NM_005603.4:c.923G>T;p.(Gly308Val) Pathogenic 1 Dec 19, 2017 0.000008795 0

Iminoglycinuria, digenic, hyperglycinuria AR SLC36A2 NM_181776.2:c.260G>T;p.(Gly87Val) Pathogenic 0 Dec 1, 2008 0.01259 24

Glutaryl-CoA oxidase deficiency AR SUGCT NM_001193311.1:c.1006C>T;p.(Arg336Trp) Pathogenic 2 Oct 31, 2018 0.008083 9

Ataxia, spastic, 4 AR MTPAP NM_018109.3:c.1432A>G;p.(Asn478Asp) Pathogenic 0 Dec 1, 2014 - -

Psychomotor retardation, epilepsy, and craniofacial 

dysmorphism
AR SNIP1 NM_024700.3:c.1097A>G;p.(Glu366Gly) Pathogenic

0
Jan 1, 2012 - -

Cohen syndrome AR VPS13B NM_017890.4:c.8459T>C;p.(Ile2820Thr) Pathogenic 0 Jul 21, 2016 - -

Trichothiodystrophy, nonphotosensitive 1 AR MPLKIP NM_138701.3:c.430A>G;p.(Met144Val) Pathogenic 0 Mar 1, 2005 0.00005277 0

Familial renal glucosuria AR SLC5A2 NM_003041.3:c.1961A>G;p.(Asn654Ser) Pathogenic 0 Feb 1, 2004 0.007871 10

BCHE, dibucaine-resistant I, postanesthetic apnea n/a BCHE NM_000055.2:c.293A>G;p.(Asp98Gly)
Pathogenic/

Likely pathogenic
2 Oct 31, 2018 0.01766 36

Neurology

Renal

Respiratory

ClinVar GnomAD 

HGVS NomenculatureGeneMOIPhenotype

Audiology

Gastroenterology

Haematology/Immunology

Hepatology

Metabolic
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5.3.2 Determining the AF of pathogenic variants seen within the various 

Amish communities  

In order to learn more about the prevalence of 165 pathogenic variants known to 

be associated with the disease and present in the Amish communities (Appendix 

A), and as part of  wider strategy to develop new more streamlined genotyping 

approaches for disease diagnosis in the community, 171 distantly related 

anonymised Amish individuals from Ohio (Holmes County), Ohio (Geauga 

County), Indiana, and Wisconsin communities were genotyped using a 

multiplexed amplicon, PLEXseq [102] sequencing approach. As expected, initial 

findings showed remarkably divergent allele frequencies for these variants 

reflecting the distinct ancestral histories of each Amish community. 

 

Each of the 171 samples were run in triplicate on the PLEXseq panel to enable 

validation. For a sample to be included in the allele frequency calculation for a 

given variant, at least two out of the three repeats needed to be concordant. 

Samples that did not meet this criteria, due to failed or conflicting genotypes, were 

not counted. 

 

The two most commonly occurring variants in our dataset are responsible for 

hereditary hemochromatosis NM_000410.3 (HFE):c.187C>G and NM_000410.3 

(HFE):c.845G>A (Table 5.8), and were observed at an AF of 0.1579 and 0.1140 

respectively. This is corroborated by the high AF observed within our cohort and 

the AF of 0.1443 for European (non-Finnish) reported in gnomAD.  
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Table 5.8: Allele frequency analysis of the most commonly observed variants 
within different Amish communities.  

Disorder Gene MOI Variant Region AF  
gnomAD 

Freq.  
(March 2019)  

Hereditary 
hemochromatosis 

HFE AR 

c.187C>G; 
p.His63Asp 

(NM_000410.3) 
chr6:g.26090951C>G 

Indiana 0.1739 

0.1443 
Ohio Holmes 0.1176 
Ohio Geauga 0.1818 
Wisconsin 0.2000 
TOTAL 0.1579 

Hereditary 
hemochromatosis 

HFE AR 

c.845G>A; 
p.Cys282Tyr 

(NM_000410.3) 
chr6:g.26092913G>A 

Indiana 0.0652 

0.0576 

Ohio Holmes 0.1397 

Ohio Geauga 0.0909 

Wisconsin 0.1400 

TOTAL 0.1140 

gnomAD frequencies refers to the European (non-Finnish) frequency. MOI; 
Mode of inheritance. 

 

Unlike the HFE variants that are observed in all regions investigated, a number 

of variants were only observed in one region within our cohort. Variants seen in 

only one Amish community, but reported in more than one person are 

summarised in Table 5.9. 
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Table 5.9: Allele frequency analysis of heterozygous variants only observed within one Amish community within our cohort. 

Disorder Gene MOI Variant Region AF  
gnomAD Freq.  
(March 2019) 

Bardet-Biedl syndrome 1 BBS1 AR 
c.1169T>G; p.Met390Arg 

(NM_024649.4) 
chr11:g.66526181T>G 

Indiana - 

0.002773 
Ohio Holmes - 
Ohio Geauga - 
Wisconsin 0.0600 
TOTAL  0.0088 

Glycogen storage disease 1a G6PC AR 
c.1039C>T; p.Gln347Ter 

(NM_000151.3) 
chr17:g.42911391C>T 

Indiana - 

0.000381 
Ohio Holmes 0.0221 
Ohio Geauga - 
Wisconsin - 
TOTAL  0.0088 

Galactosemia GALT AR 
c.563A>G; p.Gln188Arg 

(NM_000155.3) 
chr9:g.34648170A>G 

Indiana - 

0.002663 
Ohio Holmes - 
Ohio Geauga 0.0185 
Wisconsin - 
TOTAL  0.0059 

Glutaric aciduria, type 1 GCDH AR 
c.1262C>T;p.Ala421Val 

(NM_000159.30 
chr19:g.12899486C>T 

Indiana - 

0.0002867 
Ohio Holmes 0.0294 
Ohio Geauga - 

Wisconsin - 
TOTAL  0.0113 

Non-syndromic intellectual disability, 
autism, and gait disturbance 

HERC2 AR 
c.1781C>T; p.Pro594Leu 

(NM_004667.5) 
chr15:g.28265707G>A 

Indiana - 

0.00001548 
Ohio Holmes 0.0368 
Ohio Geauga - 
Wisconsin - 
TOTAL  0.0146 

McKusick Kaufman syndrome MKKS AR 
c.724G>T;p.Ala242Ser 

(NM_018848.3) 
chr20:g.10412791C>A 

Indiana - 

0.009546 
Ohio Holmes - 
Ohio Geauga 0.0182 
Wisconsin - 
TOTAL  0.0058 

McKusick Kaufman syndrome MKKS AR 
c.250C>T; p.His84Tyr 

(NM_018848.3) 
chr20:g.10413265G>A 

Indiana - 

0.000008801 
Ohio Holmes - 
Ohio Geauga 0.0182 
Wisconsin - 
TOTAL  0.0058 
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Ataxia-telangiectasia-like 
disorder 2 

PCNA AR 
c.683G>T; p.Ser228Ile 

(NM_002592.2) 
chr20:g.5115472C>A 

Indiana - 

0.00001759 

Ohio Holmes 0.0147 
Ohio 
Geauga 

- 

Wisconsin - 
TOTAL  0.0058 

Phenylketonuria PAH AR 
c.284_286del; p.Ile95del 

(NM_000277.1) 
chr12:g.102894801_102894803del 

Indiana - 

0.00005437 

Ohio Holmes 0.0179 
Ohio 
Geauga 

- 

Wisconsin - 
TOTAL  0.0056 

Pyruvate kinase deficiency PKLR  
c.1436G>A; p.Arg479His 

(NM_181871.3) 
chr1:g.155293177C>T 

Indiana - 

0.0001129 

Ohio Holmes - 
Ohio 
Geauga 0.0181 
Wisconsin - 
TOTAL  0.0058 

Limb-girdle muscular dystrophy SGCB AR 
c.452C>G;p.Thr151Arg 

(NM_000232.4) 
chr4:g.52028899G>C 

Indiana 0.0435 

0.00006498 

Ohio Holmes 0 
Ohio 
Geauga 

0 

Wisconsin 0 
TOTAL  0.0058 

Limb-girdle muscular dystrophy SGCB AR 
c.271C>T; p.Arg91Cys 

(NM_000232.4) 
chr4:g.52029836G>A 

Indiana - 

0.00009799 

Ohio Holmes 0.0147 
Ohio 
Geauga 

- 

Wisconsin - 
TOTAL  0.0058 

Crigler-Najjar syndrome UGT1A1 AR 
c.222C>A;p.Tyr74Ter 

(NM_000463.2) 
chr2:g.233760509C>A 

Indiana - 

0.000008793 

Ohio Holmes - 

Ohio 
Geauga 

0.0182 

Wisconsin - 

TOTAL  0.0058 

gnomAD frequencies refers to the European (non-Finnish) frequency. MOI; Mode of inheritance. AR; Autosomal recessive. 
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5.3.3 Community allele frequency data confirming rare disease 

Interrogation of our aggregated Amish exome dataset, which has now been 

expanded from an initial 26 exomes to the current 117, has allowed the AFs of 

variants within the community to be determined. Knowledge of the AFs within the 

community of variants in genes not yet associated with human disease or where 

the evidence for disease association is not yet conclusive, is hugely 

advantageous as it has the capacity to confirm, or refute the disease gene 

association. This study has been able to conclusively confirm the pathogenicity 

of three candidate pathogenic variants within the Amish community and 

consolidate three genes as a cause of human disease (Table 5.10). 
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Table 5.10: Allele frequency data for variants in putative disease genes in different Amish settlements

Region AF 
No.of 

Hets

No. of 

Homs

AF

(No. of exomes)

No.of 

Hets

No. of 

Homs

Indiana - 0 0

Ohio Holmes 0.0221 3 0

Ohio Geauga 0.0273 3 0

Wisconsin 0.0200 1 0

Total 0.0205 7 0

Indiana n/a n/a n/a

Ohio Holmes n/a n/a n/a

Ohio Geauga n/a n/a n/a

Wisconsin n/a n/a n/a

Total n/a n/a n/a

Indiana 0.0870 4 0

Ohio Holmes 0.0441 6 0

Ohio Geauga 0.0182 2 0

Wisconsin - 0 0

Total 0.0351 12 0

0

0

Aggregated Amish exome data

1

7

6

Psychomotor 

retardation, 

epilepsy, and 

craniofacial 

dysmorphism

SNIP1

c.1097A>G; p.Glu366Gly

(NM_024700.3)

chr1:g.37537842T>C

-

c.514dup; p.Ile172Asnfs

(NM_001127182)

chr 10:g.93507042dup

CEP55 -

Hydranencephaly 

with renal aplasia-

dysplasia

Situs inversus (SI) 

and male infertility 
MNS1

c.407_410del;p.Glu136Glyfs*16

(NM_018365.2)

chr15:g.56446887_56446890Del 

-

0.0087

(115)

0.0517

(114)

0.0571

(116)

0

Variant [GRCh38)Gene
Disorder/

Phenotype

gnomAD 

Freq. 

(March 2019) 

PLEXseq Data
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5.4 Discussion 

The genetic data presented here forms part of a proof-of-principle study which 

aims to characterise the spectrum and frequencies of inherited diseases in the 

Amish community to aid the identification of novel disease genes, disease 

diagnosis, clinical management and genetic counselling. This involved examining 

aggregated exome sequencing data from 26 Amish individuals to identify 

potentially deleterious heterozygous variants coincidentally carried by individuals 

from the Amish community and utilising a multiplexed amplicon sequencing 

approach to study the prevalence of 165 pathogenic variants by calculating the 

allele frequencies in a cohort of 171 Amish individuals.  

 

5.4.1 Analysis of Amish aggregated exome data 

Analysis of exome sequencing data revealed the presence of 12 variants, 

reported to be pathogenic in ClinVar or disease-causing in HGMD, coincidentally 

carried and not thought to be responsible for the difficulties experienced by the 

individuals within the cohort. Seven of these variants are already well established 

as pathogenic within the Amish community confirming that this method is capable 

of accurately identifying causative variants. Interestingly this analysis also 

identified seven variants reported to be pathogenic in ClinVar/HGMDPro that 

have not yet been observed within the community, but are clearly present.  This 

provides an opportunity for health care providers in the community to more readily 

link observed phenotypes with genetic disorders and the responsible genotypes. 

For example, although not yet described as pathogenic in ClinVar or HGMD a 

frameshift variant in GJC3 (NM_181538.2:c.329dup; p.Glu111Glyfs*67) was 

identified in our exome sequencing data (Appendix I). A literature review of this 

gene discovered heterozygous missense mutation (c.807A>T; p.Glu269Asp) of 
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GJC3, which encodes the gap junction protein connexin 29, is reported to cause 

NSHL [158, 312, 313] . It would therefore be pertinent for current and new 

patients recruited to the Amish Hearing Loss Programme to be screened for the 

frameshift GJC3 variant identified in our cohort.  

 

One of the most promising applications of this type of study is its potential to 

identify variants that will enable early intervention and deliver improved outcomes 

for affected individuals. For example, individuals homozygous for the identified 

CYP1B1 variant (NM_000104.3:c.1064_1076del; p.Arg355Hisfs*69) are likely to 

experience autosomal recessive buphthalmos as a result of congenital (infantile) 

glaucoma. This rare variant has an AF of 0.0003648 in gnomAD (European, non-

Finnish), with no reported homozygotes, supporting pathogenicity. Buphthalmos 

is congenital enlargement of the eye, which requires early surgical treatment to 

ensure the preservation of existing vision [314].   

Another variant of interest is a nonsense variant (NM_016138.4:c.422T>A; 

p.Val141Glu) identified in COQ7 which is reported in ClinVar as pathogenic and 

responsible for a primary coenzyme Q10 (CoQ10) deficiency disorder. This 

autosomal recessive multisystem disorder presents with neurologic 

manifestations, including fatal neonatal encephalopathy with hypotonia, a late-

onset slowly progressive multiple-system atrophy-like phenotype and may 

include dystonia, spasticity, seizures, and intellectual disability. A diagnosis of 

this deficiency disorder can be established through a genetic test confirming the 

presence of biallelic pathogenic variants. Early diagnosis provides the opportunity 

to implement early treatment, in the form of high, dose oral CoQ10. Dietary 

supplementation is reported to limit disease progression including the 

progression of renal disease and onset of a neurological phenotype [315]. This 
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disorder has not yet been reported within the Amish community, but the presence 

of heterozygotes for this variant within our exome dataset indicates that it is 

present and should be considered as a potential diagnosis in individuals 

presenting with a potentially consistent phenotype.   

This approach for identifying coincidentally carried variants has the potential to 

identify other variants underlying treatable disorders that which could then be 

included in an Amish targeted genetic newborn screening (NBS) programme.  

 

The importance and successful application of NBS is best demonstrated through 

its use to screen for phenylketonuria, an error of amino acid metabolism, 

characterised by mutations of the phenylalanine hydroxylase (PAH) gene, which 

if not treated it can result in in profound and irreversible mental disability. 

However, early detection, through NBS, and implementation of a phenylalanine-

restricted diet soon after birth can stop levels of phenylalanine becoming raised 

in the blood preventing the neuropsychological deficits [5].  

Since its introduction in the US in 1963 [316], to screen for phenylketonuria, NBS 

has helped diagnose millions (1 in every 320 new-borns) of potentially severe or 

lethal conditions before clinical symptoms are observed. Each year in the US, 

99.9% of the ~4 million infants born are screened [317]. However, within Amish, 

and Mennonite, families the proportional of all children in a family receiving NBS 

has been reported to be as low as 40% despite the majority of families 

recognising its importance [318]. The successful generation and implementation 

of an Amish (or Anabaptist) specific NBS would require support from the Amish 

communities and collaboration between the local health care providers, to ensure 

its accessibility, and clinical research partnerships, such as WoH and CSC, to 

ensure the inclusion of variants with the greatest clinical utility.  
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This pilot, proof-of-principle study demonstrates the clinical value of examining 

exome sequencing data from a community such as the Amish to identify 

coincidentally carried variants and its capacity to detect known and novel 

pathogenic variants that have yet to be reported but are clearly present within the 

community. Information gained from this study can be used to inform clinicians 

about the nature and spectrum of disorders present within the different Anabaptist 

communities, accelerating genetic diagnosis and permitting the development of 

health policies and the implementation of early targeted treatments for affected 

individuals within these communities. 

 

5.4.2 Determining allele frequencies  

Allele frequencies of 165 variants were investigated in 171 unaffected individuals 

from different Amish demes. The findings of this study revealed different carrier 

frequencies for most variants in the different communities. This is likely to reflect 

the specific migration events that occurred within the population since the genetic 

bottleneck event in the 18th and 19th century, when individuals fled Europe 

heading for the US, to the subsequent relocations of affiliations as the Amish 

population expanded. Knowledge of carrier frequencies within different regions 

can be used to estimate disease prevalence and improve the clinical 

management of disorders by increasing awareness of the disorder amongst 

clinicians and the local Amish community, tailoring diagnostic services, facilitating 

the planning and dissemination of healthcare resources and implementing 

effective treatment strategies.  
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This study as has also been beneficial in highlighting the co-occurrence of more 

than one homozygous pathogenic variant within the same individual/family and 

how it can impede a clinical diagnosis. A retrospective analysis of 2076 un-related 

patients with a molecular diagnosis conducted in 2017 found that 4.9% of 

individuals had received a dual diagnosis, where two or more disease loci are 

responsible for their clinical characteristics [319]. 

A notable example of this issue, from the literature, is Fitzsimmons syndrome 

which was described in 1987 by Fitzsimmons and Guilbert on diagnosing twins 

presenting with progressive spastic paraplegia, brachydactyly with cone shaped 

epiphyses, short stature, dysarthria, and “low-normal” intelligence. Exome 

sequencing conducted in 2009, comparing one of the twins with the only other 

reported case of this syndrome in the literature found no single genetic cause 

shared by the affected individuals. Instead multiple genetic causes were 

identified. The twins were found to have heterozygous mutation of the SACS 

gene, a known cause of AR spastic ataxia of Charlevoix Saguenay in addition to 

heterozygous mutation in TRPS1, a gene known to cause Trichorhinophalangeal 

syndrome type 1 (TRPS1 type 1) which is responsible for the brachydactyly 

feature. The singleton was found to have a mutation in the TBL1XR1 gene, 

believed to be the cause of their cognitive impairment and autistic features but no 

underlying genetic cause was found to be the cause of their spasticity or 

brachydactyly [320].  

 

Due to the unique genetic architecture of the Amish community, resulting from 

the limited number of founder individuals, it can be assumed that the proportion 

of individuals possessing multiple disease loci within this endogamous population 
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will be higher than reported in unrelated patients due to the enrichment of certain 

variants within the population.  

This phenomena was detected in a family with two siblings each with features 

suggestive of a syndromic disorder, initially believed to be unrelated. The male 

sibling, presented with intellectual disability and dysmorphic facial features and 

was found to have a pathogenic variant in MTPAP (NM_018109.3:c.1432A>G; 

p.Asn478Asp) known to cause spastic ataxia [321]. He has subsequently 

developed spasticity and ataxia consistent with this disorder. The female sibling 

who had entirely normal development, presented with pectus excavatum, single 

palmar creases and aortic stenosis, was found to be homozygous for a variant in 

HYAL2 (NM_003773.4:c.443A>G) previously linked to cor triatriatum sinister 

(and orofacial clefting) [184] confirming the presence of two distinct genetic 

disorders within the family. After discovering this second pathogenic variant 

within the family the male sibling, was tested for the HYAL2 variant and also found 

to be homozygous, explaining his dysmorphic facial features. The father of these 

children complained of palpitations and dizzy spells and was subsequently 

diagnosed with hypertrophic cardiomyopathy (HCM), and was found to be 

heterozygous for the Amish founder variant in MYBPC3 

(NM_000256.3:c.3330+2T>G) associated with HCM. This finding confirmed the 

presence of three distinct genetic disease loci/disorders present within this single 

family. 

 

5.4.3 Community allele frequency data confirming rare disease genes 

The work outlined in this chapter, and subsequent expansion of this dataset, has 

permitted the rapid interrogation of aggregated Amish exomes allowing the AFs 

of variants within the community to be determined. The impact of these findings 
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is increased by aligning the exome data with metadata, providing information on 

which community and church group an individual originates, enabling the AFs to 

be evaluated in the context of the different regions.  

From a clinical perspective, this information is extremely beneficial as it is 

assisting local clinicians in confirming disorders which are already recognised in 

the different communities, but even more importantly, identifying disorders which 

have not previously been reported within the Amish community and may be being 

missed by the clinics. From an academic perspective, it has the proven capacity 

to confirm, or refute, the pathogenicity of novel, putative pathogenic variants 

within a community.  

This study has conclusively confirmed the pathogenicity of three novel 

pathogenic variants within the Amish community and consolidated three putative 

human disease genes, for which the evidence of association with the reported 

disease phenotype was previously limited.  

Firstly, the pathogenicity of a homozygous founder frameshift variant in CEP55 

(NM_018131.4: c.514dup; p.Ile172Asnfs*17) as the cause of hydranencephaly 

and renal dysplasia, present in two siblings with a lethal foetal disorder [322] was 

confirmed (Appendix J).  

Two recent studies of single families, one [323] the other of Canadian Mennonite 

ancestry [324] reported loss of function mutations in CEP55 and corresponding 

phenotypes, with foetuses presenting with Meckel-like syndrome and MARCH 

(multinucleated neurones, anhydramnios, renal dysplasia, cerebellar hypoplasia 

and hydranencephaly) syndrome. This, alongside the increased frequency of this 

variant in the Amish community, has enabled us to learn more about the clinical 

features of this disorder, and has corroborated mutation of CEP55 as a cause of 

hydanencephaly and renal dysplasia.      
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A further example is the confirmation of the missense SNIP1 variant 

(NM_024700.3:c.1097A>G), discussed in chapter 4, as the underlying molecular 

cause of psychomotor retardation, epilepsy, and craniofacial dysmorphism 

(PMRED). This variant has a high allele frequency, ~6%, in our aggregated 

exome data, being particularly enriched in the communities of Indiana, but is yet 

to be reported in gnomAD. The high prevalence of this variant has been 

instrumental in being able to precisely define the clinical phenotype and confirm 

pathogenicity of the variant and disease gene association.  

Finally, the pathogenicity of the MNS1 variant, NM_018365.2: 

c.407_410del;p.Glu136Glyfs*16, in the Amish, and mutation of MNS1 as a cause 

of laterality defects (situs inversus, SI) and male infertility in humans has been 

confirmed by our studies (Appendix K).  Due to the nature of this condition the 

presence or absence of SI in homozygous individuals is a randomised event, 

attributed to the inability of dysfunctional embryonic nodal cilia to perform normal 

rotation [325]. This means that a large number of individuals need to be 

genotyped and phenotyped to clearly demonstrate a causative link between 

homozygosity for a particular variant and SI. This is made possible within the 

Amish due to the large family sizes that are typically seen within this founder 

community. The AF of the MNS1 founder variant within the Amish, determined 

through interrogation of aggregated Amish exomes, was also instrumental in 

collating sufficient genetic evidence to support the pathogenicity of the MNS1 

variant. This data, taken together with the previous report of an SI and male 

infertility phenotype observed in Msn1 knock-out mice [326] confirmed the 

association of Msn1 mutation with SI and male infertility in humans. 
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One example of the utility of this type of aggregated exome data for refuting the 

potential pathogenicity of a variant and enabling the exclusion of a potential 

candidate genetic cause of disease is illustrated by the nonsense SLC15A5 

variant (NM_001170798.1:c.865G>T; p.Glu289Ter) investigated as a potential 

novel cause of NS-SNHL in chapter 3. SLC15A5 was excluded as a candidate 

cause of hearing loss due to additional genotyping data, generated via a similar 

high-volume sequencing approach by our collaborators working within the 

Pennsylvanian Amish communities. The high frequency of the SLC15A5 variant 

within the Pennsylvanian communities, and subsequent detection of 

homozygotes, lead to its rejection as a candidate cause of hearing loss.  

This data also demonstrated the importance of considering the Amish as distinct 

communities and church groups with differing genetic backgrounds, as opposed 

to one large population. Whilst variants common among all Amish communities 

exist, likely originating from a shared European ancestor, the distinct migration 

patterns and geographical isolation of different communities since the original 

migration to the US, has given rise to large differences between AFs within each 

community. Another benefit of the Pennsylvanian dataset is the large number of 

individuals sequenced within a single community. The AF of the SLC15A5 variant 

may not be enriched within in the Pennsylvanian community, when compared to 

other Amish communities, but the increased number of individuals for whom 

aggregated data is available increases the likelihood of a homozygotes being 

detected is increased.  

 

In addition to the aggregate exome data, the PLEXseq approach allows us to 

rapidly genotype variants of interest within the Amish and obtain community 

specific AFs. The flexible nature of this platform allows for the rapid inclusion of 
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new candidate variants, seen within the community, which can then be 

scrutinised. Moving forward this approach will be used as a platform to provide 

newborn screening and diagnostic testing for affected individuals with the data 

generated also being anonymously aggregated in order for the AFs of known and 

putative disease associated variants to be determined. This data can then be 

used to determine the spectrum of disease across the different communities 

which can be used to help inform local health policies.  

One example of where this data has already proved to be valuable for this 

purpose is in determining the likely presence of individuals with undiagnosed 

cartilage hair hypoplasia in the Wisconsin communities, due to the extremely high 

allele frequency of the RMRP founder mutation (NR_003051.3:g.70A>G) within 

this community [327]. 

Cartilage hair hypoplasia (CHH) is a rare, autosomal recessive, metaphyseal 

chondrodysplasia characterized by sparse hair, short stature and short limbs in 

combination with mild to moderately severe cellular immunodeficiency and 

erythropoiesis [328-330].  Individuals present with a highly variable phenotype 

and can been misdiagnosed clinically with achondroplasia, due to a similar 

physical appearance of short stature and short limbs. However, CHH affected 

individuals are at risk of severe immunodeficiency, which depending on its 

severity needs to be carefully monitored and treated. Individuals displaying 

severe immunodeficiency disorder (SCID) will typically require a bone marrow 

transplant. Whereas some individuals, displaying milder immunodeficiency, may 

be more susceptible to contracting infections. For these individuals contracting 

varicella (chickenpox) comes with a very high risk mortality, especially in 

undiagnosed individuals that are unlikely to receive the immediate, high-dose 

acyclovir treatment [331].  CHH can be detected through a new born T-cell 
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Receptor Excision Circles (TREC) test which measures the number of circular 

DNA molecules (TRECs) formed within developing T-cells. A healthy infant blood 

sample will have one TREC per 10 T-cells, reflecting a high rate of T-cell 

generation whereas a sample from an infant presenting with SCID will lack TREC 

completely [332].  

Knowledge about the high allele frequency of the Amish RMRP founder mutation 

within the Wisconsin Amish has been helpful for healthcare providers serving this 

community who have worked with the community to provide community sensitive 

education and information about the condition and promote uptake of newborn 

screening. 

 

The work outlined in this chapter highlights the value of knowledge about known 

and newly defined pathogenic variants within a community. This information can 

now be used to develop a comprehensive genetic testing platform tailored to the 

specific genome of the Amish community that has the potential to be expanded 

as new information about inherited disorders arises. This will provide an 

immensely powerful tool for clinicians and local health care providers to utilise to 

support the delivery of improved healthcare outcomes for members of the Amish 

community. 

 

5.4.4 Future work and considerations  

Due to the success of the proof-of-principle study identifying potentially 

deleterious coincidental heterozygous sequence variants the immediate next 

step is to broaden the parameters of the study by expanding the dataset to 

include exome sequencing data from more individuals. Currently at least 150 

exomes will be included in the next round of analysis which will help us learn even 
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more about known pathogenic variants present in the community which are yet 

to be reported.  

The information from this study will also inform variant selection for the next 

stages of the PLEXseq genetic testing panel development.  Allele frequencies of 

the known pathogenic variants not yet reported ( 

Table 5.3,  

Table 5.4 and Table 5.7) will be determined within the different Amish demes. 

The information about possible underlying genetic causes of disease within the 

community can then be used by clinicians and local health care providers. 

 

With regard to determining the allele frequencies of the most commonly occurring 

pathogenic variants seen within various Amish communities the next step for this 

study is to increase the number of control samples included PLEXseq genetic 

testing panel and, where possible, more evenly represent the various Amish 

Phenotype/ 
Disorder 

Gene MOI 
HGVS 

Nomenclature 
dbSNP 

gnomAD ClinVar HGMD 

Freq. 
(March 2019) 

No. of 
homs 

Clinical 
sig. 

Review 
Status 
(March 
2019) 

Last 
Reviewed 

Accession 
No. 

Variant 
Class 

Amish infantile epilepsy 
syndrome 

ST3GAL5 AR 
NM_003896.3: 

c.862C>T;  
p.(Arg288Ter)  

rs104893668 0.00005425 0 Pathogenic 1 
Apr 24, 
2018 

CM043092 DM 

Craniofacial 
dysmorphism, skeletal 
anomalies and mental 

retardation 

TMCO1 AR 
NM_019026.4: 
c.292_293del; 
p.(Ser98Ter)  

rs752176040 0.0002768 0 Pathogenic 2 
Jul 5, 
2017 

CD100153 DM 

Deafness and myopia SLITRK6 AR 
NM_032229.2: 

c.1240C>T;  
p.(Gln414Ter)  

rs587777069 0.000008884 0 Pathogenic 0 
Nov 24, 

2014 
CM133801 DM 

Glycogen storage 
disease type 1A 

G6PC AR 
NM_000151.3: 

c.1039C>T;  
p.(Gln347Ter)  

rs80356487 0.0003813 0 Pathogenic 2 
May 3, 
2018 

CM940797 DM 

Mental retardation, 
autosomal recessive 41 

KPTN AR 
NM_007059.3: 

c.776C>A;  
p.(Ser259Ter)  

rs374298314 0.00007807 0 Pathogenic 1 
Sep 14, 

2017 
CM140085 DM 

Coenzyme Q10 
deficiency, primary, 8 

COQ7 AR 
NM_016138.4 

c.422T>A 
p.(Val141Glu) 

rs864321686 . . Pathogenic 0 
Nov 1, 
2015 

  

Intellectual disability FRY  
NM_023037.2: 

c.3589C>T;  
p.(Arg1197Ter) 

. . . . . . CM118305 DM 
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demes. In addition, the number of variants assessed can be increased with 

primers being modified for variants that failed to produce genotypes 

(NM_020435.3 (GJC2):c.203A>G and NM_152743.3 (BRAT1): c.638dup) in the 

pilot study. Increasing the cohort will enable a more accurate representation of 

the frequencies of variants present in the different communities.  

 

Although beyond the scope of the current study, this approach of exome 

sequencing data analysis has the potential to validate the clinical significance of 

variants in online databases, such as ClinVar and HGMD, and variants reported 

in the literature as disease causing, for example by identifying healthy 

homozygotes for previously reported pathogenic variants in genes associated 

with fully penetrant congenital onset disorders.  

Aggregation databases such as gnomAD are a fantastic resource for the 

interpretation of novel variants by providing extensive frequency data including 

the number of observed homozygotes. It could be beneficial for them to include 

Phenotype/ 
Disorder 

Gene MOI 
HGVS  

Nomenclature 
dbSNP 

gnomAD ClinVar HGMD 

Freq. 
(March 2019) 

No. of 
homs 

Clinical  
sig. 

Review Status 
(March 2018) 

Last 
Reviewed 

Accession 
No. 

Variant 
Class 

Mast 
syndrome 

SPG21 AR 
NM_016630.6: 

c.601dupA;  
p.(Thr201Asnfs)  

rs387906275 0.0001147 0 Pathogenic 1 
Mar 5, 
2018 

CI033303 DM 

Familial partial 
lipodystrophy 

LIPE AR 
NM_005357.2: 

c.3203_3221del; 
p.(Val1068Glyfs*102) 

rs587777699 . . 
Pathogenic/ 

Likely 
pathogenic 

1 
Jun 2, 
2016 

CD146280 DM 

Epidermolysis 
bullosa, Herlitz 

LAMC2 AR 
NM_005562.2: 

c.2006_2012del; 
p.(Ile669Lysfs) 

rs778012079 . . 
Likely 

pathogenic 
1 

Aug 26, 
2016 

CD068382 DM 

Buphthalmos CYP1B1 AR 
NM_000104.3: 

c.1064_1076del; 
p.(Arg355Hisfs*69) 

rs72549380 0.0004189 0 Pathogenic 2 
Apr 30, 
2018 

CM014174 DM 

Nijmegen 
breakage 

syndrome-like 
disorder 

RAD50 . 
NM_005732.3: 
c.2156dupT; 

p.(Glu723Glyfs*5) 
rs397507178 0.0004818 0 Pathogenic 2 

Aug 1, 
2018 

. . 
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more data from population isolates If this data were included it will be important 

that the population of origin is clearly delineated (as with the Finnish and 

Ashkenazi Jewish) to avoiding skewing the frequency data of the more exogamic 

populations.    

 

Analysis of genotyping data from the Amish community also affords the 

opportunity to gain insight into pathogenic polymorphisms by expanding current 

knowledge of globally common single nucleotide variants (SNVs) that whilst in 

isolation are benign, have the potential to cause recessive disease when 

occurring in association with a loss of function (LoF) variant in a complex 

compound heterozygous fashion (Figure 5.5).  

 

 

Figure 5.5: Schematic representation of a common SNVs causing recessive 
disease when occurring in combination with a LoF variant in a complex compound 
heterozygous fashion. 

 

Finally, the work of the WoH project over the last 15years has generated a vast, 

and continually increasing, SNP mapping and exome sequencing dataset that 

could be utilised to further understand the link between autozygosity and disease 
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by looking at the regions in which founder mutations are located and determining 

a relationship to aid the identification of future novel variants.  

 

These studies demonstrate the numerous and wide-ranging benefits of 

community based studies to the global scientific community and wider society. 

The analysis of exome sequencing data from the Amish population has potentially 

huge benefits in aiding variant interpretation which in turn will assist in the delivery 

of genetic diagnoses, genetic counselling and therapeutic treatments for 

individuals and families affected by rare genetic disease both within and outside 

the Amish community.   
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 Final discussion and future work 

 

The work of this thesis highlights the importance of genetic studies conducted 

within population isolates such as the Amish, and the huge benefits that this 

research offers to the patients and families involved and to clinical genetics 

services and scientific knowledge globally. These benefits are particularly evident 

when determining the molecular causes and defining the clinical phenotypes of 

otherwise rare genetic disorders that have, due to the present of founder 

mutations, become enriched within these communities.  

 

The WoH project, to which the studies outlined here contribute, is a long-running, 

non-profit community genetic research program. The study aims to discover the 

spectrum, nature and molecular basis of inherited diseases in the Amish, and 

ensure information gained from these studies directly benefits its members by 

improving healthcare outcomes. The implementation of community-appropriate 

educational programmes, for both local healthcare providers and members of the 

community, is transforming molecular diagnostic and counselling services 

regionally by enabling substantial cost savings through supporting the provision 

of early and accurate diagnosis, and the introduction of targeted disease-specific 

clinical management strategies.  

A longer term initiative, now being implemented in clinical-diagnostic labs locally 

who serve the community, is the introduction of a community specific genetic 

newborn (NBS) programme. The current USA NBS service entails a primarily 

metabolic screen for a variable number of disorders (State dependent) from a 

heel prick sample taken from a newborn collected on filter paper. Conversely, the 

targeted Amish NBS in development which can be performed utilising the same 
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filter paper heel prick sample permits the screening of hundreds of pathogenic 

founder mutations and offers a flexible cost-effective genetic testing platform 

which may be readily expanded to incorporate new disease-associated variants 

as they are discovered. This programme is made possible by the founder 

mutation basis of inherited diseases in the community, and knowledge of the 

frequency and nature of the specific mutations responsible.  

 

One notable example of the benefits of a genetic-based approach to NBS is in 

the diagnosis of propionic acidemia, an AR neonatal onset metabolic disorder 

caused by mutation of the PCCB (propionyl-CoA carboxylase subunit beta) gene 

[333]. The resulting dysfunction of the mitochondrial enzyme propionyl CoA 

carboxylase leads to the accumulation of propionyl-CoA which inhibits 

mitochondrial metabolism, a vital process in the critic acid cycle (an essential 

pathway used in aerobic respiration) [334]. Affected individuals are usually 

asymptomatic at birth but present with poor feeding, vomiting and fatigue during 

the first few days of life. If left untreated, at its most severe, an otherwise healthy 

newborn can start to display lethargy and seizures followed by coma and 

eventually death [334, 335]. However, nutritional intervention in the form of a 

propiogenic amino acid restricted diet, which prevents propionyl-CoA 

accumulation and allows affected individuals to maintain as close to normal 

plasma concentrations of propionyl-CoA, can prevent the onset of the otherwise 

observed difficulties [335]. It is widely accepted that pre-symptomatic diagnosis 

of propionic acidemia and propiogenic amino acid restriction significantly reduces 

morbidity and mortality rates delivering more positive clinical and neurological 

outcomes [333]. Although newborn screening in the form of a metabolic assay is 

currently available, it has been reported that >60% of individuals are already 
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symptomatic at the time of diagnosis, or may not be detected by the metabolic 

test [333]. The introduction of an accurate and sensitive genetically-based test, 

stemming from knowledge of founder mutation underlying the condition, will 

provide a greatly facilitate timely and accurate diagnosis, enabling earlier 

treatment and surveillance aimed at reducing potential preventable morbidity and 

mortality. Additionally, the genetic-based NBS approach allows the inclusion of 

inherited disorders which do not necessarily involve metabolic outcomes (e.g. 

SNIP1-associated syndrome), so that patients and families may benefit from early 

intervention and treatment approaches as they are developed.  

 

The growing knowledge of the full spectrum of inherited diseases present across 

all Amish communities will be instrumental in informing decisions regarding a 

variants’ inclusion within genetic NBS. As this approach becomes established, it 

may be considered prudent to develop regional specific genetic NBS platforms to 

detect the inherited conditions particular to individual Amish communities, such 

as the inclusion of variants responsible for cartilage hair hypoplasia and Troyer 

syndrome (Ohio Amish).  

One example of how regional-specific candidates can be identified is by 

establishing the allele frequencies (AF) of pathogenic variants known to be 

present in the Amish. In this study, the allele frequencies of GJB2 variants, and 

other founder gene mutations linked to hearing loss were determined to learn 

more about their prevalence in different Amish communities. As expected, 

remarkably divergent AF for each gene were observed reflecting the distinct 

ancestral histories of each Amish community. Notably the KCNQ1 founder 

mutation, responsible for Jervell and Lange-Nielsen syndrome (JLNS) an 

autosomal recessive syndromic form of congenital profound SN hearing loss 
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associated with a prolonged QT interval on ECG and potentially fatal 

tachyarrthymias if undiagnosed and untreated, is present in both the Holmes 

County and Geauga Ohio Amish communities making it a clear candidate for 

inclusion on a genetic NBS for these communities 

A further example of a potential candidate for consideration of inclusion on a 

genetic NBS platform is the SNIP1 variant, conclusively demonstrated through 

this study to be causative of a SNIP1-associated syndrome, given its high 

prevalence within the Ohio, Indiana and Wisconsin Amish communities. The high 

prevalence of this variant enabled the investigation of 33 individuals, presenting 

with this novel complex neurological disorder enabling the clinical phenotype, to 

be defined which has laid important foundations for a greater understanding of 

the underlying biological mechanisms responsible for the condition.  

Demonstrating the power of interrogating aggregated sequencing data to expand 

current knowledge of the spectrum of disease within the Amish community. The 

identification of the precise molecular cause of this disorder is fundamental to 

accurately diagnose this syndrome in future affected individuals, and in the 

development of prospective targeted treatments for the complications associated 

with this disorder such as the severe intractable seizures that afflict the majority 

of affected children.    

 

Additional studies, conducted as part of the Amish hearing loss programme, 

aiming to investigate the nature, aetiology and frequency of genetic causes of 

hearing loss within the Amish community, has successfully provided genetic 

diagnoses to families, and allowed local healthcare providers to implement 

targeted diagnostic and clinical management strategies, including overseeing the 

monitoring and screening of additional features that may develop in syndromic 
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forms of the condition. The link between diagnostic delay in hearing loss, and 

substantially increased negative outcomes for affected individuals, has been 

widely reported [136-138] highlighting the importance of timely and accurate 

precise diagnoses particularly with regard to the monitoring of syndromic forms 

and implementation of protective management strategies. As knowledge of the 

spectrum of gene mutations within the Amish communities is expanded new 

variants can be readily included into the NBS platform facilitating early diagnosis 

and treatment. Additional benefits of such an approach include: providing the 

families of affected individuals with accurate information about the prognosis and 

progression of the condition and enabling the provision of appropriate 

reproductive counselling advising on recurrence rates in future offspring. In 

summary, the implementation of a genetic NBS within the Amish community has 

enormous potential to transform the diagnosis of inherited conditions and 

subsequent implementation of strategic care plans, including targeted 

treatments, for affected individuals. This will reduce the economic burden of 

diseases within communities by delivering substantial cost savings and improve 

healthcare outcomes.  

 

A further possible utility of a genetic testing approach to screening within the 

Amish relates to carrier testing in adults, and the potential for detection of adult 

onset diseases such as a form of hypertrophic cardiomyopathy (HCM), due to an 

MYBPC3 gene mutation responsible for which is at extremely high frequency 

across many Amish communities. HCM is a relatively common autosomal 

dominant disorder, displaying variable expressivity and incomplete penetrance 

[336]. Clinical presentations of HCM range from asymptomatic hypertrophic 

(enlarged), non-dilated left ventricle to progressive heart failure or sudden cardiac 
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death (SCD) [337, 338]. Although considered the most common cause of SCD in 

young people globally, the majority of affected individuals do not experience 

substantial symptoms and often remain undiagnosed [336, 339]. Unlike propionic 

acidemia, HCM is a common global disease and is reported to affect 1 in 500 

people in more than 50 countries [338, 339]. In 2015, it was suggested that 

potentially pathogenic MYPBC3 variants may be carried by more than 60 million 

people, in part due to the high occurrence of founder mutations present in 

different populations [336].  

The expansion of a targeted population genetic testing approach to provide 

carrier testing for consenting adults would enable the identification of individuals 

at risk of developing HCM symptoms (or indeed diagnose already symptomatic 

individuals), so that the appropriate management and treatment options can be 

put in place. The WoH and the Amish communities are working alongside the 

Cleveland Clinic and other Cardiology departments serving the Amish to develop 

a clinical care programme for adults affected with HCM, due to the Amish 

MYBPC3 mutation, at a significantly reduced cost. Additionally, due to the high 

frequency of HCM in the Amish arising from the same MYBPC3 founder mutation, 

ongoing studies are expanding the knowledge of the molecular basis of the 

condition by defining genetic variants and modifiers which may be of global 

benefit to families with this condition. 

Whilst, determining the carrier status of individuals can be clinically actionable, 

as described with MYBPC3, and should be shared immediately, the identification 

of carrier status for other conditions require no clinical intervention but will inform 

an individual’s reproductive risk [340]. It is the recommendation of many 

international guidelines that carrier testing for this purpose should be postponed 

until an individual can be actively involved in the decision making process [340]. 
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In these cases, although the genetic data identifying individuals as carriers would 

be available from a NBS there is no immediate need to share this information. 

The Amish community may wish to introduce a programme that permits the 

sharing of an individual’s carrier status only when later requested, as with the Dor 

Yeshorim service used within the Jewish community.  

Dor Yeshorim (also called Committee for Prevention of Genetic Diseases) was 

screening service to minimise, and eventually eradicate, fatal and debilitating 

recessive genetic disorders from their communities. The system involves 

individuals being tested, often through high school programmes [340], for a 

number of genetic disorders observed at significantly higher frequencies than 

other populations including; TaySachs disease, cystic fibrosis, Gaucher disease 

type I, Canavan disease, familial dysautonomia, Bloom syndrome, Fanconi 

anemia, glycogen storage disease type 1a, mucolipidosis type IV, and Niemann–

Pick disease type A  [341]. The resulting genotyping data is confidential held until 

requested. When two individuals wish to start a relationship they submit unique 

ID numbers to the service which informs the couple if any offspring are likely to 

have one the genetic conditions. The exact genotypes any one individual are 

never disclosed in an effort to remove the possibility of discrimination or 

stigmatisation. Although one option, the Amish communities do not necessarily 

need to implement a community-wide policy on the sharing of carrier status 

information gained from targeted community testing programmes. It may be 

decided that the sharing of this information is a decision for individual families or 

church groups to agree upon.  

 

The value of studying genetic disorders, particularly those of a rare or recessive 

nature, within population isolates is now widely recognised. The work outlined 
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here demonstrates the capacity of community genetic studies, undertaken in the 

Amish communities, to elucidate the molecular cause of genetic disorders and 

identify novel disease genes. Findings from these studies are of major clinical 

relevance to both individuals within the community, families affected by rare 

genetic disorders worldwide and to the global clinical genetics community. The 

WoH is extremely privileged to work within the Amish communities with the most 

important outcomes of these studies remaining the translational benefits they 

provide to members within the community. 

 

 

  



276 
 

 APPENDIX 

7.1 Appendix A - Amish Genome Project – Plexseq variant list 

Transcript Variant Chromosomal Variant [hg38] 

NM_005957.4(MTHFR):c.1129C>T NC_000001.11:g.11794766G>A 

NM_001166120.1(HSD3B2):c.35G>A NC_000001.11:g.119415454G>A 

NM_001111.4(ADAR):c.3019G>A  NC_000001.11:g.154588125C>T 

NM_001005741.2(GBA):c.1226A>G NC_000001.11:g.155235843T>C 

NM_181871.3(PKLR):c.1436G>A NC_000001.11:g.155293177C>T 

NM_170707.3(LMNA):c.568C>T NC_000001.11:g.156134457C>T 

NM_001012331.1(NTRK1):c.1614+1G>A NC_000001.11:g.156876211G>A 

NM_003126.2(SPTA1):c.6154del NC_000001.11:g.158620433del 

NM_019026.4(TMCO1):c.292_293del NC_000001.11:g.165768200_165768201del 

NM_000130.4(F5):c.1601G>A NC_000001.11:g.169549811C>T 

NM_014625.2(NPHS2):c.413G>A NC_000001.11:g.179561327C>T 

NM_014053.3(FLVCR1):c.361A>G NC_000001.11:g.212858813A>G 

NM_020435.3(GJC2):c.203A>G NC_000001.11:g.228157961A>G 

NM_013411.4(AK2):c.622T>G NC_000001.11:g.33013279A>C 

NM_024700.3(SNIP1):c.1097A>G NC_000001.11:g.37537842T>C 

NM_005857.4(ZMPSTE24):c.54dup NC_000001.11:g.40258325dup 

NM_015506.2(MMACHC):c.271dup NC_000001.11:g.45507545dup 

NM_031475.2(ESPN):c.752G>A NC_000001.11:g.6440702G>A 

NM_031475.2(ESPN):c.1015C>T NC_000001.11:g.6444505C>T 

NM_000016.5(ACADM):c.199T>C NC_000001.11:g.75732724T>C 

NM_000016.5(ACADM):c.287-30A>G NC_000001.11:g.75733498A>G 

NM_000016.5(ACADM):c.985A>G NC_000001.11:g.75761161A>G 

NR_023343.1(RNU4ATAC):n.51G>A NC_000002.12:g.121530930G>A 

NM_005199.4(CHRNG):c.459dup NC_000002.12:g.232541482dup 

NM_000463.2(UGT1A1):c.222C>A NC_000002.12:g.233760509C>A 

NM_022437.2(ABCG8):c.1720G>A NC_000002.12:g.43875377G>A 

NM_000341.3(SLC3A1):c.1136+2T>C NC_000002.12:g.44301129T>C 

NM_000341.3(SLC3A1):c.1354C>T NC_000002.12:g.44312607C>T 

NM_003896.3(ST3GAL5):c.862C>T NC_000002.12:g.85844542G>A 

NM_020184.3(CNNM4):c.1813C>T NC_000002.12:g.96799188C>T 

NM_001079878.1(CNGA3):c.1126A>G NC_000002.12:g.98396350A>G 

NM_153240.4(NPHP3):c.2104C>T NC_000003.12:g.132696798G>A 

NM_000532.4(PCCB):c.1606A>G NC_000003.12:g.136330012A>G 

NM_001281724.2(BTD):c.1336G>C NC_000003.12:g.15645186G>C 

NM_001281724.2(BTD):c.1374A>C NC_000003.12:g.15645224A>C 

NM_001281724.2(BTD):c.1465T>C NC_000003.12:g.15645315T>C 

NM_000404.2(GLB1):c.902C>T NC_000003.12:g.33051895G>A 

NM_015175.2(NBEAL2):c.881C>G NC_000003.12:g.46991644C>G 

NM_002292.3(LAMB2):c.440A>G NC_000003.12:g.49132135T>C 

NM_003773.4(HYAL2):c.443A>G NC_000003.12:g.50320047T>C 

NM_001130713.2(LEF1):c.133G>C NC_000004.12:g.108167635C>G 

NM_000142.4(FGFR3):c.742C>T NC_000004.12:g.1801837C>T 

NM_001151.3(SLC25A4):c.523del NC_000004.12:g.185145175del 

NM_000128.3(F11):c.1327C>T NC_000004.12:g.186285660C>T 

NM_000232.4(SGCB):c.452C>G NC_000004.12:g.52028899G>C 

NM_000232.4(SGCB):c.271C>T NC_000004.12:g.52029836G>A 

NM_153717.2(EVC):c.1886+5G>T NC_000004.12:g.5793722G>T 

NM_001193376.1(TERT):c.1710G>C NC_000005.10:g.1282488C>G 

NM_001369.2(DNAH5):c.10815del NC_000005.10:g.13753290del 

NM_001369.2(DNAH5):c.4348C>T NC_000005.10:g.13865675G>A 

NM_002109.5(HARS):c.1361A>C NC_000005.10:g.140674776T>G 

NM_001044.4(SLC6A3):c.1409A>G NC_000005.10:g.1409115T>C 

NM_001044.4(SLC6A3):c.1408T>A NC_000005.10:g.1409116A>T 
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NM_001044.4(SLC6A3):c.1269+1G>A NC_000005.10:g.1411242C>T 

NM_002185.3(IL7R):c.2T>G NC_000005.10:g.35856979T>G 

NM_022132.4(MCCC2):c.295G>C NC_000005.10:g.71599672G>C 

NM_022132.4(MCCC2):c.517dup NC_000005.10:g.71604361dup 

NM_022132.4(MCCC2):c.687A>C NC_000005.10:g.71626702A>C 

NM_003309.3(TSPYL1):c.457dup NC_000006.12:g.116279374dup 

NM_000410.3(HFE):c.187C>G NC_000006.12:g.26090951C>G 

NM_000410.3(HFE):c.845G>A NC_000006.12:g.26092913G>A 

NM_012434.4(SLC17A5):c.115C>T NC_000006.12:g.73644583G>A 

NM_001008844.1(DSP):c.699G>A NC_000006.12:g.7562753G>A 

NM_000492.3(CFTR):c.1521_1523del NC_000007.14:g.117559592_117559594del 

NM_000492.3(CFTR):c.3302T>A NC_000007.14:g.117611743T>A 

NM_000492.3(CFTR):c.3773dup NC_000007.14:g.117642493dup 

NM_000492.3(CFTR):c.1364C>A NC_000007.14:g.117652877 C>G 

NM_014141.5(CNTNAP2)c.3709del NC_000007.14:g.148383882del 

NM_152743.3(BRAT1):c.638dup NC_000007.14:g.2543755dup 

NM_138701.3(MPLKIP):c.430A>G NC_000007.14:g.40133169T>C 

NM_024728.2(SUGCT):c.895C>T NC_000007.14:g.40459197C>T 

NM_017802.3(DNAAF5):c.2384T>C NC_000007.14:g.780097T>C 

NM_004912.3(KRIT1):c.47G>C NC_000007.14:g.92242089C>G 

NM_000089.3(COL1A2):c.2098G>T NC_000007.14:g.94420251G>T 

NM_000498.3(CYP11B2):c.104_108del NC_000008.11:g.142917733_142917737del 

NM_018105.2(THAP1):c.135_139delinsGGGTTTA 
NC_000008.11:g.42839314-42839318delins 
TAA ACCC 

NM_018972.2(GDAP1):c.692C>T NC_000008.11:g.74363051C>T 

NM_017890.4(VPS13B):c.9260dup NC_000008.11:g.99823833dup 

NM_001127610.1(BAAT):c.226A>G NC_000009.12:g.101371179T>C 

NM_000113.2(TOR1A):c.907_909del NC_000009.12:g.129814062_129814064del 

NM_012144.3(DNAI1):c.48+2dup NC_000009.12:g.34459055dup 

NM_000155.3(GALT):c.563A>G NC_000009.12:g.34648170A>G 

NM_000155.3(GALT):c.940A>G NC_000009.12:g.34649445A>G 

NR_003051.3(RMRP):n.71A>G NC_000009.12:g.35657948T>C 

NM_000170.2(GLDC):c.2186del NC_000009.12:g.6556169del 

NM_004817.3(TJP2):c.143T>C NC_000009.12:g.69216367T>C 

NM_001144914.1(FGFR2):c.758C>G NC_000010.11:g.121520160G>C 

NM_018109.3(MTPAP):c.1432A>G NC_000010.11:g.30313926T>C 

NM_000124.3(ERCC6):c.2709+1G>T NC_000010.11:g.49473476C>A 

NM_000124.3(ERCC6):c.1293_1320del NC_000010.11:g.49524110_49524137del 

NM_004273.4(CHST3):c.1298C>T NC_000010.11:g.72008329C>T 

NM_001127182.1(CEP55):c.514dup NC_000010.11:g.93507042dup 

NM_000051.3(ATM):c.1564_1565del NC_000011.10:g.108251029_108251030del 

NM_000051.3(ATM):c.5932G>T NC_000011.10:g.108312424G>T 

NM_000051.3(ATM):c.6200C>A NC_000011.10:g.108317374C>A 

NM_000482.3(APOA4):c.552_749dup NC_000011.10:g.116821309_116821506dup 

NM_000360.3(TH):c.698A>G NC_000011.10:g.2167030T>C 

NM_000218.2(KCNQ1):c.451_452del NC_000011.10:g.2527992_2527993del 

NM_000448.2(RAG1):c.2974A>G NC_000011.10:g.36576278A>G 

NM_000256.3(MYBPC3):c.3330+2T>G NC_000011.10:g.47333192A>C 

NM_024649.4(BBS1):c.1169T>G NC_000011.10:g.66526181T>G 

NM_007103.3(NDUFV1):c.640G>A NC_000011.10:g.67610510G>A 

NM_006019.3(TCIRG1):c.1228G>A NC_000011.10:g.68047495G>A 

NM_002335.3(LRP5):c.1225A>G NC_000011.10:g.68386525A>G 

NM_002335.3(LRP5):c.1275G>A NC_000011.10:g.68386575G>A 

NM_000277.1(PAH):c.1315+1G>A NC_000012.12:g.102840399C>T 

NM_000277.1(PAH):c.1066-11G>A NC_000012.12:g.102843790C>T 

NM_000277.1(PAH):c.782G>A NC_000012.12:g.102852875C>T 

NM_000277.1(PAH):c.284_286del NC_000012.12:g.102894801_102894803del 

NM_000431.2(MVK):c.803T>C NC_000012.12:g.109591275T>C 

NM_000431.2(MVK):c.1174G>A NC_000012.12:g.109596560G>A 

NM_002150.2(HPD):c.1005C>G NC_000012.12:g.121839998G>C 
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NM_002150.2(HPD):c.479A>G NC_000012.12:g.121849726T>C 

NM_002150.2(HPD):c.85G>A NC_000012.12:g.121857765C>T 

NM_001170798.1(SLC15A5):c.865G>T NC_000012.12:g.16244690C>A 

NM_000719.6(CACNA1C):c.1216G>A NC_000012.12:g.2504944G>A 

NM_001478.4(B4GALNT1):c.1514G>A NC_000012.12:g.57626832C>T 

NM_001065.3(TNFRSF1A):c.362G>A NC_000012.12:g.6333477C>T 

NM_003805.3(CRADD):c.382G>C NC_000012.12:g.93850053G>C 

NM_000282.3(PCCA):c.2017G>C NC_000013.11:g.100515544G>C 

NM_004004.5(GJB2):c.229T>C NC_000013.11:g.20189353A>G 

NM_004004.5(GJB2):c.35del NC_000013.11:g.20189547del 

NM_001142296.1(SPG20):c.1110del NC_000013.11:g.36329416del 

NM_003991.3(EDNRB):c.828G>T NC_000013.11:g.77901181C>A 

NM_032229.2(SLITRK6):c.1240C>T  NC_000013.11:g.85795269G>A 

NM_001163940.1(PYGL):c.1518+1G>A NC_000014.9:g.50913028C>T 

NM_000295.4(SERPINA1):c.1096G>A NC_000014.9:g.94378610C>T 

NM_004667.5(HERC2):c.1781C>T NC_000015.10:g.28265707G>A 

NM_173087.1(CAPN3):c.2030G>A NC_000015.10:g.42410926G>A 

NM_016630.6(SPG21):c.601dup NC_000015.10:g.64969323dup 

NM_032856.3:(WDR73)c.888del NC_000015.10:g.84643719del 

NM_000339.2(SLC12A3):c.1924C>G NC_000016.10:g.56885363C>G 

NM_001270974.2(HYDIN):c.2047G>T NC_000016.10:g.71067318C>A 

NM_000151.3(G6PC):c.1039C>T NC_000017.11:g.42911391C>T 

NM_000342.3(SLC4A1):c.2422C>T NC_000017.11:g.44251478G>A 

NM_001126121.1(SLC25A19):c.530G>C NC_000017.11:g.75278265C>G 

NM_005603.4(ATP8B1):c.923G>T NC_000018.10:g.57695188C>A 

NM_000159.3(GCDH):c.1262C>T NC_000019.10:g.12899486C>T 

NM_001126335.1(SLC7A9):c.1166C>T NC_000019.10:g.32842226G>A 

NM_001126335.1(SLC7A9):c.201C>T NC_000019.10:g.32864663G>A 

NM_000285.3(PEPD):c.793C>T NC_000019.10:g.33411697G>A 

NM_004646.3(NPHS1):c.3250del NC_000019.10:g.35831679del 

NM_004646.3(NPHS1):c.1481del NC_000019.10:g.35846154del 

NM_000709.3(BCKDHA):c.1312T>A NC_000019.10:g.41424582T>A 

NM_007059.3(KPTN):c.776C>A NC_000019.10:g.47479874G>T 

NM_007059.3(KPTN):c.714_731dup NC_000019.10:g.47479919_47479936dup 

NM_001126132.2(TNNT1):c.505G>T NC_000019.10:g.55137209C>A 

NM_018848.3(MKKS):c.724G>T NC_000020.11:g.10412791C>A 

NM_018848.3(MKKS):c.250C>T NC_000020.11:g.10413265G>A 

NM_001257137.1(ITCH):c.394dup NC_000020.11:g.34413798dup 

NM_015474.3(SAMHD1):c.1411-2A>G NC_000020.11:g.36904251T>C 

NM_015474.3(SAMHD1):c.428G>A NC_000020.11:g.36935110C>T 

NM_153638.2(PANK2):c.930_936del NC_000020.11:g.3908227_3908233del 

XM_006723679.1(ADA):c.646G>A NC_000020.11:g.44623039C>T 

NM_002592.2 (PCNA):c.683G>T NC_000020.11:g.5115472C>A 

NM_130445.3(COL18A1):c.3514_3515del NC_000021.9:g.45510082_45510083del 

NM_000343.3(SLC5A1):c.1673G>A NC_000022.11:g.32104793G>A 

NM_020461.3(TUBGCP6):c.5458T>G NC_000022.11:g.50217738A>C 

NM_000133.3(F9):c.1025C>T NC_000023.11:g.139561710C>T 

NM_000397.3(CYBB):c.1222G>A NC_000023.11:g.37805076G>A 

NM_000397.3(CYBB):c.1335C>A NC_000023.11:g.37806407C>A 

NM_000531.5(OTC):c.422G>A NC_000023.11:g.38401310G>A 

NM_001145252.1(CFP):c.379T>G NC_000023.11:g.47628126A>C 

Mitochondrial NC_012920.1:m.13513G>A 

Mitochondrial NC_012920.1:m.3243A>G 
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7.2 Appendix B – Primer sequences 

 

 

 

7.3 Appendix C – details of expression vector maps 

7.3.1 PCMV6-Entry, mammalian vector with C-terminal Myc- DDK Tag 
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7.3.2 pCAGGS vector map 
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7.4  Appendix D - Flow diagram summarising the BAAP guidelines for aetiological investigation into bilateral severe to 
profound permanent childhood hearing impairment 
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7.5 APPENDIX E - Most common syndromes with hearing loss as a cardinal feature (grouped by inheritance pattern) 
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7.6 APPENDIX F - Hearing loss in the Amish 

 

7.6.1 Causes of SNHL in the Amish Community 

PCNA 

The proliferating cell nuclear antigen (PCNA) gene is located on chromosome 

20p12.3 and contains 6 exons [342]. PCNA is essential for DNA replication and 

repair [343], playing a central role at the DNA replication fork by recruiting 

necessary enzymes [344], and in accordance with such a fundamental cellular 

role is notably highly conserved through evolution. Our group identified a 

hypomorphic missense amino acid variant in the PCNA gene as a cause of 

sensorineural syndromic hearing loss (SHL) in the Ohio Amish population [177]. 

Hearing loss occurs as part of a more clinically complex DNA damage repair 

disorder with some overlap with xeroderma pigmentosum (XP) and Cockayne 

syndrome (CS). Other syndromic clinical features associated with the PCNA 

variant include ocular and cutaneous telangiectasia, premature aging, 

photophobia, photosensitivity with predisposition to sun-induced malignancy, 

short stature, learning difficulties and neurodegeneration with cerebellar atrophy 

[177]. This rare cause of SHL was originally identified in a single extended Amish 

family comprising four affected individuals (three siblings and a more distant 

cousin), and remains the only PCNA mutation described in a human inherited 

disorder. The causative mutation was identified using a combined strategy of 

homozygosity mapping and whole exome sequencing (WES), which identified a 

single candidate gene variant in PCNA (c.683G>T; p.Ser228Ile) in a particularly 

small (0.77Mb) autozygous region containing just six genes, which comprised the 

only autozygous region shared by all affected individuals. More recently a further 

affected Amish individual, from Wisconsin, has since been identified and 
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confirmed to be homozygous for the same p.Ser2281Ile founder mutation, 

validating this gene as causative of this condition [345]. To date this variant has 

only been identified, by our group, in the Holmes County communities of Ohio at 

an allele frequency (AF) of 0.015% which is significantly higher than the 

0.000007955% reported in gnomAD [295] indicating this variant is enriched within 

this community.  

PCNA functions as an essential sliding clamp protein during DNA replication and 

repair processes. A significant impairment of PCNA protein function is likely to be 

incompatible with life, and our functional studies determined that the causative 

variant likely affects only specific functional aspects of molecular function [177]. 

SNHL in this condition was universal, of prelingual onset and of moderate to 

profound severity and worse at higher frequencies. Early onset of SNHL is a 

distinguishing factor from other DNA repair disorders in which SNHL typically 

displays an older age of onset, and is not a universal feature. It should be noted 

however, that due to its complex tertiary structure, and the large number of 

molecular interacting partners involved in the diverse functional roles of PCNA, 

other sequence alterations identified in other functional domains of PCNA may 

well exhibit clinical outcomes distinct to those associated with the p.Ser228Ile 

variant present in the Amish.   

 

SLITRK6 

Gene SLIT and NTRK-like family member 6 (SLITRK6), located on chromosome 

13q31.1, comprises a single coding exon [346]. The gene encodes an integral 

membrane protein with leucine rich repeat domains and is expressed in specific 

brain regions and the neural retina, in which it is thought to play a role in 

synaptogenesis [178]. Our group identified the genetic basis of an autosomal 
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recessive deafness and myopia syndrome characterised by severe congenital 

myopia and SNHL, associated with sequence variants in SLITRK6  identified in 

three separate families (of Amish, Greek and Turkish origins) [178]. In a single 

Amish family comprising three affected siblings, whole genome SNP genotyping 

identified a single notable homozygous region of 12.2Mb common to all affected 

siblings. Despite the relatively large size of the homozygous genomic region 

identified, it fortuitously contained only five protein coding genes, in which dideoxy 

sequencing identified a single nonsense variant (c.1240C>T; p.Q414X) in one; 

exon 2 of SLITRK6, that appropriately co-segregated in the family. Our studies of 

SLITRK6 -/- mice showed delayed synaptogenesis of the retina in postnatal 

development [178] and HEK293 cell transfection studies showed impaired cell 

surface localisation of the mutant protein. The SNHL in these individuals was 

bilateral, moderate to severe and of prelingual onset, requiring hearing aids. 

Congenital myopia was severe from –6 to –11 diopters refractive error. The 

heterozygous parents of the affected siblings both had a low degree of myopia, 

perhaps indicative of an intermediate or milder phenotype in heterozygotes, 

although neither had HL and it is impossible to conclusively determine whether 

the myopia may relate to the SLITRK6 variant. Subsequently other Amish families 

from Pennsylvania were identified with the condition [159] in whom the same 

homozygous c.1240C>T mutation was identified. This group undertook control 

studies to estimate a 4.7% carrier frequency in an Old Order Amish population 

(n=571). All affected individuals display a similar phenotype of high myopia and 

SNHL, which is progressive and severe to profound by early adulthood. 

Audiological testing in all affected individuals showed absent distortion product 

otoacoustic emissions (DPOAEs) and auditory brainstem responses (ABRs) 
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were dys-synchronised bilaterally. Four affected individuals had absent ipsilateral 

middle ear muscle reflexes (MEMRs).  

 

HARS 

The HARS (histidyl-tRNA synthetase) gene is located on chromosome 5q31 and 

comprises 13 exons [347]. HARS encodes a molecule with a role in protein 

biosynthesis, which catalyses ligation of histidine to tRNA. Puffenburger et al. 

identified three patients from Amish families in Pennsylvania who displayed 

features suggestive of Usher syndrome type 3 [179]. Usher syndrome is classified 

into three major types, distinguished by severity of HL, age of onset, and the 

presence of vestibular abnormalities. Usher syndrome shows genetic 

heterogeneity and is further subdivided by genetic basis, with 15 genes currently 

associated with the condition. HARS mutation as a novel cause of Usher 

syndrome is classified as type 3B [348]. Clinical features of individuals in whom 

the HARS variant was identified include progressive visual impairment in 

childhood with horizontal nystagmus, optic pallor, photosensitivity, bull’s eye 

macula and pigmentary changes consistent with retinitis pigmentosa (RP), 

progressive SNHL, delay in gross motor development, lower limb brisk reflexes 

and ataxia with normal intellect. Other features described include visual 

hallucination in response to fever (Charles-Bonnet syndrome), acute psychosis 

with catatonia, and sudden unexplained death in one child. No newborn auditory 

screening data was available, although for affected individuals all evoked auditory 

waveforms were absent by 5 years. 

Homozygosity mapping performed using samples from the three affected 

individuals determined that the gene most likely resides within an 8.4Mb region 

of homozygosity of chromosome 5q31, containing 187 genes. WES of two 
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individuals with filtering for homozygous variants within the mapped region 

identified a single novel variant (c.1361A>C;p.Tyr454Ser) in HARS. Screening of 

406 Old Order Amish control chromosomes identified 7 heterozygous carriers of 

the variant, with an allele frequency of 1.72%. The group identified a further 

individual of Amish descent in Canada with an identical phenotype who was also 

homozygous for the c.1361A>C variant.  

 

YARS 

The YARS gene is located on chromosome 1p35.1 and encodes tyrosyl-tRNA 

synthetase, an enzyme that catalyses the aminoacylation of tRNA. Dominant 

variants in YARS have been associated with Charcot-Marie-Tooth (CMT) disease 

type C dominant intermediate [349]. More recently, a recessive multisystem 

disorder characterised by developmental delay, small stature, spasticity, 

areflexia, hypertriglyceridaemia, liver dysfunction, lung cysts and abnormal 

subcortical white matter was identified in two siblings of Polish origin [350]. 

Expanding on this phenotype Williams and Demczko [180] have presented 

unpublished work describing an Amish family with distantly related common 

ancestors and four individuals (three siblings and one cousin) affected with 

bilateral SNHL, nystagmus, visual impairment, developmental delay, pancreatic 

insufficiency, cholestatic liver disease, hypoglycaemia and white matter 

abnormalities on MRI brain, who were identified through whole exome 

sequencing to be homozygous for a variant in YARS (c.499C>A; p.Pro167Thr). 

Further work is ongoing to confirm this association, including functional studies. 

Variants in other aminoacyl-tRNA synthetases including HARS (see above) and 

KARS have been associated with both SNHL and dominant CMT disease [350].  
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ST3GAL5 

The ST3 beta-galactoside alpha-2,3-sialyltransferase 5 (ST3GAL5) gene 

encodes GM3 synthase; a sialyltransferase enzyme that synthesises GM3 

ganglioside from lactosylceramide, the first step in synthesis of complex 

gangliosides [351]. The ST3GAL5 gene is resident on chromosome 2p11.2 and 

contains seven exons [352]. Our group first identified an infantile onset epilepsy 

syndrome caused by mutation in ST3GAL5 resulting in GM3 synthase deficiency 

[30]. In a large Amish family, eight affected individuals from two interlinking 

branches were identified to have infantile onset epilepsy, with developmental 

delay and blindness. Seizures arise in the first year, with associated 

developmental regression, with several seizure types, which are refractory to 

treatment. Other features include generalised irritability, poor feeding requiring 

gastrostomy in two children, dystonic arm movements, hypotonia and visual 

deterioration of likely cortical origin. Homozygosity mapping identified a single 

candidate genomic region in which a homozygous nonsense mutation 

(c.862C>T; p.R288X) was identified in ST3GAL5, with appropriate segregation 

within the family. GM3 synthase deficiency has also been termed Salt and Pepper 

Developmental Regression Syndrome and has been associated with further 

features within the Amish population, including SNHL (Wang, Wang et al. 2016), 

pigmentary changes of the skin [353] and optic nerve defects [354]. Auditory 

brainstem responses (ABRs) showed absent cochlear microphonics and 

abnormal thresholds were recorded in all eight Amish children homozygous for 

the c.862C>T variant, with waveform phase reversal in most. Cortical auditory-

evoked potentials showed abnormal morphology in seven of these individuals 

[355]. GM3 synthase deficiency has subsequently been described by several 

further groups in other populations worldwide [356-358].  
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LONP1 

The lon peptidase 1 (LONP1) gene encodes a homohexameric enzyme of the 

AAA+ superfamily of ATPases. Lon peptidase 1 is multifunctional; it regulates 

quality control processes for protein synthesis, assembles protein complexes 

within the respiratory chain and regulates mitochondrial gene expression [359-

361]. LONP1 consists of 19 exons at cytogenetic location 19p13.3 [362]. Mutation 

in LONP1 has been associated with cerebral, ocular, dental, auricular, and 

skeletal anomalies (CODAS) syndrome. CODAS syndrome was first described in 

an endogamous Mennonite community [183] characterised by clinical features of 

developmental delay, dysmorphic facial features including ptosis, median nasal 

groove and malformed ears, bilateral cataracts, dental anomalies including 

delayed tooth eruption and anomalous cusp morphology, SNHL and skeletal 

features of short stature, delayed epiphyseal ossification, metaphyseal hip 

dysplasia and coronal clefts of the vertebrae. A further case of CODAS in a child 

of Mennonite ancestry was subsequently described and further characterised the 

phenotype [363], suggesting autosomal recessive inheritance of the condition. 

Strauss et al. identified ten further individuals with CODAS syndrome from Amish, 

Mennonite and mixed European backgrounds [364]. WES or dideoxy sequencing 

identified four LONP1 mutations; among the Pennsylvania Amish, eight 

individuals were identified to be homozygous for a founder mutation (c.2161C>G; 

p.Arg721Gly) in LONP1. In an Amish control group a high population allele 

frequency of 5.9% was identified (compared with 0.00073% in GnomAD). The 

group sequenced LONP1 in the Mennonite individual originally described by 

Shebib et al. [183] who was found to be homozygous for a different variant 

(c.2026C>T; p.Pro676Ser) and a further individual of mixed European ancestry 

was found to be compound heterozygous for two further mutations c.1892C>A 
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(p.Ser631Tyr) and c.2171C>T (p.Ala724Val). The affected Amish individuals 

showed a mixed picture of hearing loss; two had low frequency conductive 

hearing loss (CHL) with impaired tympanic membrane mobility. The two further 

individuals had both CHL with mild to moderate SNHL at medium to high 

frequency. Further details of the CODAS phenotype from these individuals 

highlight the severity of the condition with several children dying from laryngeal 

obstruction in the first few days of life and usually have swallowing difficulties 

requiring gastrostomy feeding. Other features include hypotonia, scoliosis, 

imperforate anus, omphalocele, rectovaginal fistula, cryptorchidism and tongue 

hemiatrophy. Due to the high allele frequency of c.2161C>G it would be expected 

that more cases of CODAS syndrome would be present in the Amish population, 

although this discrepancy may be explained in part by allele frequency 

differences in different Amish communities, as well as the high rate of neonatal 

mortality associated with gene mutation and many cases remaining undiagnosed. 

  

7.6.2 Conductive hearing loss in the Amish community 

HYAL2 

The HYAL2 gene encodes hyaluronidase 2, an enzyme with weak activity to 

degrade hyaluronan, an extracellular matrix glycosaminoglycan that is expressed 

during development [365]. HYAL2 is located on chromosome 3p21.31 and 

consists of four exons [366]. We identified HYAL2 as a novel gene associated 

with SHL in an extended Amish family of three distantly related nuclear families 

with five affected individuals, as well as a further two affected siblings with a 

similar phenotype in a Saudi Arabian family [184]. Mutation in HYAL2 causes 

principle clinical features of cleft lip or palate (CLP), which can be unilateral or 

bilateral, and facial dysmorphism with characteristic features of frontal bossing, 
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hypertelorism, flattened and wide nasal bridge and tip, cupped ears with 

thickened helices and micrognathia. Other more variable features include 

congenital cardiac abnormalities, including cor triatriatum, predominantly CHL 

(although one individual had SNHL), pectus excavatum, single palmar creases, 

2-3 toe syndactyly, myopia, staphyloma and cataract. A combination of 

homozygosity mapping of the five affected individuals with WES of a single 

affected individual identified a 10.18Mb region of homozygosity shared between 

affected individuals within the extended Amish family. Only a single candidate 

deleterious variant was identified, located in the HYAL2 gene (c.443A>G; 

p.K148R). In the Saudi Arabian family similar methods identified a missense 

variant (c.749C>T; p.P250L) in HYAL2. Mice HYAL2-/- studies demonstrated 

comparable phenotype with cleft palate, facial dysmorphism and variable 

features of cor triatriatum sinister in 50%, and hearing loss in 100% of HYAL2-/- 

mice. Functional studies demonstrated that both reported mutations significantly 

reduced the level of hyaluronidase-2 expression. In these families, CHL was 

described in four individuals and was variable, from mild to moderate impairment, 

unilateral or bilateral and pre or postlingual. A further individual had severe to 

profound SNHL that was prelingual.  

  

7.6.3 Mixed hearing loss in the Amish community 

COL1A2  

Collagen type I alpha 2 chain (COL1A2) is a large gene consisting of 52 exons 

located at 7q21.3.The COL1A2 gene encodes the pro-alpha 2 chain of type 1 

collagen, which is comprised of two alpha-1 chains and one alpha-2 chain that 

form a triple helix. Mutations in COL1A2 and COL1A1 have been identified as a 

cause of osteogenesis imperfecta (OI) types I II, III and IV. The four different types 



294 
 

of OI are inherited in an AD manner and have overlapping phenotypes and 

genotypes, varying in severity from a perinatal lethal form to a mild form with blue 

sclera and occasional fractures. Variability is often seen between individuals 

within the same family. Clinical features include fractures with minimal or no 

trauma, bone deformity, short stature, progressive mixed hearing loss, 

dentinogenesis imperfecta and connective tissue abnormality. Hearing loss in OI 

occurs in the majority of individuals by adulthood [367]. Often this starts with CHL 

caused by fracture of middle ear bones, with later SNHL developing with age. 

Usually onset is progressive and postpubertal, although hearing loss starting in 

childhood can occur. 

Mcbride et al. [186] reported a COL1A2 mutation (c.2098G>T; p.Gly610Cys) 

identified by dideoxy sequencing in several interrelated Amish families with 64 

individuals subsequently identified with the COL1A2 gene variant, displaying a 

variable phenotype [185]. A subsequent study used linkage analysis in these 

individuals to identify further candidate linkage loci that may contain further 

modifier genes that influence the severity of OI. This identified a candidate 

modifier locus on chromosome 1q, which the investigators suggested may 

involve the PTGS2 gene which is involved in regulating bone formation [368].  
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7.7 APPENDIX G - Expression studies of Slc15a5 inner ear mouse tissue  

 

Figure 7.1: Antibody staining of the inner mouse ear (E16.5) a) with the antibody 
raised against slc15a5 and b) with antibody raised against odf2. Brown staining 
indicates positive staining. 
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7.8 APPENDIX H - SYT1-associated neurodevelopment disorder HPO 

terms 
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7.9 APPENDIX I - Amish Genome Project additional tables 

 

7.9.1 PubMed literature review genes – Nonsense 

Gene Phenotype 
PubMed 

ref  

APOL5 Schizophrenia  18571626 

B4GALNT3 Neuroblastoma 21741930 

C10orf53 Meningiomas 25981829 

CCDC17 Keratoacanthoma 27788211 

CCDC66 Human retinal dystrophy  28369829 

CCDC83 Colon cancer 22923163 

CES1 Carboxylesterase 1 deficiency 18485328 

CFAP61 Obesity  28224759 

CLDN17 Gastric cancer  24325792 

CLEC4G Inflammatory Response  26943817 

COQ7 Coenzyme Q10 deficiency, primary, 8 26084283 

DNAH6 Heterotaxy and ciliary dysfunction 26918822 

DNALI1 Immotile cilia syndrome 19944400 

EFS Prostate cancer 25296736 

EPHA10 Breast cancer 27566654 

FAM109B Meningiomas  25981829 

FAT2 Spinal meningioma 27900010 

FLT1 Eclampsia 14764923 

FOLR3 Meningomyelocele  20683905 

GPT Glutamate pyruvate transaminase polymorphism 9119391 

HAGH Glyoxalase II deficiency 7424909 

HLA-DRB4 Encephalitis 28026046 

HLTF Colorectal cancer, associated 21479407 

HOXC5 Cervical cancer 10208853 

HSD17B8 Colorectal cancer 20049862 

IGSF10 Hypogonadotropic hypogonadism 27137492 

KCNC4 Spinocerebellar Ataxia 13 20712895 

KMT2C Intellectual disability 22726846 

KRT23 
Colon cancer cells 
Periodontitis  

24039993 
15081423  

KRT37 Celiac disease 21627641 

MAPK13 Gynecological cancer 26969274 

MED12 
Lujan-Fryns syndrome, Ohdo syndrome, X-linked, Opitz-
Kaveggia syndrome 

16711603  
17369503  
28279489  

317334363 

MUC19 Sjogren's Syndrome 18184611  

MUC3A 
Inflammatory bowel disease 
Hypertrichotic Osteochondrodysplasia 
Cap Polyposis 

11289722 
21303913  
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MUC6 
Pancreatic Ductal Carcinoma 
Signet Ring Cell Adenocarcinoma 
Gastric cancer 

127165582  
223573307  
327298226  

PADI2 
Alzheimer Disease 
squamous cell carcinoma 

20002008 
28331341 

PIFO Laterality defects 120643351 

PRSS2 Pancreatitis, chronic, protection against 16699518  

PYHIN1 Diffuse Scleroderma and Limited Scleroderma, Asthma (risk) 21804549 

RERGL Familial colorectal cancer  24127187  

RPS19 Diamond-Blackfan anemia 1 

 9988267 
10598818 
12586610 
17517689 

RXFP2 Cryptorchidism 20636340  

SECISBP2 Thyroid hormone metabolism, abnormal 16228000 

SLC22A11 
Gout 
Persistent Fetal Circulation Syndrome 
Hereditary hypouricaemia 

27225847 
27103454  

SRR Streptococcal Meningitis, Serine Deficiency 22990841 

TCF20 
Vertebrobasilar Insufficiency and Breast Sarcoma 
Autism spectrum disorder 

25228304 

THBS3 
Gaucher Disease, Type I 
Cancer 

7558000  
9608355 

27197191  

TIMP4 
Open angle glaucoma patients 
Focal epilepsy  
Kawasaki disease 

26539028  
25595263  
19048177  

TMEM78 Nasopharyngeal carcinoma 22260379  

TMPRSS5 Autosomal recessive hearing loss  17918732 

TNNI3K 
Cardiac conduction disease with or without dilated 
cardiomyopathy 

24925317  

TOP1MT Non-small-cell lung cancer 28355294  

TRAP1 
Cakut With Or Without Vacterl &  Brain Glioblastoma 
Multiforme 
Colorectal cancer 

28088229  

TTC21B 
Nephronophthisis 12 
Short-rib thoracic dysplasia 4 with or without polydactyly 

21258341  
21258341  

TTC39B 
Endometriosis 
Steatohepatitis and atherosclerosis 

27453397  
27383786  

ULK4 
Schizophrenia 
Neurogeneis and Brain function 

27670918  
28596978  

USP54 Cancer 28129647  

VPS13C Parkinson disease 23, autosomal recessive, early onset 26942284 

XIRP1 Brachial Plexus Lesion and Myopathy, Myofibrillar, 5 24725425  

ZNF599 Hypospadias 22378287  

ZNF675 Chronic periodontitis  25056994  
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7.9.2 PubMed literature review genes – Frameshift 

Gene Phenotype 
PubMed  

ref  

ABHD14B neuroendocrine tumors 21681495 

ACSM3 Hypertension, essential 7907320 

ACTA1 Nemaline myopathy 3, autosomal dominant or recessive 

10508519 
11333380 
9185179 
16427282 
19553116 
22442437 
23650303 

ACTA1 Myopathy, congenital, with fiber-type disproportion 1 15468086 

ACTA1 Myopathy, actin, congenital, with cores 15520409 

ACTA1 Myopathy, scapulohumeroperoneal 
4952447 
25938801 

ACTA1 
Myopathy, actin, congenital, with excess of thin 
myofilaments 

9185179 
10508519 

AK2 Reticular dysgenesis 
19043417 
19043416 

ANO9 Colorectal carcinoma (stage II & III) 26317553 

AP1G2 
Cardiac Arrest 
Long Qt Syndrome 1 

21658281  

APOBR Obesity  25955518 

ARMC2 Lung function 21946350 

ATP5J Colorectal cancer 24124598 

ATP5J Alzheimer's disease and severe cerebral amyloid angiopathy 22008262 

ATXN3 Machado-Joseph disease (Spinocerebellar ataxia type 3) 7874163 

ATXN3 Machado-Joseph disease (Spinocerebellar ataxia type 3) 7874163 

AVPR2 Diabetes insipidus, nephrogenic 

1356229 
1303271 
8479490 
8479491 
8401502 
8078903 
7714087 
9369448 
9329382 
9711877 
10770218 
11232028 

AVPR2 Nephrogenic syndrome of inappropriate antidiuresis 15872203 

BCL7C Lymphoma 9931421 

BRMS1 
Breast Cancer and Malignant Melanoma, Somatic 
Breast cancer 

18841483 
23771732  

BTNL9 Bipolar disorder and schizophrenia 25243493 
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BUB1B-
PAK6 

Colon and Prostate Cancer 
25426562 
24946957 

CACNA1G Childhood Absence Epilepsy 17397049 

CACNA1G Spinocerebellar Ataxia Type 42 26456284 

CCDC40 
Ciliary Dyskinesia, Primary, 15 
Primary Ciliary Dyskinesia15: Ccdc40-Related Primary Ciliary 
Dyskinesia 

21131974 

CCDC7 Colorectal cancer 22024937 

CCDC88B Sarcoidosis  22837380 

CEP164 Nephronophthisis 15 22863007 

CHD7 CHARGE syndrome 

15300250 
16400610 
16155193 
17334995 
18074359 

CHD7 Hypogonadotropic hypogonadism 5 with or without anosmia 

17661815 
18074359 
18834967 
17937444 
18978652 

CLTCL1 Chromosome 22Q11.2 Microduplication Syndrome 26549885 

CLTCL1 
Congenital Insensitivity To Pain With Severe Intellectual 
Disability 

26549885 

CPNE8 Prion disease  19795140 

CRIPAK Non-small cell lung cancer 25444907 

CSPG4 Chordoma 26689475 

CSPG4 Chondrosarcoma 27292772 

CWH43 Colorectal cancer 24959000 

DAGLB Hallucinogen Dependence 26595473 

DLEC1 Lung cancer 27287342 

DNAH14 Embryonic lethal genes 26036949 

DNAH14 Endometrial cancer 28339086 

ECHDC1 Breast and ovarian cancer  19517271 

EGFR Inflammatory skin and bowel disease, neonatal, 2 24691054 

EGFR 
Adenocarcinoma of lung, response to tyrosine kinase 
inhibitor in 

15118125 
15118073 
15728811 

EPPK1 Vater/Vacterl Association 23549274 

ERV3-1 Choriocarcinoma (and other cancers) 
25016529 
24043713 

FAM46A Retinitis Pigmentosa 25 17803723 

FAM46A Skeletal dysplasia 26803617 

FAM81B Breast cancer 27491861 

FBXW8 Intellectual disability 25626716 

FCGBP Endometriosis  27817035 

GJC3 Hearing Loss 
26074771 
23179405 
19876648 
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GPR27 
Developmental delay and congenital anomalies (craniofacial 
dysmorphism, including a cleft lip) 

12836054 

GPR27 
Speech delay, contractures, hypertonia and 
blepharophimosis 

19332160 

HELQ Natural menopause 28118297 

HELQ Breast cancer 
27792995 
26351136 

HELQ Ovarian cancer 
28101207 
26351136 

HLA-B 
Ankylosing spondylitis, susceptibility to 
(synovitis, chronic, suscpetibility to) 

8053961 

HLA-B 
Severe cutaneous adverse reaction, susceptibility to 
Stevens-johnson syndrome, susceptibility to, included 
Toxic epidermal necrolysis, susceptibility to, included 

15057820 

HLA-B 
Severe cutaneous adverse reaction, susceptibility to 
Stevens-johnson syndrome, susceptibility to, included 
Toxic epidermal necrolysis, susceptibility to, included 

15743917 

HLA-B 
Abacavir hypersensitivity, susceptibility to 
Drug-induced liver injury due to flucloxacillin, included 

15247624 
12462283 

HLA-DPA1 Inflammatory Bowel Disease 3 12073072 

HLA-DPA1 Kikuchi Disease 28613580 

HLA-DPA1 Posner-Schlossman Syndrome 25863099 

HLA-DRB1 Sarcoidosis, susceptibility to, 1 14508706 

HLA-DRB1 Pemphigoid, susceptibility to 23502333 

HLA-DRB1 Rheumatoid arthritis, susceptibility to 28711139 

HLA-DRB1 Multiple sclerosis, susceptibility to, 1 
21833088 
28676141 

IL36B Psoriasis 21881584 

KBTBD13 Nemaline myopathy 6, autosomal dominant 
21109227 
21104864 
12805120 

KCNJ12 Hirschsprung's disease 28399120 

KCNJ18 Thyrotoxic periodic paralysis, susceptibility to, 2 
20074522 
28131627 
27178871  

LMO7 Emery-dreifuss muscular dystrophy 24825363 

LY9 Systemic Lupus Erythematosus 
23956418 
18216865  

MFF 
Encephalopathy due to defective mitochondrial and 
peroxisomal fission 2 

22499341 
26783368 

MOCOS Xanthinuria, type II  

11302742 
25967871 
14624414 
17368066 

MS4A12 colon cancer 27881006 

MTMR11 breast cancer 20413845 

MTX1 Gaucher's Disease 15024629 

MUC21 Colorectal Cancer 1 28575854 
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MUC3A Ulcerative colitis and Crohn's disease. 11289722 

NDOR1 bladder carcinoma 26722457 

NDUFA8 Mitochondrial Complex I Deficiency 
15576045 
9860297 

NETO1 autism 20499253 

PAK6 Prostate Cancer 
26459798 
23931236 
18642328 

PDE11A Pigmented nodular adrenocortical disease, primary, 2 16767104 

PDGFRL Colorectal cancer, somatic 7898930 

PDGFRL Hepatocellular cancer, somatic 7898930 

PDGFRL Behçet disease 22926996 

PGK2 Ovary and ovarian cancers 19333399 

PLAC4 Early onset preeclampsia 23312075 

PNPLA7 Susceptibility to menstrual disorder 25867316 

POLQ Breast cancer, ovarian cancer and other cancer types 
27264557 
25409685  

PRMT6 HIV-1 26611710 

PRPF3 Retinitis pigmentosa 18 

11773002 
17932117 
11773002 
18412284 

RGL4 Associated with chemosensitivity 20224928 

RP1L1 Occult macular dystrophy 

20826268 
23281133 
20826268 
23281133 
22605915 
27623337  

SCAPER Parkinson's disease 25294124 

SCAPER Atopic dermatitis (recalcitrant) 25935106 

SCGB3A2 Asthma, susceptibility to 11813133 

SCGB3A2 Graves' disease 
23934357 
21170691 

SH2B3 Myelofibrosis, somatic  20404132 

SH2B3 Thrombocythemia, somatic  20404132 

SH2B3 Erythrocytosis, somatic 20843259 

SHROOM4 Stocco dos Santos X-linked mental retardation syndrome 
12673656 
16249884 
26740508 

SLC22A3 Coronary Artery disease 
27417586 
27621937  

SLC22A3 Oesophageal cancer 
28533408 
28743982  

SLC25A5 Non-Syndromic Intellectual Disability 23783460 

SLC6A18 Myocardial infarction 21420947 
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SLC6A18 Iminoglycinuria, Digenic 
20377526 
19033659  

SP7 Osteogenesis Imperfecta, Type XII 20579626 

SPZ1 Non-small cell lung cancer 23463593 

TCHH Uncombable hair syndrome 3 

27866708 
27487801 
26414620 
27866708  

TEX9 Nevoid basal cell carcinoma syndrome  9388465 

TMEM242 Developmental delay  26391891 

TRPM1 
Night blindness, congenital stationary (complete), 1C, 
autosomal recessive 

19878917 
19896113 
19896109 
19436059 
20300565 

ULK4 Schizophrenia 
24284070 
27670918  

ULK4 Hypertension 
25519392 
25249183  
27980663  

VN1R2 Gliomas 23451178 

ZNF443 Wilms tumor cells 23267699 

ZNF510 Oral squamous cell carcinoma 21497587 

ZNF677 Non-small cell lung cancers 25504438 
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7.10 APPENDIX J – PUBLCATION 

 

 

 

 

 

AN AMISH FOUNDER VARIANT CONSOLIDATES 

DISRUPTION OF CEPP5 AS A CAUSE OF 

HYDRANENCEPHALY AND RENAL DYSPLASIA  



306 
 

7.11 APPENDIX K- PUBLICATION 

 

 

 

 

 

MNS1 MUATATION ASSOCIATED WITH SITUS 

INVERUS AND MALE INFERILITY   
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