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23 Abstract

24 Northern boreal peatlands are important ecosystems in modulating global biogeochemical 

25 cycles, yet their biological communities and related carbon dynamics are highly sensitive to 

26 changes in climate. Despite this, the strength and recent direction of these feedbacks are still 

27 unclear. The response of boreal peatlands to climate warming has received relatively little 

28 attention compared with other northern peatland types, despite forming a large northern 

29 hemisphere-wide ecosystem. Here we studied the response of two ombrotrophic boreal 

30 peatlands to climate variability over the last c. 200 years for which local meteorological data 

31 are available. We used remains from plants and testate amoebae to study historical changes in 

32 peatland biological communities. These data were supplemented by peat property (bulk density, 

33 carbon and nitrogen content), 14C, 210Pb and 137Cs analyses and were used to infer changes in 

34 peatland hydrology and carbon dynamics. In total, six peat cores, three per study site, were 

35 studied that represent different microhabitats: low hummock, high lawn and low lawn. The data 

36 show a consistent drying trend over recent centuries, represented mainly as a change from wet 

37 habitat Sphagnum spp. to dry habitat S. fuscum. Summer temperature and precipitation 

38 appeared to be important drivers shaping peatland community and surface moisture conditions. 

39 Data from the driest microhabitat studied, low hummock, revealed a clear and strong negative 

40 linear correlation (R2 = 0.5031, p < 0.001) between carbon accumulation rate and peat surface 

41 moisture conditions: under dry conditions, less carbon was accumulated. This suggests that at 

42 the dry end of the moisture gradient, availability of water regulates carbon accumulation. It can 

43 be further linked to the decreased abundance of mixotrophic testate amoebae under drier 

44 conditions (R2 = 0.4207, p < 0.001). Our study implies that if effective precipitation decreases 

45 in the future, the carbon uptake capacity of boreal bogs may be threatened.
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46 Introduction

47 Peatlands play a key role in global biogeochemical cycling by fixing atmospheric CO2 through 

48 plant photosynthesis and releasing CO2 and CH4 through decomposition. Peatland biological 

49 communities (plants and microbes) are strongly controlled by temperature and hydrology, 

50 which affect peatland carbon (C) sequestration and sink potential (Jassey et al., 2015; Laine et 

51 al., 2019; McPartland et al., 2019; Riutta et al., 2007). Bog plant communities dominated by 

52 Sphagna are sensitive to environmental change, especially during the growing season (Loisel, 

53 Gallego-Sala, & Yu, 2012), and plant functional type successions may even occur under climate 

54 change, which could impact peatland carbon sink capacity (Loisel et al., 2014). Likewise, 

55 testate amoebae, the dominant group of protozoa in peatlands, play an important role in nutrient 

56 and carbon cycling (Gilbert, Amblard, Bourdier, & Francez, 1998). In particular, mixotrophic 

57 testate amoebae (MTA), which partly rely on photosynthesis, contribute to carbon sequestration 

58 in Sphagnum peatlands (Lara and Gomaa, 2017). Due to their sensitivity to hydrology 

59 (Charman, Hendon, & Woodland, 2000), climate change may alter the abundance of 

60 mixotrophic testate amoebae in Sphagnum peatlands, and thus carbon uptake. Despite their 

61 small size and biomass, it has been shown that a 50% decrease in the biomass of MTA can be 

62 linked to a significant reduction of net C uptake (-13%) of the entire Sphagnum bryosphere 

63 (Jassey et al., 2015). 

64 Whilst global scale warming is projected to continue, precipitation patterns remain more 

65 regionally variable (Collins et al., 2013). The climate model intercomparison project (CMIP5) 

66 under an RCP8.5 scenario predicts warmer and wetter climate for Fennoscandia (Collins et al., 

67 2013). However, these predictions cannot be directly applied to infer peatland hydrological 
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68 conditions, which are ecohydrologically complex due to the synchronous forcing of 

69 precipitation, evapotranspiration and runoff (Wu, Kutzbach, Jager, Wille, & Wilmking, 2010; 

70 Zhang et al., 2018a), supplemented by autogenically-driven successional processes (Tuittila, 

71 Väliranta, Laine, & Korhola, 2007).

72 Millennial-scale peat proxy studies from southern Finland have shown dynamic community 

73 variations, with variations both between plant functional types and within Sphagnum spp. 

74 (Tuittila et al., 2007; Väliranta et al., 2007, 2012). However, to date, there is a lack of studies 

75 on more recent peatland dynamics in southern Finland and their response to recent climate 

76 change, such as post Little Ice Age (LIA; ca. AD 1400-1850) warming or human-induced 

77 warming since the late 1900s. Tree ring-based climate reconstructions (Helama et al., 2014) 

78 and instrumental measurements from southern Finland suggest a clear increase in summer 

79 temperatures since the LIA, with cooler and wetter summers during the LIA giving way to 

80 increasingly warmer summer temperatures towards the end of the 20th century (Helama, 

81 Meriläinen, & Tuomenvirta, 2009; Luoto & Helama, 2010). Experimental studies applying 

82 open top chambers or mesocosms that started in the 2000s provide empirical short-term 

83 simulation data of peatland responses to different climate conditions (Dieleman, Branfireun, 

84 McLaughlin, & Lindo, 2015; Mäkiranta et al., 2018; Ward et al., 2013; Weltzin, Bridgham, 

85 Pastor, Chen, & Harth, 2003; Wiedermann, Nordin, Gunnarsson, Nilsson, & Ericson, 2007). A 

86 very recent experimental study of plant community response to a 15 year-long water-table 

87 drawdown suggested that fen vegetation is less resilient to water level changes, with these 

88 communities experiencing clear species turnover, while bog vegetation appeared to be more 

89 resistant (Kokkonen et al., 2019). Considering this potentially slower response time of bog 

90 vegetation to changes in the environment, there is a need for studies which capture longer time 
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91 periods than allowed by field experiments. Aerial photographs offer decadal-scale opportunity 

92 to observe changes in peatland environments but mainly at a landscape scale (Jauhiainen, 

93 Holopainen, & Rasinmäki, 2007; Tahvanainen, 2011). Only the most modern remote sensing 

94 techniques are accurate enough to investigate small-scale changes in vegetation type 

95 composition (e.g., vascular plants, mosses) over a few decades (Mikola et al., 2018). Proxy-

96 based analysis of peat profiles has the potential to provide accurate and long-term perspectives 

97 on peatland dynamics over centuries, but so far, in the boreal climate zone it has only been 

98 recently applied to permafrost peatlands in western Canada (Magnan et al., 2018; Piilo et al., 

99 2019; van Bellen et al., 2018). In short, there is a clear gap in understanding the responses and 

100 feedbacks of boreal bogs to on-going warming over timescales (i.e. decadal to centennial) 

101 relevant to contemporary and future climate and environmental change scenarios.

102 The links between vegetation, moisture conditions and climate are vital in understanding past, 

103 and in modelling future, peatland carbon dynamics (Frolking et al., 2010; Strack, Waddington, 

104 Rochefort, & Tuittila, 2006). Currently, large uncertainties remain in models of peatland 

105 dynamics due to a lack of quantitative understanding on peatland vegetation successions on 

106 decadal to centennial time scales. This study aims to quantifiably test whether changes in plant 

107 and testate amoeba communities, as well as carbon accumulation, are related to local climate 

108 variation over the past 200-300 years – a period that captures both post-LIA and post-industrial 

109 climate warming. More specifically, we aim to 1) reconstruct changes in peatland vegetation, 

110 hydrology and carbon dynamics over the past 200–300 years; 2) link the detected changes in 

111 peatland dynamics to measured climate parameters, namely summer temperature and 

112 precipitation; 3) determine the vegetation-hydroclimate-carbon dynamic feedbacks in boreal 

113 peatlands. To address the microtopographically heterogeneous nature of bogs, we examined 
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114 three different microhabitats at each study site. This experimental design enabled habitat-to-

115 habitat and site-to-site comparisons and provides the first high-resolution centennial-scale 

116 multiproxy study for northern boreal bogs in which replicated 210Pb and 14C-dated peat records 

117 encompassing different microhabitats are presented. 

118

119 Material and methods

120 Study sites and sampling

121 The two study sites, Siikaneva (61.83650°N, 24.17262° E) and Lakkasuo (61.78625° N, 

122 24.30908° E), are located in southern Finland (Figure 1), c. 6 km from one another and in 

123 separate hydrological catchments. Based on the 30-year averages (1981–2010) from the nearest 

124 weather station, Juupajoki-Hyytiälä (61.8456° N, 24°2906 E), the mean annual temperature of 

125 the area is 4.2 °C and mean annual precipitation is 711 mm (Pirinen et al., 2012). 

126 The Siikaneva peatland complex, which is surrounded mainly by boreal forest (Figure 1a), 

127 contains both fen and bog areas. The studied peat cores were collected within the bog area, 

128 which hosts a well-pronounced microtopography represented by open-water pools, bare peat 

129 surfaces, hollows and higher and drier lawns and hummocks (Korrensalo et al., 2018). The bog 

130 surface is covered by Sphagnum mosses, except in the ponds and bare peat surfaces. Sphagnum 

131 fuscum and S. rubellum grow on hummocks, where vascular plant vegetation is dominated by 

132 dwarf shrubs, such as Andromeda polifolia, Calluna vulgaris and Empetrum nigrum. 

133 Eriophorum vaginatum is also found on hummocks and is common on lawns, where the moss 

134 layer is dominated by S. magellanicum and S. rubellum. Wet hollows are dominated by S. 
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135 cuspidatum and S. majus, Carex limosa, Rhynchospora alba and Scheuchzeria palustris.

136 Lakkasuo peatland is an eccentric raised peatland complex surrounded by boreal forests (Figure 

137 1b). The sampled bog area is a mosaic of ecohydrological gradients from dry hummocks, to 

138 intermediate lawns and wet hollows (Andersen et al., 2011). The habitat-specific vegetation 

139 features are similar to those at Siikaneva. 

140 Samples were collected in October 2016 using a 60-cm long box corer from the transition zone 

141 between hummock and hollow, the extreme ends of moisture gradient, because the transition 

142 zone is most sensitive to changing environmental conditions (De Vleeschouwer, Chambers, & 

143 Swindles, 2010). At each site, we collected three peat cores along a moisture gradient within 

144 the transition zone: from low hummock (LH), high lawn (HL) and low lawn (LL) (Figure 1c, 

145 Table 1). Water-table depth (WTD, cm) at each sampling point was measured and dominant 

146 vegetation of the coring point was surveyed (Table 1). Individual cores were wrapped in plastic 

147 and transported to the laboratory in sealed PVC tubes and stored in a freezer. The cores were 

148 later defrosted and sub-sampled in 1-cm thick slices for further analyses. In addition, a survey 

149 of surface vegetation and WTD (measured over the 2016 growing season) was also carried out 

150 at both sites. In total, 19 plots were investigated, covering the main variations in vegetation.

151

152 Chronology

153 Radiocarbon (14C), lead (210Pb) and caesium (137Cs) dating methods were used to establish the 

154 chronologies. In total, six basal bulk peat samples, which represent equally good dating 

155 materials as picked plant remains, especially for Sphagnum bogs (Holmquist et al., 2016), were 
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156 sent to Poznan Radiocarbon Laboratory (Poznan, Poland) for 14C dating. Roots and rootlets 

157 were picked out and discarded to avoid contamination. The chemical pre-treatment followed 

158 the standard acid-base acid method for peat samples (coded as WW) (Brock, Higham, 

159 Ditchfield, & Ramsey, 2010). The chronology of the top part of each core (c. 40 cm) was 

160 determined primarily with 210Pb dating. The 210Pb dating samples were treated at the University 

161 of Exeter, UK (cores SLH, SHL, LLH and LHL) and University of Helsinki, Finland (cores 

162 SLL and LLL). A dry c. 0.2-0.5 g subsample from each 1-cm or 2-cm interval was analysed for 

163 210Pb activity after spiking with a 209Po yield tracer; see Kelly et al. (2017) and Estop-Aragonés 

164 et al. (2018) for detailed procedure. The alpha spectrometry counting was conducted at the 

165 University of Exeter for all the cores. Additionally, caesium (137Cs) dating with γ spectrometry, 

166 which provides date “markers”, was applied on single core SLH at the Finnish Meteorological 

167 Institute to validate the 210Pb results (Arnaud et al., 2006; Jeter 2000). The 137Cs-peak, 

168 indicating 1986 AD (when the Chernobyl disaster occurred), was used as a date maker and 

169 integrated into the age-depth model of SLH.

170 Age-depth models were developed using Plum (Aquino-López et al., 2018) in R version 3.6.0 

171 (R Core Team, 2019). 14C ages were calibrated using the IntCal13 calibration curve (Reimer et 

172 al., 2013). Total 210Pb data (Bq/Kg) were inputted in Plum and the number of samples which 

173 Plum used was determined by the pre-analysis within the software with exception of those cases 

174 where equilibrium was reached in the three or less deepest samples (LLH, LHL, SHL and SLL). 

175 Plum is capable of integrating 210Pb and radiocarbon dates into a single chronology by avoiding 

176 remodelling of the 210Pb, resulting in an unbiased chronology. This study represents the first 

177 application of Plum that integrates both 14C and 210Pb. 
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178

179 Proxy analyses

180 Plant macrofossil analysis was undertaken for all six cores at 1- to 2-cm resolution. For the four 

181 cores characterised as low hummock and high lawn ecotones, where the plant records indicated 

182 changes in hydrology, we also conducted testate amoeba analysis as we expected these changes 

183 to be more reliably visible in testate amoeba records (Gałka, Tobolski, Górska & Lamentowicz, 

184 2017; Väliranta et al., 2012; Zhang et al., 2018a). Testate amoeba analysis was first performed 

185 at 4-cm resolution, but in cases where prominent changes occurred, the resolution was increased 

186 to 2-cm. The lower resolution was sufficient where the proxy-based WTD reconstruction was 

187 used as an environmental variable in explaining carbon accumulation patterns, as carbon 

188 accumulation rate calculations were completed at 4-cm resolution and were therefore 

189 comparable with the testate amoeba results. 

190 Plant macrofossil analysis was performed following Väliranta et al. (2007). Volumetric samples 

191 (c. 5 cm3) were gently rinsed under running water using a 140-μm sieve. No chemical treatment 

192 was applied. Remains retained on the sieve were identified. Proportions of different plant types 

193 and unidentifiable organic matter (UOM) were estimated with the aid of a scale paper under a 

194 petri dish using a stereomicroscope at the magnification of 10 – 40. Further identification to 

195 species level was carried out using a high-power light microscope at the magnification of 100 

196 – 200. Plant-based WTD reconstruction was carried out using the modern vegetation survey 

197 data from the Siikaneva and Lakkasuo sites based on a weighted average approach; transfer 

198 function development followed the methods described in Zhang et al. (2017).  
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199 Processing of testate amoeba samples followed a modified version of the standard method 

200 (Booth, Lamentowicz & Charman, 2010). Samples were boiled in distilled water for 15 min 

201 and stirred occasionally. The samples were then sieved with a 300-μm mesh and back sieved 

202 with a 15-μm mesh. Materials retained on the 15-μm sieve were centrifuged at 3000 r.p.m. for 

203 5 min. At least 100 individual shells for each sample were counted and identified to species or 

204 “type” level under a light microscope at the magnification of 200 – 400. Taxonomy followed 

205 Charman et al. (2000), supplemented with online sources (Siemensma, 2019). Testate amoeba-

206 based WTD reconstructions were performed using the transfer function developed by 

207 Amesbury et al. (2016). Absolute WTD values (the larger the values the drier the conditions) 

208 were normalized to z scores over the length of each core (Swindles et al., 2015). Z > 0 indicates 

209 drier conditions than the sequence’s average, z < 0 indicates conditions wetter than average. 

210 We calculated the total proportion of mixotrophic testate amoeba taxa (here Amphitrema 

211 wrightianum, Archerella flavum, Heleopera sphagni, Hyalosphenia papilio, Placocista spinosa) 

212 that contribute to carbon cycling in peatlands (Jassey et al., 2015). 

213 A LOESS smoothing function with a span-value (degree of smoothing) setting of 0.5 was 

214 applied to the compiled proxy-wise WTD (z scores) dataset to explore the overall hydrological 

215 changes reflected on different proxies. The analysis was completed using the function loess () 

216 in R version 3.6.0.

217

218 Peat property analyses and carbon accumulation

219 Contiguous samples of known volume (5 cm3) were extracted from the cores at 1-cm resolution 
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220 and freeze-dried. Samples were then weighed to enable calculation of bulk density (g cm-3), 

221 which was done by dividing the dry peat weight (g) by the wet peat volume (cm3). Percentage 

222 of carbon and nitrogen content by mass was measured at every 4 cm on homogenously ground 

223 sub-samples using a Micro Cube Elemental Vario CNS-analyzer at the University of Helsinki, 

224 Finland. Carbon-to-nitrogen mass ratios (C/N) were calculated from C and N content data.

225 Vertical growth rates for each peat core were calculated based on the mean age estimates 

226 derived from the age-depth models. Apparent carbon accumulation rate (ACAR; g C m-2 yr-1) 

227 was calculated by multiplying the bulk density of a depth-specific increment by its C content 

228 and by the accumulation rate. Peat decay modelling (Clymo, 1984) was used to derive the 

229 allogenic impacts-forced carbon accumulation variations (Zhang et al., 2018b). The Clymo 

230 model (1984) was first applied on the cumulative peat mass (bulk density) data to derive peat 

231 addition rate (p) and peat decay coefficient (α) using the curve fitting 

232 method. After which the derived parameters p, α and carbon content were 

233 used to calculate carbon accumulation rate (CAR) under constant 

234 conditions (autogenic accumulation). The difference (presented 

235 as CAR z scores) between ACAR and CAR are therefore interpreted 

236 to be driven by allogenic forcing. 

237

238 Environmental drivers on carbon accumulation

239 To address the environmental controls on carbon accumulation 

240 patterns, linear regression analysis (95% confidence intervals 
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241 displayed) was applied to carbon accumulation rates and 

242 potential environmental variables. The environmental variables 

243 included reconstructed WTD z scores from testate amoebae for 

244 cores SLH, SHL, LLH and LHL, and from plant macrofossils for 

245 cores SLL and LLL; measured July-August temperature (thereafter 

246 referred to as summer temperature) data (1829-2016) from the 

247 Finnish Meteorological Institute; mixotrophic testate amoeba 

248 proportion for SLH, SHL, LLH and LHL. The analyses were first 

249 applied for individual cores and when this suggested that cores 

250 from the same habitat had similar patterns, habitat-specific 

251 analyses were performed and used for further discussions. The 

252 analysis was carried out using the lm() function in R version 3.6.0.

253

254 Results 

255 Chronology and vertical peat growth 

256 The studied peat cores from Siikaneva were dated to c. 1700–1820 AD, while Lakkasuo peat 

257 cores yielded basal ages of c. 1710–1760 AD. The 14C dating of the basal sample from core 

258 SHL yielded a modern age and was detected as an outlier in the age-depth model. Plum uses a 

259 gamma autoregressive model to construct the chronology, this model gathers information from 

260 all the measurements and uses it to infer an age estimate at any depth (even when the 

261 measurements are not present). In the case of SHL, Plum used the information from the first 40 
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262 cm, where 210Pb was measured, to infer a trend and memory parameters which allowed the 

263 model to conclude that the 14C date was an outlier and then provided an age estimate given the 

264 information provided by the 210Pb data, although with a bigger uncertainty, therefore the 

265 chronology of the section below c. 40 cm should be interpreted with caution. Peat accumulation 

266 rates have been relatively consistent within Lakkasuo peatland during recent centuries, while 

267 larger variations within individual peat cores and between different cores occurred at Siikaneva 

268 site (Tables 1 and S1-3, Figure 2).  

269

270 Past vegetation succession

271 The plant macrofossil assemblages recorded in situ vegetation dynamics over the past c. 200–

272 300 years. In all the six cores, Sphagnum spp. were the dominant component, occasionally 

273 accompanied by other taxa such as Eriophorum vaginatum, Mylia anomala and Ericaceae spp. 

274 (Figure 3). 

275 For the driest low hummock habitat, S. fuscum and S. rubellum dominated core SLH from c. 

276 1710–1950 AD, after this S. fuscum was the only abundant taxon accompanied by Eriophorum 

277 vaginatum from c. 1980 to 2000 AD. Lakkasuo core LLH was first occupied by S. balticum and 

278 S. magellanicum during c. 1710–1770 AD, after which S. fuscum became abundant. 

279 For the mid-range high lawn habitat, at Siikaneva S. rubellum was abundant throughout the 

280 whole section, with S. balticum present from c. 1820 to 2005 AD but S. fuscum was more 

281 commonly recorded after c. 1990 AD. For the Lakkasuo record, the bottom sample at c. 1730 

282 AD was dominated by S. magellanicum. After that, S. balticum was abundant with the presence 

Page 13 of 38 Global Change Biology



14

283 of S. majus/cuspidatum and S. angustifolium until c. 1960 AD. Afterwards, until the present, S. 

284 balticum was accompanied by S. fuscum. 

285 For the wettest low lawn habitat, vegetation was more variable than for the other two habitat 

286 types. At first, c. 1740–1800 AD, the Siikaneva assemblage was dominated by S. papillosum 

287 and S. rubellum, but then dominated by S. cuspidatum characteristic to wet hollows. Later the 

288 habitat changed back to S. papillosum-dominated drier lawn (c. 1850 to 1970 AD), followed by 

289 S. rubellum-dominated assemblage towards more recent times. The Lakkasuo assemblage was 

290 initially occupied by S. magellanicum and S. balticum between c. 1810 and 1850 AD, followed 

291 by S. cuspidatum/majus and S. balticum-dominated assemblages. Starting from c. 1890 AD, S. 

292 rubellum became abundant.  

293

294 Reconstructed water-table depth (WTD) 

295 The plant macrofossil-based WTD transfer function had a good performance (R2 = 0.80, 

296 RMSEP = 4.35 cm). Model-derived tolerances around WTD optima were very narrow (1 to 3 

297 cm) for species in wet habitats where water level is close to or at the moss surface, while species 

298 adapted to drier habitats had larger tolerances, up to 12 cm (Figure S1). 

299 In total, 40 testate amoeba taxa were detected from the four cores (Figure 3) that were used for 

300 reconstructing WTD. Archerella flavum was dominant in all the cores, with also Difflugia pulex 

301 in the cores SLH, SHL and LLH, Hyalosphenia elegans in cores SHL and SLH, and Alabasta 

302 militaris type in core SLH. 

303 In core SLH, plant-based WTD showed only little variability, the range being within c. 5 cm, 
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304 but testate amoeba-based WTD showed more conspicuous variations, especially for the period 

305 around c. 1840 AD in the late LIA where there is a remarkable wet to dry change (c. 10 cm) 

306 (Figure 3). For core LLH, both proxies showed comparable WTD patterns, i.e. from wet 

307 conditions before c. 1790 AD to dry conditions afterwards. The SHL testate amoeba record 

308 suggests large moisture change towards wetter habitat conditions dated to c. 1940–1950 AD 

309 but the plant-based WTD remained relatively stable; the assemblages were dominated by S. 

310 rubellum with a large tolerance of 8 cm (Figure S1). For LHL, both reconstructions suggest a 

311 wet phase between c. 1730 and 1830 AD and a dry period after c. 1960 AD. For the period 

312 between them, c. 1830-1960 AD, plant-WTD shows more variations than testate amoeba-based 

313 WTD, but both suggest medium dry conditions compared with the other two phases. For the 

314 SLL record, no large hydrological changes were detected; the general conditions remained wet. 

315 While the overall conditions at LLL were drier than SLL, especially after c. 1950 AD when the 

316 water table went down, several more recent wet periods were captured.   

317 In general, plant- and testate amoeba-based WTD reconstructions 

318 support each other, while the latter tends to have more and/or 

319 larger variations, as also suggested by previous studies (Gałka 

320 et al., 2017; Väliranta et al., 2012; Zhang et al., 2018a). 

321 Therefore, we used testate amoeba-based WTD reconstructions for 

322 linear regression analysis when available, i.e. for all the other 

323 cores except low lawns where only plant-based WTD 

324 reconstructions existed.

325
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326 Carbon accumulation and associations with environmental variables

327 Peat properties varied with depth and between different records (Table 1). For all the studied 

328 records, bulk density was 0.05 ± 0.01 (mean ± SD) g cm-3, carbon content was 43.01 ± 2.34%, 

329 while nitrogen content was 0.71 ± 0.28%. Apparent carbon accumulation rates (ACAR) varied 

330 considerably (72.15 ± 69.75 g C m-2 yr-1). All the studied sections showed a rapid increase of 

331 ACAR for the recent years (after 2000 AD) except the core LLL, which had relatively 

332 consistent ACARs throughout (Figure 3). 

333 Although CAR z scores (allogenic forcing-driven carbon accumulation rate variations) indicate 

334 some core-specific features, the general pattern suggests that for low hummocks, high lawns 

335 and Siikaneva low lawn the environmental changes have promoted carbon accumulation (i.e. z 

336 > 0) before c. 1830–1850 AD and after 1980 to 2000 AD (Figure 3). But for Lakkasuo low 

337 lawn, its CAR z scores only increased between the period from 1950 to 1990 AD.   

338 For low hummocks there were significant correlations between all the studied environmental 

339 variables and allogenic carbon accumulation variations measured as CAR z scores (Figure 4). 

340 In contrast, correlations were not found for the two other habitats: high lawns and low lawns 

341 (Figure S2). For low hummocks, a significant negative correlation (R2 = 0.5031, p < 0.001) was 

342 detected between CAR z scores and WTD (Figure 4a), meaning lower carbon accumulation in 

343 drier conditions. The correlation between CAR z scores and summer temperature was positive 

344 (R2 = 0.3184, p < 0.01) (Figure 4b), but the correlation was weaker than between CAR z scores 

345 and WTD. Abundance of mixotrophic testate amoebae were positively linked to carbon 

346 accumulation (R2 = 0.4207, p < 0.001) (Figure 4c). A further investigation of the distribution 
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347 of mixotrophic testate amoebae in different habitats indicated that in low hummocks, the 

348 abundance of mixotrophic testate amoebae was strongly linked to WTD (Figure S3; R2 = 0.7608, 

349 p < 0.001). However, in high lawns, this link was weaker, but still significant (R2 = 0.3006, p 

350 < 0.001). 

351

352 Discussion

353 Climate-driven centennial-scale bog surface drying 

354 We detected a consistent peatland surface drying, inferred from both proxies (Figures 3 and 5). 

355 In general, testate amoeba records suggest a gradual drying since the 1800s, most clearly visible 

356 in low hummocks and in the Lakkasuo high lawn core, while shifts in vegetation towards plant 

357 communities adapted to drier microhabitat occurred either synchronously or a few decades later. 

358 This drying trend is in line with another record from southern Finland, where Sphagnum 

359 rubellum and S. balticum communities were replaced by a S. fuscum-dominated community at 

360 around 1800 AD (Väliranta et al., 2007). At low hummocks and high lawns, the vegetation 

361 change was reflected as a replacement of wet lawn Sphagna by dry hummock Sphagna, such 

362 as S. fuscum. For low lawns, the changes were more gradual from wet hollow taxa to lawn or 

363 even hummock taxa. Some previous studies have suggested that increase in S. fuscum 

364 abundancy might result from increased atmospheric nitrogen input (Vitt, Wieder, Halsey, & 

365 Turetsky, 2003; Wieder et al., 2016). However, the geochemical analyses did not indicate any 

366 increased nitrogen load on our peatlands. In addition, a previous study found that compared to, 

367 for example, central Europe, Finland still has a markedly small nitrogen load (Dirnböck et al., 
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368 2014). Therefore, our data suggest the changes in plant communities were mainly driven by 

369 changes in (climate driven) hydrology.  

370 Our results imply that changes in hydrology were related to changes in temperature and 

371 precipitation. Most of the vegetation shifts towards drier communities occurred after the Little 

372 Ice Age, which ended c. 1850 AD. However, we also recorded dry shifts during the latter part 

373 of the LIA, as also inferred by the testate amoeba assemblages. For example, at both study sites 

374 a notable shift in vegetation towards dry communities occurred c. 1770 AD. No measured 

375 meteorological data exist for that period, but solar irradiance reconstructions have suggested 

376 that around 1770 AD the irradiation level was as high as that of around 1930–1940 AD (Lean, 

377 Beer, & Bradley, 1995), when measured temperatures were high. This suggests that summer 

378 temperature seems to play a critical role in controlling bog vegetation communities via changes 

379 in moisture conditions. Measured summer temperature records warmer than 17.3 °C (average 

380 for the period 1990-2018) corresponded with each of the other drying phases. In particular, in 

381 the 1940s AD several continuous warm summers followed one another, and these may have 

382 contributed to the substantial successional change towards drier vegetation that we recorded. 

383 The detected link between Sphagnum community changes and summer temperature is in line 

384 with studies from Alberta, Canada, where the increase in summer temperature and consequent 

385 enhanced evapotranspiration resulted in a dry shift that triggered a vegetation change towards 

386 S. fuscum domination (Magnan et al., 2018).

387 In addition to summer temperature, summer (June-August) precipitation might be another 

388 factor that controls bog moisture changes. Even though instrumental climate records showed 

389 that summer precipitation since 1850 AD had been annually variable with a range of c. 35 to 
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390 345 mm (mean ± SD: 200 ± 65 mm) and no clear trend, most of the drying vegetation shifts 

391 occurred during very dry summers (summer precipitation <100 mm). However, the same 

392 vegetation shifts also happened during wet summers (>250 mm) in the past decade, for example 

393 in SHL with increased proportion of S. fuscum and disappearing of S. balticum, which may 

394 result from increased evapotranspiration during warm summers. These recent wet summers 

395 might also explain the clear wet shifts recorded in low hummock testate amoeba data (SLH and 

396 LLH) c. 2000 AD, which indicate a higher sensitivity of testate amoebae to environmental 

397 changes than plants, as there were no clear corresponding vegetation changes towards wetter 

398 communities (Väliranta et al., 2012; Zhang et al., 2018a). However, it should also be noted that 

399 despite these recent wet shifts, conditions were still drier than the very early wet conditions 

400 during mid-late 1700s at both sites (Figure 5).   

401

402 Response of carbon accumulation to climate forcing

403 Peatland carbon accumulation is mainly controlled by vegetation composition, water table and 

404 temperature. However, due to the complexity of interactions between these factors and the 

405 highly heterogeneous nature of peatlands, links between peat carbon accumulation and any 

406 individual environmental variables are not straightforward (e.g., Loisel and Garneau, 2010; 

407 Piilo et al., 2019; Zhang et al., 2018b). We did not observe any changes in plant functional 

408 types, e.g., from Sphagnum to shrubs (Tuittila et al., 2012), thus we assume that the detected 

409 variation in carbon accumulation rate is largely due to variations in moisture and temperature, 

410 although changes in moss community might alone could still drive changes in carbon 
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411 accumulation due to different photosynthesis and decomposition rates at the species level 

412 (Hajek, Tuittila, Ilomets, & Laiho, 2009; Kangas et al., 2014; Laine, Juurola, Hajek, & Tuittila, 

413 2011; Turetsky, Crow, Evans, Vitt, & Wieder, 2008). 

414 Our results suggest that the response of carbon accumulation rate to environmental changes in 

415 the past varied for different habitats. For low hummocks the CAR z scores showed significant 

416 linear correlations to all studied variables. In contrast, the other two habitats, high lawns and 

417 low lawns yielded no significant correlations. At low hummock conditions, summer 

418 temperature showed a weak linear accelerating impact (R2 = 0.3184, p < 0.01) on carbon 

419 accumulation, while WTD showed a much stronger forcing (R2 = 0.5031, p < 0.001), with drier 

420 conditions resulting in lower carbon accumulation rates. Recent experimental studies support 

421 our palaeo interpretation, by suggesting that WTD is a more important forcing factor than 

422 temperature alone (Laine et al., 2019; Mäkiranta et al., 2018). The different response patterns 

423 of the three habitats indicate that only in low hummock habitats WTD was a limiting factor for 

424 carbon accumulation, whereas for lawns, water tables were sustained high enough to enable 

425 effective carbon accumulation. The influence of the limiting factor WTD on carbon 

426 accumulation likely worked through changes in biological communities, for example, the 

427 decreased carbon accumulation under water-limited low hummocks can be partly linked to the 

428 distinct decrease of mixotrophic testate amoeba abundance in such habitats (R2 = 0.7608, p < 

429 0.001), which can significantly cause reduced carbon accumulation (R2 = 0.4207, p < 0.001) 

430 (see also Jassey et al., 2015). 

431      
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432 Carbon uptake capacity of boreal peatlands in the future 

433 Our results suggest that in addition to global-scale impacts of warming on peatland carbon 

434 accumulation (Gallego-Sala et al., 2018), local small-scale hydrological conditions are crucial 

435 in controlling carbon accumulation dynamics. Thus, including moisture as a predictor variable 

436 for the future estimates of carbon dynamics is highly important. If we are to experience severe 

437 droughts and consequent water level drawdowns, peatland carbon uptake capacity is threatened. 

438 According to our study, Siikaneva where roughly 21% of the peatland area is covered by 

439 hummocks (Korrensalo et al., 2018) has, to some extent, already decreased carbon 

440 accumulation capacity due to surface drying since 1850 AD – the most severe periods occurring 

441 from the 1850’s to the late 1900’s. If drying continues, most of the current lawn surfaces, which 

442 now cover c. 38% of the Siikaneva peatland area (Korrensalo et al., 2018), have the potential 

443 to turn to low hummock habitats; this development has already been predicted in a field 

444 experimental study at Lakkasuo (Kokkonen et al., 2019). This potential habitat transition will 

445 also stress mixotrophic testate amoebae, as current lawn conditions are generally more 

446 appropriate habitats for most of the mixotrophic testate amoeba taxa (e.g., Zhang et al., 2018c). 

447 Therefore, further drying may reduce the abundance of mixotrophic testate amoebae and 

448 consequently reduce peatland C fixation. This scenario is in line with a recent model-based pan-

449 Arctic carbon accumulation prediction study that shows decreased carbon accumulation for 

450 southern Finland by the end of 21st century in comparison to the accumulation rate in the 20th 

451 century (Chaudhary, Miller, & Smith, 2017). Widespread drying of boreal peatlands in recent 

452 centuries has been very recently recorded (Swindles et al., 2019; van Bellen et al., 2018). The 

453 future climate prediction for Fennoscandia is warmer and wetter (CMIP5 under RCP8.5) 
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454 (Collins et al., 2013). However, and more importantly, a net effect on summer moisture balance 

455 may be negative, as increased evapotranspiration may result in summer-time moisture deficit. 

456 Bogs are suggested to be more resistant to drying than fens (Jaatinen, Fritze, Laine, & Laiho, 

457 2007; Kokkonen et al., 2019), as they already regularly experience dry seasons/periods 

458 (Thormann, Bayley, & Szumigalski, 1998). Yet, here we evidenced consistent climate-driven 

459 water level variations, dry shifts and subsequent changes in biological assemblages in two 

460 adjacent bogs under warmer conditions in the past. With prolonged warming and consequent 

461 peat surface drying, Sphagna communities may be even gradually replaced by shrubs 

462 (McPartland et al., 2019; Munir, Xu, Perkins, & Strack, 2014), which would have more 

463 profound impacts on peatland carbon uptake capacity (Loisel et al., 2014; Munir et al., 2014). 

464 In summary, the two studied southern boreal bogs with separate catchment areas consistently 

465 showed shifts towards drier peatland surface conditions during recent centuries. The general 

466 drying trend was reflected in both plant and testate amoeba communities. Both summer 

467 temperature and precipitation, and more importantly effective moisture balance, are important 

468 drivers of peatland vegetation and hydrological conditions. Our study suggests that 

469 environmental forcing on carbon accumulation is most prominent for low hummock habitats. 

470 In short, the drier the conditions, the less carbon accumulated. The above derived patterns reveal 

471 that even though peatland carbon accumulation processes are complex, they will become more 

472 predictable when some controlling factors reach their threshold levels. We preliminarily 

473 conclude that carbon sink capacity of northern bogs is endangered if the future climate warming 

474 results in bog moisture deficiency. Peat surface drying might lead to eventual proportional 

475 decrease of lawn areas and increase the area of hummocks, although the possibly correspondent 
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476 decrease of hollow areas might on the other hand mitigate the carbon accumulation reduction 

477 by reducing methane emissions.
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732

733 Figure caption and table

734 FIGURE 1 Upper panel: Location of the two study sites (red stars), the base map was 
735 downloaded from the National Land Survey of Finland Topographic Database under a CC 4.0 
736 open source license. Lower panel: (a and b) Aerial photos of Siikaneva and Lakkasuo peatlands 
737 (2019 Google), red arrows show the coring points; (c) The microtopography-specific sampling 
738 design.
739

740 FIGURE 2 Age-depth models of the studied cores developed using Plum. The measured 
741 unsupported 210Pb activities are in green, 137Cs activities (SLH) are in black and calibrated 14C 
742 dates are in blue. The grey shading indicates the 95% confidence range of the age-model. The 
743 red line is the weighted mean age based on the model. The 137Cs-peak indicated 1986 AD at 
744 depth 21-22 cm (in core SLH) is shown using a black star.

745

746 FIGURE 3 Diagrams showing selected peat property (i.e. BD: bulk density; C/N: carbon 
747 nitrogen mass ratio; C%: C content; ACAR: apparent carbon accumulation rate; CAR: allogenic 
748 carbon accumulation rate), plant macrofossil and testate amoeba percentages for the studied six 
749 cores. Mixotrophic testate amoeba taxa are marked in red. Plant macrofossil- and testate 
750 amoeba-based water-table depth (WTD) reconstructions are also shown. The timing of post-
751 Little Ice Age warming (1850 AD) is indicated using a red line. Main vegetation drying shifts 
752 are marked using blue lines. 

753

754 FIGURE 4 Linear regression analyses of allogenic carbon accumulation rate (CAR) z scores 
755 and environmental variables for low hummocks. Analyses for high lawns and low lawns are 
756 shown in Figure S2. (a) water-table depth (WTD); (b) summer temperature (T); (c) mixotrophic 
757 testate amoeba (TA) abundance. The gray shading areas represent the 95% confidence intervals.

758

759 FIGURE 5 Summary of testate amoeba (TA)- and plant-based water-table depth (WTD) 
760 reconstructions and peatland vegetation successions in the studied cores. Only selected plants 
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761 are shown for each core showing the main moisture changes using colour-based WTD 
762 indications derived from Figure S1. Each drying vegetation change is indicated using a black 
763 arrow. Mean summer temperature and total summer precipitation are shown with the means for 
764 the periods before and after 2000 AD indicated using vertical lines.

765

766 TABLE 1 Detailed description of studied peat cores. WTD: Water-table depth of the sampling 
767 point. BD: bulk density. C%: carbon content. N%: nitrogen content. PAR: peat accumulation 
768 rate.

769 Note. *: Surface age control was based on 210Pb dating. #: Surface age control was validated by 137Cs dating. 
770 The basal ages were based on 14C dating except core SHL, which was modelled by Plum.

Site Core WTD    

(cm)

Surface vegetation Core depth 

(cm)

Basal age      

(cal yr AD)

BD

(g cm-3)

C% N% PAR

(cm yr-1)

#*SLH
17 Sphagnum fuscum

57
1744 – 

1644

0.06 ± 

0.01

43.65±0.99 0.73±0.2

4

0.45±0.5

4

 *SHL
8 S. rubellum, S. fuscum

49
1770 – 

1874

0.05 ± 

0.01

44.28±2.78 0.58±0.1

5

0.63±0.5

7

Si
ik

an
ev

a

 *SLL 3 S. rubellum, S. papilosum 52 1685 – 

1741

0.05 ± 

0.15

43.30±0.70 0.88±0.4

1

0.38±0.6

6

 *LLH
10 S. fuscum

58
1683 – 

1737

0.07 ± 

0.01

43.37±3.17 0.73±0.2

9

0.27±0.2

1

 *LHL
6 S. balticum, S. fuscum

61
1684 – 

1738

0.05 ± 

0.01

40.91±0.4

2

0.60±0.

13

0.27±0.1

9

La
kk

as
uo

 *LLL 3 S. rubellum, S. balticum 54 1731 – 

1805

0.05 ± 

0.01

42.87±2.6

9

0.74±0.

23

0.23±0.

07
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FIGURE 1 Upper panel: Location of the two study sites (red stars), the base map was downloaded from the 
National Land Survey of Finland Topographic Database under a CC 4.0 open source license. Lower panel: (a 

and b) Aerial photos of Siikaneva and Lakkasuo peatlands (2019 Google), red arrows show the coring 
points; (c) The microtopography-specific sampling design. 
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FIGURE 2 Age-depth models of the studied cores developed using Plum. The measured unsupported 210Pb 
activities are in green, 137Cs activities (SLH) are in black and calibrated 14C dates are in blue. The grey 

shading indicates the 95% confidence range of the age-model. The red line is the weighted mean age based 
on the model. The 137Cs-peak indicated 1986 AD at depth 21-22 cm (in core SLH) is shown using a black 

star. 
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FIGURE 3 Diagrams showing selected peat property (i.e. BD: bulk density; C/N: carbon nitrogen mass ratio; 
C%: C content; ACAR: apparent carbon accumulation rate; CAR: allogenic carbon accumulation rate), plant 
macrofossil and testate amoeba percentages for the studied six cores. Mixotrophic testate amoeba taxa are 
marked in red. Plant macrofossil- and testate amoeba-based water-table depth (WTD) reconstructions are 

also shown. The timing of post-Little Ice Age warming (1850 AD) is indicated using a red line. Main 
vegetation drying shifts are marked using blue lines. 
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FIGURE 4 Linear regression analyses of allogenic carbon accumulation rate (CAR) z scores and 
environmental variables for low hummocks. Analyses for high lawns and low lawns are shown in Figure S2. 

(a) water-table depth (WTD); (b) summer temperature (T); (c) mixotrophic testate amoeba (TA) 
abundance. The gray shading areas represent the 95% confidence intervals. 
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FIGURE 5 Summary of testate amoeba (TA)- and plant-based water-table depth (WTD) reconstructions and 
peatland vegetation successions in the studied cores. Only selected plants are shown for each core showing 

the main moisture changes using colour-based WTD indications derived from Figure S1. Each drying 
vegetation change is indicated using a black arrow. Mean summer temperature and total summer 

precipitation are shown with the means for the periods before and after 2000 AD indicated using vertical 
lines. 
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