1	
2	
3	Understanding agriculture within the frameworks of cumulative cultural evolution,
4	gene-culture coevolution and cultural niche construction
5	
6	Arie Altman ^{1,2,*} and Alex Mesoudi ³
7	
8	1. Permanent Address: The Robert H. Smith Institute of Plant Sciences and Genetics in
9	Agriculture, The Hebrew University of Jerusalem, Faculty of Agricultural, Food and
10	Environmental Quality Sciences, P.O.Box 12, Rehovot 76100, Israel. Email:
11	arie.altman@mail.huji.ac.il
12	2. Institute of Archaeology, University College of London, London WC1H 0PY, United
13	Kingdom
14	3. Human Behaviour and Cultural Evolution Group, Department of Biosciences, College of
15	Life and Environmental Sciences, University of Exeter Cornwall Campus, Penryn,
16	Cornwall TR10 9FE, United Kingdom. Email: a.mesoudi@exeter.ac.uk
17	
18	*Corresponding author: arie.altman@mail.huji.ac.il
19	
20	Running title: Agriculture and cultural evolution
21	Keywords: agriculture, Anthropocene, cultural evolution, gene-culture coevolution, niche
22	construction
23	Total word count excluding references, tables and figures: 7738
24	3 figures, 0 tables

25 Abstract

26 Since its emergence around 12,000 years ago, agriculture has transformed our species, 27 other species, and the planet on which we all live. Here we argue that the emergence and 28 impact of agriculture can be understood within new theoretical frameworks that are taking 29 hold within the evolutionary human sciences. First, the improvement and diversification of 30 agricultural knowledge, practices and technology is a case of cumulative cultural 31 evolution, with successive modifications accumulated over multiple generations to 32 exceed what any single person could create alone. We discuss how the factors that 33 permit, facilitate and hinder cumulative cultural evolution might apply to agriculture. 34 Second, agriculture is a prime example of gene-culture coevolution, where culturally 35 transmitted agricultural practices generate novel selection pressures for genetic evolution. 36 While this point has traditionally been made for the human genome, we expand the 37 concept to include genetic changes in domesticated plants and animals, both via 38 traditional breeding and molecular breeding. Third, agriculture is a powerful niche-39 constructing activity, having extensively transformed the abiotic, biotic and social 40 environments. We focus on the latter, and examine how agricultural knowledge and 41 practice shapes, and is shaped by, social norms and attitudes. Throughout, we discuss 42 recent biotechnology and associated molecular breeding techniques, and present several 43 case studies, including golden rice and stress resistance. Overall, we propose new 44 insights into the coevolution of human culture and plant genes, and the unprecedented 45 contribution of agricultural activities to the construction of unique agriculture-driven 46 anthropogenic biomes.

47 Keywords: agriculture, cultural evolution, gene-culture coevolution, niche construction,
48 GM plants

49 Introduction

50 Although once united under the single term "natural philosophy", for over a century now, 51 scholars within the biological sciences striving to understand and manipulate the natural 52 world have seldom interacted with scholars studying culture and society. This situation is 53 problematic for many reasons, not least the social and cultural consequences of 54 increasingly powerful biotechnology. However, recent developments at the intersection of 55 the natural and social sciences - specifically, theories of cultural evolution, niche 56 construction and gene-culture coevolution – have begun to bridge the gap between the 57 study of biology and culture. In this paper we explore how these new interdisciplinary 58 approaches might contribute to the study of agriculture, which is a topic that straddles 59 the natural-social science divide.

60

61 The transition from hunting-gathering to agriculture, observed in most human societies, is 62 a key event in human history that has transformed human societies beyond recognition. 63 For much of its evolutionary history our species practised hunting and gathering, as a few 64 isolated societies still do today (Panter-Brick, Layton and Rowley-Conwy 2001). 65 Beginning around 12,000 years ago, some human populations began domesticating plant 66 and animal species (Fuller et al. 2014; Larson et al. 2014). The adoption of agriculture 67 triggered the establishment of small permanent settlements and then densely-populated 68 cities, kingdoms and states. It saw the creation of new political institutions and forms of 69 social organization and stimulated an upsurge in scientific and technological innovation. It 70 also brought many problems, such as the spread of new diseases and increased social 71 inequality. Agricultural knowledge and technologies have continued to advance at an 72 increasing pace particularly in the last century. The discovery of the rules of genetics by 73 Mendel (Mendel 1866) and their rediscovery around 1900 (Corcos and Monaghan 1990),

74 resulted in the application of plant breeding technologies from the 1930s onwards 75 (Carlson 2004; Koornneef and Stam 2001; Heslop-Harrison and Scwarzacher 2012). The 76 "green revolution" in several developing countries during 1950–1970, which 77 encompassed the use of new high-yield crops, together with fertilizers and pesticides, 78 was an important landmark in agricultural plant breeding, yet still based on traditional 79 Mendelian breeding methods (Farmer 1986). The era of molecular breeding, including 80 marker-assisted selection (MAS), from 1983 onwards (Smith and Simpson 1986, Ben-Ari 81 2012) was followed by widespread genetic engineering/modification of crop plants 82 (Gasser and Fraley 1989), and more recently by genome editing technologies (Bortesi and 83 Fischer 2015; Sander and Joung 2014). Molecular breeding has transformed agricultural 84 practices worldwide, yet often faces strong public and political opposition.

85

86 Despite the importance of agriculture to our species' history, and the rapid recent 87 advances in molecular breeding technologies, there remain disagreements over which 88 theoretical framework offers the best way to understand the origin, spread and ongoing 89 transformation of agriculture. Several recent debates and exchanges have revealed a 90 tension between, on the one hand, interpretive, humanities-oriented frameworks which 91 focus on culture and agency on the part of agriculturalists and the socio-political contexts 92 within which agriculture is practised, and, on the other hand, neo-Darwinian approaches 93 that use tools such as optimal foraging theory derived from behavioural ecology to 94 understand agricultural decisions, assuming that human decision-making has genetically 95 evolved to maximise inclusive genetic fitness (for examples of this debate see Cochrane 96 and Gardner 2011; Gremillion, Barton and Piperno 2014). The former approaches are 97 laudable in their attempt to situate agriculture within the rich socio-cultural contexts that 98 they demand, yet often lack rigorous scientific methods, and sometimes suffer from the

99 general malaise within the humanities of being politically motivated, agenda-driven, and 100 disconnected from the natural and behavioural sciences (Barkow 2005; D'Andrade 2000; 101 Slingerland and Collard 2011). The latter approaches are often limited in their theoretical 102 assumptions, and, we would argue, do not fully incorporate the role of culture as more 103 than a proximate mechanism (Laland et al. 2011; Mesoudi et al. 2013).

104

105 Here we follow others (O'Brien and Laland 2012; Rowley-Conwy and Layton 2011; Zeder 106 2015) in arguing that the study of agriculture can benefit from being situated within a set 107 of new evolutionary approaches to human behaviour - cultural evolution, gene-culture 108 coevolution and cultural niche construction - that attempt to incorporate cultural change 109 and individual agency within a rigorous, scientific and multidisciplinary evolutionary 110 framework. We highlight several ways in which the study of agriculture can benefit from 111 these frameworks. We also highlight ways in which a consideration of agriculture yields 112 new insights into cultural evolution, gene-culture coevolution and niche construction. 113 Specifically, we argue that (see also Figure 1):

114

changes in agricultural knowledge and practices are a prime example of
 cumulative cultural evolution (CCE), where beneficial ideas and inventions are
 selectively preserved and accumulate in number and effectiveness over successive
 generations of people. We apply the large body of modelling and experimental
 insights already obtained for CCE generally, and apply them to agriculture. This
 illuminates the recent rapid advance in agricultural knowledge in the last two
 centuries, and also highlights the role of intentional vs non-intentional modification.

122

agriculture is a prime example of gene-culture coevolution (GCC), where culturally transmitted practices affect a species' genetic evolution, and vice versa. However,
 this is not just (as frequently argued previously) the case of culturally-transmitted
 agricultural practices changing human genes, but also changing non-human genes
 contained within domesticated and genetically modified organisms.

128

agriculture is associated with extensive cultural niche construction (CNC), where
 agricultural practices transform the environment and those environmental changes
 alter the selection pressures on agricultural CCE. We argue that agriculture can
 modify (i) the abiotic environment (e.g. water, salinity, soil composition), (ii) the
 biotic environment (e.g. domesticated species, pests including insects, fungi and
 weeds), and (iii) the social environment (e.g. social norms, regulation, markets), and
 focus in particular on the latter.

136

The following sections take each of these points and expand them in the context of selected examples of plant breeding via new molecular tools. We apply these insights to two case studies, first golden rice, then stress tolerance. We end by highlighting outstanding questions that arise from our attempt to place agriculture within these frameworks.

- 142
- 143

[insert figure 1 here]

144

145 Agriculture as cumulative cultural evolution

146 For most of the 20th century, the study of cultural change remained largely separate from

147 the biological sciences. From the 1970s, scholars began developing a formal theory of

148 *cultural evolution*, in which cultural change is viewed as an evolutionary process that shares key characteristics with, but differs in important ways from, genetic evolution 149 150 (Boyd and Richerson 1985; Cavalli-Sforza and Feldman 1973, 1981; see Mesoudi 2011a, 151 2017 for reviews). This approach incorporates cultural change and variation into a 152 theoretical framework that is consistent with the evolutionary sciences. Central to this 153 approach is the idea that cultural change constitutes an evolutionary process in its own 154 right: it is a system of inherited variation that changes over time, just as Darwin defined evolution in The Origin of Species (Darwin 1859). 'Culture' is defined here as learned 155 156 information that passes from individual to individual via social learning processes such as 157 imitation, teaching or spoken or written language. Social learning therefore provides the 158 inheritance system in cultural evolution, paralleling genetic inheritance in genetic 159 evolution.

160

Recognising this parallel, we can borrow and adapt tools, concepts and methods from 161 162 the biological sciences to study cultural change (Mesoudi, Whiten and Laland 2006). 163 These include mathematical models (Boyd and Richerson 1985; Cavalli-Sforza and 164 Feldman 1981), phylogenetic analyses (Gray and Watts 2017), lab experiments, 165 archaeological data and field research (Mesoudi 2011a). Importantly, this research does 166 not unthinkingly import genetic models of change and apply them to cultural change 167 without considering the unique aspects of the latter. For example, we can incorporate 168 multiple pathways of inheritance: not just from parents to offspring like genetic evolution, but also transmission from non-parents and between peers (Cavalli-Sforza and Feldman 169 170 1981). Psychological processes such as conformity work to favour common behaviours, while prestige bias spreads behaviours associated with high status individuals (Boyd and 171 172 Richerson 1985). There may be Lamarckian-like transformation such that novel cultural

variants are not blind with respect to function (Boyd and Richerson 1985); they may be
intentionally created by individuals to solve specific problems. This allows agentic
decision-making forces to be incorporated into an evolutionary framework (Mesoudi
2008).

177

One interesting property of human cultural evolution is that it can be *cumulative* (Tennie, Call and Tomasello 2009). Other species exhibit social learning, and this is sometimes powerful enough to generate between-group behavioural traditions. For example, chimpanzee communities across Africa exhibit group-specific tool use profiles (Whiten 2017). Yet only humans appear able to accumulate and recombine behavioural modifications over time via social learning, generating complex cultural traits that could not have been invented by a single individual alone (Dean et al. 2014; Tennie et al. 2009).

186 Agriculture is a prime example of cumulative cultural evolution. Other species practice 187 agriculture in a sense, most famously leaf-cutter ants of the genera Acromyrmex and Atta 188 which cultivate a type of fungus (Schultz and Brady 2008). However, the adaptations 189 responsible for this are genetic, not cultural. Human agriculture is the result of repeated 190 behavioural innovations that spread, accumulate and recombine via social learning 191 through and beyond communities. This allows for great flexibility, often involving the 192 simultaneous use of multiple domesticated species, and more rapid change over time, on the order of thousands, hundreds or tens of years rather than millions as in the case of 193 ant-fungus genetic evolution (Schultz and Brady 2008). In humans, agricultural 194 195 knowledge, practices and technologies are culturally evolving traits which often show a 196 cumulative increase in scope and complexity over time (Figure 2). Typically, these traits 197 are sequentially linked, with prior inventions necessary for the emergence of subsequent

198 ones. Key innovations include irrigation by controlling water flow via canals and other 199 waterways, the invention of different types of plough, the conversion of gaseous nitrogen 200 to inorganic nitrogen fertilizers to enhance crop yields, the industrial mechanization of a 201 variety of agricultural processes, and the discovery of the principles of genetics that 202 allowed classical plant breeding. Recent CCE has resulted in new agricultural and 203 computerized technologies, e.g. drip irrigation (Camp 1998) and precision agriculture 204 (Mulla 2013), and the application of novel molecular tools for breeding of crops and farm animals, such as the use of in vitro procedures for plant propagation (Loberant and 205 206 Altman 2010), fertility control and genetic modifications in farm animals (Hasler 2003; Xu 207 et al. 2006) and molecular markers for selection (Smith and Simpson 1986, Ben-Ari 2012), 208 genetically-modified (GM) plants (Gasser and Fraley 1989), and genome editing of crops 209 (Bortesi and Fischer 2015; Sander and Joung 2014). As expected for a historically-210 contingent, culturally evolving process, these various innovations occurred in stops and 211 starts, showed different trajectories in different societies and were sometimes lost, reintroduced or recombined (Fuller et al., 2014). Agriculture therefore fits several 212 213 'extended criteria' of CCE specified by Mesoudi and Thornton (2018): not just repeated 214 improvement as a result of individual and social learning, but also sequential dependence 215 of innovations, branching lineages and recombination across lineages.

216

217

[insert figure 2 here]

218

Viewing agriculture as CCE allows us to draw on the large body of formal models and experiments that have explored the factors that allow, facilitate and constrain CCE and apply these insights to agriculture. CCE is thought to depend on high fidelity social learning, which is required to faithfully preserve beneficial innovations across generations

and over time (Lewis and Laland 2012). This social learning also needs to be selective,
either selectively preserving successful practices, or selectively learning from successful
individuals (Laland 2004; Mesoudi 2011b). In the context of small scale agriculture, this
may involve the observation of, or teaching by, expert plant and animal breeders. Since
the emergence of formal systems of science, one-to-one transmission has been replaced
by the transmission of knowledge in publications such as journals, books and patents,
which would greatly increase the fidelity of social learning.

230

231 Equally important to mechanisms of social learning are aspects of demography. In order 232 to support continued CCE, populations must be large enough to sustain the repeated 233 transmission of knowledge (Henrich 2004; Powell, Shennan and Thomas 2009), and they 234 should also ideally be partially connected, e.g. via migration, such that different 235 innovations can emerge in different groups and then become recombined, rather than the 236 entire population fixating too soon on a single suboptimal solution (Derex and Boyd 237 2016). The recombination of beneficial traits can generate exponential increases in 238 knowledge, as seen in the patent record (Youn et al. 2015).

239

Finally, the type of innovation can affect the dynamics of CCE. Miu et al. (2018) found, in a computer programming tournament, two classes of innovations: small, incremental 'tweaks' that were common but unlikely to lead to major increases in performance, and rarer 'leaps' that made bigger changes to existing knowledge, were more likely to fail, but had a small chance of a major improvement. These rare innovative leaps may play a disproportionate role in CCE (Kolodny, Creanza, and Feldman 2015). The novel innovations listed in Figure 2 can be seen as examples of these.

247

248 An interesting question is whether innovation is intentional or not. In genetic evolution, there is no foresight. Genetic mutations arise randomly with respect to their adaptive 249 250 effects; beneficial mutations are no more likely to arise when they are needed than when 251 they are not. In cultural evolution, however, innovation may be intentionally directed in 252 ways that make adaptive variants more likely to occur. This foresight can never be perfect 253 (people are not omniscient: Mesoudi 2008), but this intentionality may speed up CCE 254 compared to if modifications were random, as suggested by models of 'guided variation' (Boyd and Richerson 1985) and 'iterated learning' (Griffiths, Kalish and Lewandowsky 255 2008). On the other hand, major innovative leaps in CCE often arise by accident, 256 257 suggesting that randomness can be useful; classic cases include the discovery of 258 Penicillin and x-rays (Simonton 1995). Of course, real cases of innovation may involve 259 both chance and intention, as represented by the phrase 'chance favours the prepared 260 mind'; Alexander Fleming would not have realised the significance of his chance 261 discovery if he had not been prepared to do so. The issue of intentionality in the 262 emergence of agriculture has been debated extensively (Abbo, Lev-Yadun and Gopher 263 2014; Fuller et al. 2012; Kluyver et al. 2017), often in oppositional terms with some 264 arguing for the role of intentionality and others arguing against. Cultural evolution models, 265 such as those of guided variation, permit the inclusion of both intentional and non-266 intentional factors, to compare their combined effects on the speed and form of 267 agricultural CCE. Recent GM technology represents however the ultimate in intentional 268 modification, with agricultural CCE no longer dependent on random genetic mutation and 269 recombination to create superior breeds.

270

271 Agriculture as a driver of gene-culture coevolution

272 Gene-culture coevolution incorporates CCE, but focuses on those cases where cultural inheritance causes changes in gene frequencies, which feeds back on cultural evolution, 273 274 forming a coevolutionary dynamic (Feldman and Laland 1996; Laland, Odling-Smee and 275 Myles 2010). Several classic cases of human gene-culture coevolution involve agriculture, 276 given the growing evidence that agricultural practices have left indelible signatures on the 277 human genome over the last 12,000 years (Laland et al. 2010; Richerson, Boyd and 278 Henrich 2010). O'Brien and Laland (2012) discuss two classic cases: first, the spread of 279 lactose tolerance alleles from around 7500 years ago in central European populations as a consequence of the cultural practice of dairy farming (Gerbault et al. 2011; Itan, Powell, 280 281 Beaumont, Burger and Thomas 2009); and second, the spread of sickle-cell alleles in 282 West African populations that confer resistance against malaria, which increased in 283 prevalence following the clearing of forests for yam cultivation, which created pools of 284 standing water within which mosquitoes breed (Wiesenfeld 1967). In both cases, there is 285 clear archaeological, anthropological and genetic evidence that cultural practices came 286 first, followed by genetic responses that continue to affect behavioural variation across 287 contemporary human populations.

288

289 What is less often recognised in discussions of gene-culture coevolution is that 290 agriculture also causes genetic change in non-human species. Many definitions of 291 agriculture require there to be human-induced genetic change in the domesticated plant or animal (Rowley-Conwy and Layton 2011). This non-human genetic change may be the 292 result of intentional or unintentional artificial selection for traits that increase yields, or 293 294 side-effects of such selection. The entire package of genetic changes in a domesticated species is sometimes called the "domestication syndrome" (Larson et al. 2014). There is 295 296 extensive evidence, particularly since the advent of gene sequencing, for sustained

297 genetic changes in domesticated species of both plants and animals (Zeder 2015). In plants the domestication syndrome may include larger seeds, synchronous germination or 298 299 fruit ripening that makes sowing or harvesting easier, and reduction in chemical defences 300 (Fuller et al. 2014). In animals, the syndrome includes increased docility, changes in body 301 shape and size, and altered reproduction patterns (Larson and Fuller 2014). In some 302 cases, non-human genetic change coincides with human genetic change, as in the case 303 of lactose tolerance genes in humans and corresponding changes in cattle genes (Beja-Pereira et al. 2003). Genetic modification by conventional and molecular intentional 304 305 breeding represents further genetic change as a result of agricultural practices, and is 306 covered in later sections in more detail.

307

308 Agriculture as niche construction

309 As O'Brien and Laland (2012) have argued, agriculture is also a prime example of cultural 310 niche construction. Niche construction is the general biological principle that organisms 311 do not just passively adapt to their environments. Often they actively construct their 312 environments, with those environmental modifications in turn affecting their own and 313 other species' evolution (Odling Smee, Laland and Feldman 2003). These modified 314 environments may be inherited via what is termed ecological inheritance. Cases of non-315 cultural niche construction occur in numerous species; examples include earthworms' burrowing and mixing activities which alter soil nutrient content, and beaver dam-building 316 317 which creates standing water. These activities have evolutionary consequences: for 318 example, earthworms have retained their freshwater kidneys rather than adapt to the 319 terrestrial environment, because the mixed soil that they create allows easier absorption 320 of water (Turner 2000).

321

322 *Cultural* niche construction occurs when the behaviours that modify environments are at 323 least partly socially learned, and the consequences potentially affect subsequent cultural 324 evolutionary dynamics (as well as, potentially, genetic evolutionary dynamics; this would 325 be a case of GCC) (Kendal, Tehrani and Odling-Smee 2011; Laland, Odling Smee and 326 Feldman 2000). The 'environment' here can be physical or abiotic (e.g. soil composition or 327 climatic conditions, both of which strongly affect plant development), biotic (composed of 328 other species; in the case of domesticated plants this would include phytopathogenic 329 fungi, bacteria and insects) and social (composed of other individuals of the same 330 species, e.g., competition between neighbouring plants at the root level).

331

332 Despite romantic notions of the "noble savage" living passively in an unaltered 333 environment, hunter gatherers frequently engage in cultural niche construction by 334 modifying their environments through cultural practices such as controlled burning of 335 vegetation (Rowley-Conwy and Layton 2011; Smith 2011; Boivin et al. 2016). Large-scale agriculture brought about cultural niche construction orders of magnitude more extensive 336 337 (O'Brien and Laland 2012; Rowley-Conwy and Layton 2011). Agriculture caused huge 338 changes to physical environments, including the clearing of forests, the irrigation of 339 previously arid environments, the dispersal of domesticated plants and animals, and the 340 introduction of new parasites and pests. Agriculture also brought about huge changes to 341 human social environments, including increased population density and new forms of 342 social organisation (e.g. new forms of hierarchies). Finally, the accumulation of agricultural 343 practices and knowledge shaped environments in which further accumulation of 344 agricultural practices was made more likely; this is the CCE noted above. In fact, large-345 scale agriculture, which produces the majority of the food consumed worldwide (e.g. rice, corn, wheat, canola, soybean) is generally a monoculture (i.e. a single type of plant 346

347 species that is cultivated in large land areas as crop for human consumption), unlike

348 home gardens, natural savannahs, pastures and forests which contain many species.

349 Agriculture therefore results in modified niches compared with the natural vegetation, with

350 clear effects on ecosystems (Matson 1997).

351

A consideration of how agricultural practices shape, and are shaped by, social environments allows us to consider the mutual dynamics between agriculture and the social norms, regulations and markets that often determine whether a particular technology or practice spreads or not. A good example of this is the acceptance and rejection of GM foods, which is covered in the next section.

357

358 Case studies: Biotechnology

359 Most previous discussion of GCC in the context of agriculture concerns deep human 360 history and prehistory, such as lactose tolerance and dairy farming (O'Brien and Laland 361 2012). In our case studies we instead focus on recent biotechnology and molecular 362 breeding, to illustrate the points raised above, and demonstrate the relevance of these 363 theoretical frameworks to contemporary issues. Moreover, studying recent scientific 364 discoveries and technologies offer richer data for testing theories of cultural change 365 compared to the ancient events of early domestication, which can only be studied 366 indirectly via historical or archaeological methods.

367

Following the Neolithic agricultural revolution and initial crop domestication, and all
subsequent agricultural improvements including traditional breeding methods based on
Mendelian genetics, a new agricultural phase occurred in the middle of the 20th century:
the era of molecular breeding, genetic engineering and in vitro biology (Fig. 2). While

372 some scholars refer to these as 'revolutions' (or at the extreme, a single 'agricultural revolution'), they are clearly all a process of CCE, with each major advance dependent on 373 374 previous advances. Molecular breeding and genetic engineering could not have been 375 invented without existing knowledge of Mendelian genetics. Yet, there are differences. 376 The Neolithic agricultural period, i.e. plant and animal domestication, as well as other 377 technological improvements in agriculture and biology (e.g. the use of irrigation and 378 fertilizers) are more protracted and evolved sequentially over a period of hundreds or 379 thousands of years (Fig. 2). In contrast, the time span of adopting and applying molecular 380 plant breeding technologies and in vitro biology has been much shorter. Such 381 technologies emerged far more rapidly, and became a working reality only within the last 382 few decades. The molecular structure of DNA was first published in 1953 (Watson and 383 Crick 1953), and the first genetically modified (GM) or transgenic plant (i.e., produced via 384 incorporation of recombinant DNA), tobacco, was first created in the laboratory in 1982 385 (De Framond, Barton and Chilton 1983; Gasser and Fraley 1989; Zambryski et al. 1983; Tepfer 1984). Farmers began to plant GM crops in 1996, and in 2017, the 21st year of 386 387 commercialization of biotech crops, 189.8 million hectares of biotech crops were planted 388 by up to 17 million farmers in 24 countries. From the initial planting of 1.7 million hectares 389 in 1996 when the first biotech crop was commercialized, the 189.8 million hectares 390 planted in 2017 indicates ~112-fold increase, which makes GM crops the fastest adopted 391 crop technology in recent times(Altman and Hasegawa 2012; Farre et al. 2010; ISAAA 2017; Moshelion and Altman 2015). Molecular genetics, including genetic engineering of 392 crops and the use of molecular marker-assisted selection, as well as novel gene editing 393 technologies like the CRISPR/Cas9 system and synthetic biology (Bortesi and Fischer 394 395 2015; Baltes and Voytas 2015; Zong et al. 2017) and other in vitro procedures such as in vitro propagation (micropropagation) (Loberant and Altman 2010; Khayat 2012), are 396

currently modifying the breeding opportunities of domesticated and cultivated plants
globally (Altman and Hasegawa 2012; Moshelion and Altman 2015; Farre et al. 2010,
Potrykus and Ammann 2010). This is also true for in vitro and molecular genetic
procedures in farm animals and humans, e.g. in-vitro fertilization (Bavister 2002).

402 The molecular breeding technology described above is clearly a case of CCE, building on 403 what went before (e.g. Mendelian genetics) and far exceeding what any single individual 404 could achieve alone. The increasingly rapid (i.e. exponential) accumulation of knowledge is a well-known characteristic of CCE (Enquist et al. 2008). There are many potential 405 406 explanations for this exponential increase, including the recombination of an increasing number of traits (Enguist, Ghirlanda, and Eriksson 2011; Youn et al. 2015) or the 407 408 enhancement of innovation and discovery as a result of CCE products such as scientific 409 instruments (Enquist et al. 2008; Mesoudi 2011b). Molecular breeding is also a case of 410 GCC, where the genes of other species are directly and intentionally modified using 411 culturally evolving scientific techniques. These genetic modifications in turn demand new 412 and more powerful scientific techniques and knowledge. Finally, molecular breeding 413 involves extensive CNC, in terms of major changes to the abiotic, biotic and social 414 environments, as explored in our specific case studies below.

415

416 Case study 1: Golden rice

Rice, originally domesticated in East Asia around 8-9kya, is a major staple food for
billions of people worldwide, supplying the majority of energy and carbohydrate
requirements in addition to other nutritional factors (Wing, Purugganan and Zhang 2018).
Historically, rice is thought to have played a role in human GCC by driving the selection of
alcohol dehydrogenase alleles in rice-farming populations in which rice was used in

fermentation of food and beverages (Peng et al. 2010). In addition to this long history of
traditional breeding, rice has more recently been subject to some of the first molecular
breeding.

425

426 Rice is generally consumed in its "polished" milled form by removing its outer layers. As a 427 result, the edible part of rice grains consists of the endosperm that contains starch 428 granules and protein bodies. However, this part lacks several essential nutrients that are 429 more abundant in the outer layers of the grain, such as the carotenoid pro-vitamin A (β -430 carotene), which is converted in the body to vitamin A. Thus, reliance on polished rice as 431 a primary staple food, which is an example of culturally evolving culinary traditions, 432 results in vitamin A deficiency, a serious public health problem which is the primary cause 433 of blindness and other diseases in new-borns in many developing countries (Srikantia 434 1975).

435

436 Conventional breeding of rice to increase vitamin A content is impractical due to the lack 437 of appropriate rice cultivars that produce pro-vitamin A in the grain. Research into the β -438 carotene biosynthetic pathway resulted in the ability to defeat vitamin A deficiency by 439 genetically transforming commercial rice varieties using two daffodil genes and one 440 bacterial gene, resulting in vitamin A-rich rice (Burkhardt et al. 1997). This genetically 441 engineered, polished, fortified "golden rice" can supply sufficient pro-vitamin A for the 442 body to convert into vitamin A, saving the eyesight and lives of millions of vitamin A-443 deficient children who are dependent on rice in their basic diet (Potrykus 2001). 444 Subsequent molecular breeding is leading to "green super rice", a form of rice that has a 445 lower ecological footprint (Wing et al. 2018).

446

447 The continual modification and accumulation of GM rice breeds, from traditional rice to golden rice to green super rice, represents a case of CCE, where we see continual 448 449 improvement in multiple criteria of yield, nutritional quality, fit to local agricultural 450 practices and ecological sustainability. The genetic changes in rice brought about with 451 domestication and selection have been succeeded by traditional breeding and recently by 452 direct, intentional genetic modification, representing a case of GCC between human 453 agricultural scientific practices and rice genomes (as well as human genes, in the 454 aforementioned case of alcohol dehydrogenase).

455

456 Rice has also been responsible for extensive CNC. This involves not only the modification of abiotic and biotic environments, but also social environments. One key feedback 457 458 between agricultural practices and social environments has been oppositional. Like many 459 other GM crops, the adoption of golden rice, despite its health benefits, has been delayed 460 considerably due to legislation, socio-economic issues, and public concerns. Compared 461 to non-GM rice varieties, the adoption and deployment of golden rice has suffered from a 462 delay of more than 14 years. The first scientific procedure was published in 1997. Under regular processes golden rice could have reached farmers' fields in Asia by 2002, but in 463 464 fact was not approved officially for human consumption, except for planting by selected 465 farmers, until 2013-2014 (Potrykus 2010). The cause of this delay was the demanding 466 GM-regulation process. While regulation is needed to establish public safety, many hurdles existed not because of scientific problems or safety regulation, but rather due to 467 the negative political climate surrounding GM-technology and the activities of anti-GM 468 activists, the lengthy Intellectual Property (IP) rights approval, the lack of financial support 469 from the public domain, and GM-regulation procedures that required several 470 471 technological solutions (Potrykus 2010). These delays created a situation where no public

472 institution could deliver GM products because of the high expenses of large-scale production, which resulted in a de facto monopoly of a few potent commercial industries 473 474 that supplied high-priced seeds to farmers. Since then, GR2E Golden Rice, a provitamin-475 A biofortified rice variety, received its third positive food safety evaluation by the United 476 States Food and Drug Administration (US FDA) on May 2018, following earlier approvals 477 by Food Standards Australia New Zealand (FSANZ) and Health Canada, all based on the 478 principles of the World Health Organization (WHO), the Food and Agriculture Organization (FAO) of the United Nations, and other international agencies (IRRA 2018). 479

480

This negative feedback from the social environment in the form of oppositional social norms and increased regulation has prevented the timely adoption of an available solution to vitamin A deficiency, and similar situations exist for other GM crops. GM crops could help solve, together with other technologies, many of the world's most challenging food problems, including hunger, malnutrition, disease and poverty. However, this potential cannot be realized if the major barriers to adoption - which are largely socio-cultural rather than technical - are not overcome (Farre et al. 2010; Altman and Hasegawa 2012).

488

Social norms, culinary preferences and legal regulations are themselves culturally evolving
systems that co-evolve with scientific knowledge and technological practices.

491 Consequently, the acceptance and spread of agricultural practices and products may 492 vary cross-culturally. For example, while large global commercial companies tend to 493 invest mainly in major world staple crops (e.g., soybean, corn, canola, wheat, and rice), 494 many other local plants remain "orphan crops". This is why the government of India, 495 where eggplants are an important part of the diet, embarked on a mission to produce GM 496 insect-tolerant Bt brinjal (eggplants). These were adopted rapidly, commercialized, but

497 again some legislation problems and concerns were later raised (Kolady and Lesser 2012;
498 Medakker and Vijayaraghavan 2007).

499

An appreciation of the social environment within which agricultural practices are situated, as follows from a CNC approach, has much in common with social science approaches that stress the embeddedness of new plant crops within socio-political contexts, not just performative qualities such as potential yield (Stone and Glover, 2017). Indeed, demand is growing recently for heirloom rice, traditional rice breeds that have lower yield than Green Revolution rice, but which are marketed as socially and environmentally responsible products embedded in local cultural traditions (Stone and Glover, 2017).

507

508 Case study 2: Plant stress tolerance/resistance

509 Major advances in molecular breeding have resulted in the genetic modification of crops

510 to improve *biotic stress* resistance, including resistance to pests like insects,

511 phytopathogenic fungi, viruses, nematodes, weeds and others (Ceasar and Ignacimuthu

512 2012; Gurr and Rushton 2005; Scholthof 2011; Suzuki et al. 2014; Vidavsky and Czosnek

513 1998), and *abiotic stress* tolerance, including tolerance to drought, salinity, extreme

514 temperatures, heavy metal toxicity and others (Hirayama and Shinozaki 2010; Vinocur and

515 Altman 2005; Zhu 2016). Two specific examples discussed here are herbicide and insect 516 resistance.

517

518 Herbicide resistance was developed to combat weeds. With the intensification of

agriculture, weeds became a serious economic threat to farming, resulting in increased

520 agricultural production costs and yield loss of cultivated crops. This is especially the case

521 in intensively grown and irrigated plants, that enhance weed growth in addition to the

522 desired crop. This problem has been dealt with traditionally either by labour-intensive manual weeding, which is usually performed in less developed countries by women, by 523 524 tillage, or by heavily spraying fields with large amounts of toxic herbicide chemicals that 525 pollute the environment (Christensen 2009; Griepentrog and Dedousis 2009; Melander, 526 Rasmusen and Barberi 2005). To avoid these costly solutions, weed management was 527 simplified and manual work was reduced by genetically modifying crops to be herbicide 528 resistant. This allows the use of considerably smaller amounts of broad-spectrum 529 herbicides since they selectively kill only the weeds and not the crop (Bonny 2016; 530 Gressel 2009). For example, herbicide-tolerant GM crops were created that express a soil 531 bacterium gene that produces a glyphosate-tolerant or glyphosate-degrading form of an 532 enzyme, resulting in glyphosate-tolerance (Castle et al. 2004) and resistance to 533 commonly-used glyphosate herbicides. This cannot be achieved by traditional breeding. 534 Currently, herbicide-resistance is the dominant trait deployed globally in soybean, maize, 535 canola, cotton, sugar beet, alfalfa and other crops, and is being adopted increasingly rapidly by farmers comprising about 53% of the 180 million hectares of all GM crops in 536 537 2015/16 (ISAAA 2017).

538

539 Insect resistance provides crops with defences against herbivorous insects. Over the 540 centuries farmers have selected plant varieties that are more resistant to insect pests. 541 Like for herbicide resistance, traditional breeding for insect resistance was not very 542 successful, and was followed from the 1940s by widespread spraying of fields with 543 chemical insecticides. This had several drawbacks, including environmental pollution and damage to other non-pest organisms (Newton 1988; Weston et al. 2011). The 544 545 biotechnological solution involved genetic modification of cultivated crops resulting in insect resistant plants where the specific pest is killed when it digests the plant. Insect 546

547 tolerant GM cotton, potato, canola, corn, and other crops were developed through the introduction and expression of the soil bacterium Bacillus thuringiensis (Bt) cry genes in 548 549 the GM plant, resulting in production of the endotoxin cry protein crystals that kill insect 550 larvae upon digesting the leaves. This activity is selective and kills only specific target 551 insect species pests (de Maagd, Bosch and Stiekema 1999). This technology has 552 however several limitations, and improved methods have been developed recently, 553 including genome-editing technology and "gene stacking", i.e. the introduction and 554 expression of multiple genes that create several toxic proteins (e.g. Gatehouse 2008; 555 Lombardo et al. 2016).

556

The successive inventions and discoveries that led from traditional breeding and use of chemical pesticides to genetically-modified herbicide and insect tolerant plants constitutes another case of CCE. Each step is dependent on earlier innovations, and measures of improvement have increased, from crop yield and quality to reduced environmental harm. With our expanded definition of GCC to include non-human genes, the genetic modification of crops to incorporate bacterial genes to improve tolerance are also cases of GCC, given the culturally-driven changes in non-human genes.

564

Finally, traditional and molecular selection for stress tolerance constitutes an extensive example of CNC. Human efforts to genetically modify plants to improve their tolerance to biotic and abiotic stress has allowed the spread of cultivated plants into lands and regions where they could not have survived before. This involved the spread of organisms and their genes from one region of the world to another, either by straightforward domestication of new plant genes (e.g. the potato from Peru-Bolivia, and tomato from Chile, to Europe (Diamond 1977), see also Fig. 2 on gene transfer that accompanied the

572 discovery of new lands), or by traditional breeding, or by gene transfer from any organism to the GM plants as mentioned above. All of these activities create new agricultural niches 573 574 that then feed back to the agricultural process. The spread of agriculture is also 575 associated with the spread of pests, which requires further changes to counter the pests, 576 as described above. The use of both herbicide and insect tolerant crops reduces the 577 amount of sprayed chemicals and thus can positively impact the environment, countering 578 some of the negative consequences of the agriculturally-constructed niches (Pimentel 1995). It may also reduce the toxic effects of insecticides and other pesticides on human 579 health (Levine and Doull 1992; Nicolopoulou-Stamati et al. 2016), as proposed for 580 581 example as a cause of Parkinson's disease (van der Mark et al. 2012).

582

583 Like for golden rice, the impact on, and feedback with, the social environment is of great 584 interest and importance. As noted above, women are the main work force in planting and 585 weeding agricultural plots in many developing countries (Gressel 2009; Subramanian et al. 2010). In reducing the need for this time-consuming manual labour, GM herbicide 586 587 tolerant crops can potentially relieve some of these economic hardships born by women 588 and improve their socio-economic status by modifying the gender-biased division of 589 labour. The spraying of herbicide tolerant GM corn and cotton in India, Africa and other 590 regions has already saved many women from long working hours in the field and 591 improved their economic situation and quality of life. Indeed, studies indicate that the 592 education level of several women communities in certain regions in India, where herbicide 593 tolerant crops were adopted, can increase significantly as they could devote more time to 594 learning. Another recent study shows that biotechnology and the adoption of insect-595 resistant cotton in India generated more productive employment and greater earning 596 power for women, and consequent improvement in quality of life (Agarwal 1984;

597 Subramanian 2010). For example, in India female laborers have benefited from the increased work hours-and thus increased income-associated with increased yields 598 599 from Bt cotton because women pick the cotton (Subramanian and Qaim 2010). Similarly, 600 a study in South Africa found that planting of Bt cotton was beneficial for women in the 601 household; in this case, because women did not have to spray the crops, their energies 602 could be diverted to other activities (Bennett et al., 2003). In Burkina Faso, fewer 603 insecticide applications were needed for Bt cotton which meant women spent less time 604 fetching water (Zambrano et al., 2013). Also, using herbicide-tolerant cotton in Colombia 605 resulted in the hiring of fewer women for weeding, traditionally a female task (Zambrano 606 et al., 2013). Moreover, there are some indications that, unlike with traditional crops, 607 women in Colombia and the Philippines were found to participate equally with men in the 608 decision-making and supervision of insect tolerant (Bt) cotton (Yorobe and Smale 2012). 609

Interestingly, these recent developments relating to gender roles may be reversing the historical effects of culturally evolving agricultural practices on gender-biased division-oflabor. Alesina et al. (2013) provide evidence that the introduction of the plough several centuries ago allowed men to control and monopolise food production, resulting in the loss of socio-economic power for women who had previously participated in food production.

616

617 Discussion

In summary, we have argued that new and complementary approaches within the
evolutionary human sciences – cumulative cultural evolution (CCE), gene-culture
coevolution (GCC) and cultural niche construction (CNC) (see Figure 1) – can provide
theoretical frameworks for understanding the many impacts that agriculture has had on

human societies and on the planet. Unlike prior papers that argue similarly (HeslopHarrison and Scwarzacher 2012; O'Brien and Laland 2012), we have focused on recent
biotechnology rather than the distant past, to both demonstrate that these frameworks
are relevant for contemporary issues and events, and to make some novel points not
apparent when focusing only on the past.

627

628 First, we argued that agriculture is an excellent case of CCE. It involves the sequential improvement over time of agricultural knowledge (both scientific and non-formal 629 630 knowledge systems) and practices (from small-scale habits and routines to large-scale 631 technology) via the repeated cycle of innovation and cultural transmission. Viewing 632 changes in agricultural practices as an evolutionary process in itself, and recognizing the 633 resultant coevolutionary dynamics and feedbacks, helps connect this cultural process 634 with the biological/evolutionary/natural sciences, preventing a false and unproductive 635 nature-culture dichotomy. Agriculture informally exhibits the classic exponential increase in knowledge and practices that is typical of CCE, with recent change seemingly orders of 636 637 magnitude faster than past rates of change, and the large body of work exploring the 638 drivers and inhibitors of CCE can be brought to bear on the study of agriculture.

639

Second, we argued that the standard notion of GCC, where human cultural practices shape human genes and vice versa, should be expanded to include culturally-driven changes in non-human genes. This includes, by definition, domestication, which entails the traditional breeding of domesticated species. More recently this has involved the direct genetic modification of other species with the introduction of GM crops. Our case studies, golden rice and herbicide/insect tolerant plants, are two of several other good examples of this (Shinozaki and Yamaguchi-Shinozaki 2007; Vinocur and Altman 2005).

647

648 Third, agriculture is a prime example of CNC, involving extensive modification of abiotic, 649 biotic and social environments, and feedback from these environments back to 650 agricultural knowledge and practices. Most interesting from our perspective are 651 feedbacks with the social environment. Golden rice, and other GM crops, have received 652 resistance from activist groups, political parties and regulators due to fears over food 653 safety, genetic contamination and an aversion to 'tampering with nature'. These concerns provoke increased regulation and safety testing within the agricultural industry to ensure 654 655 that GM products are as safe as possible. While adequate levels of health regulation are 656 of course needed, too-stringent regulation can prevent potentially beneficial innovations 657 from spreading. The ideal outcome would be increased population health and reduced 658 environmental impact as a result of GM crops such as golden rice, green super rice, and 659 herbicide/insect resistant plants, as discussed here, as well as drought and salinity 660 tolerant crops, post-harvest loss of food, use of novel fertility control in farm animals and more. Another positive social feedback is the impact on gender roles, with herbicide 661 662 tolerant GM crops releasing women from tedious manual labour (weeding) and improving 663 educational and economic outcomes. Figure 3 presents a schematic diagram of many of the processes that we have discussed, and their interactions. 664

665

666

[insert figure 3 here]

667

668 Theoretical frameworks are most useful if they highlight novel avenues of research, or 669 provoke novel research questions. We suggest the following:

670

671 How does agricultural CCE operate?

672 As noted above, theoretical models and experiments suggest several complementary mechanisms upon which CCE depends, including high-fidelity social learning, selectively 673 674 biased social learning targeted towards successful traits or individuals, recombination of 675 disparate solutions, innovation that includes large risky leaps, and large (or partially 676 connected) populations. Which of these is responsible for agricultural CCE could be 677 addressed via archaeological and historical records, e.g. by quantifying the frequency and 678 impact of different innovations (as done by Miu et al. 2018 for computer code) or the rate of recombination across different domains (as done by Youn et al. 2015 for patents). We 679 might expect these mechanisms to change over time, or vary cross-culturally (Mesoudi et 680 681 al. 2016). The cases of recent agricultural breeding technologies, as discussed above, 682 afford the opportunity to study the drivers of CCE in real time, with richer datasets than 683 those available to archaeologists and historians.

684

685 One interesting distinction already studied in the CCE literature is between intentional 686 change by individuals (often called 'guided variation'; Boyd and Richerson 1985) and 687 unintentional change via the copying of successful traits or individuals (often called 688 'direct' or 'indirect' bias). This relates to debates in the archaeological literature over the 689 extent to which domestication was intentional or unintentional (Abbo et al. 2014; Kluyver 690 et al. 2017). Formal modelling of the kind used in the CCE literature may help to inform 691 this debate, at the least highlighting how both processes can operate together, or vary in importance across different species, historical periods and societies, and should not be 692 viewed as mutually exclusive. Molecular breeding seems to be under more precise control 693 694 than traditional breeding, due to the fact that only specific genes are targeted rather than 695 whole genomes of two traditionally-bred species, but still with unforeseen consequences 696 especially in its social effects.

697

698 Finally, there are interesting questions regarding the 'fitness' criteria of agricultural CCE, 699 i.e. the quantity that is being maximised (Mesoudi and Thornton 2018). An obvious 700 criterion is crop yield (productivity) and nutritional content, but the discussion above has 701 raised several additional criteria which may trade-off with these obvious criteria. Golden 702 rice, for example, aims to maximise human health (by reducing Vitamin A deficiency) 703 beyond simple calorific intake. Green super rice and herbicide tolerant GM crops aim to 704 minimise environmental degradation. Heirloom rice explicitly trades off yield and 705 productivity with embeddedness in the local producing community (Stone and Glover, 706 2017), albeit only applying to small-scale traditional farms and not to large-scale 707 agricultural production. In this sense, the cultural fitness criteria that shape CCE are 708 themselves evolving, amongst farmers, scientists and consumers.

709

710 CNC within social environments

711 We argued above that the most interesting niche construction dynamics involve feedback 712 between agricultural practices and the social environment, e.g. social norms of 713 consumers, regulatory bodies, and markets. Social norms also culturally evolve, partly 714 according to the psychological biases of members of society that make some ideas or 715 attitudes more likely to be recalled and transmitted than others, known as 'content 716 biases' in the cultural evolution literature (Mesoudi 2011a). These may well affect moral norms concerning biotechnology (Mesoudi and Danielson 2008). For example, GM foods 717 718 may violate psychological biases that provide us with 'folk intuitions' about the natural 719 world (Atran 1998), including that species have discrete essences that are violated when 720 genes are transferred across species. Similarly, people seem to have general 721 psychological biases to attend to, recall and transmit disgust-eliciting stimuli (Eriksson

and Coultas 2014), and moreover disgust-related taboos are more likely to occur against
meat than plant products (Fessler and Navarrete 2003). This fits with evidence that there
is more opposition to GM animals than GM plants (Schuppli and Weary 2010).
Nevertheless, consumption of GM plants is still debated in many countries, mainly on the

basis of health hazard concerns (Altman and Hasegawa 2012; Davison 2010; Echols

1998). Further experimental and observational work integrating the many psychological
dimensions of norm transmission can be applied to norms surrounding biotechnology
(Mesoudi and Danielson 2008).

730

726

731 There is evidence for cross-cultural differences in acceptance or rejection of GM foods. 732 For example, consumers in the US seem much more accepting than EU consumers 733 towards GM foods (Gaskell et al. 1999). Such differences demand explanation in terms of 734 the divergent cultural histories of the different societies. Intriguingly, there is some 735 evidence that agriculture and societal organisation have been co-evolving for millennia. 736 Talhelm et al. (2014) show that historically rice-farming regions of China are more 737 collectivistic than historically wheat-farming regions of China. They suggest that the 738 intensive and demanding labor required by rice farming created closer social ties and 739 social interdependence than the more independently-pursued wheat farming. For 740 example, rice agriculture demands more water, and greater coordination of irrigation 741 across plots of land; when rice is grown on steep hill slopes, as it often is, the farmer of 742 one small slope must cooperate and coordinate with the farmers of plots above and 743 below them to ensure adequate irrigation for all plots. Wheat farming, by contrast, 744 requires less irrigation management and therefore less need to coordinate and cooperate 745 across farms. In cases such as this, we see agriculture shaping social orientations, which 746 may in turn shape the subsequent spread or acceptance of further agricultural practices.

747

748 Conclusion

749 Agriculture has transformed our species and our planet to such an extent that it is one of 750 the primary reasons why some scholars advocate the renaming of the current epoch to 751 the Anthropocene (Ellis 2015; Ellis et al. 2018; Lewis and Maslin 2015). The rapid rates of 752 socio-cultural and scientific-technological change over the last century have only 753 increased this impact, sometimes positive and sometimes negative. Here we have 754 attempted to integrate several recent scientific-technological changes in agricultural 755 knowledge and practices with an understanding of agriculture's impact on environments, 756 including social environments, within novel theoretical frameworks of CCE, GCC and 757 CNC.

758

759 Acknowledgements

We are grateful to Kevin Laland for valuable comments on a previous version of the
manuscript, John Odling-Smee for fruitful discussions, and Stephen Shennan for hosting
AA as an honorary Senior Research Associate at UCL during the writing of the paper. AA
acknowledge the fruitful discussions with Itamar Even Zohar, Cuture Research, Tel Aviv
University.

765

766 Conflict of Interest

767 The authors declare that they have of no conflict of interest.

769 **References**

- Abbo, S., Lev-Yadun, S., and Gopher, A. (2014). The 'Human Mind' as a common denominator in plant domestication. *Journal of Experimental Botany*, 65(8), 1917–1920. https://doi.org/10.1093/jxb/eru068
- Agarwal, B. (1984). Rural women and high yielding variety rice technology. *Economical and Political Weekly, 19,* A.39–A.52.

Alesina, A., Giuliano, P., and Nunn, N. (2013). On the origins of gender roles: women and the plough. *The Quarterly Journal of Economics*, *128*(2), 469–530.

https://doi.org/10.1093/qje/qjt005

- Altman, A. and P.M. Hasegawa eds. (2012). *Plant biotechnology and agriculture: Prospects for the 21st Century*. London: Elsevier/Academic Press.
- Altman, A. and P.M. Hasegawa. (2012). Introduction to plant biotechnology: Basic aspects and agricultural implications. In: A. Altman and P.M. Hasegawa eds., *Plant biotechnology and agriculture: Prospects for the 21st Century*. London: Elsevier/Academic Press.
- Atran, S. (1998). Folk biology and the anthropology of science. *Behavioral and Brain Sciences*, *21*(4), 547-609.
- Baltes, N.J. and D.F. Voytas. (2015). Enabling plant synthetic biology through genome engineering. *Trends in Biotechnology, 33,* 120-131.
- Barkow, J. H. (2005). *Missing the revolution: Darwinism for social scientists*. Oxford: Oxford University Press.
- Bavister, B. D. (2002). Early history of in vitro fertilization. *Reproduction*, 124, 181–196.
- Beja-Pereira, A., Luikart, G., England, P. R., Bradley, D. G., Jann, O. C., Bertorelle, G., ... Ferrand, N. (2003). Gene-culture coevolution between cattle milk protein genes and human lactase genes. *Nature Genetics*, *35*(4), 311–313.

- Ben-Ari, G. and Lavi, U. (2012). Marker-assisted selection in plant breeding. In: A. Altman and P.M. Hasegawa eds., *Plant biotechnology and agriculture: Prospects for the* 21st Century. London: Elsevier/Academic Press.
- Bennett R, Buthelezi T.J, Y. Ismael, S. and Morse S. (2003). Bt cotton, pesticides, labour and health: A case study of smallholder farmers in the Makhathini Flats, Republic of South Africa. *Outlook on Agriculture 32,* 123–128.
- Boivin, N. L., Zeder, M. A., Fuller, D. Q., Crowther, A., Larson, G., Erlandson, J. M., ... and Petraglia, M. D. (2016). Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions. *Proceedings of the National Academy of Sciences*, 113(23), 6388-6396.
- Bonny, S. (2016). Genetically modified herbicide-tolerant crops, weeds, and herbicides: Overview and impact. *Environmental Management*, 57 (1), 31-48.
- Bortesi, L and R. Fischer. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. *Biotechnology Advances* 33, 41–52.
- Boyd, R., and Richerson, P. J. (1985). *Culture and the evolutionary process*. Chicago, IL: Univ. Chicago Press.
- Burkhardt, P.K., P. Beyer, J. WQnn, A. Klbti, G. A. Armstrong, M. Schledz, J. von Lintig and I. Potrykus. 1997. Transgenic rice (*Oryza sativa*) endosperm expressing daffodil (*Narcissus pseudonarcissus*) phytoene synthase accumulates phytoene, a key intermediate of provitamin: A biosynthesis. *The Plant Journal, 11,* 1071-1078.
- Camp, C. R. (1998). Subsurface drip irrigation: A review. *Transactions of the American* Society of Agricultural Engineers (ASAE), 41(5), 1353-1367.
- Carlson, E. A. (2004). *Mendel's legacy: The origin of classical genetics*. Cold Spring Harbor Press.

- Castle, L. A., Siehl, D. L., Gorton, R., Patten, P. A., Chen, Y.-H., Bertain, S., Cho, H.-J., Duck, N., Wong J., Liu, D. and Lassner, M. W. (2004). Discovery and directed evolution of a glyphosate tolerance gene. *Science*, 304 (5674), 1151-1154.
- Cavalli-Sforza, L. L., and Feldman, M. W. (1973). Cultural versus biological inheritance: phenotypic transmission from parents to children. *American Journal of Human Genetics*, 25(6), 618.
- Cavalli-Sforza, L. L., and Feldman, M. W. (1981). *Cultural transmission and evolution*. Princeton: Princeton Univ. Press.
- Ceasar, S. A. and Ignacimuthu S. (2012). Genetic engineering of crop plants for fungal resistance: role of antifungal genes. *Biotechnology Letters, 34* (6), 995–1002.
- Christensen, S., Sogaard, H. T., Kudsk, P., Norremark, M., Lund, I. Nadimi, E. S.,
 Jorgensen, R. (2009). Site-specific weed control technologies. *Weed Research, 49*(3), 233-241.
- Cochrane, E. E., and Gardner, A. (2011). *Evolutionary and interpretive archaeologies: A dialogue*. Left Coast Press.
- Corcos, H. and Monaghan, F. V. (1990). Mendel's work and its rediscovery: a new perspective. *Critical Review Plant Science*, *9* (3), 197-212.
- D'Andrade, R. (2000). The sad story of anthropology 1950-1999. *Cross-Cultural Research*, 34(3), 219–232. https://doi.org/10.1177/106939710003400301

Darwin, C. (1859). The origin of species. London: Penguin, 1968.

- Davison, J. (2010). GM plants: Science, politics and EC regulations. *Plant Science*, 178, 94–98.
- De Framond AJ, Barton KA, Chilton M-D (1983) MINI-Ti: A new vector strategy for plant genetic engineering. *Bio/Technology*, 1, 262-269.

- Dean, L. G., Vale, G. L., Laland, K. N., Flynn, E., and Kendal, R. L. (2014). Human cumulative culture: a comparative perspective. *Biological Reviews*, 89(2), 284–301.
- Derex, M., and Boyd, R. (2016). Partial connectivity increases cultural accumulation within groups. *Proceedings of the National Academy of Sciences*, *113*(11), 2982–2987. <u>https://doi.org/10.1073/pnas.1518798113</u>
- Diamond, J. (1997). *Guns, germs, and steel: The fates of human societies.* Norton and co., New York.
- Echols, M.A. (1998). Food safety regulation in the European Union and the United States: different cultures, different laws. *Columbia Journal of European Law, 4,* 525-543.
- Ellis, E. C. (2015). Ecology in an anthropogenic biosphere. *Ecological Monographs*, 85(3), 287–331. <u>https://doi.org/10.1890/14-2274.1</u>
- Ellis, E.C., Magliocca. N. R., Stevens, C. J. and Fuller, D. Q. (2018). Evolving the Anthropocene: linking multi-level selection with long-term social-ecological change. *Sustainability Science, 13,* 119-128.
- Enquist, M., Ghirlanda, S., and Eriksson, K. (2011). Modelling the evolution and diversity of cumulative culture. *Philosophical Transactions of the Royal Society B*, 366, 412– 423.
- Enquist, M., Ghirlanda, S., Jarrick, A., and Wachtmeister, C. A. (2008). Why does human culture increase exponentially? *Theoretical Population Biology*, *74*(1), 46–55.
- Eriksson, K., and Coultas, J. C. (2014). Corpses, maggots, poodles and rats: emotional selection operating in three phases of cultural transmission of urban legends. *Journal of Cognition and Culture*, *14*(1–2), 1–26. <u>https://doi.org/10.1163/15685373-12342107</u>

- Erisman, J. W. M. A. Sutton, J. Galloway, Z. Klimont and W. Winiwarter. (2008). How a century of ammonia synthesis changed the world. *Nature Geoscience, 1,* 636 639.
- Farmer, B.H. (1986). Perspectives on the 'Green Revolution' in South Asia. *Modern Asian Studies*, 20 (1), 175-199.
- Farre, G., K. Ramessar, R. M. Twyman, T. Capell and P. Christou. (2010). The humanitarian impact of plant biotechnology: recent breakthroughs vs bottlenecks for adoption. *Current Opinion in Plant Biology*, 13, 219–225.
- Feldman, M. W., and Laland, K. N. (1996). Gene-culture coevolutionary theory. *Trends in Ecology and Evolution*, *11*(11), 453–457.
- Fessler, D., and Navarrete, C. (2003). Meat Is good to taboo: Dietary proscriptions as a product of the interaction of psychological mechanisms and social processes. *Journal of Cognition and Culture*, 3(1), 1–40.
- Fuller, D. Q., Denham, T., Arroyo-Kalin, M., Lucas, L., Stevens, C. J., Qin, L., ...
 Purugganan, M. D. (2014). Convergent evolution and parallelism in plant
 domestication revealed by an expanding archaeological record. *Proceedings of the National Academy of Sciences*, *111*(17), 6147–6152.
 https://doi.org/10.1073/pnas.1308937110
- Fuller, D.K., G. Willcox and R. G. Allaby (2012). Early agricultural pathways: moving outside the 'core area' hypothesis. *Journal of Experimental Botany*, 63, 617–633.
- Gasser, C. S. and Fraley, R. T. (1989). Genetically engineering plants for crop improvement. *Science*, 244 (4910), 1293-1299.
- Gaskell, G., Bauer, M., Durant, J., and Allum, N. (1999). Worlds apart? The reception of genetically modified foods in Europe and the U.S. *Science*, *285*(5426), 384–387.

- Gatehouse, J. A. (2008). Biotechnological prospects for engineering insect-resistant plants. *Plant Physiology*, 146, 881–887.
- Gerbault, P., Liebert, A., Itan, Y., Powell, A., Currat, M., Burger, J., ... Thomas, M. G.
 (2011). Evolution of lactase persistence: an example of human niche construction. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 366(1566), 863–877.
- Gray, R. D., and Watts, J. (2017). Macro matters: Cultural macroevolution and the prospects for an evolutionary science of human history. *Proceedings of the National Academy of Sciences*, 114(30), 7846-7852.
- Gremillion, K. J., Barton, L., and Piperno, D. R. (2014). Particularism and the retreat from theory in the archaeology of agricultural origins. *Proceedings of the National Academy of Sciences*, *111*(17), 6171–6177.

https://doi.org/10.1073/pnas.1308938110

- Gressel, J. (2009). Molecular biology of weed control. *Transgenic Research*, 9 (4-5), 355-382.
- Gressel, J. (2009). Biotech and gender issues in the developing world. *Nature Biotechnology*, 27, 1085-1086.
- Griepentrog, H. W. and Dedousis, A. P. (2009). Mechanical weed control. *Soil Engineering*, 171-179.
- Griffiths, T. L., Kalish, M. L., and Lewandowsky, S. (2008). Theoretical and empirical evidence for the impact of inductive biases on cultural evolution. *Philosophical Transactions of the Royal Society of London B: Biological Sciences*, 363(1509), 3503-3514.
- Gurr, S. J. and Rushton, P. J. (2005). Engineering plants with increased disease resistance: what are we going to express? *Cell*, 23 (6), 275-282.

- Hasler, J.F. (2003). The current status and future of commercial embryo transfer in cattle. *Animal Reproduction Science*, 79, 245–264.
- Henrich, J. (2004). Demography and cultural evolution. *American Antiquity*, 69(2), 197–214.
- Heslop-Harrison, J.S. and Scwarzacher, T. (2012). Genetics and genomics of crop domestication. In: A. Altman and P.M. Hasegawa eds., *Plant Biotechnology and Agriculture: Prospects for the 21st Century*. London: Elsevier/Academic Press.
 ISBN-10: 0123814669. pp. 3-18.
- Hirayama, T. and Shinozaki, K. (2010). Research on plant abiotic stress responses in the post-genome era: past, present and future. *The Plant Journal*, 61, 1041–1052.
- IRRA (2018) Golden Rice meets food safety standards in three global leading regulatory agencies. Available at https://www.irri.org/news-and-events/news/golden-rice-meets-food-safety-standards-three-global-leading-regulatory-0 (accessed 2 May 2019).
- ISAAA (2017). Global Status of Commercialized Biotech/GM Crops in 2017: Biotech Crop Adoption Surges as Economic Benefits Accumulate in 22 Years. ISAAA Brief No. 53. ISAAA: Ithaca, NY.
- Itan, Y., Powell, A., Beaumont, M. A., Burger, J., and Thomas, M. G. (2009). The origins of lactase persistence in Europe. *PLoS Computational Biology*, 5(8), e1000491.
- Kendal, J., Tehrani, J. J., and Odling-Smee, J. (2011). Human niche construction in interdisciplinary focus. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 366(1566), 785–792.
- Khayat, E. (2012). An engineering view to micropropagation and generation of true to type and pathogen-free plants. In: A. Altman and P.M. Hasegawa eds., *Plant*

Biotechnology and Agriculture: Prospects for the 21st Century. London: Elsevier/Academic Press. ISBN-10: 0123814669. Pp. 229-241.

- Kluyver, T. A., Jones, G., Pujol, B., Bennett, C., Mockford, E. J., Charles, M., ... Osborne,
 C. P. (2017). Unconscious selection drove seed enlargement in vegetable crops. *Evolution Letters*, 1(2), 64–72. <u>https://doi.org/10.1002/evl3.6</u>
- Kolady, D.E. and Lesser, W. (2012). Genetically-engineered crops and their effects on varietal diversity: a case of Bt eggplant in India. *Agriculture and Human Values*, 29, 3-15.
- Kolodny, O., Creanza, N., and Feldman, M. W. (2015). Evolution in leaps: The punctuated accumulation and loss of cultural innovations. *Proceedings of the National Academy of Sciences*, *112*(49), E6762–E6769.

https://doi.org/10.1073/pnas.1520492112

- Koornneef, M. and Stam P. (2001). Changing paradigms in plant breeding. *Plant Physiology*, 125,156–159.
- Laland, K. N., Odling Smee, J., and Feldman, M. W. (2000). Niche construction, biological evolution, and cultural change. *Behavioral and Brain Sciences*, *23*(1), 131–175.
- Laland, Kevin N. (2004). Social learning strategies. *Learning and Behavior*, 32(1), 4–14. https://doi.org/10.3758/BF03196002
- Laland, Kevin N., Odling-Smee, J., and Myles, S. (2010). How culture shaped the human genome: bringing genetics and the human sciences together. *Nature Reviews Genetics*, *11*(2), 137–148.
- Laland, Kevin N., Sterelny, K., Odling-Smee, J., Hoppitt, W., and Uller, T. (2011). Cause and effect in biology revisited: Is Mayr's proximate-ultimate dichotomy still useful? *Science*, 334(6062), 1512–1516.

Larson, G., and Fuller, D. Q. (2014). The evolution of animal domestication. *Annual Review* of Ecology, Evolution, and Systematics, 45(1), 115–136. https://doi.org/10.1146/annurev-ecolsys-110512-135813

- Larson, G., Piperno, D. R., Allaby, R. G., Purugganan, M. D., Andersson, L., Arroyo-Kalin,
 M., ... Fuller, D. Q. (2014). Current perspectives and the future of domestication
 studies. *Proceedings of the National Academy of Sciences*, *111*(17), 6139–6146.
 https://doi.org/10.1073/pnas.1323964111
- Levine, R. S. and Doull, J. (1992). Global estimates of acute pesticide morbidity and mortality. *Reviews of Environmental Contamination and Toxicology*, 129, 29-50.
- Lewis, H. M., and Laland, K. N. (2012). Transmission fidelity is the key to the build-up of cumulative culture. *Philosophical Transactions of the Royal Society B*, 367, 2171–2180.
- Lewis, S. L., and Maslin, M. A. (2015). Defining the Anthropocene. *Nature*, *519*(7542), 171–180. <u>https://doi.org/10.1038/nature14258</u>
- Loberant, B. and A. Altman. (2010). Micropropagation of Plants. In: M. C. Flickinger, ed., Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, John Wiley
- Lombardo, L., Copola, J. and Zelasco, S. (2016). New technologies for insect-resistant and herbicide-tolerant plants. *Trends in Biotechnology*, 34 (1), 49-57.
- de Maagd, R. A., Bosch, D. and Stiekema, W. (1999). Bacillus thuringiensis toxinmediated insect resistance in plants. *Trends in Plant Science*, 4 (1), 9-13.
- Matson, P. A., Parton, W. J., Power, A. G, and Swift, M. J. (1997). Agricultural intensification and ecosystem properties. *Science* 277 (5325), 504-509.
- Medakker, A. and V. Vijayaraghavan. (2007). Successful commercialization of insectresistant eggplant by a public–private partnership: Reaching and benefiting

resource-poor farmers. In A. Krattiger, R.T. Mahoney, L. Nelsen et al. eds. Intellectual Property Management in Health and Agricultural Innovation: A Handbook of Best Practices. Oxford, U.K., and PIPRA: Davis, U.S.A. (online: www.ipHandbook.org).

- Melander, B., Rasmusen, I. A. and Barberi, P. (2005). Integrating physical and cultural methods of weed control— examples from European research. Weed Science, 53 (3), 369-381.
- Mendel, G. (1866). Versuche über Plflanzen-hybriden. Verhandlungen des naturforschenden Ver-eines in Brünn, Bd. IV für das Jahr 1865, Abhand-lungen, 3– 47. English version: Experiments in plant hybridization (1865). Electronic Scholary Publishing Project 1996 <u>http://www.esp.org/foundations/genetics/classical/gm-65.pdf</u>.
- Mesoudi, A. (2008). Foresight in cultural evolution. *Biology and Philosophy*, *23*(2), 243–255.
- Mesoudi, A. (2011a). Cultural evolution. Chicago, IL: Univ. Chicago Press.
- Mesoudi, A. (2011b). Variable cultural acquisition costs constrain cumulative cultural evolution. *PLOS One*, *6*(3), e18239.
- Mesoudi, A. (2017). Pursuing Darwin's curious parallel: Prospects for a science of cultural evolution. *Proceedings of the National Academy of Sciences*, *114*(30), 7853–7860. https://doi.org/10.1073/pnas.1620741114

Mesoudi, A., Blanchet, S., Charmantier, A., Danchin, E., Fogarty, L., Jablonka, E., ...
Odling-Smee, F. J. (2013). Is non-genetic inheritance just a proximate mechanism?
A corroboration of the extended evolutionary synthesis. *Biological Theory*, 7(3), 189–195.

- Mesoudi, A., Chang, L., Dall, S. R. X., and Thornton, A. (2016). The evolution of individual and cultural variation in social learning. *Trends in Ecology and Evolution*, *31*(3), 215–225. https://doi.org/10.1016/j.tree.2015.12.012
- Mesoudi, A., and Danielson, P. (2008). Ethics, evolution and culture. *Theory in Biosciences*, *127*(3), 229–240.
- Mesoudi, A., and Thornton, A. (2018). What is cumulative cultural evolution? *Proc. R. Soc. B*, 285(1880), 20180712. https://doi.org/10.1098/rspb.2018.0712
- Mesoudi, A., Whiten, A., and Laland, K. N. (2006). Towards a unified science of cultural evolution. *Behavioral and Brain Sciences*, *29*(4), 329–383.
- Miu, E., Gulley, N., Laland, K. N., and Rendell, L. (2018). Innovation and cumulative culture through tweaks and leaps in online programming contests. *Nature Communications*, 9(1), 2321. <u>https://doi.org/10.1038/s41467-018-04494-0</u>
- Moshelion, M. and A. Altman. (2015). Current challenges and future perspectives of plant and agricultural biotechnology. *Trends in Biotechnology*, 33, 1-6.
- Mulla, D. J. (2013). Twenty-five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. *Biosystems Engineering*, 114 (4), 358-371.
- Newton, I. (1988). Determination of critical pollutant levels in wild populations, examples from organochlorine insecticides in birds of prey. *Environmental Pollution*, 55 (1), 29-40.
- Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P. and Hens, L. (2016). Chemical pesticides and human health: The urgent need for a new concept in agriculture. *Frontiers in Public Health*, 4, 1-8.
- Nummer, B. A. (2002). Historical Origins of Food Preservation. National Center for Home Food Preservation. University of Illinois Extension.

- O'Brien, M. J., and Laland, K. N. (2012). Genes, culture, and agriculture: An example of human niche construction. *Current Anthropology*, *53*(4), 434–470. https://doi.org/10.1086/666585
- Odling Smee, F. J., Laland, K. N., and Feldman, M. (2003). *Niche construction*. Princeton, NJ: Princeton University Press.
- Panter-Brick, C., Layton, R. H., and Rowley-Conwy, P. (2001). *Hunter-gatherers: An interdisciplinary perspective*. Cambridge University Press.
- Peng, Y., Shi, H., Qi, X., Xiao, C., Zhong, H., Ma, R. Z., and Su, B. (2010). The ADH 1 B Arg 47 His polymorphism in East Asian populations and expansion of rice domestication in history. *BMC Evolutionary Biology*, *10*(1), 15.
- Pimentel, D. (1995). Amounts of pesticides reaching target pests: Environmental impacts and ethics. *Journal of Agricultural and Environmental Ethics*, 8 (1), 17-29.

Potrykus, I. (2001). Golden rice and beyond. *Plant Physiology*, 125: 1157-1161.

- Potrykus, I. (2010). Lessons from the 'Humanitarian Golden Rice' project: regulation prevents development of public good genetically engineered crop products. *New Biotechnology*, 27: 466-472.
- Potrykus, I. and K. Ammann, eds. (2010). Transgenic plants for food security in the context of development. Proceedings of a study week of the Pontifical Academy of Sciences. *New Biotechnology*, 27, 445-718.
- Powell, A., Shennan, S. J., and Thomas, M. G. (2009). Late Pleistocene demography and the appearance of modern human behavior. *Science*, *324*(5932), 1298–1301.
- Rapp, R. A. and J. F. Wendel. (2005). Epigenetics and plant evolution. *New Phytologist*, 168, 81–91.

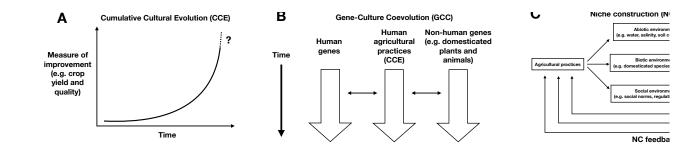
- Richerson, P. J., Boyd, R., and Henrich, J. (2010). Gene-culture coevolution in the age of genomics. *Proceedings of the National Academy of Sciences*, *107*(Supplement 2), 8985–8992. https://doi.org/10.1073/pnas.0914631107
- Rowley-Conwy, P., and Layton, R. (2011). Foraging and farming as niche construction:
 stable and unstable adaptations. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 366(1566), 849–862.
- Sander, J. D. and J. K. Joung (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. *Nature Biotechnology*, 32, 347–355.
- Scholthof, K-B. G., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., Hohn,
 B., Saunders, K., Candresse, T., Ahlquist, P., Hemenway, C. and Foster, G. D.
 (2011). Top 10 plant viruses in molecular plant pathology. *Molecular Plant Pathology*, 12 (9), 938-954.
- Schultz, T. R., and Brady, S. G. (2008). Major evolutionary transitions in ant agriculture. *Proceedings of the National Academy of Sciences*, *105*(14), 5435–5440. https://doi.org/10.1073/pnas.0711024105
- Schuppli, C. A., and Weary, D. M. (2010). Attitudes towards the use of genetically modified animals in research. *Public Understanding of Science*, *19*(6), 686–697. https://doi.org/10.1177/0963662510362834
- Shinozaki, K. and Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. *Journal of Experimental Botany*, 58, 221–227.
- Simonton DK (1995) Foresight in insight? A Darwinian answer. In: Sternberg RJ (ed) *The nature of insight*. MIT Press, Cambridge, MA, pp 465–494
- Slingerland, E., and Collard, M. (2011). *Creating consilience: Integrating the sciences and the humanities*. Oxford University Press.

- Smith, B. D. (2011). General patterns of niche construction and the management of 'wild'plant and animal resources by small-scale pre-industrial societies. *Philosophical Transactions of the Royal Society of London B: Biological Sciences*, 366 (1566), 836-848.
- Smith, C. and Simpson, S.P. (1986). The use of genetic polymorphisms in livestock improvement. *Journal of Animal Breeding and Genetics*, 103, 205-217.
- Srikantia, S. G. (1975). Human vitamin A deficiency. *World Review of Nutrition and Dietetics*, 20, 184-230.
- Stone, G. D., and Glover, D. (2017). Disembedding grain: Golden Rice, the Green Revolution, and heirloom seeds in the Philippines. *Agriculture and Human Values*, *34*(1), 87–102. <u>https://doi.org/10.1007/s10460-016-9696-1</u>
- Subramanian, A., K. Kirwan, D. Pink and M. Qaim. (2010). GM crops and gender issues. *Nature Biotechnology*, 28, 404-406.
- Subramanian A, Qaim M. (2010). The impact of Bt cotton on poor households in rural India. *Journal of Development Studies*, 46, 295–311.
- Suzuki N., Rivero R. M., Shulaev, V., Blumwald, E., Mittler, R. (2014). Abiotic and biotic stress combinations. *New Phytologist*, 203 (1), 32-43.
- Talhelm, T., Zhang, X., Oishi, S., Shimin, C., Duan, D., Lan, X., and Kitayama, S. (2014). Large-scale psychological differences within China explained by rice versus wheat agriculture. *Science*, *344*(6184), 603–608. https://doi.org/10.1126/science.1246850
- Tennie, C., Call, J., and Tomasello, M. (2009). Ratcheting up the ratchet: on the evolution of cumulative culture. *Philosophical Transactions of the Royal Society B*, 364(1528), 2405–2415.

- Tepfer D (1984) Transformation of several species of higher plants by Agrobaeterium rhizogenes. Sexual transmission of the transformed genotype and phenotype. *Cell*, 37, 959-967.
- van der Mark, M., Brouwer, M., Kromhout, H., Nijssen, P., Huss, A. and Vermeulen, R. (2012). Is pesticide use related to Parkinson Disease? Some clues to heterogeneity in study results. *Environmental Health Perspectives*, 120 (3), 340–347.
- Vidavsky, F. andCzosnek, H. (1998). Tomato breeding lines resistant and tolerant to tomato yellow leaf curl virus issued from *Lycopersicon hirsutum*. *Phytopathology*, 88 (9), 910-914.
- Vinocur, B. and Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress. *Current Opinion in Biotechnology*, 16 (2), 123-132.
- Watson, J. D. and Crick, F. H. C. (1953). Molecular structure of Nucleic Acids. *Nature*, 171, 737-738.
- Weston, D. P., Asbella, A. M., Hecht, S. A., Scholzc, N. L. and Lydy, M. J. (2011).Pyrethroid insecticides in urban salmon streams of the Pacific Northwest.*Environmental Pollution*, 159 (10), 3051-3056.
- Whiten, A. (2017). How culture extends the scope of evolutionary biology in the great apes. *Proceedings of the National Academy of Sciences*, 114(30), 7790-7797.
- Wiesenfeld, S. L. (1967). Sickle-cell trait in human biological and cultural evolution. *Science*, *157*(3793), 1134–1140.
- Wing, R. A., Purugganan, M. D., and Zhang, Q. (2018). The rice genome revolution: from an ancient grain to Green Super Rice. *Nature Reviews Genetics*, 1. https://doi.org/10.1038/s41576-018-0024-z
- Xu, J., Z. Guo, L. Su, T.L. Nedambale, J. Zhang, J. Schenk, J.F. Moreno, A. Dinnyés, W. Ji, X.C. Tian, X. Yang, F. Du' (2006). Developmental potential of vitrified holstein cattle

embryos fertilized in vitro with sex-sorted sperm. *Journal of Dairy Science*, 89, 2510–2518.

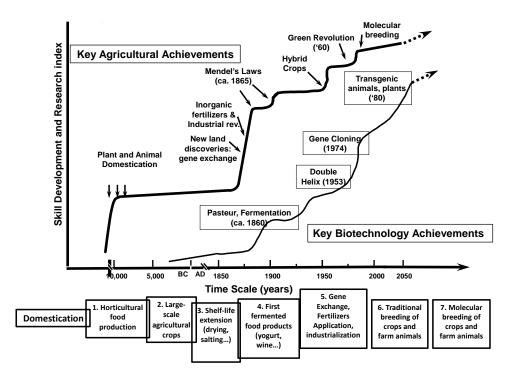
- Yorobe JM Jr, Smale M. (2012). Impacts of Bt maize on smallholder income in the Phillipines. *AgBioForum*, 15, 152–162.
- Youn, H., Strumsky, D., Bettencourt, L. M. A., and Lobo, J. (2015). Invention as a combinatorial process. *Journal of The Royal Society Interface*, *12*(106), 20150272. <u>https://doi.org/10.1098/rsif.2015.0272</u>.
- Zambrano P, Lobnibe I, Cabanilla D.B., Maldonado JH and Falck-Zepeda J. (2013). Hiding in the plain sight: Women and GM crop adoption. Paper presented at the 17th ICABR Conference: Innovation and Policy for the Bioeconomy, June 18– 21. Ravello, Italy.
- Zambryski, P., H. Joos, C. Genetello, J. Leemans, M. Van Montagu and J. Schell (1983). Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. *EMBO Journal*, 2, 2143-2150.
- Zeder, M. A. (2015). Core questions in domestication research. *Proceedings of the National Academy of Sciences*, *112*(11), 3191–3198.


https://doi.org/10.1073/pnas.1501711112

Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y., Qiu, J.-L., Wang, D. and C. Gao. (2017). Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. *Nature Biotechnology*, 35, 438–440.

Zhu, J.-K. (2016). Abiotic Stress Signaling and Responses in Plants. Cell 167 (2), 313-324.

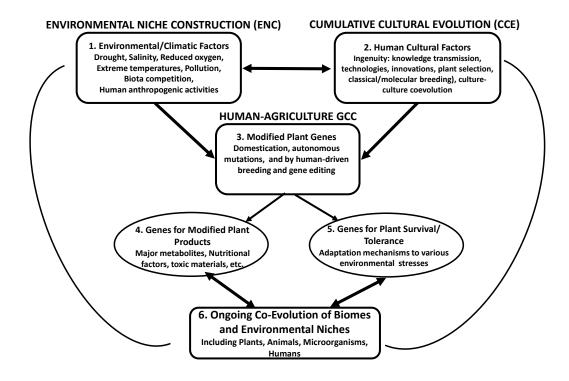
770 Figures


771

772 Figure 1: A schematic illustration of three approaches for understanding agriculture 773 and plant breeding. (A) Cumulative cultural evolution (CCE) occurs as beneficial 774 modifications are accumulated over time via repeated innovation and social learning, with 775 an increase in some measure of improvement (e.g. crop yield and quality). (B) Geneculture coevolution (GCC) typically describes the interaction between human genes and 776 777 agricultural practices (an example of CCE), to which we add the additional interaction with 778 non-human genes of domesticated animals and plants. (C) Cultural niche construction 779 (NC) describes how agricultural practices may shape the abiotic, biotic and social 780 environment, with those changes feeding back to shape agricultural practices.

781

782



784 Figure 2: Key evolutionary events in agriculture and general biotechnology. 785 Schematic illustration of cultural evolution of the major agricultural niches and sub-niches 786 and accompanying technological and biotechnological innovations are depicted (bold 787 line) as a relative skills and research index vs. the timeline (from the accepted start of 788 agriculture, domestication, to present). The parallel evolution of general key 789 biotechnological events is also depicted (standard line). Several major events in 790 agricultural evolution are indicated with arrows pointing to the approximate time. The 791 resulting major agricultural sub-niches are indicated in a series of encircled bold numbers 792 above the timeline (1 to 7), at the approximately corresponding period: initial plant 793 domestication resulted in small-scale horticultural food production (1); With further 794 domestication, large-scale agricultural food production took place as a result of trial-and-795 error plant trait selection and agronomic improvements (2); As excess quantities of food 796 became more available, people started to extend the shelf life of fresh food by 797 preservation via drying, salting, smoking and other technologies, some of which were

807 practised already by hunters-gatherers (3) and by fermentation (Nummer 2002) (4); Three key events further enhanced food quantity and quality from the 13th century (5): (a) long 808 distance travelling and discoveries of new countries resulted in imports and exports of 809 810 new plants between countries, which allowed for new gene combinations, global gene 811 exchange and domestication of new species, (b) introduction of agricultural machinery 812 during the industrial revolution, foremost the steel plough, cotton gin, seed drills, and later 813 tractors as well as (c) chemical synthesis of ammonia that resulted in massive use of 814 nitrogen fertilizers and large increase in crop production (Erisman et al. 2008). Discovery 815 of Mendel's laws of genetics and its rediscovery later, allowing revolutionary intentional 816 science-based traditional breeding (Hallauer 2011) (6). This was followed by molecular 817 breeding using genetic engineering, and more recently by genome editing (7).

818

819

821 Figure 3: Major agriculture and culture-associated niche construction and plant gene-culture coevolution. The different interacting components of cumulative cultural 822 823 evolution (CCE), plant-specific gene-culture coevolution (GCC), and 824 environmental/agriculture-associated cultural niche construction (CNC) are schematically 825 represented. Two major components are implicated: the physical environment, i.e., 826 geography, the terrain, climate, and more (Box 1), human cultural factors, including 827 ingenuity, technology and scientific discoveries (Box 2). Both may modify, shape, interact 828 and coevolve with specific genes of domesticated plants (and farm animals) (Box 3). 829 Once a certain selected gene combination has been fixed in a domesticated plant (or a 830 farm animal) it can be again modified by traditional breeding techniques or by employment of novel molecular tools (MAS, GM, Genome editing) to produce novel gene 831 832 combinations affecting mainly genes associated with modified plant products and 833 metabolites (Box 4) and genes for improving plant survival/ tolerance to environmental 834 stresses (Box 5). The novel plant products or traits can in turn result in the creation of new environmental niches, affect the expression of human genes through consuming those
products, resulting in ongoing coevolution of biomes (i.e., the entire complex body of
living organisms including plants, animals, and microorganisms), CCE, GCC, and ENC
(Box 6).