Extensive marine anoxia associated with the Late Devonian Hangenberg Crisis

Feifei Zhang¹,²,³*, Tais W. Dahl², Timothy M. Lenton⁴, Genming Luo⁵, Shu-zhong Shen¹, Thomas J. Algeo⁵,⁶,⁷, Noah Planavsky³, Jiangsi Liu⁵, Ying Cui⁸, Wenkun Qie⁹, Stephen J. Romaniello¹⁰, Ariel D. Anbar¹⁰,¹¹

¹School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
²Globe Institute, University of Copenhagen, København K, Denmark
³Department of Geology and Geophysics, Yale University, New Haven, CT 06511, U.S.A.
⁴Global Systems Institute, University of Exeter, Exeter EX4 4QE, UK
⁵State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei 430074, China
⁶State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, Hubei 430074, China
⁷Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013, U.S.A.
⁸Department of Earth and Environmental Studies, Montclair State University, Montclair, New Jersey 07043, USA
⁹Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
¹⁰School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, U.S.A.
¹¹School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, U.S.A.
Abstract

The global Hangenberg Crisis near the Devonian-Carboniferous boundary (DCB) represents one of the major Phanerozoic mass extinction events, which shaped the roots of modern vertebrate biodiversity. Marine anoxia has been cited as the proximate kill mechanism for this event. However, the detailed timing, duration, and extent of global marine redox chemistry changes across this critical interval remain controversial because most of the studies to date only constrain changes in local or regional redox chemistry. Thus, opinions on the significance of anoxia as a kill mechanism are variable—from anoxia being a primary driver to being relatively unimportant. In this study, we explore the evolution of global marine redox chemistry using U isotopes of marine limestones. The δ^{238}U trends at Long’an section in South China document systematic oscillations with three negative shifts punctuated by two positive events in between. The magnitude of the δ^{238}U oscillations implies that the sediments do not record contemporaneous seawater with a constant offset at all times. The lack of covariation between δ^{238}U data and diagenetic indicators (e.g., Mn and Sr contents, Mn/Sr ratio, δ^{18}O) suggests that the δ^{238}U trends are
not produced by the same post-depositional diagenetic processes. Instead, trace-metal enrichments suggest that more reducing conditions prevailed during the deposition of the two positive events. We present plausible model scenarios that fit the observed δ^{238}U trends in the context of redox-sensitive trace metal data suggesting marine anoxia expanded in the latest Devonian oceans to cover $>5\%$ of the continental shelf seafloor area. The rapid expansion of marine anoxia coincident with the onset of the Hangenberg Crisis supports marine anoxia as an important kill mechanism. Biogeochemical modeling of the coupled C-P-U cycles suggests that intensified continental weathering, for example, assisted by the spread of seed plants with deeper root systems at this time, could have triggered expansion of marine anoxia and other global changes (e.g., positive excursion in δ^{13}C$_{\text{carb}}$ and decrease in sea surface temperature) in the latest Devonian. The anoxic event is inferred to have been transient as climatic cooling would have reduced weathering fluxes.

Keywords: Devonian-Carboniferous; mass extinction; Hangenberg Crisis; marine anoxia; uranium isotopes; biogeochemical model

1. Introduction

The Late Devonian mass extinction, which occurred in two main phases between 375 and 359 Ma, is one of the “Big Five” mass extinctions in Earth history, marked by a 70–82% extinction rate among marine invertebrate species (Sallan and Coates, 2010). The Late Devonian mass extinction comprised a series of extinction pulses. The main crises occurred at the Frasnian-Famennian stage boundary (~374 Ma) and during the Hangenberg Event close to the Devonian-Carboniferous transition (~359 Ma) (Sallan and Coates, 2010;
Becker et al., 2012; Kaiser et al., 2016). Various causes for these extinctions have been proposed, including volcanism, climate change, sea-level changes, global cooling, submarine hydrothermal activity, and/or expansion of marine anoxia/euxinia (e.g., Joachimski and Buggisch, 2002; Tribovillard et al., 2004; Joachimski et al., 2009; White et al., 2018).

Recent work has provided new insights into environmental changes associated with the latest Devonian Hangenberg extinction. Widespread marine anoxia at that time is recorded by globally extensive black, organic-rich mudrock deposition (Algeo et al., 1995; Caplan and Bustin, 1999; Marynowski and Filipiak, 2007; Marynowski et al., 2012; Becker et al., 2016; Kaiser et al., 2016). High-resolution chemostratigraphic studies have provided detailed records of environmental changes in specific regions. In deep-water black shales of central Poland, there is evidence for the development of photic-zone euxinia from green-sulfur bacterial biomarkers (Marynowski and Filipiak, 2007) as well as pyrite framboid size distributions and significant trace metal evidence (Marynowski et al., 2012). In shallow-marine carbonate sections in South China, bulk nitrogen isotope variations suggest locally enhanced nitrogen fixation, possibly as a consequence of increased denitrification in response to expanded marine anoxia (Liu et al., 2016), and I/Ca ratios suggest expansion of the oxygen minimum zone into the ocean-surface layer (Liu et al., in press). There is abundant evidence for redox shifts during the latest Devonian, but all previous studies focused on local or regional redox chemistry changes—in many cases from semi-isolated settings. Therefore, the secular evolution of global marine redox conditions during the latest Devonian remains poorly constrained, despite its importance for understanding global cause-and-effect relationships during the Hangenberg extinction event.
To fill this gap, we investigated the uranium isotope composition of marine limestones (denoted as δ²³⁸⁸U), a proxy that can be used to place quantitative constraints on global marine redox chemistry changes (e.g., Dahl et al., 2014; Lau et al., 2016, 2017; Clarkson et al., 2018; Zhang et al., 2018a, b, c; White et al., 2018; Zhang et al., 2019a, b), in the Long’an section, South China, which captured the Hangenberg extinction event. We then used a global uranium cycle model to explore the timing, duration, and extent of global marine redox changes during the Hangenberg extinction event. Finally, we used a global model of C-P-U cycling to test the hypothesis that the spread of seed plants and an associated increased P release could have triggered this event.

2. Geological background

The Long’an section is located on the South China Craton, which was situated in the eastern Tethys Ocean close to the equator during the Devonian-Carboniferous transition (Fig. 1). At that time, the southern (paleo-eastern) margin of the South China Craton consisted of a large marine embayment, comprising many shallow carbonate platforms (the Xianggui-Qiangui platform complex) and deep-water troughs of which the Youjiang Basin was the largest. The proximal platforms were attached to the southern margin of the South China Craton, whereas the distal platforms were isolated from land areas by intervening troughs.

The Long’an section is located in Dujie Village of Long’an County in Guangxi Zhuang Autonomous Region (23°10'34.8” N; 107°27'48.0” E). The litho- and biostratigraphy of the study section were described in detail by Qie et al. (2015) and Liu et al. (2016). Briefly, the 38-m-thick Long’an section is divided into the Yonghsien and
Long'an formations (Fig. 2). The Yonghsien Formation (−30 to 0 m) consists mainly of massive bioclastic wackestone, packstone, and grainstone, whereas the Long'an Formation (0 to 8 m) is dominated by thin-bedded calcisphere wackestone and packstone. The D–C boundary, which is defined by the first appearance of the conodont *Siphonodella sulcata* (a linear descendant of *S. praesulcata*) is located at ~6 m above the base of the Long'an Formation, and the base of the Upper *praesulcata* and Middle *praesulcata* zones are located at ~2 m and ~3.3 m below the base of the Long'an Formation, respectively (Qie et al., 2015; Liu et al., 2016). Sedimentological evidence (i.e., presence of bioturbation) indicates that the entire study interval was deposited in an oxic shallow-marine setting (Qie et al., 2015), consistent with the study units being passive recorders of seawater U isotope composition with an offset similar to that in modern Bahamian carbonate sediments (Romaniello et al., 2013; Chen et al., 2018).

In this study, 55 nearly pure limestone samples (CaCO₃ content from 92.7% to 99.9% with a mean of 98.5%; see Liu et al., 2016) were analyzed for δ²³⁸U and major and trace elements. δ¹³Cₑ, δ¹⁵Nₑ, and I/Ca ratio data from the same suite of samples have been previously reported by Qie et al. (2015), Liu et al. (2016), and Liu et al. (in review).

3. Analytical methods

Three to five grams of carbonate powder were dissolved in 1 M hydrochloric acid (HCl) for 24 h at room temperature. Digests were centrifuged and the supernatant was separated. A split of each supernatant was diluted to ~200 ppm calcium (Ca) with 2% HNO₃ and analyzed for a full suite of major and trace element concentrations on a Thermo iCAP quadrupole inductively coupled plasma mass spectrometer (Q-ICP-MS) at the W. M.
Keck Laboratory for Environmental Biogeochemistry at Arizona State University (ASU).

Typical precision was better than 3% and 5% for major and trace elements, respectively, based on repeated analysis of in-run standards.

Prior to U purification by ion exchange chromatography, appropriate amounts of $^{236}\text{U}:^{233}\text{U}$ double spike (e.g., Romaniello et al., 2013; Zhang et al., 2018a, b, c; Chen et al., 2018; Zhang et al., 2019a, b) were added to each sample to correct for instrumental and procedural mass-dependent fractionation of the measured $^{238}\text{U}/^{235}\text{U}$ ratio. The spike-sample mixtures were evaporated to dryness and taken up in 3 N HNO$_3$. Uranium was purified using the UTEVA method (e.g., Romaniello et al., 2013; Chen et al., 2018; Zhang et al., 2018a, b, c; White et al., 2018 for details) before isotopic analysis. All samples were put through UTEVA resin twice in order to completely remove matrix ions. The final purified U was dissolved in 0.32 M HNO$_3$ and diluted to a U concentration of 50 ppb.

Uranium isotopes were measured at ASU on a Thermo-Finnigan Neptune multi-collector ICP-MS at low mass resolution. The standard solution CRM145 (50 ppb U) was analyzed every two samples. Two secondary standards CRM129a and Ricca ICP solution were measured after every fifteen measurements. Sample $\delta^{238}\text{U}$ values were normalized by the average of the bracketing standards. The $\delta^{238}\text{U}$ results are summarized in Figure 2 in the main text and in the Supplementary Data file.

4. Results

$\delta^{238}\text{U}$ values at the Long’an section range from $-0.82‰$ to $+0.32‰$ (see Fig. 2 and Supplementary Data file). The $\delta^{238}\text{U}$ data display a coherent curve with three negative excursions (N1 to N3) separated by two positive excursions (P1 and P2; Fig. 2). The N1
event (a ~0.6‰ negative shift) began in the uppermost Lower Siphonodella praesulcata Zone and ended in the lower Middle S. praesulcata Zone. The N2 event (a ~1.0‰ negative shift) began in the lower Upper S. praesulcata Zone and ended in the upper Upper S. praesulcata Zone. The N3 event (a ~0.8‰ negative shift) began in the uppermost Upper S. praesulcata Zone and ended in the lower S. sulcata-S. duplicata zones. Using the measured thicknesses of conodont biozones at Long’an (Qie et al., 2015; Liu et al., 2016, 2018) and the radiometric Devonian time scale of Becker et al. (2012), in which the duration of each conodont zone was calibrated, we calculated an average sedimentation rate of ~37 m/Myr and a total duration of ~1 Myr for the study interval. We are not implying perfectly linear sedimentation, but a total duration of ~1 Myr is supported by a robust biostratigraphic framework.

5. Discussion

5.1 Evaluation of post-depositional alteration of δ²³⁸U signals in the Long’an section

The carbonate U isotope redox proxy is a relatively new proxy compared to traditional carbonate C, O, and Sr isotope systematics. Modern carbonate samples from the Bahamas yield ²³⁸U values with an offset range from 0 to 0.5‰ with an average of 0.27±0.14‰ (1 SD) relative to the overlying seawater (Romaniello et al., 2013; Chen et al., 2018). This offset is generated syndepositionally close to the sediment-water interface (Romaniello et al., 2013). This is a common feature in carbonate sediments, although the redox states of the sediment porewater played an important role (Romaniello et al., 2013), there is still some uncertainty about the processes governing the magnitude of this offset. Samples with evidence for more open-system diagenetic exchange (low Sr/Ca, high Mn/Sr)
have been shown to yield slightly greater offsets (Dahl et al., in review). However, diagenetic modeling suggests that preservation of carbonate δ^{238}U signals should be substantially more robust during fluid exchange than δ^{18}O and 87Sr/86Sr (Lau et al., 2017; Chen et al., 2018), and comparisons of deep drill core samples further confirm that δ^{238}U is not affected to the same degree as δ^{13}C and δ^{18}O (Chen et al., 2018; Tissot et al., 2018).

In this study, we evaluated potential diagenetic alteration using conventional geochemical criteria. Low Mn contents, high Sr contents, low Mn/Sr ratios, and relatively high δ^{18}O values are characteristic of carbonate sediments with minimal influence by meteoric diagenesis (e.g., Banner and Hanson, 1990; Jacobsen and Kaufman, 1999; Lau et al., 2016; White et al., 2018; Zhang et al., 2019a). In the Long'an section, Mn contents vary from 11.5 ppm to 90 ppm with a mean of 35 ppm, Sr contents vary from 168 ppm to 557 ppm with a mean of 310 ppm, and Mn/Sr ratios vary from 0.03 to 0.33 with a mean of 0.12. These characteristics are consistent with well-preserved marine carbonates with minimal chemical alteration during burial diagenesis (e.g., Banner and Hanson, 1990; Jacobsen and Kaufman, 1999; Lau et al., 2016; White et al., 2018; Zhang et al., 2019a; Fig. S1 in the supplementary material). This hypothesis is further supported by O isotope data (δ^{18}O values > −6‰), which are within the typical range of best preserved Phanerozoic marine carbonate δ^{18}O values (e.g., Veizer et al., 1999). Therefore, we infer that interaction with meteoric or burial fluids is unlikely to have significantly altered the δ^{238}U record at Long'an.

Changes in lithology—such as dolomitization—are not a concern in the study section. The Mg/Ca molar ratios in the samples are well below 0.01, suggesting negligible dolomitization. Other changes in mineralogy—such as the transformation of aragonite to
calcite—can release U into pore fluids. This transformation, however, generally occurs at
greater burial depths at which insoluble U(IV) is stable and, thus, any U isotope
deposition in the limestones will be muted or not expressed (Henderson et al., 1999;
Romaniello et al., 2013; Chen et al., 2016; Chen et al., 2018). Further, there is no
relationship to bulk carbonate Sr/Ca ratios, which are sensitive to aragonite dissolution and
Sr capture in secondary calcite phases, which suggests a limited influence from aragonite-to-calcite transition on observed δ^{238}U trends.

Contamination from detrital materials is also not a concern for δ^{238}U in the study
section. Dissolution of carbonate sediments using 1 M HCl has the potential to liberate U
from detrital materials. We evaluated this possibility based on Al concentrations and U/Al
ratios. Aluminium concentrations range from 8 ppm to 133 ppm with a mean of 39 ppm,
confirming that the study samples are relatively pure carbonates with low detrital content.
U/Al ratios, which range from 28 to 4114 ppm/wt.%, are significantly higher than the
average upper continental crustal value of 0.33 ppm/wt.% (Rudnick and Gao, 2014) or the
topsoil mean value of 0.58 ± 1.13 ppm/wt.% (Cole et al., 2017), indicating that our sample
digestion protocol has effectively extracted carbonate-associated U. Even if some detrital
U was extracted, it is quantitatively insignificant and does not affect the reported δ^{238}U
values.

Although the analysis above indicates that Long'an carbonates were not strongly
altered by post-depositional diagenetic processes, the P1 interval is nonetheless enriched
in Fe, Zn, Mo, and U (Fig. 3), suggesting that it was influenced by sulfidic pore fluids in
the early diagenetic environment and/or by an input of dissolved metals to the global
oceans due to changes in terrestrial weathering. Fe, Zn, and Mo are redox-sensitive
chalcophile metals that accumulate in sediments in which dissolved H$_2$S is present in pore fluids (Tribovillard et al., 2006). During expansion of marine anoxia, rapid reduction of seawater-soluble U(VI) can lead to massive accumulation of insoluble and isotopically heavier U(IV) below the sediment-water interface. With dissolved H$_2$S present in sediment pore fluids, isotopically heavy U(IV) can be incorporated into carbonate precipitates. This process has been well documented on the modern Bahamian carbonate platform (Romaniello et al., 2013). Although the overlying water column is well oxygenated, Bahamian sediment pore-waters become sulfidic ~5 cm below the sediment-water interface as a result of abundant organic matter and high rates of respiration and sulfate reduction (Romaniello et al., 2013). We acknowledge that Fe, Zn, and Mo concentrations in carbonates can be biased by the incorporation of terrestrial Fe, Zn, and Mo contributions (i.e., in association with an episode of enhanced terrestrial weathering input). This possibility during the P1 event can, however, be ruled out by the Al normalized elemental plots (Fe/Al, Zn/Al, and Mo/Al; Fig. 3) where stratigraphic spikes in Fe, Mo, and Zn are retained and, therefore, argue for authigenic Fe, Mo, and Zn enrichments during the P1 event. Building from these observations, we suggest that the pronounced U enrichments and the high δ^{238}U values of the P1 event were most likely a product of strongly reducing pore-water conditions that induced significant authigenic U(IV) enrichments and thus a larger-than-usual early diagenetic offset. This hypothesis has been further modeled in section 5.3. Our study is limited to one section, and we encourage further studies of other sections to assist in disentangling local from global U isotope signals.

In contrast to the P1 event, the P2 event exhibits only Fe and Zn enrichments but no Mo enrichments, although U concentrations are still enriched relative to adjacent
sediments. The spikes in Fe and Zn during the P2 event, however, disappears when normalized to Al concentrations (Fig. 3), suggesting that these spikes are mainly associated with a terrestrial input of dissolved metals to the latest Devonian oceans and not driven by local Fe and Zn sulfide precipitation in sulfidic porewaters. Given the fact that Fe, Zn, and Mo sequestration in sediments is strongly enhanced by the presence of free H$_2$S, reductive immobilization of U is less sensitive to H$_2$S (Tribovillard et al., 2006), the lack of Fe/Al, Zn/Al, and Mo/Al spikes within the P2 interval could indicate anoxic and non-sulfidic pore-water conditions, which led only to small U enrichments (see section 5.3 for further model interpretations). We, however, could not fully rule out the possibility that the P2 event represented a global ocean reoxygenation event; this possibility has been modeled in section 5.4 using a C-P-U model, and distinguish between models in section 5.3 and 5.4 requires δ^{238}U measurements from another section.

In the modern Bahamas, both bank-top and deep-slope carbonates have δ^{238}U compositions that are heavier than that of contemporaneous seawater by 0–0.5‰ (average of 0.27±0.14‰, 1SD). This offset is not constant and has been attributed to incorporation of 238U-enriched U(IV) from anoxic pore waters during early diagenesis (Romaniello et al., 2013) or variations in pore-water U-speciation during carbonate recrystallization (Chen et al., 2018). The influence of syndepositional processes on carbonate U are possible because shallow, relatively permeable carbonates can sequester dissolved U(VI) from the overlying oxic water column via advective and diffusive transport. This semi-open system behavior allows an exchange of U isotopes that can induce a net 238U offset in bulk carbonate sediments relative to primary carbonate phases. As stated above, this process is not significant at greater burial depths because the mobility of U is severely restricted in anoxic
pore fluids, as shown by nearly identical δ^{238}U offsets in Bahamian carbonates regardless of mineralogy (e.g., aragonite, low-Mg calcite, or dolomite), water depth, and depth below the sediment-water interface (Chen et al., 2018; Tissot et al., 2018). On this basis, we have applied a diagenetic correction factor to measured δ^{238}U values prior to the U isotope mass balance calculations presented below.

5.2 Quantifying marine redox changes using a uranium isotope mass balance model

In order to quantitatively estimate the duration and extent of marine redox variations, we used the U isotope mass balance model of Zhang et al. (2019a) (see also Lau et al., 2016) to calculate the proportion of total marine U burial in anoxic sediments (f_{anoxic}) and to estimate the areal extent of marine anoxia in latest Devonian oceans (A_{anoxic}).

The implied changes to the extent of marine anoxia can be described by differential mass balance equations for the seawater U reservoir and its source and sink fluxes:

\[
\frac{dN_{\text{sw}}}{dt} = J_{\text{river}} - J_{\text{anoxic}} - J_{\text{other}} \tag{1}
\]

\[
\frac{d(N_{\text{sw}} \cdot \delta^{238}U_{\text{sw}})}{dt} = J_{\text{river}} \cdot \delta^{238}U_{\text{river}} - J_{\text{anoxic}} \cdot \delta^{238}U_{\text{anoxic}} - J_{\text{other}} \cdot \delta^{238}U_{\text{other}} \tag{2}
\]

\[
\delta^{238}U_{\text{anoxic}} = \delta^{238}U_{\text{sw}} + \Delta_{\text{anoxic}} \tag{3}
\]

\[
\delta^{238}U_{\text{other}} = \delta^{238}U_{\text{sw}} + \Delta_{\text{other}} \tag{4}
\]

Eq. (2) can be rewritten as:

\[
\frac{d(N_{\text{sw}} \cdot \delta^{238}U_{\text{sw}})}{dt} = J_{\text{river}} \cdot \delta^{238}U_{\text{river}} - J_{\text{anoxic}} \cdot (\delta^{238}U_{\text{sw}} + \Delta_{\text{anoxic}}) - J_{\text{other}} \cdot (\delta^{238}U_{\text{sw}} + \Delta_{\text{other}}) \tag{5}
\]

where N_{sw} is the oceanic uranium inventory in moles, $\delta^{238}U_{\text{sw}}$, $\delta^{238}U_{\text{river}}$, $\delta^{238}U_{\text{anoxic}}$, and $\delta^{238}U_{\text{other}}$ are the U isotope compositions of seawater, riverine sources, anoxic sedimentary
sinks, and the average of the remaining other sinks, respectively. J_{river} is the riverine U flux in mol/yr. A $\Delta_{\text{anoxic}} = +0.6\%$ is the average isotopic difference between anoxic/euxinic sediments and contemporaneous seawater (e.g., Andersen et al., 2014), and Δ_{other} is the average isotopic difference between contemporaneous seawater and the remaining other sinks ($\sim +0.05\%$, calculated to maintain an isotopic steady state in the modern ocean).

Following prior studies (e.g., Dahl et al. 2014; Lau et al., 2016, 2017; Zhang et al., 2018b; Zhang et al., 2019a), we define J_{anoxic} as:

$$J_{\text{anoxic}} = A_{\text{anoxic}} \cdot k_{\text{anoxic}} \cdot N_{\text{sw}} \quad (6)$$

where A_{anoxic} is the total seafloor area overlain by anoxic waters and k_{anoxic} is the rate constant associated with anoxic sediment deposition. Solving equations (1) and (2) at a steady state, we have:

$$f_{\text{anoxic}} = \frac{\delta^{238}U_{\text{river}} - \delta^{238}U_{\text{sw}} - \Delta_{\text{other}}}{\Delta_{\text{anoxic}} - \Delta_{\text{other}}} \quad (7)$$

where $f_{\text{anoxic}} = J_{\text{anoxic}} / J_{\text{river}}$, and the $\delta^{238}U_{\text{SW}}$ of the latest Devonian oceans can be estimated using observed $\delta^{238}U$ data for Long’an minus the early diagenetic offset (Δ_{offset}, the $\delta^{238}U$ difference between carbonate sediments and overlying seawater):

$$\delta^{238}U_{\text{sw}} = \delta^{238}U_{\text{carb}} - \Delta_{\text{offset}} \quad (8)$$

Measured carbonate $\delta^{238}U$ for Long’an spans a wide range of values up to $+0.2\%$. These high values are beyond what can be achieved in open-ocean seawater (where $\delta^{238}U_{\text{sw}} < -0.28\% = \delta^{238}U_{\text{river}}$, e.g., Andersen et al., 2017), and therefore these carbonates record seawater with a substantial offset ($\delta^{238}U_{\text{carb}} - \delta^{238}U_{\text{sw}} = \Delta_{\text{offset}}$). A positive Δ_{offset} is consistent with that observed in drill cores from the modern Bahamian platform (i.e., Δ_{offset}...
ranges from 0 to 0.5‰ with an average of $+0.27\pm0.14\%_\circ$, 1 SD; Chen et al., 2018; Tissot et al., 2018). Larger Δ offset up to $+0.6\%_\circ$ are known to occur in reducing sediments with substantial authigenic U(IV) enrichments (e.g., core 1 from the $T. testudium$ flat in the Bahamas; Romaniello et al. 2013). The relatively high δ^{238}U values in the P1 and P2 intervals imply higher Δ offset values at those times (i.e., due to anoxic/sulfidic porewater conditions discussed in section 5.1), and these intervals are also characterized by greater U enrichments than other intervals of the Long’an section.

To show that the ocean oxygenation state varied both at the global scale and in the Long’an basin, we first calculated steady state f_{anoxic} values from Eqs. (7) and (8) assuming constant values for Δ offset of 0‰, $+0.27\%_\circ$, and $+0.6\%_\circ$ (Fig. 4). The other model parameters are given in Table 1. In order to avoid overinterpretation of noise in the δ^{238}U carb dataset, we interpolated and smoothed measured δ^{238}U carb values using a LOWESS (LOcally WEighted Scatterplot Smoothing) fit method with a span parameter equal to 0.4. The isotope-driven calculation of f_{anoxic} values shows that the U burial flux into anoxic sediments was significantly greater during the N1, N2, and N3 intervals than today.

All three curves (based on Δ offset of 0‰, $+0.27\%_\circ$, and $+0.6\%_\circ$) show f_{anoxic} values that are not possible within global U mass balance constraints for some time intervals (i.e., intervals with high δ^{238}U carb values such as P1 and P2 events; Fig. 4), suggesting that the Δ offset was not constant and must have varied temporally during accumulation of the Long’an carbonates. We model this possibility by simultaneously changing A_{anoxic} and Δ offset in Equations (5), (7) and (8) to generate the δ^{238}U carb trend observed in the Long’an section. Although this approach gives a range of f_{anoxic} solutions for the Long’an dataset, we can nonetheless draw certain conclusions about the solution space. We provided two
distinct model scenarios to explain the observed δ^{238}U$_{\text{carb}}$ trend of the Long'an section (Fig. 5) that allow higher Δ_{offset} values at P1 and P2 where elevated Mo and/or U enrichments indicate more reducing pore-water conditions in the early diagenetic environment (Figs. 3 and 5).

The first modeled scenario (Fig. 5, model scenario 1) started from an oxygenated ocean similar to that of the modern, with the onset of anoxic expansion at the peak of P1 (~359.1 Ma). The second scenario (Fig. 5, model scenario 2) started from the same baseline as the first scenario but incorporated an earlier expansion of anoxia (~359.2 Ma) where the U concentration begins to drop. The first modeled scenario fits the δ^{238}U$_{\text{carb}}$ trend of Long’an better, and it also produces a distribution of Δ_{offset} similar to that observed in modern Bahamian carbonates (Fig. 6), but it fails to mirror the observed U concentration profile. In contrast, the second modeled scenario fits the observed U concentration trend better, but it cannot fully fit the peak of the δ^{238}U$_{\text{carb}}$ trend at P1 because Δ_{offset} becomes larger than for modern carbonates but is limited to 0.6‰ in our model (Fig. 6). δ^{238}U offset distribution test supports that our modelled seawater δ^{238}U curve is realistic, but it does not rule out other plausible seawater δ^{238}U curves. This will not be resolved until new δ^{238}U$_{\text{carb}}$ curves are generated at other sections. Nevertheless, both model scenarios suggest that global marine anoxia expanded significantly, covering >5% of continental shelf areas in the latest Devonian oceans. The maximal extent of marine anoxia is difficult to constrain because modeled δ^{238}U is insensitive to expanding anoxia once the anoxic U sink dominates other U sink fluxes. However, a >5% expansion of anoxic marine zones is large enough to have extended over most continental shelf areas, which account for just 7.6% of total seafloor area in the modern ocean. The expansion of marine anoxia was coincident
with the onset of the Hangenberg Crisis at the base of the Middle *Siphonodella praesulcata* Zone (Fig. 5). The modelled fanoxic curves in Fig. 5 are consistent with the observation that U concentrations overall decrease across the anoxic event in tandem with the changes in I/Ca and nitrogen isotopes (Liu et al., 2016, in press). A full recovery to the pre-expansion background state is, however, not recorded in the studied Long’an section.

Both model scenarios can explain the observed P1 and P2 events at the Long’an section by invoking redox changes in the sediment pore-water environment. According to the model, these positive events can be reasonably explained by intensified anoxic/sulfidic conditions in the sediment pore fluids (or in theory the water column above the water-sediment interface based on I/Ca and δ^{15}N evidence from the Long’an section; Liu et al., 2016, in press), which precipitated 238U-enriched U(IV) into the Long’an carbonates during the P1 and P2 intervals. For example, our model shows that Δ_{offset} values must have approached +0.6‰ in the P1 interval and +0.4 to +0.6‰ in the P2 interval (Fig. 5).

Our δ^{238}U data, along with biomarker and other evidence for widespread oceanic anoxia elsewhere globally (Algeo et al., 1995; Caplan and Bustin, 1999; Marynowski and Filipiak, 2007; Marynowski et al., 2012; Liu et al., 2016; Liu et al., in press), confirm that a large proportion of latest Devonian outer continental shelves and upper slopes were covered by anoxic waters. The expansion of marine anoxia would have promoted extensive black, organic-rich mudrock deposition (Algeo et al., 1995; Caplan and Bustin, 1999) and allowed the buildup of H$_2$S in shallow-water environments (Marynowski and Filipiak, 2007; Marynowski et al., 2012). It also increased sediment burial of reduced carbon and sulfur relative to oxidized forms, leading to large positive shifts in δ^{13}C$_{\text{carb}}$ and δ^{34}S$_{\text{CAS}}$ globally (Brand et al., 2004; Kaiser et al., 2006, 2008; Qie et al., 2015; Liu et al., 2016).
5.3 Testing links of marine anoxia to the spread of land plants and enhanced chemical weathering

The Late Devonian was a key interval in the evolutionary history of land plants, as the appearance of the earliest seed plants allowed the spread of terrestrial vegetation into upland areas for the first time (Algeo et al., 1995; Berner et al., 1997; Algeo and Scheckler, 1998). This event is thought to have resulted in a decrease of atmospheric CO₂ levels and a longer-term increase of atmospheric O₂ levels as well as to have had a deep influence on marine biogeochemical cycles (Algeo et al., 1995; Berner et al., 1997; Lenton et al., 2001). The spread of vascular plants and an associated intensification of continental weathering has been proposed to have increased marine phosphorus levels, thus generating higher marine productivity and an expansion of marine anoxic seafloor areas in latest Devonian oceans (Algeo et al., 1995; Algeo and Scheckler, 1998). Intensified continental weathering is supported by an increase in $^{87}\text{Sr}/^{86}\text{Sr}$ from ~0.70813 to ~0.70829 during the Late Devonian (Brand et al., 2004; McArthur et al., 2012). Conodont apatite oxygen-isotope data imply a concurrent ~3 °C decrease in tropical sea-surface temperatures during the latest Devonian (Joachimski et al., 2009) consistent with more intensive weathering. However, on a million-year time scale, the overall amount of silicate weathering is must be close to be in balance with carbon dioxide outgassing rates, similar to what is observed for the Cenozoic (e.g., Berner and Caldeira, 1997; Caves et al., 2016). In this light, the effect of land plants is likely to change the strength of the silicate weathering feedback or facilitate more efficient P solubilization rather to dramatically change the overall amount of silicate weathering.
To test the hypothesis that the spread of land plants caused the latest Devonian expansion of marine anoxia, we used an existing model of the coupled global C-P-U cycles (Clarkson et al., 2018), slightly updated to use the same U cycle and isotope mass balance as in Section 5.2 (see SI for full model description). We explored various plausible combinations of plant forcing factors to see under what conditions the global model could reproduce the global changes observed in the latest Devonian alongside the global component of the changes in the U isotope record.

We find that a \(\sim 33\% \) increase in land plant cover and associated chemical weathering amplification over 200 kyr is capable of generating a transient \(\sim -0.6\% \) negative \(\delta^{238}\text{U}_{\text{sw}} \) excursion, a \(\sim 2\% \) positive \(\delta^{13}\text{C} \) excursion, a \(\sim 3\degree \) global cooling, and an approximate halving of CO\(_2\) levels (Fig. 7A). The anoxic fraction of the ocean increases from 0.6\% to a maximum of 11\%, and the U content of the ocean declines by a factor of \(\sim 5\times \) (Fig. 7A). By the start of the P1 event the area of marine anoxia has doubled, and at the peak of P1 it has increased \(10\times \), consistent with our interpretation of a local anoxic signal at this time. Assuming a typical +0.27\% offset, the initial value of \(\delta^{238}\text{U}_{\text{carb}} \) reasonably matches the mean of the sparse early data (before the N1 event) and the predicted minimum of \(\delta^{238}\text{U}_{\text{carb}} \), and its timing matches the N2 event well (Fig. 7B, green line). Assuming a +0.6\% offset (blue line), an upper limit on local \(\delta^{238}\text{U}_{\text{carb}} \) matches some but not all of the data for the P1 and P2 events. There are of course large uncertainties in the magnitude of the chemical weathering amplification terms. However, this modeling exercise suggests that reasonable changes in terrestrial realm could drive the observed marine perturbation.
The expansion of terrestrial floras during the latest Devonian triggered multiple effects that influenced contemporaneous marine environmental and global climatic conditions. First, expanding terrestrial floras is likely to have enhanced subaerial weathering of phosphorus and increased riverine P fluxes, resulting in increased marine productivity and organic carbon burial (Algeo et al., 1995; Algeo and Scheckler, 1998). The enhanced P delivery may be linked to slow release of organic P during transport of plants to the marine realm. The effects of an increased P flux to the oceans may have been amplified by enhanced phosphorus recycling from marine sediments under anoxic conditions (e.g., Ingall and Jahnke, 1994; Algeo and Ingall, 2007). Second, expanding terrestrial floras increased bulk silicate weathering in the pedosphere through production of root acids, and contributed to increased organic carbon burial through production of refractory organic matter. Collectively, these processes resulted in sharp declines in atmospheric CO₂ and temperatures during the Late Devonian (Berner, 2006; Algeo and Scheckler, 2010). However, feedbacks with the weathering-climate system tended to limit the duration of such events. For example, deep weathering of soils slowly reduces the rate of liberation of new P (Algeo and Scheckler, 1998), and release of oxygen through organic carbon burial slowly ventilates anoxic marine systems, limiting phosphorus recycling effects (Algeo and Ingall, 2007). In our model, the oceanic anoxic event (OAE) ceased after a total duration of ~400 kyr. This produced a recovery in $\delta^{238}U_{sw}$ to more positive values resembling the N2 to P2 transition, thus suggesting that the P2 event was not necessarily a local sedimentary signature.

There may have been several pulses of enhanced weathering and expansion of marine anoxia during the Late Devonian. The coupled C-P-U model with biogeochemical
feedbacks (Fig. 7) predicts that a single episode of terrestrial floral expansion would have generated a transient expansion of marine anoxia. In contrast, the \(f_{anoxic} - \Delta \) offset models (Fig. 5) suggest that expansion of marine anoxia would have been globally more persistent. In order to generate a second expansion of marine anoxia in the C-P-U model (and match the N3 data), a second episode of terrestrial floral expansion can be invoked, but again the consequences would have been transient. Given the short duration of our \(\delta^{238}U_{\text{carb}} \) record and uncertainties surrounding its interpretation in terms of global and local signals, we think it premature to propose too precise of an environmental history. Nonetheless, it is encouraging that the C-P-U model can simultaneously generate several of the global changes observed in the latest Devonian, consistent with the hypothesis that the spread of land plants caused at least one transient oceanic anoxic event at this time.

5.4 Marine redox changes and the Hangenberg extinction

Current data support a prolonged duration for the Hangenberg biotic crisis, lasting from the onset of deposition of the Hangenberg black shale in the latest Devonian into the earliest Carboniferous (Kaiser et al., 2008, 2011). The main phase of the Hangenberg Crisis occurred at the base of the Middle praesulcata Zone, a level marked by declines in conodonts, ammonoids, trilobites, stromatoporoid sponges, corals, brachiopods, bivalves, and various marine phytoplankton (e.g., Caplan and Bustin, 1999; Kaiser et al., 2016). Climatic cooling and global sea-level changes have been cited as causes of the Hangenberg crisis (e.g., Kaiser et al., 2016), although the pattern of sea-level change during this critical interval is under debate (Johnson et al., 1985; Algeo et al., 2007; Qie et al., 2015; Kaiser et al., 2016). Furthermore, sedimentological evidence shows that there were sea-level
fluctuations before and after deposition of the Hangenberg black shales (Walliser, 1984; Johnson et al., 1985), so a direct role for sea-level changes in the biotic crisis is doubtful. Here, our new δ²³⁸U data highlight that, apart from any changes in sea-surface temperatures and sea-level elevations, the expansion of marine anoxia in latest Devonian oceans is likely to have been a key factor triggering stresses among marine organisms and communities. The expansion of marine anoxia in the upper Lower Siphonodella praesulcata Zone coincided with the onset of the Hangenberg biocrisis. This expansion of anoxia was vast enough to have plausibly bathed the outer continental shelves and upper slope areas (i.e., when compared to a situation in the modern oceans where the shelf occupies ~7% of the total ocean floor).

6 Conclusions

We studied δ²³⁸U variations in limestones from the latest Devonian to the earliest Carboniferous in the Long’an section of South China, which preserves a record of the global Hangenberg Crisis. This is the first δ²³⁸U record for the Hangenberg Crisis. The δ²³⁸U profile of the study section shows large secular variations with three negative excursions separated by two positive excursions. We suggest that these positive events are best explained by intensified anoxic/sulfidic conditions in pore fluids during U uptake, which captured ²³⁸U-enriched U(IV) in the Long’an carbonates. U isotope mass balance calculations suggest that global marine anoxia expanded strongly in latest Devonian oceans, covering >5% of total global seafloor area and potentially the majority of contemporaneous continental shelves. The expansion of marine anoxia in the upper Lower praesulcata Zone coincided with the onset of the Hangenberg Crisis, consistent with a central role for marine
anoxia in triggering the extinction event. Global modeling of the coupled C, P, U cycles shows that the spread of seed plants and an associated increased continental to marine P flux could have triggered expansion of marine anoxia in latest Devonian oceans and other global changes, including the positive δ^{13}C$_{\text{carb}}$ excursion and global cooling at that time, but the expansion of anoxia is predicted to have been transient as P solubilization rates and overall weathering intensities declined through internal feedbacks.

Acknowledgments

F.Z. and T.W.D. acknowledge support from the Danish Council for Independent Research (No. DFF 7014-00295). T.W.D. acknowledges support from the Carlsberg Foundation (grant number CF16-0876). S.Z.S.’s work is supported by the Strategic Priority Research Program (B) (XDB26000000, XDB18000000). T.M.L. was supported by NERC (NE/P013651 and NE/N018508/1). NJP acknowledges funding from the Packard Foundation. Y.C. is supported by internal grant from Montclair State University and the National Science Foundation of China (Grant 41888101). F.Z. and A.D.A. acknowledge funding from the NASA Astrobiology Program (award NNX13AJ71G) and the NSF Frontiers in Earth System Dynamics program (award EAR-1338810).

REFERENCES

Algeo, T.J., Scheckler, S.E., 1998. Terrestrial-marine teleconnections in the Devonian:

metal concentrations and variability in fluxes to marine sediments. Geochimica et

Dahl, T.W., Boyle, R.A., Canfield, D.E., Connelly, J.N., Gill, B.C., Lenton, T.M., Bizzarro,
M., 2014. Uranium isotopes distinguish two geochemically distinct stages during the

Dahl, T.W., Connelly, J., Li, D., Kouchinsky, A., Gill, B., Porter, S., Maloof, A., Bizzarro,
In review.

Henderson, G., Slowey, N., Haddad, G., 1999. Fluid flow through carbonate platforms:
constraints from $^{234}\text{U}/^{238}\text{U}$ and Cl– in Bahamas pore-waters. Earth Planet. Sci. Lett. 169,
99–111.

Ingall, E., Jahnke, R., 1994. Evidence for enhanced phosphorus regeneration from marine
2571–2575.

Joachimski, M.M., Buggisch, W., 2002. Conodont apatite 18O signatures indicate climatic
cooling as a trigger of the Late Devonian mass extinction. Geology 30 (8), 711–714.

Joachimski, M. M., Breisig, S., Buggisch, W., Talent, J. A., Mawson, R., Gereke, M.,

Figures

Figure 1 Late Devonian paleogeography. (A) Global paleogeography (modified from Scotese and McKerrow, 1990). The red rectangle represents the area of map B. (B) South China paleogeography (modified from Qie et al., 2015). Study locale is shown by star: LA: Long’an.

Figure 2 δ²³⁸U, δ¹³C_carb, and δ¹⁵N_bulk profiles of Long’an section in South China. L Carbon., Lower Carboniferous; Fm., Formation; Lithol., Lithology; HE, Hangenberg Extinction. P1 and P2 denote positive δ²³⁸U excursions, and N1, N2, and N3 denote negative δ²³⁸U excursions.

Figure 3 Trace element profiles and elemental ratios of Long’an section. The orange/blue shaded area denotes horizons affected by sulfidic/anoxic pore-water conditions.

Figure 4 Mass balance calculations of fraction of uranium removal to anoxic sinks based on diagenetic offsets (Δ_offset) of 0‰, 0.27‰, and 0.3‰. Two independent calculations using fractionation factors between seawater and anoxic sinks of 0.6‰ and 0.85‰, respectively, are shown for comparison.

Figure 5 U isotope model estimates of local versus global expansion of marine anoxia. In model scenario 1 (MS1), anoxic marine areas initially started from an oxygenated ocean
similar to the modern-day, which started to expand at peak of P1. The local anoxia in the model is assumed to be proportional to the Δ_{offset} that can be generated between average carbonates and anoxic carbonates. The Δ_{offset} varies between 0.27‰ and 0.6‰. The model scenario 2 (MS2) started from a situation similar to that in MS1 but expanded prior to peak of P1 and further expanded between P1 and N2.

Figure 6 Distribution of Δ_{offset} ($\delta^{238}\text{U}_{\text{carbonate}} - \delta^{238}\text{U}_{\text{seawater}}$) in model scenario 1, model scenario 2, and CPU model (Fig. 7) for Long'an compared to modern carbonates. In model scenario 1, the average Δ_{offset} is similar to that of modern carbonates but the Long’an section displays more scatter. In model scenario 2, both the average Δ_{offset} value and its variability is greater for the Long’an section than observed in modern carbonates.

Figure 7 Global C, P, U model scenario of increased land plant cover and enhanced continental weathering as a cause of coupled global changes. (A) Model scenario of a 33% increase in plant cover (V) and associated bulk weathering amplification (W) over 200 kyr starting at 359.28 Ma, and resulting response of normalized P content of ocean (P/P_0), anoxic fraction of ocean (f_{anoxic}), CO$_2$ (PAL), $\delta^{13}\text{C}$ (‰), normalized U content of ocean (U/U_0), and $\delta^{238}\text{U}_{\text{sw}}$ (‰). (B) Comparison of data (symbols), running mean of data (red line), and modelled $\delta^{238}\text{U}_{\text{sw}}$ (blue line), assuming a fixed offset (0.27‰) of $\delta^{238}\text{U}_{\text{carb}}$ from seawater $\delta^{238}\text{U}$ (green line), and maximum $\delta^{238}\text{U}_{\text{carb}}$ assuming a maximum offset of 0.6‰ from seawater (purple line). (Note the shift in the time axis between panels A and B.)
Figure 1

A

B

Legend:
- Land
- Shallow sea
- Ocean
- Ice sheets

- Continental shelf
- Sedimentary platform
- Carbonate platform
- Abyssal plain
- Basin
- Deep-water trough
Figure 5

Model scenario 1 (MS1)

Model scenario 2 (MS2)
Figure 6

A: Long'an distribution: model scenario 1
- Mean: 0.266
- 1 std: 0.257
- N = 55

B: Long'an distribution: model scenario 2
- Mean: 0.373
- 1 std: 0.258
- N = 55

C: Long'an distribution: CPU model
- Mean: 0.273
- 1 std: 0.256
- N = 55

D: Bahamian carbonate distribution
- Mean: 0.32
- 1 std: 0.195
- N = 55
Table 1 Uranium box model parameterization.

<table>
<thead>
<tr>
<th>Model parameters</th>
<th>Modern</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocean volume</td>
<td>V_{ocean}</td>
<td>1.30E+21</td>
</tr>
<tr>
<td>Oceanic U inventory</td>
<td>N_{sw}</td>
<td>1.90E+13</td>
</tr>
<tr>
<td>Anoxic seafloor area</td>
<td>A_{anoxic}</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

Fluxes

<table>
<thead>
<tr>
<th>Fluxes</th>
<th>Modern</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oceanic input flux (rivers, groundwater, aeolian)</td>
<td>J_{river}</td>
<td>5.30E+7</td>
</tr>
<tr>
<td>Sediment burial flux in anoxic settings</td>
<td>J_{anoxic}</td>
<td>1.17E+7</td>
</tr>
<tr>
<td>Sediment burial flux in other settings</td>
<td>J_{other}</td>
<td>4.64E+7</td>
</tr>
</tbody>
</table>

Uranium isotope cycle

Uranium isotope composition of oceanic input	$\delta^{238}U_{\text{river}}$	-0.27	%	Andersen et al., 2017
Uranium isotope difference between buried anoxic sediments and seawater	$\Delta^{238}U_{\text{anoxic}}$	$+0.60$	%	Andersen et al., 2017
Uranium isotope difference between buried other sediments and seawater	$\Delta^{238}U_{\text{other}}$	$+0.05$	%	Dahl et al., 2014
Uranium isotope difference between carbonates and seawater	$\Delta^{238}U_{\text{carb}}$	$+0.24$	%	Chen et al., 2018
Maximal U isotope offset in carbonates	$\Delta_{\text{offset, max}}$	$+0.60$	%	Romaniello et al., 2013
Local conditions at Long'an	Δ_{offset}	change with time	%	