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Abstract—Mobile Edge Computing (MEC) is a new computing
paradigm with great potential to enhance the performance of
user equipment (UE) by offloading resource-hungry computation
tasks to lightweight and ubiquitously deployed MEC servers. In
this paper, we investigate the problem of offloading decision and
resource allocation among multiple users served by one base station
to achieve the optimal system-wide user utility, which is defined as a
trade-off between task latency and energy consumption. Mobility in
the process of task offloading is considered in the optimization. We
prove that the problem is NP-hard and propose a heuristic mobility-
aware offloading algorithm (HMAOA) to obtain the approximate
optimal offloading scheme. The original global optimization prob-
lem is converted into multiple local optimization problems. Each
local optimization problem is then decomposed into two subprob-
lems: a convex computation allocation subproblem and a non-linear
integer programming (NLIP) offloading decision subproblem. The
convex subproblem is solved with a numerical method to obtain the
optimal computation allocation among multiple offloading users,
and a partial order based heuristic approach is designed for the
NLIP subproblem to determine the approximate optimal offloading
decision. The proposed HMAOA is with polynomial complexity.
Extensive simulation experiments and comprehensive comparison
with six baseline algorithms demonstrate its excellent performance.

Index Terms—Mobile edge computing, task offloading, resource
allocation, mobility-aware offloading.

I. INTRODUCTION

W ITH the rapid development of Internet of things, user
equipment (UE), e.g., mobile phone, wearable device,

and vehicle terminal, becomes prevalent and smarter, which
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boosts the proliferation of novel mobile applications, such as
augmented reality, natural language processing, and face recog-
nition. Most of these applications are computation-intensive,
latency-sensitive, and bandwidth-demanding. However, the re-
sources in UEs are usually limited. It is difficult to support these
emerging applications with merely onboard systems. Mobile
cloud computing (MCC) was proposed to solve this problem [1].
By offloading resource-intensive tasks to the powerful remote
cloud, MCC brings several benefits: prolonging battery life, sup-
porting sophisticated computations, and providing potentially
unlimited storage.

Nevertheless, the long transmission distance between UE
and cloud may cause high latency and jitter, which signifi-
cantly affects the performance and usability of MCC [2]. Some
bandwidth-demanding applications can also cause network con-
gestion, which is harmful to the core network. Considering
the weakness of MCC, mobile edge computing (MEC) was
introduced in recent years [3]–[6]. In MEC, lightweight MEC
servers are ubiquitously deployed in the vicinity of mobile
users. Offloading can be done within the radio access networks,
bringing lower network latency and less jitter. At the same time,
the bandwidth to the core network can be saved, reducing the
risk of network congestion.

In MEC, the improvement of application performance largely
depends on effective and efficient offloading decisions [6], [7].
Since extra overhead is induced, such as the energy consumption
for data transmission and the time cost for task remote execution,
it is unwise to always offload all tasks. Besides, MEC servers
distributed throughout the network edge are with limited ca-
pability, which may lead to fierce resource contentions among
users. Considering different environments and user requirements
(e.g., user movement and task latency requirement), obtaining
the optimal offloading scheme is usually a challenging problem.
So far, research on task offloading has attracted significant
attention, including the acceleration of computing [8]–[10], the
optimization of energy consumption [11]–[13], and the trade-off
between these two [14]–[16].

When making offloading decisions, most existing studies
assume a quasi-static scenario, where all UEs remain stationary
during the offloading procedure that ranges from hundreds of
milliseconds to several seconds [16]–[18]. However, in some
real-world use cases, the mobility of UE cannot be neglected,
especially for on-vehicle applications [19]: UEs can move with
high speed in the cellular networks. Due to UE’s movement, the
wireless channel between UE and base station (BS) changes
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dynamically, and offloading processes may even fail if UEs
move outside BS’s coverage region. When considering user
movement, obtaining the optimal offloading solution becomes
more challenging [20]. The mobility is also widely researched in
MEC, and many methods are proposed to support user mobility
from different perspectives, such as service migration [21], [22],
path selection [23], and fine-grained control (e.g., transmission
power control [24] and resource allocation [25]), etc.

In this paper, we investigate the problem of offloading deci-
sion and resource allocation among multiple moving UEs served
by a BS. Because of user mobility, sufficient resources must be
allocated to ensure the success of task offloading. However, the
computation and wireless resources in BS’s MEC server are
limited, leading to severe contentions with the increase in the
number of UEs. Under the constraints of resource limitation
and UE’s mobility, as well as task latency requirements, the BS
needs to find the optimal offloading scheme to maximize the
overall system-wide user utility, which is defined as a trade-off
between task latency and energy consumption. This optimization
problem is proved to be NP-hard and difficult to solve.

To address this challenge, a heuristic mobility-aware of-
floading algorithm (HMAOA) with polynomial complexity is
proposed. It first converts the original global optimization prob-
lem into multiple local optimization problems by fixing the
maximum number of UEs allowed for offloading in each local
optimization problem. Then, each local optimization problem
is decomposed into two subproblems: a convex subproblem
for allocating computation resources among multiple offloaded
tasks and a non-linear integer programming (NLIP) subproblem
to decide which UEs to offload. The convex computation alloca-
tion subproblem is solved numerically, and a partial order based
heuristic approach is designed for the NLIP offloading decision
subproblem. The solution to the global optimization problem is
obtained by solving all the local optimization problems. Exten-
sive simulations are performed by comparing with six baseline
algorithms, and the experiment results demonstrate the superior
performance of HMAOA. The main contributions of this paper
are summarized as follows:
� We investigate the offloading decision and resource alloca-

tion problem among multiple users, while users’ mobility
in the process of task offloading is taken into account.
Under the constraints of resource limitation, user mobility,
and task latency requirements, this optimization problem
is formulated as a mixed-integer nonlinear programming
(MINLP) problem.

� The proposed HMAOA has polynomial complexity. It
transforms the original global optimization problem into
multiple local optimization problems and then decom-
poses each local optimization problem into two subprob-
lems: a convex computation allocation subproblem and
an NLIP offloading decision subproblem. Because of the
NP-hardness of the NLIP offloading decision subproblem,
a partial order based heuristic approach is designed to
obtain the approximate optimal offloading decision.

� Extensive simulation experiments are conducted by com-
paring with six baseline algorithms, including the exhaus-
tive search method and fine-tuned genetic algorithm. The
experiment results show that HMAOA can achieve more

Fig. 1. System architecture of MEC task offloading in a vehicular scenario.

than 99.5% of the optimal system utility on average, con-
firming its excellent performance.

The rest of this paper is organized as follows. The system
model and problem formulation are presented in Section II. In
Section III, HMAOA is proposed to solve this problem through
a series of transformations and decompositions. We discuss how
to adapt HMAOA to other scenarios in Section IV. Simulation
experiments are conducted in Section V. Section VI reviews the
related works, and, finally, Section VII concludes this paper.

II. SYSTEM MODEL

In this section, we first introduce the system architecture.
Then, the detailed mathematical models of local and offloading
execution and the overall designing objective are elaborated.

A. System Architecture

In order to better demonstrate the impact of mobility, this
paper considers a typical vehicular scenario, as shown in Fig. 1.
A BS equipped with an MEC server acts as a proximate cloud
to enhance the capability of UEs in its coverage region. UEs
in the coverage region can move at high speed and, when
necessary, request the BS for task offloading to reduce the time
cost (i.e., latency) and energy consumption of task execution.
After receiving the requests from UEs, the BS needs to make the
offloading decision. Since the resources in the BS’s MEC server
are limited, contentions among UEs become fierce as the num-
ber of offloaded UEs increases. Hence, the offloading decision
(which UEs can offload their tasks) and the resource allocation
(how to allocate the computation and wireless resources for each
task) should be jointly considered.

Suppose that N UEs in the coverage region request the BS
for task offloading. Let N = {1, 2, . . . , N} denote the UE set,
and the task of UE n (n ∈ N) is defined as

OTn � (dn, cn, dn),

where dn specifies the size of the input data (in bits), cn is the
total number of CPU cycles required to accomplish the task,
and dn is the maximum latency allowed for executing the task
(in seconds), respectively. The information of dn and cn can
be obtained by applying program profiler (e.g., as introduced
in [15], [18], [26]). Since the size of the computation output is



generally much smaller than the input, we omit it in the definition
as [15], [16], [18].

All the tasks are atomic, which means that a task can be
executed either locally in the UE or remotely in the BS’s MEC
server (by offloading), but cannot be separated. Let an ∈ {0, 1}
denote the offloading decision on OTn made by the BS. If OTn

is assigned for local execution (i.e., an = 0), cn CPU cycles will
be directly processed on the local CPU of UE n. In contrast, if
it is scheduled for offloading (i.e., an = 1), dn bits of input data
should first be transmitted to the BS via the wireless channel.
Afterwards, the MEC server in the BS executes OTn with the
allocated computation resource (in CPU frequency) and then
send the output back.

The mobility of UE directly affects the wireless channel be-
tween UE and BS. Trajectory prediction is one of the most widely
studied topics in the field of intelligent transportation. Even
in complicated situations, such as lane changing and turning
(other than simply following the road), integrated prediction
methods can achieve high predictive accuracy [27]. In this paper,
it is thus assumed that UEs’ trajectories within a short-term
period, tP, can be estimated accurately. Let the time when
making the offloading decision be 0. The trajectory of UE n is
defined as

Tn(t) � (xn(t), yn(t)) , t ∈
[
0, tP

]
,

where t is a future time from the moment of the offloading
decision, i.e., 0, and (xn(t), yn(t)) is the coordinate of UE n
at t taking the BS’s location as the origin. After tP, the mobility
of UEs cannot be anticipated.

The coverage region of the BS can be presented as a polygon
with holes. All the points in this polygon constitute a continuous
point set, denoted as R. When a UE is located in this region,
i.e., (xn(t), yn(t)) ∈ R, the channel fading coefficient between
the UE and the BS is statistically determined by the signal
propagation environment. If the UE moves outside the coverage
region, i.e., (xn(t), yn(t)) /∈ R, the data transmission between
the UE and the BS cannot be guaranteed (because of the distance,
noise, and interference from other base stations, etc.). The UE
can be served by a new BS, as well as the MEC server of
the new BS, after a handover. Nevertheless, the application
data of its ongoing offloading task need to traverse between
the original BS and the new one via the core network, whose
latency cannot be guaranteed. Worse still, the UE may even
be out of service, which leads to offloading failure. Therefore,
if a task is scheduled for offloading, sufficient resources must
be allocated to ensure that the offloading process is completed
before the UE moves outside the BS’s coverage region. Other-
wise, scheduling the task for local execution is assumed to be a
better choice.

B. Local Execution

Let f l
n denote the CPU frequency of UE n, which represents

the number of CPU cycles the UE can execute in each second.
Then, the time cost for executing OTn locally is given as

tl
n =

cn
f l
n

.

In this paper, it is assumed that the local execution of a task can
be completed within the task latency requirement, i.e., tl

n ≤ dn.
We will discuss how to adapt our method to the situation without
this assumption in Section IV.

The CPU power consumption of UE, denoted as pl
n, is widely

modeled to be a super-linear function of its CPU frequency [11],
[17], [18], i.e.,

pl
n = ξ · (f l

n

)γ
.

Hence, the energy consumption for executing OTn is

el
n = pl

n · tl
n = ξ · (f l

n

)γ−1
cn.

C. Offloading Execution

The offloading process of any task, e.g.,OTn, consists of three
phases: 1) transmission of input data from UE to MEC, 2) exe-
cuting task remotely at MEC server, and 3) feeding computation
result from MEC server back to UE. As previously mentioned,
we ignored the overhead of the last phase (i.e., computation
output reception) [15], [16], [18].

1) Input Data Transmission: Let B denote the system band-
width, which is orthogonally shared by the UEs in the coverage
region, through, e.g., single-carrier frequency division multiple
access (SC-FDMA). In this paper, it is assumed that the system
bandwidth is equally allocated to the UEs admitted to offload
their tasks (i.e., an = 1). Then, the channel bandwidth for each
UE to transmit its input data is subject to the number of offloaded
UEs, which is given as

w =
B

∑
n∈N an

. (1)

According to [28], the data transmission rate from UE n to
the BS can be obtained by

rn(w, t) = w log2

(
1 +

pngn(t)

wN
)
, (2)

where N represents the power spectral density of the white
Gaussian noise, pn is the transmission power of UE n, and gn(t)
denotes the channel gain from UE n to the BS at time point t,
respectively.

The wireless channel from UE n to the BS is modeled as a
Rayleigh fading channel with free space propagation path loss.
The channel gain gn(t) can be calculated by

gn(t) =
|hn|2
L0 · l αn (t)

, (3)

where hn is a stochastic variable following the complex Gaus-
sian distribution CN (0, 1), representing the small-scale fading.
L0 and α are the path-loss constant and the path-loss exponent,
respectively. ln(t) is the distance between UE n and the BS,
which can be easily calculated by ln(t) =

√
x2
n(t) + y2

n(t).
The value of rn(w, t) can be obtained by integrating Eq.

(3) into Eq. (2). Since it varies with UE’s location, the time
cost for task transmission is directly affected by user mobility.
Considering that rn(w, t) is a stochastic variable (because of
hn), we calculate its expectation, i.e., Ehn

{rn(w, t)}. Accord-
ing to [29], the expectation can be approximated by Taylor series



expansion as

Ehn
{rn(w, t)} ≈ w

ln2
e

1
SNRn ·

[
TK (tK)− TK

(
1

SNRn

)]
,

(4)
where K is the Taylor order parameter to control the accuracy
of this approximation, and SNRn is the received signal to noise
ratio from UE n to the BS, denoted as SNRn = pn

wNL0 lαn(t) . The
function TK(x) is defined as

TK(x) � lnx+

K∑

n=1

(−1)nxn

n · n! ,

and tK is the solution to
∑K

n=0(−tK)n/n! = 0.
When t ∈ [0, tP), Ehn

{rn(w, t)} is continuous and positive.
Hence, a cumulative area function can be constructed to show
the relation between the size of the input data, i.e., dn, and its
transmission time, i.e., ttx

n , as

dn =

∫ ttx
n

0
Ehn
{rn(w, t)} dt. (5)

Since ttx
n is a function of w, we denote it as ttx

n(w).
With ttx

n(w), the energy consumption for input data transmis-
sion can be calculated by

etx
n(w) = pnt

tx
n(w). (6)

2) Task Remote Execution: After OTn is transmitted to the
BS, the BS should allocate a certain amount of CPU frequency
for executing it. Let fn denote the CPU frequency allocated to
OTn. The time cost for executing OTn remotely is

tex
n (fn) =

cn
fn

. (7)

As mentioned before, all the tasks to be offloaded need to
share the limited computation resource in the BS. Let F0 denote
the total available CPU frequency of the BS. We have

∑

n∈N
anfn ≤ F0. (8)

3) Offloading Execution Model: The total time cost for of-
floading OTn, denoted as to

n, is composed of two parts: the data
transmission time and the remote execution time, i.e.,

to
n(w, fn) = ttx

n(w) + tex
n (fn). (9)

To UE n, the energy consumption for offloading OTn is only
associated with the data transmission, which is given by

eo
n(w) = etx

n(w). (10)

To make the task offloading in this mobility scenario suc-
cessful, two additional constraints should be satisfied. First, as
previously mentioned, if OTn is scheduled for offloading (i.e.,
an = 1), the offloading process must be completed before UE
n moves outside the BS’s coverage region (i.e., R), i.e.,

Tn(t) ∈ R, ∀t ∈ [0, to
n(w, fn)] , an = 1. (11)

In other words, all UEs scheduled for offloading (i.e., an = 1)
must be in the coverage region of the BS (i.e., Tn(t) ∈ R) during
the entire offloading process (i.e., ∀t ∈ [0, to

n(w, fn)]).
Second, since the trajectory of UE cannot be predicted after tP,

the data transmission after that cannot be anticipated. Therefore,
the time consumption for task offloading is constrained to be less
than tP, i.e.,

to
n(w, fn) ≤ tP, ∀n ∈ N, an = 1. (12)

As mentioned before, the trajectory prediction of UE within
a short-term period can achieve high accuracy (as [27]). In
this paper, tP is assumed to be in the range of a few seconds.
Considering that the completion time of task offloading ranges
from hundreds of milliseconds to several seconds (as [16]–[18]),
this additional constraint is reasonable.

D. Problem Formulation

In mobile system, the user experience for executing a task,
e.g., OTn, is determined mainly by its execution latency, i.e.,
tn, and its energy consumption, i.e., en. Specifically, tn and en
can be obtained by

tn = ant
o
n(w, fn) + (1− an)t

l
n, (13)

en = ane
o
n(w) + (1− an)e

l
n. (14)

We design a quality-of-experience (QoE)-based utility func-
tion as [15], [16] to measure the user utility of executing OTn,
which is defined as a trade-off between the time and energy
consumption of the task compared with local execution, i.e.,

un(an, w, fn) � βT
n

(
tl
n − tn
tl
n

)
+ βE

n

(
el
n − en
el
n

)
, (15)

where βT
n ∈ [0, 1] and βE

n ∈ [0, 1] are set by the user, indicating
the user’s preference on time and energy consumption when
executing OTn. We set βT

n + βE
n = 1. If the task is urgent, the

user can increase the time consumption preference. Otherwise, if
the UE is running in a low battery mode, the energy consumption
preference can be raised.

It is worth noting that the user utility on OTn, i.e.,
un(an, w, fn), indicates the improvement in user experience
over local execution. The improvement is measured by (tl

n −
tn)/t

l
n and (el

n − en)/e
l
n, respectively. When OTn is executed

locally, the user utilityun equals 0, i.e.,un(0, w, fn) = 0, which
brings no improvement. If the remote execution of OTn brings
lower time and energy consumption compared with local execu-
tion, the user utility un can be positive. However, offloading too
many tasks leads to longer task latency because of the heavy
resource contention. In this case, the user utility un can be
negative.

We define the system utility as the weighted sum of all user
utility, denoted as

∑
n∈N φnun(an, w, fn), where φn ∈ [0, 1]

indicates the preference of the service provider (SP) on UE n,
which can be determined based on user’s payment [15].



Our target is to find the optimal offloading decision and
resource allocation to maximize the system-wide user utility:

GP: max
a,f

∑

n∈N
φnun(an, w, fn)

s.t.: an ∈ {0, 1}, (16)

fn > 0, ∀n ∈ N, an = 1, (17)

tn ≤ dn, ∀n ∈ N,

(1), (8), (11), (12), (18)

where a = {a1, a2, . . . , aN} and f = {f1, f2, . . . , fN} are the
vectors of variables to be optimized. Constraint (16) states
that a task can be either locally executed or offloaded. All
offloaded tasks must be allocated a certain amount of com-
putation resource, which is ensured by constraint (17). Con-
straint (18) guarantees that all the tasks in N should be com-
pleted on time (subject to the maximum latency, i.e., dn).
Considering the non-linearity of the optimization function, i.e.,∑

n∈N φnun(an, w, fn), and value ranges of the variables to be
optimized, problem GP is an MINLP problem [30].

III. SOLUTION

A. Problem Transformation

Constraint (18) can be rewritten as two constraints based on
the offloading decision a, i.e.,

tl
n ≤ dn, ∀n ∈ N, an = 0, (19)

to
n(w, fn) ≤ dn, ∀n ∈ N, an = 1. (20)

As mentioned before, a task can be completed by local execution
within the task latency requirement. Hence, constraint (19) can
be ignored in the subsequent optimization.

Constraint (11) indicates that the offloading process must be
completed before UE n moves outside the BS’s coverage region
(i.e., R). Hence, it can be transferred from a spatial constraint
to a temporal constraint. The key is to determine the time when
UE n first leaves the BS’s coverage region, denoted as tR

n. With
the trajectory of UE n (i.e., Tn(t)) and the coverage region of the
BS (i.e., R), tR

n can be easily obtained (which will be introduced
latter in this section). Then, we rewrite constraint (11) as

to
n(w, fn) ≤ tR

n, ∀n ∈ N, an = 1. (21)

Because of (9), constraints (12), (20) and (21) can be rewritten,
respectively, as

tex
n (fn) ≤ tP − ttx

n(w), ∀n ∈ N, an = 1, (22)

tex
n (fn) ≤ dn − ttx

n(w), ∀n ∈ N, an = 1, (23)

tex
n (fn) ≤ tR

n − ttx
n(w), ∀n ∈ N, an = 1. (24)

Let O denote the set of UEs scheduled for offloading, i.e.,
O = {n|an = 1, n ∈ N}. Since executing a task locally brings

0 utility, our optimization objective can be rewritten as

GP2: max
O,f

∑

n∈O
φnun(1, w, fn)

s.t.: w = B/|O|, (25)

O ⊆ N, (26)

fn > 0, ∀n ∈ O, (27)
∑

n∈O
fn ≤ F0, (28)

tex
n (fn) ≤ dn − ttx

n(w), ∀n ∈ O, (29)

tex
n (fn) ≤ tR

n − ttx
n(w), ∀n ∈ O, (30)

tex
n (fn) ≤ tP − ttx

n(w), ∀n ∈ O. (31)

The number of offloaded UEs, i.e., |O|, varies from 1 toN , and
the bandwidth allocated to each UE, i.e.,w, changes accordingly
as (25). The discrete variation of w leads to different objective
function (i.e.,

∑
n∈O φnun(1, w, fn)) and unstable constraint

(i.e., (29)–(31)). To deal with this problem, we convert the orig-
inal global optimization problem GP2 intoN local optimization
problems with fixed channel bandwidth. The local optimization
problem is defined as

LP: max
O,f

∑

n∈O
φnun(1, ŵ, fn)

s.t.: |O| ≤ Omax,

(26)–(31), (32)

where ŵ = B/Omax, andOmax is fixed in each local optimization
problem, but varies from 1 to N across different local optimiza-
tion problems. It indicates the maximum number of UEs allowed
for offloading in the corresponding local optimization problem.
Note that the optimal solution of a local optimization problem
may contain less than Omax offloaded tasks. If so, allocating
more bandwidth to each offloading task can bring higher system
utility. Hence, the optimal solution of this local optimization
problem is not the global optimal solution. When all of the N
local optimization problems (i.e., LP) with different Omax are
solved, the global optimal solution, i.e., the solution of GP2, can
be obtained by simply comparing their system utility. Therefore,
we focus on solving LP in the rest of this paper.

In LP, with the fixed channel bandwidth for each UE, i.e.,
ŵ, the time cost for input data transmission, i.e., ttx

n(ŵ), can
be calculated according to (5). Since the trajectory Tn(t) can
be arbitrary, it is difficult to derive the analytical solution of
ttx
n(ŵ), as well as tR

n (mentioned before). Therefore, a numerical
adjusted trapezoidal method is adopted to obtain both the ap-
proximate values of ttx

n(ŵ) and tR
n, as shown in Algorithm 1. The

trajectory of UEn is divided into multiple tiny segments based on
the time interval, step. In each segment, the data transmission
rate, i.e., Ehn

{rn(ŵ, timePast)}, is assumed to be fixed. In
this way, we can obtain the amount of data transmitted in each
step, i.e., Δ. Then, the data transmission time, i.e., ttx

n(ŵ), is
the accumulated time interval when the input data transmission
finished (i.e., dataSend ≥ dn). In each step, we also check if



Algorithm 1: Time Approximation (TA).
1: procedure TA(n, ŵ, step)
2: tR

n ← tP, ttx
n(ŵ)← +∞

3: dataSend← 0, timePast← 0
4: sendF inish← false
5: while timePast < tP do
6: timePast← timePast+ step
7: if not sendF inish then
8: Δ← step · Ehn

{rn(ŵ, timePast)}
9: dataSend← dataSend+Δ

10: if dataSend ≥ dn then
11: ttx

n(ŵ)← timePast
12: sendF inish← true
13: end if
14: end if
15: if Tn(timePast) /∈ R then � move

outside cell
16: tR

n ← timePast
17: break
18: end if
19: end while
20: return tR

n, t
tx
n(ŵ)

21: end procedure

UE n is still within the BS’s coverage region (through, e.g., ray
casting method [31]) and record the time when it first leaves this
region, i.e., tR

n.
As previously mentioned, the trajectory of UE cannot be

predicted after tP. Therefore, in Algorithm 1, if UE n never
moves outside the BS’s coverage region within the period of tP,
we set the value of tR

n as the longest time interval that can be
predicted, i.e., tP. In addition, there are two situations that make
the data transmission time, i.e., ttx

n(ŵ), unable to obtain: 1) UE
n leaves the coverage region before the completion of input data
transmission; 2) The input data transmission cannot be finished
before tP. If either of these two situations occurs, it indicates
that OTn is not suitable for offloading under the current channel
bandwidth. Therefore, we set the value of ttx

n(ŵ) to infinity,
which causes OTn to be assigned for local execution because of
constraints (29)–(31). The accuracy of the time approximation
in Algorithm 1 is subject to the length of step, and 
tP/step�
iterations are needed in the worst case.

With the values of tR
n and ttx

n(ŵ), constraints (29)–(31) can be
combined into one, i.e.,

tex
n (fn) ≤ toutlmt

n , ∀n ∈ O, (33)

where toutlmt
n is the minimum value in dn − ttx

n(ŵ), t
R
n − ttx

n(ŵ),
and tP − ttx

n(ŵ). Since tex
n (fn) is positive, a UE with toutlmt

n ≤ 0
should not be offloaded. Let N1 = {n|toutlmt

n > 0, n ∈ N}. The
search space ofO can be truncated fromN toN1, i.e.,O ⊆ N1.
According to (7), the constraint can be written as

fn ≥ cn
toutlmt
n

, ∀n ∈ O. (34)

For UE n ∈ N1, only when φnun(1, ŵ, fn) ≥ 0, it is reason-
able to offload OTn. Otherwise, executing the task locally is a
better choice, which increases its utility as well as the system’s.
Let φnun(1, ŵ, fn) ≥ 0, we can derive:

tex
n (fn) ≤ tinlmt

n , ∀n ∈ O, (35)

where tinlmt
n � βE

nt
l
n(e

l
n − eo

n)/(β
T
ne

l
n) + tl

n − ttx
n(ŵ). Simi-

larly, only when tinlmt
n > 0, it can bring positive utility to offload

OTn. Let N2 = {n|tinlmt
n > 0, n ∈ N1}. The search space of O

can be further truncated to N2, i.e., O ⊆ N2. We have

fn ≥ cn
tinlmt
n

, ∀n ∈ O. (36)

Constraints (27), (34), and (36) can be combined as

fn ≥ kn, ∀n ∈ O, (37)

where kn is the maximum value in 0, cn/tinlmt
n , and cn/t

inlmt
n . It

represents the minimum CPU frequency required to meet once
OTn is offloaded. When kn > F0, we can only execute such task
locally because of the shortage of computation resource. Hence,
the search space of O is further truncated, i.e., O ⊆ N3, where
N3 = {n|kn ≤ F0, n ∈ N2}. We have

kn ≤ fn ≤ F0, ∀n ∈ O. (38)

According to (6), (7), (9), (10), and (13)–(15), the objective
function can be rewritten as

∑

n∈O
φnun(1, ŵ, fn) = �n − ςn

fn
,

where �n and ςn are two positive constants. Their values can be
obtained by �n � φnβ

T
n(t

l
n − ttx

n(ŵ))/t
l
n + φnβ

E
n(e

l
n − eo

n)/e
l
n

and ςn � φnβ
T
nf

l
n, respectively. Now, the local optimization

problem LP is transformed into

LP2: max
O,f

∑

n∈O
�n − ςn

fn

s.t.: O ⊆ N3,

(28), (32), (38), (39)

Theorem 1: Problem LP2, as well as GP, is NP-hard.
Proof: See Appendix A. �

B. Problem Decomposition

Problem LP2 can be decomposed into two subproblems: one
for offloading decision and one for computation allocation.

1) Computation Allocation: Once the offloading decision
set, i.e., O, is given, problem LP2 reduces to a convex problem
to allocate the CPU frequency in the BS’s MEC server, i.e.,

SP1: Func(O) = max
f

∑

n∈O
�n − ςn

fn

s.t.: (28), (38).

Let h(f) =
∑

n∈O �n − ςn/fn. We have ∂2h(f)
∂fi∂fj

= 0, (i �= j)

and ∂2h(f)
∂f 2

i
= −2yi/f 3

i < 0, which means that the Hessian ma-

trix of h(f) is negtive definite. Hence, SP1 is a convex opti-
mization, which can be solved with the Lagrangian duality and



Algorithm 2: Frequency Allocation Algorithm (Func).
1: procedure Func(O,k, piece)

� k = {k1, k2, . . . , kn}
2: totalFrequency ←∑

n∈O kn
3: if totalFrequency > F0 then
4: return f ← 0, util← −∞
5: end if
6: f ← k
7: g← −y/f 2 � obtain gradients

g = {g1, g2, . . . , gn}
8: while totalFrequency < F0 do
9: i← arg mini∈O{gi} � find the lowest

gradient
10: fi ← fi + piece
11: gi ← −yi/f 2

i

12: totalFrequency ← totalFrequency + piece
13: end while
14: util←∑

n∈O �n − ςn/fn
15: return f , util
16: end procedure

Karush-Kuhn-Tucker conditions [32]. However, this needs to
solve a multi-variable system of non-linear equations, which
brings high complexity. We construct Algorithm 2 numerically,
which divides F0 into many tiny atomic pieces and assigns them
one by one to each UE. The key is to find the UE with the fastest
change on each assignment, which is the one with the lowest
gradient. When each piece is small enough, the final allocation
can adequately approach the optimal result.

The complexity of Algorithm 2 is subject to the total available
frequency, i.e., F0, the length of each tiny piece, i.e., piece, the
minimum frequency of UEs, i.e., k, and the number of offloaded
tasks, i.e., |O|. In the worst case, the complexity of this algorithm
is O(F0/step×Omax).

2) Offloading Decision: With Algorithm 2, the numerical
solution of SP1 can be obtained. Then, we need to search for the
optimal subset O from N3 as the offloading decision, i.e.,

SP2: max
O

Func(O)

s.t.: (32), (39).

Due to the non-linearity of Func(·), SP2 is an NLIP problem,
which is still NP-hard [33]. Hence, we design a partial order
based heuristic approach to solve this subproblem with polyno-
mial complexity.

LetUtiln(f) � �n − ςn/f . For eachOTn ∈ N3, if fn ≥ kn,
we haveUtiln(fn) > 0; meanwhile, if fn ∈ [kn, F0], the deriva-
tive of Utiln(fn) is always positive, i.e., Util′n(fn) = ςn/f

2
n >

0, indicating that Utiln(fn) is monotonically increasing on
[kn, F0]. Hence, Utiln(kn) is the lowest utility OTn can con-
tribute to the system utility once offloaded. Then, Utiln(fn)
increases as fn grows, until it consumes all the CPU frequency in
the MEC server, i.e., Utiln(F0). Here, the minimum frequency
requirement kn, the lowest utility Utiln(kn) and the highest

utility Utiln(F0) of OTn are the key features for constructing
our heuristic approach.

Definition 1: Define the binary relation priority equal:
∀n,m ∈ N3, OTn is priority equal to OTm (OTn � OTm)
if and only if they are with the same minimum frequency
requirement and the same lowest and highest utility, i.e.,

OTn � OTm ⇐⇒ kn = km

∧ Utiln(kn) = Utilm(km)

∧ Utiln(F0) = Utilm(F0).

From Definition 1, we can deduce that OTn � OTm ⇒
Utiln(f) = Utilm(f), ∀f ∈ [kn, F0]. Therefore, for two prior-
ity equivalent tasks, when making the offloading decision, there
is no difference in choosing either of them, which means that
they have the same priorities.

Definition 2: Define the binary relation priority higher:
∀n,m ∈ N3, OTn is priority higher than OTm (OTn � OTm)
if and only if their minimum frequency requirements satisfy
kn < km, and their utility at km and F0 satisfy Utiln(km) >
Utilm(km) and Utiln(F0) > Utilm(F0), respectively, i.e.,

OTn � OTm ⇐⇒ kn < km

∧ Utiln(km) > Utilm(km)

∧ Utiln(F0) > Utilm(F0).

Lemma 1: ∀n,m∈N3, OTn � OTm⇒Utiln(f)>Utilm
(f), ∀f ∈ [km, F0].

Proof: See Appendix B. �
With this lemma, if OTn � OTm, OTn contributes more in

system utility than OTm when f ∈ [km, F0]; and OTn is the
only choice when f ∈ [kn, km]. Hence, when OTn is priority
higher than OTm, choosing OTn is always better than OTm,
which means that OTn has a higher priority than OTm.

Lemma 2: With the binary relation of priority higher, the UE
set, N3, is a strict partially ordered set (poset).

Proof: See Appendix C. �
Let (N3,�) denote the poset. Based on (N3,�), we can gen-

erate a Hasse diagram (HD) [34], which is a transitive reduced
directed acyclic graph (DAG). In an HD, when OTi � OTj ,
there is one and only one path from OTi to OTj .

Poset (N3,�) becomes a totally ordered set when all the tasks
in it are comparable with each other. In this case, the generated
HD reduces to a chain, which means that it can be sorted into a
sequence under the relation of priority higher.

Definition 3: For a sequence Seq = (i1, i2, . . . , in), the kth
head-subsequence ofSeq is the subsequence ofSeq constructed
by the first k items in Seq in their original order. We denote it
as head(Seq, k) � (i1, i2, . . . , ik).

Lemma 3: If (N3,�) is a totally ordered set, i.e., a chain,
and let SeqN3

denote the sequence from its highest priority task
to its lowest one, then the optimal offloading decision set is one
of SeqN3

’s head-subsequences.
Proof: See Appendix D. �
Because of the non-linearity of Func(·), it is not straightfor-

ward to find which head-subsequence of SeqN3
is the optimal



Algorithm 3: Offloading Decision on Chain (ODC).
1: procedure ODC(SeqN3

, Omax)
� SeqN3

= (OT ′1, OT ′2, . . . , OT ′|N3|)
2: taskContent← min(|SeqN3

|, Omax)
3: O← ∅, f ← 0, util← 0
4: for i← 1, taskContent do
5: if

∑i
x=1 kOT ′x >F0 then � no enough frequency

6: break
7: end if
8: [f̂ , ˆutil]← Func(head(SeqN3

, i)) �
Algorithm 2

9: if ˆutil > util then
10: O← head(SeqN3

, i), f ← f̂ , util← ˆutil
11: end if
12: end for
13: return O, f , util
14: end procedure

offloading decision. We only need to find the one with maxi-
mum system utility from the |N3| head-subsequences of N3.
Algorithm 3 describes this procedure. In the worst case, it needs
to call Algorithm 2 Omax times.

Generally, not every task in (N3,�) is comparable to each
other. In this case, we consider constructing a linear extension
of (N3,�), which is a totally ordered set that contains all the
relations in the original poset [34]. Let (N3,�∗) denote the lin-
ear extension. We have ∀OTi, OTj ∈ (N3,�), OTi � OTj ⇒
OTi �∗ OTj , OTi, OTj ∈ (N3,�∗).

Lemma 4: The optimal offloading decision set of SP2 is a
head-subsequence in one of (N3,�)’s sorted linear extensions.

Proof: See Appendix E. �
According to the order-extension principle, every partial order

can be extended to at least one total order by topological sorting
algorithms [34]. With this principle, an intuitive method is to
enumerate all the linear extensions of (N3,�). However, this
method has huge complexity (to count all the linear extensions
of a finite partial order is #P-complete [35]). In the worst case, if
all the tasks in (N3,�) are incomparable with each other, there
will be |N3|! linear extensions.

Based on the above analysis, in this paper, we heuristically
construct a task comparison method, which turns (N3,�) into
a linear extension and then obtains the approximate optimal
offloading decision by Algorithm 3.

The relation between two tasks on their contributions
to the system utility changes with the allocated frequency.
∀OTn, OTm ∈ (N3,�), there exist four different situations.,1

1) When kn ≤ km ∧ Utiln(km) ≥ Utilm(km) ∧ Utiln
(F0) ≥ Utilm(F0), we have OTn � OTm or
OTn � OTm. In this case, we define OTn �∗ OTm.

2) When kn > km ∧ Utiln(kn) ≥ Utilm(kn) ∧ Utiln
(F0) ≥ Utilm(F0), we find that kn is a change point.
It means that if f ∈ [kn, F0], OTn contributes more

1OTn andOTm can be any tasks in (N3 �). If we exchange their positions in
each situation, the result is also correct. There is no need to list them repeatedly.

to the system utility, i.e., Utiln(f) ≥ Utilm(f), and
if f ∈ [km, kn), OTm contributes more (only OTm is
available in this case).

3) When kn ≤ km ∧ Utiln(km) ≥ Utilm(km) ∧ Utiln
(F0) < Utilm(F0), we derive the change point fchg,
which satisfies the equation Utiln(fchg) = Utilm(fchg).
If f ∈ [kn, fchg), Utiln(f) ≥ Utilm(f), and if
f ∈ [fchg, F0], Utilm(f) ≥ Utiln(f).

4) When kn ≤ km ∧ Utiln(km) < Utilm(km) ∧ Utiln
(F0) ≥ Utilm(F0), there are two change points fch1

and fch2. Let fch1 = km, and fch2 is the solution of
Utiln(f) = Utilm(f). If f ∈ [kn, fch1) ∪ [fch2, F0),
Utiln(f) ≥ Utilm(f), and if f ∈ [fch1, fch2),
Utilm(f) ≥ Utiln(f).

We find that, in situation (1), the relation between two tasks
on their contributions to the system utility is independent to the
allocated frequency f . We only need to retain the relations in
the original set (N3,�) to ensure the accuracy of topological
sorting. However, in situations (2), (3), and (4), there exist one or
two change points. When f changes, the relation of the two tasks
changes too. More conditions should be considered in order to
compare them.

When a change point of two tasks, i.e., fchg , is small, e.g., near
0, the relation on (0, fchg] can hardly take effect because almost
every offloaded task should be allocated a certain amount of
frequency. Similarly, when a change point is large, e.g., near
F0, the relation on (fchg, F0] has little impact since a task
can hardly consume all the resources. Hence, we define two
parameters Ψl,Ψh ∈ (0, 1] to control two frequency thresholds,
boundl(Ψl) and boundh(Ψh), and only consider the task rela-
tions in the range of (boundl(Ψl), boundh(Ψh)). boundl and
boundh are defined as

boundl = (1−Ψl)F0/O
max,

boundh = (1 + (Omax − 1)Ψh)F0/O
max.

The values of Ψl and Ψh are set empirically. When they become
larger, the ignored change points become less.

When there is at least one change point between boundl and
boundh, the relation between two tasks becomes subtle. In this
case, we empirically determine their relation by comparing the
area under their utility functions, i.e., Util(·). The area can well
synthesize kn, Utiln(kn), and Utiln(F0), simultaneously. The
evaluation in Section V will show its excellent property. The
area of OTn when f ∈ [boundl, boundh] can be calculated by
definite integral:

Area(OTn) =

∫ f2

f1

Utiln(f)df

= �n (f2 − f1)− ςn (log(f2)− log(f1)) ,

where f1 = max(boundl, kn) and f2 = boundh.
We summarize the task comparison method in Table I. Now,

any two tasks in (N3,�) are comparable with each other by the
heuristic method. Sorting algorithms can be adopted to build
the sequence, and one of its head-sequences is the approximate
optimal offloading decision.



TABLE I
THE COMPARISON TABLE OF TWO TASKS

Algorithm 4: Heuristic Mobility-Aware Offloading
Algorithm.

1: procedure HMAOA(N)
2: for Omax ← 1, N do
3: for all n ∈ N do
4: Compute tR and ttx

n(ŵ) by Algorithm 1.
5: if OTn ∈ N3 then
6: Compute Area(OTn).
7: end if
8: end for
9: Sort N3 into SeqN3

in accordance with
Table I.

10: Obtain optimal O, f , and utility by
Algorithm 3.

11: Record O, f , and utility under Omax.
12: end for
13: Find the O and f with maximum utility in all

records.
14: Send the offloading decision to UEs.
15: end procedure

C. Heuristic Mobility-Aware Offloading Algorithm

The proposed HMAOA is summarized in Algorithm 4. After
receiving the offloading requests from N UEs, HMAOA enters
N iterations, each of which has different Omax (from 1 to
N ). In each iteration, ŵ is fixed, i.e., ŵ = B/Omax. For each
offloading request, Algorithm 1 is performed to obtain tR and
ttx
n(ŵ). Then, the search space is truncated to N3. HMAOA

computes the area under the utility function of all tasks (i.e.,
Utiln(·)) as introduced in Section III-B2, which can boost the
task comparison afterwards. Based on the proposed heuristic
task comparison method, sorting algorithms can be adopted
to turn N3 into an ordered sequence. After that, the approxi-
mate optimal offloading decision in this iteration is obtained by
Algorithm 3 and recorded. Finally, all the recorded offloading
decisions are compared to find the one with the highest utility
as the offloading decision.

Three critical operations determine the complexity of
HMAOA: Algorithm 1, with the complexity of O(tP/step),
is invoked N 2 times; the sorting algorithm, usually with the
complexity of O(N × log(N)), is called N times; Algorithm 3,

which invokes Algorithm 2 N times, is called N times. In the
worst case, the complexity of Algorithm 2 is O(F0/step×N).
Therefore, the complexity of HMAOA is O(N 3 × (F0/step)).

IV. DISCUSSION

This section discusses how to adapt the proposed HMAOA to
other scenarios.

A. Latency Requirement

As previously mentioned, in this paper, we assume that all
tasks can be completed by local execution within their task
latency requirements, i.e., tl

n ≤ dn. This assumption is reason-
able because MEC services are not always available, and a UE
must complete its task by itself if no MEC server exists (e.g.,
out of service). Nevertheless, in some special use cases (e.g.,
a very urgent task), the latency requirement of a task may be
less than its local execution time, i.e., dn < tl

n. This means that
the task should always be offloaded, and sufficient resources
should be allocated. Let Ô denote the set of all these tasks,
i.e., Ô = {n|dn < tl

n, n ∈ N}. Since all tasks in Ô should be
offloaded, we have Ô ⊆ O. The original global optimization
problem changes into

GP3: max
O,f

∑

n∈O
φnun(1, w, fn)

s.t.: Ô ⊆ O ⊆ N,

(25), (27)–(31). (40)

The corresponding local optimization problem changes into

LP3: max
O,f

∑

n∈O
�n − ςn

fn

s.t.: Ô ⊆ O ⊆ N4,

(28), (32), (38), (41)

where N4 = {n|cn/toutlmt
n ≤ F0, n ∈ N1}. In LP3, a new

search space of O, i.e., N4, is derived because constraint (36)
does not apply to this scenario: A task in Ô should always be
offloaded even it brings negative utility.

By pre-determining some elements of the offloading set O
before making the offloading decision, HMAOA can be well
adapted to the new scenario. Specifically, in each local optimiza-
tion we search from the difference set between N4 and Ô, i.e.,
N4 − Ô, for the optimal head-subsequence, which, combined
with Ô, can produce the maximum system utility. Note that
some local optimization problems (i.e., LP3) of GP3 may be
infeasible because Ô �⊆ N4, |Ô| > Omax, or

∑
n∈Ô fn > F0.

This does not affect the global optimization. We just need to
optimize the feasible ones and, among them, find the optimal
solution.

However, there exists the situation where all the derived local
optimization problems are infeasible. It indicates that the global
optimization problem itself is infeasible because of resource
limitation. How to deal with this situation is beyond the scope
of this paper, which is an interesting topic to investigate in our
future work.



B. Resource Multiplexing

Since users’ requests arrive dynamically, HMAOA can work
in an online mode to achieve resource multiplexing in the time
dimension: The BS collects the released communication and
computation resources in real time and allocates current avail-
able resources to the requesting UEs. In this mode, our original
offloading optimization problem can be rewritten as

GP4: max
O,f

∑

n∈O
φnun(1, w, fn)

s.t.: w = B̂/|O|, (42)

O ⊆ N̂, (43)
∑

n∈O
fn ≤ F̂0,

(27), (29)–(31). (44)

where N̂ is the set of current requesting UEs, and B̂ and F̂0

are current available wireless bandwidth and CPU frequency in
the MEC server, respectively. Since GP4 is equivalent to GP2,
HMAOA can solve this problem without any modification.

C. Multiple Coverage Regions

In this paper, the coverage region of one BS is considered
to be the basic spatial unit of offloading decision and resource
allocation. By dividing the physical space into multiple spatial
units based on BS’s coverage region and only focusing on one of
them, the offloading problem can be simplified. At the same time,
applying the solution for one coverage region (i.e., HMAOA) to
others is straightforward.

The overall system performance can be further improved if
BSs can cooperate. This can ensure the success of ongoing
offloaded tasks even when UEs traverse among BS’s coverage
regions. To further optimize the offloading scheme in this situ-
ation is an interesting topic to investigate at the next stage, in
which the handover cost, delay, the available resources of both
the original and the target BS, and the topology and status of the
edge and core network should all be taken into account.

V. EVALUATION RESULTS

In this section, simulation experiments are adopted to evaluate
the proposed HMAOA. All the experiments are run on Matlab
R2018b using a server with Intel Xeon CPU E5-2650 @ 2.2 GHz
processor. Table II summarizes the main simulation parameters
and their default values.

In our simulation, the coverage region of the BS is considered
to be a circle with a radius of R = 100 meters. The system
bandwidth of the BS is set as B = 20 MHz, and the total
available CPU frequency is set asF0 = 20 GHz. All the wireless
communication parameters, including the path-loss, the white
Gaussian noise density, and the UE’s transmission power, are
set in accordance with the 3GPP specification [36].

Each UE has its motion parameters, including location, speed,
and direction. In the simulations, for simplicity, we consider all

TABLE II
MAIN SIMULATION PARAMETERS

UEs moving straightly with a constant speed. In each simula-
tion run, N moving UEs are uniformly distributed in the BS’s
coverage region, and their speed and direction are chosen from
the uniform distributions as shown in Table II.

For the sake of generality, all the parameters regarding UE,
i.e., the UE’s local CPU frequency f l

n, the user’s time consump-
tion preference βT

n , and the user preference of SP φn, are set as
random variables following the uniform distributions as shown
in Table II. The same consideration holds for the parameters
regarding task, i.e., the input data size dn, the number of CPU
cycles cn, and the latency requirement dn. To ensure that the local
execution of a task is completed within its latency requirement,
dn is set to cn/f

l
n if its randomly generated value is less than

cn/f
l
n.

We set the time interval, in which UEs’ trajectories can
be predicted, i.e., tP, to 4 seconds. The power consumption
coefficients, i.e., ξ and γ, and the Taylor order parameter, i.e.,
K, are set in accordance with [17] and [29], respectively.

The proposed HMAOA is compared with the following base-
line algorithms.
� Exhaustive Search Method (ESM): In this method, all

the 2N combinations of offloading decisions are evaluated
to find out the optimal solution with the highest utility.
Because of the enormous computational complexity, it
takes a huge amount of time to run this method.

� Genetic Algorithm (GA): As a meta-heuristic algorithm,
GA is a practical solution for this kind of combinatorial
optimizations. The GA implementation in Matlab global
optimization toolbox is adopted. The offloading decision
is encoded into the chromosome of each individual. As
the algorithm progresses, individuals that contribute higher
system utility gain more opportunities for reproduction.
When GA terminates, the most adaptable individual is
selected as the final offloading decision. The settings of
GA are summarized in Table III.

� Stationary Exhaustive Search Method (SESM): This
method makes offloading decisions without considering
UEs’ mobility. It assumes that all UEs are stationary, and



TABLE III
SETTINGS OF THE GENETIC BASELINE ALGORITHM

adopts ESM to find the optimal offloading solution. Since
UEs are actually moving, following SESM’s offloading
decision may cause task failure. The performance of SESM
is the upper bound of all the methods that do not consider
UEs’ mobility.

� Independent Decision Execution (IDE): In this method,
a UE assumes that the resources in the MEC server are
dedicated to its offloaded task, and makes offloading deci-
sions independently. This method takes the mobility of UE
into account. When it is possible to gain a higher utility
compared with local execution, the UE offloads its task.
This is a classic approach that does not consider resource
allocation [12], [16].

� All Edge Execution (AEE): All UEs offload their tasks,
and they need to compete for the limited communication
and computation resources.

� All Local Execution (ALE): In contrast with AEE, of-
floading is not allowed in this method, and all tasks are
executed locally.

It is worth noting that, without considering user mobility or
resource limitation, the offloading decisions made by SESM,
IDE, and AEE may cause task failure and wasted resources.
How to deal with the failed tasks in these methods is beyond the
scope of this paper. In this experiment, we simply assume that
a UE can obtain how many resources are allocated for it from
the response of the MEC server. If the allocated resource is not
enough for task offloading, the UE executes the task locally,
which brings 0 user utility.

With different numbers of UEs (N = 5, 10, . . ., 30), the sim-
ulation is run for 200 iterations. In each iteration, the randomly
generated parameters, under which all the algorithms run, are the
same. Then, the average outcome is adopted as the simulation
result.

System Utility With Varying Number of Users: We first eval-
uate the average system utility with different numbers of users,
and the evaluation results are shown in Fig. 2. Because ALE
always produces 0 system utility, we omit it in the figures of this
section unless necessary. There are two bound parameters in
HMAOA, i.e., Ψl and Ψh. The effect of their values is evaluated
in later simulation, and at this time, they are set to Ψl = 0.8
and Ψh = 0.3, respectively. We can see that the performance of
HMAOA is very close to ESM. It always achieves more than
99.5% of the optimal system utility under different numbers
of users. The performance of GA and HMAOA is close when
N is small. As N increases, the performance gap between
GA and HMAOA becomes larger. The average system utility
of GA, when N = 30, is only about 75% of HMAOA. When
N > 20, because of the huge search space, the utility of GA even
decreases. Since mobility is not considered, SESM may offload

Fig. 2. Average system utility with different numbers of users.

Fig. 3. Average number of offloaded UEs with different numbers of users.

some inappropriate tasks, which contributes 0 user utility (as
mentioned before). Its performance is strictly lower than ESM,
HMAOA, and GA. When N ≥ 15, the average system utility of
AEE becomes negative, and so does IDE whenN ≥ 20. Because
of the fierce resource contentions, resources allocated to each UE
are not enough to produce positive utility. We omit the negative
utility segments in Fig. 2 since the performance of these methods
is even worse than ALE.

Number of Offloaded UEs With Varying Number of Users:
Then, we evaluate the average number of offloaded UEs with
different numbers of users in the same setting as before, as
shown in Fig. 3. Since ALE never offloads, we omit it in this
figure. Because AEE always offloads a task, its offloaded UE
number increases linearly with the increase of user number. In
our simulations, IDE always assumes that a UE can monopolize
all the resources in the MEC server. Because the resources on
an MEC server are usually adequate for only one task, the
performance of IDE is similar to the AEE. ESM, HMAOA,
GA, and SESM perform similarly. Constrained by the limited
resources, the numbers of their offloaded UEs grow very slowly
and are stable at around 10.

Algorithm Running Time With Varying Number of Users:
Fig. 4 shows the average running time of different algorithms
with different numbers of users. Due to the extremely high
complexity of ESM, SESM, and GA, we set the y-axis in
Fig. 4 to a logarithmic scale. From this figure, we can see the
exponential complexity of ESM and SESM. GA is always with



Fig. 4. Average running time of algorithms with different numbers of users.

Fig. 5. Variation of the performance of different methods when N = 30.

high complexity. To find the optimal solution, a large population
size and many generations are necessary. Since the algorithm
logic of IDE and AEE are simple, their running times are
negligible. The running time of HMAOA increases with N .
Thanks to its polynomial complexity (O(N 3 × (F0/step))), its
running time is less than 1 second even when N = 30.

Variation of System Utility: The performance of each offload-
ing method is analyzed across different simulation runs. In each
simulation run, the system utility of each method is normalized,
which is presented as a ratio of the system utility to the optimal
one obtained by ESM. Obviously, this ratio cannot be greater
than 1, and the method with a higher ratio performs better
in each simulation run. We adopt the cumulative distribution
function (CDF) to show the distribution of the ratios across all
the simulation runs when N = 30, as shown in Fig. 5. Because
the system utility of ALE is always equal to 0, its CDF curve
shows a vertical line, i.e., x = 0. When N = 30, because of
the heavy resource contention, IDE and AEE nearly always
produce negative system utility (only about 10% of the outcome
is positive). Since AEE offloads all the tasks, its performance
is the worst among all methods. In the worst case, SESM and
GA achieve 17.0% and 49.1% of the optimal system utility,
respectively. HMAOA shows its significant performance and
excellent stability. It can achieve 95.6% of the optimal system
utility even in the worst case. Its curve is very close to x = 1,

Fig. 6. Average system utility under different user speed when N = 20.

i.e., the curve of ESM (the normalized system utility of ESM is
always 1).

Average System Utility With Varying User Speed: Fig. 6 shows
the relation between the average system utility and user speed
under different algorithms. The number of UEs is fixed, i.e.,
N = 20, and the speed of all users varies from 0 m/s (i.e.,
stationary) to 60 m/s. The average system utility of all the
algorithms decreases as the speed of UEs increases because
many tasks that can contribute higher system utility cannot be
offloaded any more considering the mobility constraint. ESM
always brings the highest system utility, and the performance
of HMAOA is almost the same as it. The curve of GA is lower
than HMAOA, as well as ESM. We omit the curves of IDE
and AEE in Fig. 6 since their average system utility is always
negative when N = 20, even worse than ALE (always equals to
0). The performance of SESM is the same as ESM when UEs
are stationary. As the speed of a UE grows, the probability of
it leaving the BS’s coverage region before the completion of
its offloaded task increases. Without considering this situation,
SESM may offload some inappropriate tasks, leading to 0 user
utility. Its performance, hence, drops rapidly with the increase
of user speed comparing with other methods.

Performance of HMAOA With Varying Bound Parameters:
The performance of HMAOA is affected by two bound parame-
ters, i.e.,Ψl andΨh. As introduced before, the value ranges ofΨl

andΨh are (0,1], and the lessΨl orΨh is, the more change points
is ignored. In this simulation, four pairs of bound parameters
are chosen, from (Ψl = 1,Ψh = 1) to (Ψl = 0.5,Ψh = 0.3).
Note that, when both of them are set to be 1, the comparison
of tasks degenerates into the comparison of areas under their
utility functions. Fig. 7 shows the effects of the two bound
parameters to the performance of HMAOA. When N ≤ 15, the
HMAOA with higher bound parameters performs slightly better.
That is because when the number of users is small, the resource
allocation varies greatly, and it is not reasonable to ignore too
many change points. When the number of users becomes larger,
e.g., N ≥ 20, the severe resource competition makes it unlikely
that one UE is allocated with too many resources, and the
resource allocation among UEs tends to be even. In this case, a
lower bound parameter can achieve a better result. In practical



Fig. 7. The performance of HMAOA with varying bound parameters.

situations, we can adjust the bound parameters with the variation
of user numbers to achieve higher performance.

VI. RELATED WORKS

The first technique to enable MEC is cloudlet proposed in
2009, which deploys the cloud infrastructure to the network
edge, bringing satisfactory user experience [2], [7]. To integrate
the MEC concept into the mobile network architecture, the Eu-
ropean Telecommunications Standards Institute (ETSI) makes a
lot of contributions, and many standards regarding ETSI MEC
are published [4].

As introduced before, offloading decision-making in MEC is
a challenging problem and receives extensive attention. Many
previous studies assume a quasi-static scenario when making
offloading decisions. In [11], Lin et al. present a three-step
algorithm to minimize energy dissipation of a directed acyclic
graph-based application while meeting the application deadline.
Mao et al. propose an offloading algorithm to minimize the
task execution delay on a device with energy harvesting and
frequency scaling function [37]. Reference [38] investigates the
offloading problem of a full granularity application to minimize
the energy consumption of the application.

When it comes to multi-user scenarios, how to allocate the
limited resources at the network edge becomes a challenge.
Reference [15] tries to maximize the system utility of multiple
users by jointly optimizing their transmission power and the
computation resource allocation in the BS. Chen et al. propose
a game theory-based algorithm to make the offloading decision
among multiple users in a wireless contention environment to
minimize the system-wide overhead [17], [18]. The authors
in [39] study the task offloading and resource allocation in a
vehicular scenario, where server selection, task partition, and
computation resource allocation are jointly considered.

Other than offloading decision and resource allocation, mobil-
ity is also an important research topic in MEC. There are many
methods to deal with user mobility from different perspectives.
Service migration is widely researched to ensure service conti-
nuity and availability by migrating a service entity closer to its
user. For example, Sun et al. propose a novel service placement
algorithm for a cloudlet network architecture to optimize the
tradeoff between migration gain and migration cost [21]. Since

the cost of migrating the virtual disk of a service entity is high, the
authors in [22] propose to place multiple virtual disk replicas of a
service entity into suitable cloudlets and only migrate the service
entity among these cloudlets to reduce the average service delay.
Path selection tries to optimize the data delivery paths for task
offloading. In [23], the authors propose an algorithm to select the
optimal path for offloading data delivery between UE and MEC
servers to minimize the transmission delay. Many studies use
fine-grained control to ensure the success of a specific offloading
task during user movement. Reference [24] offers a cloud-aware
power control algorithm to adjust the transmission power of the
BS to prevent the handover from happening before the offloading
result received. In [25], we propose a GA-based computation
allocation algorithm to ensure the success of task offloading
before a handover occurs.

In this paper, we investigate offloading decision and resource
allocation among multiple UEs to achieve the optimal system
utility. Due to the mobility of UEs, sufficient resources must
be allocated to ensure the completion of the offloading process
within BS’s coverage region.

VII. CONCLUSION

As a key technology of Internet of things, MEC enables UEs to
support resource-intensive applications with significantly lower
latency and less energy consumption. In this paper, we focus
on the challenging problem of offloading decision and resource
allocation among multiple moving UEs in MEC. A heuristic
mobility-aware offloading algorithm is proposed to maximize
the system utility under the constraints of user mobility, resource
limitation, and task latency. The proposed HMAOA is with poly-
nomial complexity. Extensive simulation results demonstrate
that it can achieve offloading performance very close to the
optimal solution, but with high efficiency.

APPENDIX

PROOF OF THEOREM 1

Here, we first introduce 0–1 knapsack problem: there is a
knapsack, whose maximum weight capacity is W0, and a set of
items I. Each item in the set has a weight wn and a value vn.
The objective is to maximize the sum of the values of the items
packed in the knapsack so that the sum of the weights is less
than or equal to the knapsack’s capacity. It can be formulated as
follows:

max
O

∑

n∈O
vn

s.t. O ⊆ I
∑

n∈O
wn ≤W0,

where O is the item set decided for packing. The 0-1 knapsack
problem is known as NP-hard [33].

Let I = N3, wn = kn, vn = �n − ςn/fn and Omax = |I|, re-
spectively. The 0-1 knapsack problem is reduced to a special case
of LP2, in which constraint (38) is kn ≤ fn ≤ kn. Therefore, if
there is an algorithm to solve LP2, we can use it to solve the 0-1



knapsack problem. Hence, problem LP2 is NP-hard. Since GP
is polynomial-time reducible to LP2, the original problem GP
is also NP-hard.

APPENDIX B
PROOF OF LEMMA 1

∀n,m ∈ N3, if OTn � OTm, then kn < km, Utiln(km) >
Utilm(km), and Utiln(F0) > Utilm(F0). We have

{
(�n − �m)km > ςn − ςm

(�n − �m)F0 > ςn − ςm.

There are three different cases to be considered:
� When �n > �m, km ≤ f ≤ F0 ⇒ (�n − �m)F0 ≥ (�n −
�m)f ≥ (�n − �m)km > ςn − ςm. Hence, when �n >
�m, Utiln(f) > Utilm(f), ∀f ∈ [km, F0];

� When �n = �m, (�n − �m)km > ςn − ςm ⇒ ςn − ςm <
0, and km ≤ f ≤ F0 ⇒ (�n − �m)f = 0 > ςn − ςm.
Hence, when �n = �m, Utiln(f) > Utilm(f), ∀f ∈
[km, F0];

� When �n < �m, (�n − �m)F0 > ςn − ςm ⇒ ςn − ςm <
0. Meanwhile, km ≤ f ≤ F0 ⇒ (�n − �m)km ≥ (�n −
�m)f ≥ (�n − �m)F0 > ςn − ςm. Hence, when �n <
�m, Utiln(f) > Utilm(f), ∀f ∈ [km, F0].

To sum up, the lemma is thus proved.

APPENDIX C
PROOF OF LEMMA 2

1) ∀n ∈ N3, we have OTn � OTn.
2) ∀n,m ∈ N3, OTn � OTm ⇒ OTm � OTn.
3) ∀n,m, l ∈ N3, if OTn � OTm, then kn < km,

Utiln(km) > Utilm(km), and Utiln(F0) > Utilm(F0).
If OTm � OTl, then km < kl, Utilm(kl) > Utill(kl),
and Utilm(F0) > Utill(F0). Hence, kn < km < kl
and Utiln(F0) > Utilm(F0) > Utill(F0). Further-
more, with Lemma 1, OTn � OTm ⇒ Utiln(f) >
Utilm(f), ∀f ∈ [km, F0], and OTm � OTl ⇒
Utilm(f) > Utill(f), ∀f ∈ [kl, F0]. Because of
[km, F0] ⊃ [kl, F0], we can obtain ∀f ∈ [kl, F0],
Utiln(f) > Utilm(f) > Utill(f).

The lemma is thus proved.

APPENDIX D
PROOF OF LEMMA 3

We can use any sorting algorithm to build SeqN3
, denoted

as SeqN3
= (OT ′1, OT ′2, . . . , OT ′|N3|), where OT ′1 � OT ′2 �

· · · � OT ′|N3|. The proof is by contradiction. Assume that the
optimal offloading decision set, which brings the highest system
utility, is not one of SeqN3

’s head-subsequences. We can firstly
sort the set, and rewrite it into a subsequence of SeqN3

as
Seqmax = (OT ′′1 , OT ′′2 , . . . , OT ′′M ), where M denotes the car-
dinality of the offloading decision set. Algorithm 2 obtains the
optimal system utilityFunc(Seqmax) and the optimal frequency
allocation fmax = (f ′′1 , f

′′
2 , . . . , f

′′
M ). Because Seqmax is not one

of SeqN3
’s head-subsequences, i.e., Seqmax �= head(Seq,M),

there should be at least one item in head(Seq,M), which is

not in Seqmax, and we denote any one of them as OT ′x. We
also can derive that the last item in Seqmax, OT ′′M , is not in
head(Seq,M). Obviously,OT ′x � OT ′′M , hence kOT ′x < kOT ′′M
and UtilOT ′x(f) > UtilOT ′′M (f), ∀f ∈ [kOT ′′M , F0]. Replacing
OT ′′M in Seqmax with OT ′x, a higher system utility is obtained
since UtilOT ′x(f

′′
M ) > UtilOT ′′M (f ′′M ). However, Seqmax is al-

ready the optimal offloading decision, which leads to a contra-
diction. Therefore, the optimal offloading decision set is one of
SeqN3

’s head-subsequences.

APPENDIX E
PROOF OF LEMMA 4

Assume that the optimal offloading decision set, which brings
the highest system utility, is O, and the rest tasks in N3 form
a set O. We have O ∪O = N3 and O ∩O = ∅. This lemma
will be proved in two steps.
� ∀OTi ∈ O and ∀OTj ∈ O⇒ OTi � OTj .

The proof is by contradiction. Assume that there exist
OTi ∈ O and OTj ∈ O, satisfying OTi � OTj . Then, we
can replaceOTj inOwithOTi to bring higher system util-
ity. However, O is the optimal offloading decision set, and
the utility cannot be higher, which leads to a contradiction.
Hence, the proposition is thus proved.

� O can be rewritten as a head-subsequence of one of sorted
linear extension of (N3,�).
This proposition is constructively provable. SinceO ⊆ N3

and O ⊂ N3, (O,�) and (O,�) are posets. We can apply
any topological sorting algorithm to linearly extend (O,�)
and (O,�), and turn them into SeqO and SeqO. Then, we
combine the two sequences into SeqN3

= (SeqO, SeqO).
According to the first proposition (∀OTi ∈ O and ∀OTj ∈
O⇒ OTi � OTj), we know SeqN3

is sorted. So we can
build (N3,�∗) based on SeqN3

, which is a totally ordered
set, and ∀OTi, OTj ∈ (N3,�), OTi � OTj ⇒ OTi �∗
OTj , and OTi, OTj ∈ (N3,�∗). That means SeqN3

=
(SeqO, SeqO) is a sorted linear extension of (N3,�), and
SeqO is the head-subsequence.
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