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We have used the Boltzmann kinetic equation for the phonon distribution function to analyze the relaxation
kinetics of the spin system of a ferromagnetic insulator (F) lying on a massive dielectric substrate with high
thermal conductivity. Under periodic heating of the spin system, the relaxation depends on the thickness of the
F layer and on the frequency of the thermal source ω. When the thickness of the F layer is much greater than the
phonon-magnon scattering length, the magnon temperature dependence on the frequency has two features related
to specific characteristic times of the system. One of them determines the dependence in the low-frequency
regime and is related to the average phonon escape time from the F layer to the substrate τes. In turn, the high-
frequency behavior is determined by the magnon-phonon collisions time τmp. From the latter, the time of phonon-
magnon collisions τpm can be found. In contrast, the response of effectively thin F layers is characterized by just
one feature, which is determined by the time τmp. Thus, based on the obtained theoretical results, the times τes,
τmp, and τpm can be deduced from experiments on the parametric excitation of spin waves by electromagnetic
radiation modulated at frequency ω.
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I. INTRODUCTION

Since the late 2000s, spin caloritronics has emerged and is
actively developing as a subfield of spintronics. Specifically,
spin caloritronics considers the problems of generation and
control of spin currents by means of heat fluxes [1–4]. In
this area, the spin Seebeck effect (SSE), which consists in
generating a spin current by a heat flux, is of great interest
[5–13]. The theoretical description of the SSE is based either
on the Landau-Lifshitz-Gilbert equation, on the formalism of
the kinetic equation, or on the technique of Green functions
[14–20]. In these studies, however, the case of stationary
heating is considered. At the same time, the problems of
nonstationary kinetics of interacting electrons, phonons, and
magnons in layered structures used in SSE experiments are
also of interest. The relevance of such problems is determined
by a number of recent experiments on the observation of
SSE under substantially nonstationary conditions of pulsed or
periodic heating of the system [21–24].

With nonstationary heating, it is necessary to take into
account the processes of energy relaxation. In this paper,
we consider the energy relaxation between magnons and
phonons, which is interesting from both theoretical and ex-
perimental points of view. The relaxation time of magnons
on phonons was calculated by A. I. Akhiezer [25] under
the assumption that, in a ferromagnet at temperatures much
lower than the Curie temperature TC , the thermalization time
of a magnon gas is much smaller than the time required
to reach the equilibrium between magnons and phonons. In
Ref. [25], the relaxation problem was considered in the “two-
temperature approximation,” when the states of magnons
and phonons are described by the equilibrium Bose-Einstein

functions with temperatures Tm and Tp, respectively. In addi-
tion, it was assumed that the magnon temperature is higher
than the phonon temperature but the difference in these tem-
peratures is relatively small. Recently, Shklovskij, Mezinova,
and Dobrovolskiy [26] considered nonlinear two-temperature
relaxation between magnons and phonons in a ferromagnetic
insulator, when the temperature of “hot” magnons differs
significantly from the temperature of “cold” phonons.

It should be noted, however, that the theoretical calcula-
tion of the temperature dependence of the magnon-phonon
relaxation times [25,26] is not sufficient in itself, since it
is also necessary to indicate a real experimental situation
that allows us to determine experimentally these temperature
dependencies. Since the ferrodielectric plates (or films) on
heat-conducting insulator substrates are usually studied in
experiments, for a correct theoretical description, it is also
necessary to consider the problem of calculation of the tem-
perature jump at the interface between the ferrodielectric and
the insulator (F/I interface). Such a problem of calculating
the thermal resistance of the interface Rth (commonly called
the “Kapitza resistance”) was previously discussed in detail
in Ref. [27].

In Ref. [27], it was shown that, at temperatures much lower
than the Debye temperature, �D, for the nonlinear thermal
resistance of the F/I interface, there exists a size effect: The
Kapitza resistance for thin F plates (films) depends on their
magnetic properties, whereas for thick F plates it can be
described by the Little formula [28], which does not include
the magnetic properties of the ferromagnetic insulator.

Here a linear response of the magnon temperature to peri-
odic heating with frequency ω is analyzed in the framework of
a microscopic approach based on the time-dependent magnon
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temperature Tm(t ) and the Boltzmann kinetic equation for
phonons. This approach is justified at temperatures T � �D,
when, due to the low frequency of phonon-phonon collisions,
the phonon temperature approximation is not applicable. As
it turns out, the characteristic features of the dependence
of the linear responses on the frequency ω are related to
the energy relaxation times of the magnon-phonon system.
In this case, account of the phonon exchange between the
plate (film) of the ferrodielectric and the massive dielectric
substrate with high thermal conductivity makes it possible to
include in the microscopic theory the heat-removal effects,
which are described in terms of the acoustic impedances of
the contacting materials [28]. Thus, our approach gives an
analytical description of all the processes associated with
the relaxation of heated magnons in a ferrodielectric plate-
dielectric substrate system. Similar problems become relevant
for spin caloritronics, where the relationship between the
processes of transfer of spins and heat is studied.

The paper has the following structure. The Introduction
discusses the formulation of the problem and briefly analyzes
the results of other studies associated with it. In Sec. II, the
linear response of the magnon temperature to the oscillating
heating of magnons is considered in detail. In Sec. III, the tem-
perature dependencies of the frequencies of magnon-phonon
and phonon-magnon collisions are calculated analytically and
are presented graphically. Section IV contains a discussion of
the results and comparison with the experiment. In Sec. V,
the conclusions are formulated. The validity of our model is
discussed in Appendix.

II. THE LINEAR RESPONSE OF THE MAGNON
TEMPERATURE TO OSCILLATING HEATING

Under conditions of heating of the magnon subsystem of
a ferromagnetic insulator by longitudinal pumping, i.e., by
parametric excitation of spin waves, the excess magnon en-
ergy is first transferred to the crystal lattice of the ferromagnet
and then leaves into the substrate.

When the layer of the ferromagnetic insulator is located
on a massive substrate (Fig. 1), the “hot” phonons of the
ferromagnet escape to the substrate, and the “cold” phonons
of the substrate penetrate into the ferromagnet. The exchange
of phonons between the ferromagnet and the substrate is the
final stage of relaxation of the excess energy of the magnon
system. It is assumed that the substrate is a single crystal with
a high thermal conductivity, where the phonons propagate bal-
listically and do not return to the layer of the ferromagnet. It is
assumed that the substrate temperature is constant and equal
to TB. An important simplifying assumption is the thermalized
state of the magnon subsystem, when the magnon distribu-
tion function is the Bose-Einstein function with temperature
Tm. We will describe phonons as a yet-unknown distribution
function Nq(z, t ), which is the occupation number of phonon
states with the wave vector q at time t for a given z coordinate.
The axis z is perpendicular to the layer of the ferromagnetic
insulator.

The phonon distribution function obeys the Boltzmann
equation

∂Nq

∂t
+ smz

∂Nq

∂z
= Ipm{Nq, nk}. (1)

FIG. 1. Refraction and reflection of phonon modes at media
boundaries in the layered structure of F/I. The occupation numbers
of phonon states with wave vectors q are denoted by N>

q (N<
q′ ).

The upper index > (<) denotes phonons with a positive (negative)
z component of the wave vector. The phonon wave vector with a
negative z component is denoted by q′. The letters ρ and s denote the
densities and speeds of the longitudinal sound of the corresponding
media. TB is the temperature of the massive substrate, which plays
the role of a thermostat, and Tm is the magnon temperature.

Here nk is the magnon distribution function:

nk = 1

exp(εk/Tm) − 1
, (2)

where Tm is the magnon temperature.
In the long-wavelength limit, which can be used at a low

temperature Tm � TC , the magnon dispersion law may be
approximated as

εk = �C (ak)2, (3)

where �C is a temperature that coincides in order of magni-
tude with the Curie temperature, and a is the lattice constant
(kB = 1). The long-wavelength limit corresponds to the strong
inequality ak � 1.

The phonon-magnon collision integral has the form (see
Ref. [27])

Ipm{Nq} = νpm(Tm, q)[nq(Tm) − Nq(z, t )], (4)

where

nq(Tm) = 1

exp(h̄ωq/Tm) − 1
(5)

is the equilibrium (Bose-Einstein) phonon distribution func-
tion with temperature Tm. Here and below, the index q is
assigned to phonons, and the index k is assigned to magnons.
It is assumed that the temperature of the magnons does not
depend on the coordinate z due to the high magnon heat
conduction at temperatures much lower than the Debye tem-
perature �D [29].

The frequency of phonon-magnon collisions is given by

νpm(Tm, q) = D(Tm)JD(Tm, x, y0), (6)

214409-2



TEMPERATURE DEPENDENCE OF THE MAGNON-PHONON … PHYSICAL REVIEW B 100, 214409 (2019)

where the characteristic frequency is

D(Tm) = �C (Tm/�C )3

8πMas
. (7)

Here M is the mass of the atoms of the ferromagnetic insu-
lator and s is the average speed of sound. The factor JD is
determined by the integral

JD(Tm, x, y0) =
∫ ∞

y0

dy(x + y)y

(
1

ey − 1
− 1

ex+y − 1

)
, (8)

with

y = εk

Tm
; x = h̄ωq

Tm
; y0 = �2

D

4Tm�C
.

The magnon temperature Tm obeys the heat balance equa-
tion for the magnon subsystem

cm(Tm)
dTm

dt
= W (t ) − 1

d

∫ d

0
dz

∫
d3q

(2π )3
h̄ωqIpm{Nq}, (9)

where cm(Tm) is the specific heat of magnons and W (t ) is
the specific power of external sources heating the magnon
subsystem. For oscillatory heating (for example, by a high-
frequency electromagnetic field) modulated at frequency ω

W (t ) = W0 + W1e−iωt . (10)

In the case of such heating, both the temperature Tm and the
phonon distribution function also oscillate. For the magnon

temperature, we have

Tm(t ) = Tm0 + Tm1e−iωt , (11)

where the average temperature Tm0 is equal to the sum of the
temperature of the thermostat and the contribution associated
with the stationary heating W0. In the linear approximation
of interest to us, the oscillating addition to the temperature is
small:

|Tm1| � Tm0. (12)

For the phonon distribution function we have

Nq(z, t ) = Nq0(z) + Nq1(z)e−iωt . (13)

In the formulas (11) and (13), Tm1 and Nq1 are complex
quantities.

The Boltzmann equation for the phonon distribution func-
tion takes the following form:

smz
dNq1

dz
+ [νpm(Tm0) − iω]Nq1

= ∂νpm(Tm0, q)

∂Tm0
[nq(Tm0) − Nq0(z)]Tm1

+ νpm(Tm0, q)
∂nq(Tm0)

∂Tm0
Tm1. (14)

In the case of a weak oscillatory heating, Eq. (9) for Tm1 can
be linearized

−iωcm(Tm0)Tm1 = W1− 1

d

∫ d

0
dz

∫
d3q

(2π )3
h̄ωq

{
∂νpm(Tm0, q)

∂Tm0
[nq(Tm0) − Nq0(z)]Tm1+νpm(Tm0)

∂nq(Tm0)

∂Tm0
Tm1−νpm(Tm0)Nq1(z)

}
.

(15)

Equation (14) and (15) contain a phonon distribution function
Nq0(z), which is a solution of the Boltzmann equation for
stationary heating, i.e., in the absence of amplitude modu-
lation of the “heating” electromagnetic radiation. Since the
contribution of unmodulated radiation is assumed to be small,
then we can replace the average magnon temperature by the
temperature of the thermostat: Tm0 = TB, and Nq0 = nq(TB).
In this case, Eqs. (14) and (15) are simplified:

smz
dNq1

dz
+ [νpm(TB) − iω]Nq1 = νpm(TB)

∂nq(TB)

∂TB
Tm1, (16)

−iωcm(TB)Tm1 = W1 − 1

d

∫ d

0
dz

∫
d3q

(2π )3
h̄ωq

×
[
νpm(TB)

∂nq(TB)

∂TB
Tm1 − νpm(TB)Nq1(z)

]
.

(17)

The boundary conditions to Eq. (16) are as follows [27]:

N>
q (0, t ) = βN<

q′ (0, t ) + αnq(TB), (18)

N>
q (d, t ) = N<

q′ (d, t ). (19)

Here α is the probability of transmission through, and β =
1 − α is the probability of reflection of the phonon from
the interface with the substrate. The condition (18) means
that phonons that are specularly reflected from the interface
with the substrate and phonons from the substrate that have
passed this interface fall into a state with the wave vector q.
Note that the condition (18) also assumes that phonons that
leave the ferromagnet do not return. Such a pattern is typical
for single-crystal substrates with high thermal conductivity
and rather narrow layers of a ferromagnet. Equation (19)
describes the specular reflection of phonons from the free
boundary of the ferromagnet.

In the acoustic mismatch model [28,30,31], the probability
α depends on the angle of incidence of the phonon and the
acoustic impedances of the F layer and the substrate:

α(θ ) = 4ZZs cos θ cos θs

(Z cos θs + Zs cos θ )2
. (20)

Here Z = ρmsm (Zs = ρsss) is the acoustic impedance of the F
layer (substrate); angles of incidence and refraction are related
via ss sin θ = sm sin θs. Symbols ρs and ss denote the substrate
density and average speed of the longitudinal sound in the
substrate.
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In linear order in W1, the boundary condition for z = 0
[Eq. (18)] has the form

N>
q1(0) = βN<

q′1(0), (21)

and on the free surface z = d [Eq. (19)]

N>
q1(d ) = N<

q′1(d ). (22)

When writing the boundary conditions (21) and (22), we took
into account that Nq1(z, t ) = Nq1(z)e−iωt .

It is convenient to introduce the notation νpm(TB)−iω= ν̃,

and dnq (TB )
dTB

= n′
q, since then equations for N>

q1 and N<
q′1 are

simplified:

|smz|
dN>

q1

dz
+ ν̃N>

q1 = νpmn′
qTm1,

−|smz|
dN<

q′1

dz
+ ν̃N<

q′1 = νpmn′
qTm1.

Their solutions are written as

N>
q1(z) = νpmn′

qTm1

ν̃
− ανpmn′

qTm1

ν̃[1 − βx(ω)]
e−ν̃z/|smz |, (23)

N<
q′1(z) = νpmn′

qTm1

ν̃
− ανpmn′

qTm1

ν̃[1 − βx(ω)]
e−ν̃(2d−z)/|smz |, (24)

where x(ω) = exp(−2ν̃d/|smz|). The substitution of the solutions obtained into (17) gives

−iωcm(TB)Tm1 = W1 − 1

d

∫ d

0
dz

∫
d3q

(2π )3
h̄ωqνpmn′

qTm1 + 1

d

∫ d

0
dz

∫
qz>0

d3q

(2π )3
h̄ωqν

2
pmn′

qTm1

{
1

ν̃
− α

ν̃[1 − βx(ω)]
e−ν̃z/|smz |

}

+ 1

d

∫ d

0
dz

∫
qz<0

d3q

(2π )3
h̄ωqν

2
pmn′

qTm1

{
1

ν̃
− α

ν̃[1 − βx(ω)]
e−ν̃(2d−z)/|smz |

}
. (25)

For ω � νpm in (25), we can neglect the contributions from

N≷
q1, since these contributions are proportional to νpm/ω. We

arrive at the equation

−iωcm(TB)Tm1 = W1 −
∫

d3q

(2π )3
h̄ωqνpmn′

qTm1,

which is reduced to

[−iωcm(TB) + cp(TB)ν pm(TB)]Tm1 = W1, (26)

where the average frequency of phonon-magnon collisions is
given by

ν pm = 1

cp(TB)

∫
d3q

(2π )3
h̄ωqνpm(TB, q)

∂nq

∂TB
(27)

with the phonon heat capacity

cp(TB) =
∫

d3q

(2π )3
h̄ωqn′

q(TB). (28)

If we introduce the averaged frequency of the magnon-phonon
collisions νmp according to equation

cp(TB)ν pm(TB) = cm(TB)νmp(TB), (29)

then we will come to an important result

Tm1 = W1

cm(TB)[−iω + νmp(TB)]
, (30)

from which it follows that the average frequency of magnon-
phonon collisions at the temperature TB can be found from
the dependence Tm1(ω) in the high-frequency regime. In the
case of low frequencies, when ω � νpm, for thick layers of a

ferromagnet (x(0) � 1), Eq. (17) is reduced to

W1 = −iω[cm(TB) + cp(TB)]Tm1

+ 1

d

∫
qz>0

d3q

(2π )3
h̄ωqνpmα|smz|n′

qTm1 , (31)

where

1

d

∫
qz>0

d3q

(2π )3
h̄ωqνpmα|smz|n′

q = 〈α〉s
4d

cp(TB) = cp(TB)

τes
.

Here τes is the mean time for phonons to escape from
the ferromagnetic insulator to the substrate, and 〈α〉 is the
probability α averaged over the angles of incidence: 〈α〉 =∫ π/2

0 α(θ ) sin(θ ) cos(θ ) dθ .
Now Eq. (31) can be written in a physically transparent

form,

−iω[cm(TB) + cp(TB)]Tm1 + cp(TB)

τes
Tm1 = W1. (32)

It follows that the amplitude of the magnon temperature is
given by

Tm1 = W1

[cm(TB) + cp(TB)](−iω + 1/τ ′
es)

(33)

with the renormalized relaxation time

τ ′
es = τes

cm(TB) + cp(TB)

cp(TB)
. (34)

It is seen that, due to the thermal inertia of the magnons, the
relaxation time of the magnon temperature is longer than the
average phonon escape time from the ferromagnetic insulator
τes.

In the case of thin F layers, when d � s/νpm, the depen-
dence Tm1(ω) is described by Eq. (30).

214409-4



TEMPERATURE DEPENDENCE OF THE MAGNON-PHONON … PHYSICAL REVIEW B 100, 214409 (2019)

III. CALCULATION OF THE TEMPERATURE
DEPENDENCE OF THE FREQUENCIES OF

MAGNON-PHONON AND
PHONON-MAGNON COLLISIONS

If the temperature of the thermostat is renamed as T , then
Eq. (29) becomes

νmp(T ) = 1

cm(T )
cp(T )ν pm(T ), (35)

where the frequency ν pm(T ) is determined by the integral

ν pm(T ) = 1

cp(T )

∫
d3q

(2π )3
h̄ωqνpm(T, q)

∂nq

∂T
(36)

and Eqs. (6)–(8). The characteristic times of the energy relax-
ation of phonons on magnons τpm and magnons on phonons
τmp are the inverse of the frequencies ν pm and νmp, respec-
tively.

Let us introduce a dimensionless temperature t̄ = T/�D.
Then

νpm(T ) = ν̃0

(
�D

�C

)2

t̄3JD(t̄, q), (37)

where ν̃0 = �D/8πMas, and the integral JD(t̄, q) is also
written in terms of dimensionless values.

In the long-wavelength approximation considered by us,
the temperature should be sufficiently low: T � �C . In ad-
dition, in deriving the expression for the phonon-magnon
collision frequency, it was assumed that qa � �D/�C . The
last inequality is equivalent to the inequality T � (�D)2/�C .
From the presented chain of inequalities it follows that
T � �D. This allows us to write down the phonon heat
capacity in the form cp(T ) = 2π2T 3/15h̄3s3. The expression
for ν pm(T ) takes the form of the double integral,

ν pm = ν0t̄3
∫ ∞

0
dx

x4ex

ex − 1

∫ ∞

y0

dy
(y + x)yey

(ey − 1)(ex+y − 1)
, (38)

with the lower limit

y0 = �D

4�Ct̄

and the coefficient

ν0 = ν̃0
15

4π4

(
�D

�

)2

.

For T � (�D)2/�C , the lower limit of the second integral
is much greater than unity, whereas the first integral is domi-
nated by x � 1. Using the inequality y � x, we can calculate
these integrals, which gives

ν pm(t̄ ) = ν0
D5

16

(
�D

�C

)2

t̄ exp

(
− �D

4�Ct̄

)
, (39)

where

D5 =
∫ ∞

0
dx

x4

ex − 1
≈ 24.88

is a constant. The value ν−1
pm is the characteristic time of

energy relaxation of phonons on magnons τpm. We note that

FIG. 2. Schematic dependence of the magnon temperature am-
plitude on the frequency of the heat source. The solid line corre-
sponds to the effectively thick layer of the ferromagnet, and the
dashed line corresponds to the effectively thin layer of the same
material. The arrows indicate the frequency at which the oscillation
amplitude of the magnon temperature decreases by

√
2 times in

comparison with Tm1(0) for both the thick and thin layers of the
ferromagnet.

the expression (39) for the frequency of phonon-magnon
collisions is consistent (up to numerical multipliers) with the
expression for the relaxation time of the phonon temperature
obtained in the two-temperature model [25].

The phonon specific heat is conveniently written in the
form

cp(T ) =
(

2π2

15a3

)(
T

�D

)3

,

while for the magnon heat capacity we obtain

cm(T ) =
(

0.113

a3

)(
T

�C

)3/2

.

Substitution of these expressions in (35) gives the average
frequency of magnon-phonon collisions

νmp(t̄ ) = 18.2 ν0

(
�D

�C

)1/2

t̄5/2 exp

(
− �D

4�Ct̄

)
. (40)

FIG. 3. Temperature dependence of the normalized frequencies
of collisions of phonons with magnons (1) and magnons with
phonons (2). These dependencies are obtained from the formulas
(39) and (40) with �C = �D.
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We recall that the value (νmp)−1 is equal to the characteristic
time of the energy relaxation of magnons on phonons τmp.

The dependence |Tm1 (ω)| for layers of a ferromagnetic
insulator of different thickness follows from Eq. (25). The
general form of such dependencies for thick and thin films is
shown in Fig. 2. Figure 3 shows the temperature dependence
of the frequencies of phonon-magnon and magnon-phonon
collisions.

IV. DISCUSSION

Periodic heating of magnons in layers of yttrium–iron
garnet (YIG) of different thickness was carried out in the ex-
periment [21]. In this experiment, the time of magnon-phonon
collisions τmp was determined by comparing the frequency
dependence of the amplitude of oscillations of the difference
between the magnon and phonon temperatures Tmp with the
dependence Tmp(ω) ∝ [1 + (ωτmp)2]−1/2 that follows from
the two-temperature model [32]. From Fig. 3 in Ref. [21], it
can be seen that for YIG layers with thicknesses d f > 2.7 ×
10−5 cm, the characteristic frequency ω3dB is proportional
to d−1

f , where ω3dB is the frequency at which the amplitude

of spin Seebeck voltage VSSE(ω) decreases
√

2 times in com-
parison with VSSE(0) and which, according to the authors,
coincides with τ−1

mp . From our analysis [see Eqs. (30), (33), and
Fig. 2], it follows that the observed behavior of Tmp(ω) can
be explained by the size effect, when for thick films and low
frequencies the value ω3dB is equal to (τ ′

es)−1 and therefore is
proportional to d−1

f . We emphasize that, according to Eq. (30),
the frequency ω3dB coincides with τ−1

mp only in the case of thin
layers.

At the same time, we note that a detailed (microscopic)
analysis of the experiment in Ref. [21] is a challenge because
of the multilayered geometry of the system and a large number
of parameters characterizing the kinetics of heat transfer in
such a system. A phenomenological analysis of the exper-
iment based on a two-temperature model can be found in
Ref. [33].

V. CONCLUSIONS

We have shown that the energy relaxation of interacting
magnons and phonons in a layer of a ferromagnetic insulator
lying on a dielectric substrate with a high thermal conductivity
is determined by the following three characteristic times: the
mean time for phonons to escape from the ferromagnetic
insulator to the substrate, τes, the mean scattering time of
phonons on magnons, τpm, and the mean scattering time of
magnons on phonons, τmp. Our results suggest that these
times can be found in experiments on periodic heating of
the magnetic subsystem of a ferromagnetic insulator, which
can be realized by parametric excitation of spin waves by
a high-frequency electromagnetic field with a modulated
amplitude.
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APPENDIX: MODEL VALIDITY

Let us briefly consider the region of applicability of
our model, which is based on the concept of homogeneous
magnon temperature. The condition necessary for introducing
the magnon temperature is that the magnon-magnon colli-
sion frequency is much greater than the collision frequency
of magnons with phonons. For four-magnon processes, the
average frequency of magnon-magnon collisions is [34]

ν̄mm ∼ �C

h̄

(
T

�C

)4

. (A1)

A comparison of Eq. (A1) with Eq. (40) shows that, for
�D � �C , the magnon-magnon collision frequency is signif-
icantly higher than the collision frequency of magnons with
phonons for any T . Consequently, the magnon temperature
can be introduced at all thermostat temperatures TB.

The correction to the temperature of the magnons in the
F layer, associated with the finite thermal conductivity of
the magnon gas km, is given by the relation δTm ∼ Qd/km,
where Q is the heat flux and d is the thickness of the F
layer. Uniform heating of magnons is associated with the
heat flux by the equality Q = hTm, where h is the heat
transfer coefficient from the F layer to the substrate. We
take into account Tm and omit δTm, which is justified when
δTm �Tm. For YIG, the value of km was measured in
Ref. [35]. The value of h for sufficiently thick F layers can
be estimated based on Eq. (11) from the Ref. [27]. (Note
that in Ref. [27], the expression for coefficient A in Eq. (11)
must contain a numerical factor 120 in the denominator.)
The estimate gives δTm/Tm � 10−2 d (μm) at experiment
temperature of T � 100 K. With a decrease in temperature
T , the ratio δTm/Tm decreases. The smallness allows us to
neglect the inhomogeneity of the magnon temperature in YIG
layers with thickness d � 10 μm.

We also note that, in experiments performed on YIG
at room temperature, intense pumping led to the chemical
potential μm ≈ 0.1 K, while the temperature of magnons in-
creased by Tm ≈ 5 K [36]. Thus, a situation when heating
of magnons dominates the chemical potential is quite realistic
at room temperature: Tm � μm. With decreasing tempera-
ture, the value μm, being proportional to the product of the
temperature T and the time of three-magnon collisions τ3

(τ3 ∼ T −1/2, see Chap. 7 in Ref. [34]), decreases as T 1/2, and
Tm, being proportional to the coefficient of heat removal,
increases as T −3 (Ref. [27]). This allows us to neglect the
chemical potential in Eq. (2) at all temperatures below room
temperature.
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