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ABSTRACT
We present numerical simulations, using two complementary setups, of rotating Boussinesq
thermal convection in a three-dimensional Cartesian geometry with misaligned gravity and
rotation vectors. This model represents a small region at a non-polar latitude in the convection
zone of a star or planet. We investigate the effects of rotation on the bulk properties of
convection at different latitudes, focusing on determining the relation between the heat flux and
temperature gradient. We show that our results may be interpreted using rotating mixing length
theory (RMLT). The simplest version of RMLT (due to Stevenson) considers the single mode
that transports the most heat. This works reasonably well in explaining our results, but there
is a systematic departure from these predictions (up to approximately 30% in the temperature
gradient) at mid-latitudes. We develop a more detailed treatment of RMLT that includes the
transport afforded bymultiple modes, and we show that this accounts for most of the systematic
differences. We also show that convectively-generated zonal flows and meridional circulations
are produced in our simulations, and that their properties depend strongly on the dimensions
of the box. These flows also affect the heat transport, contributing to departures from RMLT
at some latitudes. However, we find the theoretical predictions of the multi-mode theory for
the mid-layer temperature gradient, the root-mean-square (RMS) vertical velocity, the RMS
temperature fluctuation, and the spatial spectrum of the heat transport at different latitudes,
are all in reasonably good agreement with our numerical results when zonal flows are small.

Key words: convection – hydrodynamics – stars: interiors – stars: rotation – Sun: interior –
planets and satellites: interiors

1 INTRODUCTION

All stars, and many planets, are convective in parts of their interi-
ors during some phases of their evolution (e.g. Kippenhahn et al.
2012). The heat transport associated with this convection, which
must be calculated in order to construct a consistent stellar or plan-
etary structure model, may be influenced by rotation or magnetism
(e.g. Chandrasekhar 1961). But a quantitative understanding of the
effects these have on the convection, and so ultimately on stel-
lar/planetary evolution, is still lacking (e.g. Chabrier et al. 2007).

A central challenge is that the convection typically involves
turbulent motions occurring over a wide range of spatial and tem-
poral scales, so that direct simulation of the underlying equations
(namely those of magnetohydrodynamics, together with some form
of energy equation and an equation of state) is not possible over evo-
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lutionary timescales (see, e.g., review in Kupka & Muthsam 2017).
Faced with this difficulty, one approach is to simulate the problem
for a comparatively brief interval in a star or planet’s life, aiming to
capture as much of the dynamics as possible with finite computa-
tional resources; another is to parameterise the convection in a way
that can be computed in the course of an evolutionary calculation.
In the former case, choices must still be made about which scales
to resolve: for example, some models encompass a full spherical
domain, explicitly following the evolution of the largest-scale flows
and relying on sub-grid-scale descriptions of smaller-scale flows;
others model a more limited portion of the interior, but can then af-
ford to resolve turbulent flows at smaller scales. Whether on global
or local scales, such simulations provide some insight into the com-
plex dynamics that can occur when rotation or magnetism influence
the convection. Meanwhile, the parameterised models, of which
"mixing length theory” is the most famous and widely-used exam-
ple (e.g. Böhm-Vitense 1958; Gough &Weiss 1976; Kippenhahn et
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al. 2012), aim principally to provide a formula for the temperature
gradient necessary for convection to carry a certain flux (or vice
versa), which can then readily be included in a structural or evo-
lutionary model. These models do not, in their usual formulation,
include the effects of rotation or magnetism at all (though some
exceptions to this rule are noted below).

In this paper, we explore the effects of rotation on convection
using both of these broad approaches. We conduct a large survey
of 3D simulations in localised, Cartesian domains tilted at some
angle with respect to the rotation vector, extending prior work on
this subject in a manner described below. These box simulations
serve as idealised representations of a small part of a rotating star or
planet, situated at various latitudes. We use these to analyse the rich
variety of phenomena that occur as the rotation rate and latitude are
changed, and to compute how the temperature gradient established
by the convection varies with these parameters. We compare the
results of these calculations to expectations from semi-analytical
theory: in particular, we argue that a multi-mode theory developed
here, based on the "rotating mixing-length theory” of Stevenson
(1979) (hereafter S79) provides a reasonably good description of
the dynamics at most latitudes and rotation rates.

We begin here by briefly outlining some of the prior simula-
tions and theory that motivate and guide our work.

1.1 Prior studies of rotating convection

Arguably the most realistic approach to modeling a rotating stel-
lar/planetary convection zone is to solve the underlying equations
numerically within a spherical computational domain. Simulations
of this type naturally capture the global geometry and the largest-
scale flows, and have been used for decades (e.g. Gilman 1975)
to assess how convection is influenced by rotation, and how this
in turn affects the driving of zonal flows and the establishment of
magnetic fields. The increase of computing power in recent times
has led to substantial progress with such models, with the latest
models (see, e.g., Gastine et al. 2016; Hotta et al. 2017; Käpylä
et al. 2017; Strugarek et al. 2018) resolving increasingly turbulent
flows over a broad range of spatial and temporal scales. (See, for
example, review in Brun & Browning 2017.) Such models reveal
that the convective transport of heat and angular momentum is a
function of rotation rate and of latitude (e.g., Raynaud et al. 2018),
in broad accord with some of the theoretical expectations described
below. However, these simulations are still very computationally de-
manding, rendering it difficult to probe large regions of parameter
space systematically.

Given the finite computational resources available, often a lo-
cal model is used instead: here, a small region of a spherical body is
modelled, so that the body’s curvature can be neglected and Carte-
sian coordinates employed (see, e.g., discussions in Vallis 2006, and
review of local convection calculations inNordlund et al. 2009). The
majority of local models take the rotation and gravity vectors to be
aligned (e.g., Cattaneo et al. 1991; Barker et al. 2014, hereafter
Paper I), but as an intermediate step between local aligned models
and global models, the so-called tilted f-plane can be considered in
which gravity and rotation are taken to be misaligned.

Less attention has been given in the literature to rotating con-
vection with tilted rotation vectors than in the aligned case, but
there are still some notable studies. The linear theory was analysed
by Hathaway et al. (1979), Stevenson (1979) and Flasar & Gierasch
(1978), in the absence of viscosity and thermal diffusion, and Hath-
away et al. (1980) including diffusive effects. Julien & Knobloch
(1998) performed an asymptotic analysis for nonlinear rapidly ro-

tating convection and derived predictions that agreed well with
the laminar simulations of Hathaway & Somerville (1983). Those
simulations adopted the Boussinesq approximation (e.g., Spiegel
& Veronis 1960), which neglects density fluctuations except where
multiplied by gravity; this can be regarded as assuming a layer depth
that is small compared to the scale height, and slow flows compared
with the sound speed. Later studies have also simulated anelas-
tic (Currie & Tobias 2016) and fully compressible convection with
tilted rotation vectors to explore the effect of rotation onmean flows,
convective transport, and convective overshooting at mid-latitudes
in the Sun (see e.g., Brummell et al. 1996, 1998, 2002; Käpylä et
al. 2004; Chan 2007).

Rotating convection, whether occurring in localised domains
or in global ones, is known to generate mean flows. For example,
Hathaway & Somerville (1983) demonstrated the existence of self-
consistent mean flows in tilted models at moderate rotation rates.
At the poles, convection has been observed to generate large-scale
vortices or horizontal jets (e.g. Chan 2007; Käpylä et al. 2011;
Guervilly et al. 2014; Favier et al. 2014; Rubio et al. 2014; Guervilly
& Hughes 2017; Julien et al. 2017), depending on the horizontal
aspect ratio of the simulated domain. The occurrence of these flows
in simulations of rotating convection with misaligned gravity and
rotation, and their resulting effects on the heat transport, remain
to be explored in detail. However, their presence in compressible
convection was noted by Chan (2007) and Mantere et al. (2011) and
more recently, some progress has been made in the Boussinesq case
by Novi et al. (2019).

1.2 Heat transport and prior theory

From the point of view of stellar or planetary structure, the pri-
mary purpose of a convection theory is to provide an estimate of
the temperature (or entropy) gradient needed to carry a given flux.
This provides partial motivation for many prior studies that have
sought to constrain the temperature gradient established by turbu-
lent convection, with and without rotation, either by simulation or
through analytical theory. In the fluid dynamics literature, this is
typically expressed as a relation between the Nusselt number, Nu
(a dimensionless measure of the flux carried by convection, relative
to the conductive flux) and the Rayleigh number, Ra (quantifying
buoyancy driving relative to dissipation). These quantities can be
defined either globally (e.g., in terms of the total temperature or
entropy contrast across a layer) or locally (e.g., by reference to the
local temperature or entropy gradient), depending on the setup under
consideration.

For example, non-rotating convection is often argued to ap-
proach the diffusion-free relation Nu ∝ (RaPr)1/2 for very large
Ra (Kraichnan 1962; Spiegel 1971), here employing typical defi-
nitions for Nu and Ra appropriate for fixed-temperature boundary
conditions that depend on the temperature difference between the
two boundaries, and where Pr = ν/κ is the Prandtl number (ratio of
kinematic viscosity ν to thermal diffusivity κ). Analysis of the heat
transport is made complicated by the fact that in experiments or nu-
merical simulations, much of the temperature drop typically occurs
in thin boundary layers near the top and bottom of the convective
region, within which heat is transported primarily by conduction.
Indeed, the experimentally observed relationship between temper-
ature drop and heat flux can be approximately accounted for by
considering only the behavior of the boundary layers (e.g. Malkus
1954) which leads to Nu ∝ Ra1/3. In this non-rotating regime,
we might regard the convective transport through the domain as
being "throttled" by the boundary layers. However, when rotation
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is present simulations have suggested that the Nu(Ra) scaling is
steeper (see e.g., King et al. 2009, 2013), but as the buoyancy driv-
ing is increased the simulations latch onto a diffusion-free scaling
(e.g., Schmitz & Tilgner 2009; Stellmach et al. 2014) before los-
ing their rotational influence at large Ra. Other progress has been
made by modeling reduced sets of equations, valid in an appropriate
asymptotic regime (e.g., corresponding to rapid rotation); see for
example Julien & Knobloch (1998).

In stellar astrophysics, the transport by convection is typically
parameterised using mixing-length theory (MLT); (see, e.g., Böhm-
Vitense 1958; Gough & Weiss 1976). Broadly, the theory models
convection as parcels of fluid that travel a specified length (the
mixing length) before giving up heat to their surroundings. MLT is
fundamentally a local theory, relating the value of the superadiabatic
temperature gradient at a specific point to the flux at that point; its
predictions for these quantities are diffusion-free, and can be cast
in the form Nu ∝ (RaPr)1/2 given suitable local definitions of Nu
and Ra (see, e.g., Gough & Weiss 1976).

Despite its simplicity, MLT has been remarkably successful in
modelling the gross structures of stars and gaseous planets (Baraffe
et al. 2015). However, standardMLT suffers frommany well-known
limitations. In its usual formulation, it omits many important effects
altogether, including rotation and magnetic fields. The former is un-
likely to be important in modifying the structure of a star (Ireland &
Browning 2018), but may impact mixing and the generation of dif-
ferential rotation, for example. Standard MLT is also too simplistic
to model overshooting and time-variability accurately (e.g., Renzini
1987; Arnett et al. 2019), or other effects such as the asymmetries
between upflows and downflows (Nordlund et al. 2009). Several
authors have considered other approaches for modeling stellar con-
vection. These include, for example, the "full spectrum turbulence"
model of Canuto (1996), or the Reynolds stress models of Xiong
(1978, 1989), Xiong et al. (1997) and Canuto (2011). Such models
provide a more physically-motivated description of convection, in-
cluding its transport of tracer particles, of heat, and of momentum,
and have been used (for example) to study overshooting in massive
stars.

As an intermediate step between (for example) closure-based
models and classical MLT, it is possible to construct convection
theories that largely share the simplicity of MLT, but seek to in-
corporate some of the physical effects missing from it in a physi-
cally consistent way. As an example of this approach, S79 (see also
Flasar &Gierasch 1978) proposed a physically-motivated extension
of mixing length theory that incorporates rotation, which we will
hereafter refer to as rotating mixing length theory (RMLT). This is
a simple theory for rotating convection, based on the idea that tur-
bulent convection is dominated by modes that are well described by
linear theory (without viscosity and thermal diffusion), but with am-
plitudes determined by the (nonlinear) amplitude limiting criterion
that each mode saturates when its growth rate balances its nonlinear
cascade rate. S79 derived the simple analytical predictions of this
theory when a single mode – the one which maximises the heat flux
– dominates the heat transport. (A similar saturation prescription
for stellar convection has been adopted by Lesaffre et al. (2013) and
Jermyn et al. (2018) for implementation in stellar evolution codes,
which gives different predictions in its current formulation.)

S79’sRMLT is derived inmore detail and extended in Section 4
below; from the point of view of stellar structure its most significant
prediction is that the temperature gradient in the bulk of the con-
vection zone, in the limit of rapid rotation and considering a region
near the poles, scales with the rotation rate to the four-fifths power.
That is, more rapid rotation constrains the motions and requires a

higher temperature gradient (less efficient convection) in order to
carry the same heat flux. The theory also provides formulae for the
vertical velocity and temperature fluctuations, and for the horizon-
tal wavenumber of the modes that dominate the heat transport. A
different line of reasoning based on Kraichnan (1962), followed by
Julien et al. (2012), yields the same basic scaling of temperature gra-
dient with rotation rate, as follows: suppose Nu ∝ (Ra/Rac)αPrβ

for some α and β to be determined, together with our knowledge
that the critical Rayleigh number Rac ∝ Ek−4/3 from linear the-
ory. (Ek is the Ekman number, defined in (8), and is a measure
of the viscous forces relative to the Coriolis force). Then, if we
assume that the heat flux is independent of the diffusivities, it is
possible to obtain α = 3/2 and β = −1/5 (Julien et al. 2012).
The resulting scaling for Nu was observed in simulations using an
asymptotically reduced model for rapidly rotating Rayleigh-Bénard
convection at the poles, in which the bulk and not the boundary
layers dominate the transport, and this was later confirmed by the
DNS of Stellmach et al. (2014). In terms of the flux Rayleigh num-
ber RaF = RaNu, this yields a turbulent heat transport scaling1 of
Nu ∝ Pr−1/5Ra3/5

f
Ek4/5. Despite the entirely different derivation,

this scaling is equivalent to the single-mode prediction for dT/dz
from RMLT. These predictions are also similar to the inertia-free
scalings extensively discussed in the planetary sciences and geody-
namo communities (e.g., see Ingersoll & Pollard 1982; Aubert et
al. 2001; Gillet & Jones 2006; Guervilly et al. 2019).

The scaling predictions of RMLT and related theories have
found support from prior simulations, both in spherical shells and
in localised domains. For example, in recent simulations of rotating
Boussinesq convection in a spherical geometry, Gastine et al. (2016)
suggested that the diffusion-free predictions of RMLT matched the
numerical data for sufficiently rapid rotation and small diffusivities.
In Cartesian domains, Paper I used Boussinesq direct numerical
simulations (DNS) of rotating convection to verify the scaling pre-
dictions of RMLT over several orders of magnitude in rotation rate.
That paper argued that the bulk convective properties (i.e., away
from the boundary layers) were indeed approximately independent
of the diffusivities, insofar as this could be probed with the sim-
ulations. However, in these simulations the rotation vector Ω was
aligned with gravity, which restricts the application of this model
to the polar regions of a star or planet. The applicability of RMLT
to non-polar latitudes in a star or planet is not yet known. More
recently, Anders et al. (2019) found that a different Nu–Ra scaling
better described their simulations of compressible convection in a
rotating, Cartesian domain. It is not entirely clear why their simu-
lations appear to exhibit different heat flux scalings than in some
previous work (e.g., Paper I), but one possibility is that the defini-
tion of Nu in Anders et al. (2019) includes boundary layers that may
dominate the scaling behaviour at high Ra, whereas (for example)
Paper I focussed on measuring properties in the middle regions of
the simulated convection zone (i.e., neglecting boundary layers).

In this paperwe are interested in the effects of rotation and large
scale flows on convection, and in particular the temperature gradient
at different latitudes (so that gravity and rotation are misaligned).
Furthermore, we are concerned with whether the results of this
study can be understood within the framework of RMLT. To this
end we use two different numerical setups (described in section 2)
and investigate the basic properties of the developed convection in
simulations with gravity and rotationmisaligned (section 3). In both

1 Note that this scaling also in principle applies with misaligned gravity
and rotation if Ek is defined as in Eq. 8.
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Figure 1. A schematic diagram showing the geometry of the model used in
simulations. A small Cartesian box that is rotating at a rate Ω is taken at a
latitude φ. x points eastwards, y northwards and z vertically upwards; the
rotation axis is therefore taken to lie in the y-z plane. An adverse temperature
gradient in the z direction drives convection.

cases we employ the Boussinesq approximation: this is of course
less realistic than modelling the fully compressible equations, but is
more computationally tractable and allows us to isolate the effects of
rotation from other influences (like the density stratification) that are
not our primary focus. By focusing on a localised Cartesian domain,
we are able to access parameter regimes that are more difficult to
reach in global-scale models, and to conduct limited surveys of the
vast parameter space available. We focus our discussions largely
on the temperature gradient, and seek a physical understanding for
its dependence on rotation rate and latitude via RMLT. We choose
to compare to RMLT because it provides a compelling and simple
theory that well describes rotating convection at the poles, and also
because many of the effects considered in more complex models of
convection (e.g., overshooting, or asymmetry between upflows and
downflows) are not relevant for the simple setup considered here.
The RMLT arguments are presented in section 4 and tested against
the numerical simulations. The effect of zonal flows are discussed
in section 5 before a discussion of our results in section 6.

2 MODEL SETUP AND EQUATIONS

We consider two different and complementary numerical ap-
proaches to simulate rotating turbulent convection in a Cartesian
domain with a rotation vector Ω = Ω(0,cos φ, sin φ) that is in gen-
eral tilted with respect to z (where Ω is the rotation rate and φ is
the latitude, so that φ = 90◦ corresponds to the pole). We consider
x to point eastwards, y to point northwards and z to point upwards.
The geometry of this setup is illustrated in Fig. 1. The first approach
(setup A) uses a Rayleigh-Bénard-type setup where convection is
driven by imposing the heat flux at one of the boundaries in z instead
of fixing the temperature. The second approach (setup B) drives the
convection using heating/cooling layers adjacent to the boundaries
in z, as previously used in Paper I. The advantage of using two dif-
ferent numerical codes that drive the convection differently is that
this allows us to determine whether the bulk convective properties
are independent of the way convection is driven, and to ensure that
our main results are robust.

In both cases, the governing equations are those of rotating

Boussinesq thermal convection:

∂u

∂t
+ (u · ∇)u + 2Ω × u = −∇p + T ez + ν∇

2u, (1)

∂T
∂t
+ (u · ∇)T = q + κ∇2T, (2)

∇ · u = 0, (3)

where u = (ux,uy,uz ) is the fluid velocity, p is a pressure and
T is a scaled temperature which can be thought of as a buoyancy
variable and has the units of an acceleration. More specifically, T =
gα∆Treal/T0, where g is themagnitude of gravitational acceleration
(which points downwards), α is the coefficient of thermal expansion
and ∆Treal/T0 is the fractional difference in the real temperature
relative to a reference value, T0. In setup B, internal heating/cooling
is implemented by choosing q(z), and further details are given in
section 2.2.

Our computational domain is a Cartesian box with x ∈ [0, Lx],
y ∈ [0, Ly], z ∈ [0, Lz ]. In both setups Lz is fixed, and takes a value
that will be specified below for each of our setups. On the other
hand, Lx and Ly are both varied to explore the effects of varying the
horizontal domain sizes and aspect ratio on the convection and the
resulting mean flows. We aim to choose Lx and Ly so that we can
simulate multiple wavelengths of the dominant convective modes.

2.1 Setup A: Rayleigh-Bénard-type

For these simulations, the flux is fixed through the domain via the
temperature boundary conditions. In particular, we impose

T = 0 at z = 0 & ∂zT = −F/κ at z = Lz, (4)

for a given flux, F, and thermal diffusivity, κ. For the velocity
boundary conditions, we assume impenetrable, free-slip boundaries
so that

∂zux = ∂zuy = uz = 0 at z = 0 & Lz . (5)

We use periodic boundary conditions in x and y for all variables.
Hathaway & Somerville (1983) used a similar Rayleigh-Bénard-
type setup but they considered fixed temperature conditions at both
boundaries and enforced no-slip boundary conditions on the ve-
locity. Our simulations differ further from Hathaway & Somerville
(1983) in that we consider much faster rotation and lower diffusivi-
ties than the regime they probed in their study.

The simulations of this setup were carried out using Dedalus
(http://ascl.net/1603.015; http://dedalus-project.org; Burns et al.
2019), a pseudo-spectral code with implicit-explicit timestepping.
Typically, a 2nd-order Crank-Nicholson, Adams-Bashforth scheme
was used for the timestepping, with a CFL condition restricting the
timestep. A Chebyshev spectral method was adopted in z and a
Fourier method in x and y. Dealiasing was implemented using the
2/3 rule. Most simulations used 192 grid points in each direction,
but for larger boxes more grid points were used (see Table A1 for
details). We fix Lz = 1.2H for all simulations using setup A, where
H is the depth of the convection zone in setup B (see section 2.2).
This choice was made to allow a more direct comparison between
the two setups.
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2.2 Setup B: heating/cooling layers

Again, we adopt periodic boundary conditions in x and y for all
variables, and stress-free, impenetrable conditions in z. The thermal
boundary conditions in z are zero temperature at the bottom (z = 0)
and insulating at the top (z = Lz ). Specifically, we impose

T = 0 at z = 0 & ∂zT = 0 at z = Lz . (6)

Convection is driven by imposing internal heating and cooling so
that fluid is heated at the bottom of the box in a zone of depth
∆ = 0.2H, and cooled by an equal amount at the top, with no
heating/cooling in the middle "convection zone", which has depth
H so that Lz = H + 2∆ = 1.4H. Following Paper I, we adopt

q(z) =
F
∆


1 + cos

(
2π(z−∆/2)
∆

)
if 0 ≤ z ≤ ∆,

0 if ∆ < z < Lz − ∆,

−1 − cos
(

2π(z−Lz+∆/2)
∆

)
if Lz − ∆ ≤ z ≤ Lz,

with integrated heating of F in the top and bottom layers. Together
with our boundary conditions, this constrains the total heat flux F
in the convection zone in a steady state.

We use the efficiently-parallelised spectral element code
Nek5000 (Fischer et al. 2008), whichwas previously used in Paper I.
This method partitions the domain into a set of E non-overlapping
elements, and within each element the velocity components and
the pressure are represented as tensor product Legendre polyno-
mials of order N and N − 2, respectively, defined at the Gauss-
Lobatto-Legendre and Gauss-Legendre points. Such a method has
algebraic convergence with increasing E, and spectral (exponential)
convergence with increasingN (for smooth solutions), with the to-
tal number of grid points in 3D being EN3. Since the grid points
are non-uniformly spaced, whenever we wish to compute Fourier
spectra, we first interpolate the numerical data to a uniform grid
using in-built routines in Nek5000.

Temporal discretisation is based on a semi-implicit formula-
tion, where the nonlinear and Coriolis terms are treated explicitly,
and the viscous and pressure terms implicitly. In particular, we use
a 2nd-order characteristics-based timestepper for the explicit terms
and a 2nd-order backward-difference formula for the viscous and
pressure terms, with a variable time-step determined by a target
CFL number. The nonlinear terms are fully de-aliased by using a
polynomial order that is 3/2 larger for their evaluation. Our typical
resolution is E = 203 and N = 10 (15 for the nonlinear terms), un-
less otherwise specified in Table A1, where we list the parameters
for all of our simulations.

2.3 Non-dimensionalisation

For simulations using either setup we fix the total heat flux through
the domain. In setup A, this is achieved through the boundary con-
ditions (4) and in setup B this is achieved by the heating/cooling
function q(z) in addition to the boundary conditions. The total heat
flux is given by

F = −κ
d〈T〉xy

dz
+ 〈uzT〉xy (7)

where the angled brackets with subscripts represent averaging over
the directions indicated (i.e., horizontal, here). In a steady state, the
time-averaged F is independent of height in the convection zone.

Following Paper I we set F = 1 and H = 1. In other words,
we measure lengths in units of H and times in units of H2/3/F1/3.
This choice was made because it allows us to compare with the
predictions of RMLT most simply.

For each simulation we also specify Ω, φ, ν and κ (along with
Lx and Ly). These quantities are related to the more traditional
dimensionless numbers in the following way

RaF =
FH4

κ2ν
, Ek =

ν

2Ω sin φH2 , Pr =
ν

κ
, (8)

where RaF is a flux based Rayleigh number, Ek is the Ekman num-
ber and Pr is the Prandtl number. In terms of these dimensionless
numbers, the dimensionless time, t, in our code can be expressed as
t = tvisc(RaF/Pr2)1/3 where tvisc is the time expressed in units
of a viscous timescale (H2/ν).

To keep our voyage through parameter space manageable, we
set ν = κ throughout, i.e. Pr = 1, deferring a study of the possible
dependence of the bulk properties (or mean flows) on Pr to future
work. We also fix ν for most of the simulations with a given Ω,
though we do vary ν separately for a subset of simulations. We per-
form simulations for a range of Ω and vary φ (in addition to Lx and
Ly). Most of the simulations are in a regime where they are strongly
influenced by rotation, i.e., they have Rossby numbers (defined by
Ro = uz ,rms

2ΩH ) much less than one. As an example, consider case
10A45b: as listed in Table A1, this has Ω = 10 and uz,rms = 0.56,
so that Ro = 0.03. Alternative measures of the rotational influ-
ence, e.g., the "convective Rossby number" Roc = Ek(Ra/Pr)1/2,
also typically yield values less than unity – e.g., for the same case,
Roc is approximately 0.26, after calculating the traditional Rayleigh
number Ra via Ra = RaF/Nu and Nu = F/κ |dT/dz | (where the
temperature gradient is taken over the middle one third of the do-
main) – likewise indicating that rotation plays a significant role. We
focus on this regime because it allows us to directly test the predic-
tions of RMLT. The values of parameters used in our simulations
are given in Table A1 from which corresponding Ek and RaF can
easily be computed. In general, the supercriticality changes between
different simulations – we comment on this further in section 3.2.

3 TILTED CONVECTION IN THE NONLINEAR REGIME

We have performed a large number of rotating 3D simulations; the
values of the parameters used in all of the simulations are listed in
Appendix A, where we also report the numerical data for the bulk
properties along with corresponding Rossby and vertical Reynolds
numbers. The rotational influence can be seen in Fig. 2, which shows
the temperature and vertical velocity in an illustrative simulation,
where the convective plumes are approximately aligned with the
rotation axis in the y − z plane.

In this rotation-dominated regime the horizontal flow compo-
nents tend to develop large-scale structures; examples of such flows
are shown in Fig. 12 but we defer a discussion of these and their
impact until section 5.

3.1 Dependence of temperature gradient on rotation rate and
latitude

As discussed in the introduction, we are interested in the effect of
rotation on the temperature gradient at different latitudes because of
its potential application to modelling stellar interiors. Fig. 3 shows
the variation with Ω of the mean bulk temperature gradient at four
different latitudes from simulations in setup B. The mean bulk
temperature gradient is calculated from the horizontally-averaged
temperature profile by taking the mean gradient over the central one
third of the convection zone depth. The associated error bars are
determined by subtracting the time-averaged temperature gradient
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Figure 2. Snapshot of (a) T and (b) uz from an illustrative simulation with
Ω = 10 and φ = 45◦ (case 10A45c in Table A1). The convective plumes
align approximately with the rotation axis.

from the temperature gradient at each time and then taking the RMS
average of the resulting values to give a measure of the error.

For each panel, the dashed line has a slope of 4/5 and so it
is clear that | d 〈T 〉dz | scales approximately as Ω4/5 at fixed latitude.
|
d 〈T 〉
dz | ∼ Ω

4/5 is the rapidly rotating limit of the predicted scaling
in the RMLT of Stevenson (1979), which will be discussed further
in section 4, and it is consistent with simulations at the poles (see
e.g., Paper I). It is clear from Fig. 3(d) that this scaling is not as
robust for φ = 30◦. One possible reason for this is that, at latitudes
closest to the equator, the horizontal box size in y is likely too small
so that the periodic boundary conditions significantly constrain the
flow. As a result, some of the cases with the smallest φ are expected
to disagree with the theoretical prediction of RMLT, particularly if
the tilt of the modes in the (y, z)-plane is such that cot φ & Ly/Lz .
For this reason we do not perform any simulations for φ < 10◦.

In a similar way, we can explore how the mean temperature
gradient varies with latitude. Fig. 4 shows the dependence of the
mean bulk temperature gradient on φ for two different rotation
rates showing results with both setups. Note that we plot co-latitude
(90◦ − φ) on the x-axis so that as we move along the x-axis we are
moving from pole to equator. Both sets of simulations (setups A and
B) largely give the same trends, so the discussion below is relevant
for both. Whilst the trends with φ are very similar across both data
sets there is a slight offset in the exact numerical values obtained.
For example, | d 〈T 〉dz | is consistently higher in the simulations of
setup A for a fixed Ω and φ. We attribute this to small differences
in the depth of the convection zone owing to the different setups.
The agreement in behaviour between both setups (apart from this
quantitative offset) indicates that the bulk convective properties are
largely insensitive to the way the convection is driven, and that the
observed trends with φ (and Ω) are robust.

The different data points at a fixed latitude correspond to dif-

ferent box sizes. We will later show in section 5 that the horizontal
flows that develop are strongly affected by Lx and Ly , and that the
different flows that develop (even at the same latitude) can lead to
different temperature gradients.

For both Ω = 10 and Ω = 30, the general trend is that as φ
is decreased from the pole, | d 〈T 〉dz | remains roughly constant until
φ ≈ 45◦, or perhaps slightly increases, before decreasing at smaller
φ. Since we are imposing a fixed flux across the domain, a larger
|
d 〈T 〉
dz | corresponds to less efficient convection. Naively we might

expect that as we move towards the equator, the effect of rotation is
reduced and so the convection is less inhibited leading to a reduced
|
d 〈T 〉
dz |. However, we do not observe this effect until φ is less than

φ = 45◦, indicating that the behaviour of | d 〈T 〉dz | ismore complicated
than this simple expectation. Similar trends were found for Ω = 6
and Ω = 20 but for brevity we do not include them here.

3.2 Dependence of temperature gradient on viscosity

The viscosities and diffusivities employed here are, like those in any
tractable numerical simulation, many orders of magnitude larger
than the true values of these microscopic transport coefficients in
stars or planets. Equivalently, our simulations have much lower
Rayleigh numbers and much higher Ekman numbers than a rapidly
rotating star or planet. This will inevitably affect some aspects of
the simulated flow; but if the true dynamics in stars or planets
are "diffusion-free,” as in some of the theories outlined in §1, we
may hope that these numerical effects are not too severe provided
the numerical diffusion parameters are "low enough.” Here, we
therefore briefly assess the extent to which some aspects of the
flows reported here – in particular, the temperature gradient – are
influenced by these numerical parameters. Fig. 5 shows how | d 〈T 〉dz |

changes as ν is decreased in an example set of simulations with
Ω = 10, φ = 45◦, ν = κ and Lx = Ly = 1.5. Clearly, the dependence
on ν is reduced as ν is decreased (i.e., moving to the right in
Fig. 5, since 1/ν is plotted on the x-axis). Alternatively, this can be
interpreted in terms of RaF (figure 5, top axis); the dependence of
|
d 〈T 〉
dz | on RaF becoming reduced as ν is decreased (for fixed flux).

This suggests that the simulations are approaching a regime where a
diffusion-free scaling is valid. Paper I showed that bulk properties of
rapidly-rotating convection in simulations at the poles are consistent
with the diffusion-free predictions of RMLT. However, we should
caution that the simulation with ν = 10−4 in Fig. 5 has been run for
long enough to obtain an equilibrated flux in the interior but large-
scale flows have not fully developed. If the large-scale flows are
allowed to develop then there may be changes to the value of | d 〈T 〉dz |

(as will be discussed in section 5). Furthermore, Fig. 5 suggests that
while some of our simulations in figures 3 and 4 are not quite in a
regime where viscosity is entirely negligible, viscous effects appear
to be weak.

It must be noted that the range of parameters probed by our sim-
ulations is necessarily still limited by numerical resources. In rotat-
ing convection, the critical Rayleigh number (the value of Rayleigh
number at which convection onsets) scales with Ek−4/3 (Chan-
drasekhar 1961) and hence depends on ν, Ω and φ (and well as H).
Therefore, while decreasing ν = κ by a factor of a, say, (for fixed
F,H) increases RaF by a factor of a3, the supercriticality of the
convection (if defined as the ratio of RaF to the onset value) is, by
comparison, only moderately increased by a factor of a5/3 (since
decreasing ν also decreases Ek and hence increases the critical
Rayleigh number). Thus, to obtain a large range of supercriticalities
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Convection with misaligned gravity and rotation 7

Figure 3. Mean temperature gradient in the bulk (as measured over the middle one third of the convection zone) as a function of Ω for fixed latitude φ from
a series of simulations from setup B (data points). The dashed lines are all proportional to Ω4/5 and correspond to S79’s single-mode solution in the rapidly
rotating limit (with A = 50). At each latitude, the theoretical scaling of Ω4/5 agrees with the data quite well – though a different proportionality constant
would be needed to give better agreement with the data. The agreement with Ω4/5 is poorest at the smallest φ. The solid lines are the theoretical predictions of
multi-mode RMLT, which are computed by taking A = 0.36 for all Ω and φ across all four panels.

in simulations with fixed F and Ω is relatively challenging. Indeed,
the majority of our calculations possess a Rayleigh number of up to
approximately 10 times the critical Rayleigh number at each rota-
tion rate; the cases sampled in Fig. 5 probe a larger range (including
approximately 20 times critical in the most extreme case) but it was
not practical to repeat this at all rotation rates and latitudes. We
have also performed a subset of simulations varying RaF at fixed
Ek to obtain a larger range of supercriticalities (see section 4.5 and
Fig. 11).

4 ROTATING MIXING LENGTH THEORY

4.1 Temperature gradient from MLT

We seek to understand physically the behaviour of | d 〈T 〉dz | described
in section 3 using the framework of RMLT. Paper I showed that
the RMLT of S79 agrees very well with simulations at the pole and
here we investigate whether it can explain the variation of | d 〈T 〉dz | at
other latitudes.

Following S79 (see also Flasar & Gierasch 1978 and Paper I),

we present the arguments for rotating MLT as a possible physical
explanation for the results obtained with our numerical simulations.
We begin with the (Boussinesq) linearised equations for perturba-
tions to a linear background temperature profile TB = T0 − N2

∗ z
(where the buoyancy frequency N2 = −N2

∗ ), in the absence of
viscosity and thermal diffusion:

∂u

∂t
+ 2Ω × u = −∇p + T ez, (9)

∂T
∂t
= N2
∗ uz, (10)

∇ · u = 0. (11)

The symbols are the same as in (1)-(3) except that T is now the
perturbation to a linear background profile (as opposed to the to-
tal temperature). We adopt impenetrable boundary conditions, i.e.,
uz = 0 on z = 0 and 1. Since equations (9)-(11) are linear, we may
seek growing modes of the form (Hathaway et al. 1979)

uz |k = Re
[
ûz (k) exp

(
i
(
kx x + ky y − kyτz

)
+ σt

)
sin nπz

]
,

where τ = 4ΩzΩy/(4Ω2
z+σ

2), and similarly for other variables such
as T , and k = (kx, ky,nπ). This allows us to obtain the following
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8 L. K. Currie et al.

Figure 4. Mean temperature gradient in the bulk (as measured over the middle one third of the convection zone) from simulations (data points) as a function
of co-latitude (90◦ − φ) so that the pole is at the left-hand-side of the x-axis, for Ω = 10 (a,b) and Ω = 30 (c,d) in simulations using both setups (setup A,
left column; setup B, right column). The dashed line gives the temperature gradient as predicted by single-mode MLT (described in appendix B), the solid
line gives the prediction from multi-mode theory (as described in section 4.1) and the dotted line gives the prediction from the restricted multi-mode theory
(described in section 4.3). Again, the same proportionality constant is used for the single mode solutions (A = 50) and for the multi-mode solutions (A = 0.36),
across all four panels. The grey circles highlight the simulations with strongest zonal flow, characterised by Γ > 0.1 (see section 5.2).

dispersion relation for the growth rate2, σ

σ4 +
(
4Ω2

z (2n2π2 + k2
⊥) + 4Ω2

yk2
y − N2

∗ k2
⊥

) σ2

k2

+
4Ω2

z

k2

(
4Ω2

zn2π2 − N2
∗ k2
⊥

)
= 0, (12)

where k2 = k2
⊥ + n2π2, and k2

⊥ = k2
x + k2

y .
There are two arguments required to formulate RMLT for a

single mode. We first relate the convective heat flux to the velocity,
and then we relate the velocity to the linear growth rate by assuming
that the latter balances a nonlinear cascade rate. Finally, we sum up
over all of the modes to obtain a multi-mode RMLT.

The convective heat flux due to a single mode is given by

F |k = 〈uz |k T |k 〉 ∝ ûz (k)T̂∗(k) + c.c.,

2 This gives the same growth rate as S79 Eq. 33 (but his Eq.39 is incorrect
since it omits a term) and Flasar & Gierasch (1978) Eq. 2.33 (once we
correct a typo in their term involving l2).

where 〈·〉 denotes a spatial average and c.c. represents the complex
conjugate. By multiplying equation (9) by the velocity amplitude of
a mode, u |k , and spatially averaging, we can show that (e.g. S79)

F |k = σ〈|u |k |
2〉.

This implies that the typical flux Fλ on a characteristic lengthscale
λ satisfies

Fλ ∼ σu2
λ, (13)

whereuλ is a typical value of the velocitymagnitude on a lengthscale
λ. (If one wished to be more precise, one could define uλ as the
structure function u2

λ
= 〈|u(x+λ)−u(x)|2〉 ∼ k3 | û(k)|2/V , where

V is the volume of the domain.)
We next suppose that the amplitude of each convective mode

is controlled by the requirement that its growth rate balances its
nonlinear cascade rate, i.e.,

σ(k) ∼ ktot uλ. (14)

Here we have defined k2
tot = k2

⊥ + (nπ ± kyτ)2 ≈ k2
⊥ + k2

yτ
2 since

kyτ � kz = nπ for many of the modes in our simulations. This
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Convection with misaligned gravity and rotation 9

Figure 5. Mean temperature gradient in the bulk of the convection zone
as measured over the middle one-third of the domain as a function of 1/ν
(bottom axis) and RaF (top axis) in simulations with Ω = 10, φ = 45◦
and Lx = Ly = 1.5 done using setup B (and F = 1). The dependence of
|d 〈T 〉/dz | on ν becomes small as ν is decreased.

accounts for the tilted nature of the convectivemodeswhen φ , 90◦.
The contribution to the heat flux on a lengthscale λ is then obtained
by substituting Eq. 14 into Eq. 13 to obtain

Fλ ∼
σ3

k2
tot

. (15)

The total heat flux is the weighted sum of this quantity over all
of the modes, i.e.,

F =
∭

Fλd ln kxd ln kyd ln n, (16)

where we set

Fλ = A
σ3

k2
tot

, (17)

and A is a constant to be determined from simulations. This inte-
gral takes into account the relative volume of k-space occupied by
modes with a given Fλ. The reason for the ln factors is because Fλ
represents the typical value of the flux on a lengthscale λ, which
differs from the flux due to Fourier modes with a given k .

Our picture is that the convection is dominated by a sea of un-
correlated modes whose amplitudes are each determined by Eq. 14.
The amplitude-limiting criterion (Eq. 14) is a highly simplified
model of nonlinear effects, but we will later show that it is appropri-
ate for explaining the bulk properties of rotating convection. This
picture is not appropriate for the modes with short enough length-
scales such that viscosity and thermal diffusion are important.

If we know the total flux F, Eq. 16 can be viewed as an inverse
problem to determine the required value of N2

∗ to transport this heat
for a given H,Ω and φ, which we can solve numerically (e.g., this is
straightforward to accomplish using fsolve in Matlab). We will refer
to this formalism as the multi-mode approach since the integral in
(16) is overmanymodes. A simplerway to proceed is to suppose that
the heat transport is dominated by a single mode, namely the one
that transports the most heat, as considered by S79 and Paper I (the

details of this approach and its relation to the arguments in Paper I
are given in Appendix B); we will refer to this simpler formalism as
the single-mode approach. In cases with rotation and gravity aligned
(i.e., at the poles), Paper I found the single-mode theory matched
the numerical results very well. However, (as will be shown below),
this theory does not describe as well the dynamics in non-polar
regions. This motivates us to retain multiple modes (strictly all of
the modes under the above assumptions) in our analysis below.

To see why including multiple modes might be necessary as
we move away from the polar regions, Fig. 6 displays Fλ on the
(kx, ky)-plane for modes with n = 1, with Ω = 30 for φ = 90◦
(pole), 45◦ and 10◦. This shows that the modes that transport heat
most efficiently are those with ky = 0 whenever we are not at the
poles. In addition, the contours of Fλ become less symmetric as
φ → 0◦, implying that the single mode that maximises Fλ is no
longer representative, unlike in the polar case where the contours of
Fλ are symmetric. We will show that this modifies the predictions
of RMLT. Note that we only include modes where Fλ is positive;
since σ is negative for kx and ky both small (Hathaway et al. 1979)
there exists a void region at the centre of each plot in Fig. 6.

To form the multi-mode predictions, we assume that n = 1
dominates, based on the single-mode result inAppendixB, but allow
any kx and ky value. We fix the arbitrary normalisation constant,
A, in the theory by matching the value of N2

∗ at the pole to the value
obtained in simulations for one chosen value of Ω. The theory then
predicts the Ω and φ dependence of N2

∗ . In practice, we obtain this
prediction by summing up the modes numerically on a discrete grid
of kx and ky values such that the integral in Eq. 16 is converged,
and then find the value of N2

∗ that gives our desired total flux F for
each Ω and φ. Note, we only include convectively unstable modes
in our calculations, i.e., we set Fλ = 0 if Re(σ) ≤ 0.

4.2 Other predictions from MLT

Once we have obtained N2
∗ , we may also obtain expressions for the

corresponding RMS velocity (uz,rms) and temperature fluctuations
(δTrms) as follows. We assume that there is a good correlation
between rising warm fluid and falling cool fluid, so that the heat
flux carried by modes with these wavenumbers is given by

Fλ ∼ vzδT, (18)

where vz and δT are the RMS vertical velocity and temperature
fluctuations for these modes. Equation (10) gives

σδT = N2
∗ vz, (19)

then combining (17), (18) and (19) gives vz ∼
√

Aσ2/ktotN∗
(e.g. S79), and so

uz,rms ∼

√∬
σ(k)4

k2
totN2

∗

d ln kxd ln ky . (20)

(19) then gives δT = N2
∗ vz/σ ∼

√
AN∗σ/ktot , and so

δTrms ∼

√∬
N2
∗σ

2

k2
tot

d ln kxd ln ky . (21)

Scalings for the dominant wavenumbers of the convection can
be obtained in the following way:

k̂ =

∫
k⊥F⊥ dk⊥∫

F⊥dk⊥
(22)
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Figure 6. Logarithm of the single mode flux, i.e. log10 Fλ = log10(A
σ3

k2 ), as a function of kx and ky for Ω = 30 and three different latitudes (φ = 90◦, 45◦
and 10◦). We fix A = 0.36. This shows that modes with ky ∼ 0 dominate the transport at non-polar latitudes, and that the modes that maximise Fλ occupy a
shrinking volume of k-space as φ → 0◦.

where k⊥ = (k2
x + k2

y)
1
2 and F⊥ = Fλ/kx ky . To obtain a smoother

profile, F⊥ is binned in integer bins of k⊥.
TheΩ and φ variation of each quantity is a meaningful predic-

tion of the theory as is the anisotropy in the x and y directions.

4.3 Comparison with simulations

4.3.1 Comparison of temperature gradient

Returning first to Fig. 3, which shows the variation with Ω of the
mean bulk temperature gradient at four latitudes, we focus now on
the over-plotted solid lines. These show the prediction of the multi-
mode theory for |d〈T〉/dz | at each latitude and rotation rate. It is
clear that the scaling with rotation rate in this theory is virtually
identical to the Ω4/5 scaling implied by the single-mode theory
in the rapidly-rotating limit, and hence that our simulations are
qualitatively in agreement with this particular prediction of both
multi-mode and single-mode RMLT. However, the multi-mode the-
ory provides better quantitative agreement with the data when the
same proportionality constant, A = 0.36, is used at all latitudes; the
single-mode prediction (with A = 50) becomes progressively less
appropriate at latitudes closer to the equator.

Fig. 4 shows how both the theoretical and the simulation values
of N2

∗ = |
d〈T 〉
dz | vary as a function of co-latitude (90◦ − φ) for the

simulations of setup A (left-hand column) and in the simulations of
setup B (right-hand column), for Ω = 10 and Ω = 30 and a range
of horizontal box sizes. The dashed lines show how the temperature
gradient would be expected to scale with φ based on S79’s (single-
mode) theory, which only depends onΩz (the vertical component of
Ω), whilst the solid line shows how the temperature gradient varies
as determined by the multi-mode theory described in section 4.1.

For both sets of simulations the multi-mode prediction gives
better agreement than the single-mode prediction with the simula-
tion data in that | d 〈T 〉dz | stays flatter until smaller φ as we move away
from the poles. Indeed, the multi-mode prediction does a reasonably
good job of predicting the dependence of the mid-layer temperature
gradient on φ for all Ω considered here. There are however a few
outliers, which lie noticeably above the solid line: these are simu-

lations with horizontal box sizes such that strong zonal flows have
developed, which we will discuss further in § 5 (note the cases with
strongest zonal flows are highlighted with a grey circle). The poorest
agreement between the theoretical lines and the simulations occurs
at the latitudes closest to the equator, which as discussed previously
could also be a result of the constraining effects of the horizontal
periodic boundaries in cases with Ly being too small.

The multi-mode prediction is obtained by summing up over
enough modes that convergence is obtained (i.e., the integral is
converged and each result does not vary when higher wavenumber
modes are added). Since the modes in a numerical simulation are
determined by the box size and the resolution, we also perform
calculations which include only the discrete set of kx and ky values
that are present in the simulation (using a typical resolution and box
size for each set of parameters); this leads to non-smooth predictions
(dotted lines). These dotted lines roughly follow the full multi-mode
prediction indicating that in almost all cases the discreteness of the
modes in our simulation is unlikely to cause a significant departure
of our numerical data from the multi-mode theoretical prediction,
but some differences arise because of the different modes included
in each calculation.

4.3.2 Comparison of the heat flux spectra

We can also compare qualitatively the theoretical Fλ as a function of
kx and ky with the heat flux spectrum obtained from simulations.
We obtain the values from simulations by using data at the mid-
plane z = Lz/2 for uz (x, y, Lz/2, t) and T(x, y, Lz/2, t), and we
compute the spatial discrete Fourier transformof this data to produce
ûz,k (kx, ky, t) and T̂k (kx, ky, t). These quantities are used to compute
the heat transport spectrum ûz,k (kx, ky, t)T̂∗k (kx, ky, t). In Fig. 7
we compare Fλ (top row) with Re(ûz,kT̂∗

k
) (bottom row) for Ω =

20, at three different latitudes. Note that these quantities are not
expected to match quantitatively due to their different definitions.
In particular, Fλ represents the heat flux in a logarithmic interval in
k-space, whereas ûz,k (kx, ky, t)T̂∗k (kx, ky, t) represents the heat flux
in a unit interval in kx and ky . However, both quantities represent
a measure of the heat transport for the modes, so they should share
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Convection with misaligned gravity and rotation 11

common features, and we expect their azimuthal structures to be
similar in the (kx, ky)-plane.

We show the time-averaged spectra from a number of snap-
shots of the data at different times in the turbulent state to reduce
noise, though turbulent fluctuations have not been eliminated en-
tirely. In each case the logarithm of the flux is plotted and the
quantities have been scaled by a constant to aid comparison. We
have only plotted the low wavenumber modes because RMLT is not
expected to be valid for high wavenumbers, where rotation should
be unimportant and diffusion should be the dominant process. But
at small k, if RMLT is correct it should approximately describe
the data. However, we should note that RMLT does not capture all
possible nonlinear interactions, and in particular omits transfers of
energy into ‘stable’ modes at small k for which σ(k) < 0. Nonlin-
ear interactions between ‘unstable modes’ and ‘stable modes’ are
of course possible in the simulations, so we may expect a departure
for the smallest wavenumbers from RMLT. Nevertheless, if RMLT
is correct it should approximately capture the shape of the contours,
including the anisotropy between kx and ky .

Overall, there is very good qualitative agreement in Fig. 7
between the simulations and the theory; for the simulation closest
to the pole, the spectra should be close to being symmetric about the
origin, with little differences along the kx and ky axes, and this is
essentially what we observe. Furthermore, the asymmetry between
the x and y directions (as shown previously in Fig. 6) increases as
we move towards the equator, in both simulations and theory. The
biggest discrepancies between the theory and simulations occurs in
these plots at the smallest kx and ky , which is probably because the
theory neglects nonlinear interactions that are present in reality.

An alternative comparison between theory and simulations
is by plotting the heat flux spectrum along the kx- and ky-axes
from simulations and comparing this with the RMLT predictions
Fλ/kx and Fλ/ky , respectively (these factors are approximate and
arise from integration over d ln kxd ln ky in Fλ, versus dkxdky for
Re(ûz,kT̂∗

k
)). The results for Ω = 20 are shown in Fig. 8. We have

arbitrarily scaled both theoretical lines together, by the same nor-
malisation factor, as well as that of the simulation data, so that
both sets of data have the same magnitude at a particular kx or ky .
The overall magnitudes are therefore arbitrary, but the shape and
any differences between the lines along the kx- and ky-axes are
meaningful tests of the theory.

We again see the symmetry breaking that occurs as we move
away from the pole. Note that linear theory predicts σ ∼ N∗ for
the fastest growing mode, approximately independent of k. As a
result, RMLT predicts Fλ ∼ 1/k2, so that Fλ/kx ∼ 1/k3

x and
Fλ/ky ∼ 1/k3

y . The slopes of the 1D spectra are well approximated
by these theoretical predictions at intermediate scales. The asym-
metry between kx and ky is accurately captured at all three latitudes
considered. This is particularly clear from the data with φ = 20◦,
where the heat transported by modes with ky = 0 is more than an
order of magnitude greater than that by modes with kx = 0.

Overall, we have shown that the spectra in our simulations
are quite well described by RMLT for the wavenumbers where we
expect this to apply.

4.3.3 Comparison of other quantities

Other predictions from RMLT obtained in §4.2 can also be tested
against simulations. In order to test these we calculate from the
simulations, the RMS values of uz andT ′ = T−〈T〉 at themid-plane
of the box. These values are then time-averaged over the duration
of the simulation in the turbulent quasi-steady state. The associated

errors are estimated by subtracting the time-averaged RMS quantity
(uz or T ′) from the quantity at each time before taking a RMS
average of the resulting values to give an overall "error". To obtain
k̂ from the simulations we use data at the midplane (z = Lz/2) for
uz and T for a selection of data at various times in the simulation
(Nek5000 data is then interpolated onto a uniform xy-grid), which
is then used to calculate ûz,k (kx, ky, t)T̂∗k (kx, ky, t) as described in
section 4.3.2. We can the calculate the equivalent integral to that in
(22) by replacing F⊥ with Re(ûz,kT̂∗

k
), i.e.,

k̂ =

∫
k⊥Re(ûzT̂∗)dk⊥∫

Re(ûzT̂∗)dk⊥
, (23)

where k⊥ = (k2
x + k2

y)
1/2 bins have been used.

The comparison between theory and simulations forΩ = 10 is
shown for both setups in Fig. 9. Again, the trends for both setups are
similar reinforcing the robustness of our results and permitting the
same description for both data sets. Note the expressions in (20) and
(21) give the predicted trend with φ but not the precise magnitude
and so we normalise both the single- and multi-mode predictions
such that they agree with the simulation at the pole. uz,rms does not
vary significantly until 90◦−φ & 75◦ and this behaviour is captured
by both the single- and the multi-mode theoretical predictions. For
the smallest φ, the increase of uz,rms with 90◦ − φ in the data is not
well described by the theoretical predictions; again, this could be a
result of the finite box size constraining the solution, since for small
φ a very large box is required to avoid convective plumes artificially
leaving one side of the box and entering on the other.

δTrms in the simulations tends to slightly increase between
φ = 90◦ and φ ≈ 40◦. This trend is reasonably well captured by
the multi-mode theory but not by the single-mode theory which
decreases monotonically with decreasing φ. Again, at the smallest
φ, the behaviour of δTrms is not well described by the theoretical
predictions; the reasons for this have been touched upon above and
will be pursued further in section 5.

Comparison between simulation and theoretical k̂ is given in
Fig. 9 (e) and (f). The theoretical prediction from single-mode
RMLT given by equation (B2) does not require additional nor-
malisation. The multi-mode expression for k̂ given by equation
(22) is also exact and should not require additional normalisation.
However, we find that some normalisation is required for the lat-
ter to agree with the data. This is probably a result of the subtle
differences between the definitions in (22) and (23) (i.e., Fλ rep-
resents the heat flux in a logarithmic interval in k-space, whereas
ûz,k (kx, ky, t)T̂∗k (kx, ky, t) represents the heat flux in a unit interval
in kx and ky). Here the normalisation is such that the single- and
multi-mode theories agree at the pole. In this case, there is little
difference between the single and multi-mode predictions and both
match the trend of the simulation data well; decreasing with de-
creasing φ. Where the multi-mode theory does supercede the single
mode theory is in describing the asymmetry in kx and ky – as shown
most clearly in Fig. 8.

4.4 Wavenumber scaling: MLT vs Linear Onset

Rotation affects both the vigour of convective flows and their spatial
structure: as Coriolis forces become stronger, the convective eddies
tend to align with the rotation axis, and to narrow in horizontal
extent. (See, for example, discussion in Gilman 1975.) These effects
manifest as changes in the typical wavenumber of the convection.
In S79’s single-mode RMLT, the dominant wavenumber (that is,
the mode that transports the most heat) is expected to increase with
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Figure 7. Comparison of the theoretical and simulation heat flux spectra. Logarithm of the single mode flux, i.e. log10 Fλ ∼ log10(A
σ3

k2 ), as a function of kx
and ky for Ω = 20 and three different latitudes (φ = 70◦, 50◦ and 20◦) is given in (a-c). The equivalent heat flux spectrum from a numerical simulation is
given for each latitude: case 20B70a in (d), case 20B50a in (e) and case 20B20a in (f). Note that the theoretical expression has been plotted with A = 0.36 and
and the colorbars have been adjusted by eye to emphasise key features.

rotation rate, scaling as Ω3/5
z (see Appendix B). This differs from

the rotation-rate scaling of the most unstable mode at convective
onset, obtained from linear theory3 (Chandrasekhar 1961),

konset = kx,onset =

(
π2

2

) 1
6

Ek−
1
3 , (24)

with Ek as given in (8) and where ky,onset = 0 when φ , 90◦. Many
previous studies have argued that the wavenumber variation in rotat-
ing convection simulations is at least approximately in accord with
this linear scaling, evenwell into the nonlinear regime (e.g., Schmitz
& Tilgner 2009; Stellmach et al. 2014; see also Guervilly et al.
2019). Crucially, the linear scaling depends on viscosity even at
arbitrarily low ν, whereas the RMLT prediction does not. When
extrapolated to astrophysical or geophysical regimes, the two scal-
ings can thus give very different predictions for the typical size

3 This strictly applies for fixed temperature boundary conditions on both
boundaries in z, rather than one boundary with fixed flux and the other with
fixed temperature, but we expect this difference to be unimportant even to
the numerical prefactor.

of convective eddies, so clarifying which one applies, and in what
regimes, is of considerable interest.

We therefore turn in Fig. 10 to an assessment of the horizontal
length scales present in our simulations, for simulations at varying
rotation rates and viscosities. Fig. 10(a) shows how the dominant
horizontal wavenumber, k̂ (defined in (23)) in a series of simulations
at φ = 60◦ scaleswith rotation rate. For comparison, we have plotted
konset as calculated by equation (24) above at each rotation rate, and
have overplotted the RMLT theoretical scaling. It is clear, on the
one hand, that the data are consistent with the RMLT prediction,
which captures the broad trend with rotation rate (with k̂ scaling
roughly as Ω3/5

z ). However, the same data are also approximately
in accord with the Ek−1/3 scaling of linear theory: this is indicated
by the konset points, which lie nearly parallel to the k̂ values from
the simulations. On the basis of this data alone, we thus cannot
readily determine whether the RMLT wavenumber scaling (which
does not depend on viscosity) or the linear onset one (which does)
is the most appropriate. This is largely a consequence of numerical
limitations: at each Ω, we have been able to explore only a fairly
narrow range of viscosities, so there is little evident distinction
between a ν−1/3 scaling and a ν-independent one. However, the
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Figure 8. Comparison of the theoretical and simulation 1D heat flux spectra. The solid lines give the heat flux spectrum along the kx axis (thick, red lines)
and along the ky axis (thin, black lines) and the dashed lines give the RMLT predictions Fλ/kx (thick, red lines) and Fλ/ky (thin, black lines). In all cases
Ω = 20 and in (a) φ = 70◦, in (b) φ = 50◦ and in (c) φ = 20◦. The simulations used are give in Table A1 in cases 20B70a (a), 20B50a (b) and 20B20a (c). The
slope of the spectra at intermediate wavenumbers is well described by the theory and the anisotropy between the kx and ky is also well captured by the theory,
though the agreement is poorest at the smallest φ plotted where box size effects are likely to be important.

quantitative predictions of the onset wavenumber are consistently
larger than the numerical data.

A more detailed analysis, though, lends support to the view
that the RMLT wavenumber scaling more accurately describes our
simulations. We turn in Fig. 10(b) to an analysis of the heat flux
power spectrum in a series of simulations at the same rotation rate
(Ω = 10) and latitude but varying ν. If the linear onset scaling
were appropriate, the "peak" of the power spectrum would be ex-
pected to move to the right (i.e., towards higher wavenumbers) as
ν is decreased, since at fixed Ω this decreases Ek, as indicated by
the dashed blue lines – but this is not what is observed. The power
spectrum does change as ν is varied, but the largest changes are
confined to high-wavenumber modes where the effects of viscosity
are felt most keenly. The peak of the spectrum remains largely un-
changed. (In general, the behaviour of the low-wavenumber modes
is not utterly independent of those at high wavenumbers, of course;
see, for example, discussions in Featherstone & Hindman (2016).
However, this linkage need not change the peak wavenumber of
the spectrum, or indeed the power of modes near that peak.) We
conclude that the rotating MLT scaling – rather than the viscosity-
dependent prediction of linear theory – is the most appropriate one
in explaining the dominant wavenumber of the convection in our
simulations. Further, if the dominant wavenumber was determined
by viscosity, as in the linear onset scaling, this would lead to differ-
ent predictions for RMLT for other quantities such as d〈T〉/dz. The
internal self-consistency of RMLT thus demands that the dominant
wavenumber follows the diffusion-free prediction.

4.5 Connection to previous studies

In prior sections, we chose "flux units" in which F = 1 (in addition
to setting H = 1). By contrast, most previous studies have chosen
to express their results in terms of the dimensionless quantities
Ra, Ek, and Nu. To connect the two approaches, and to examine
how our results compare to those in less-rapidly and more-rapidly

rotating regimes, in Figure 11 we have briefly assessed the heat
transport for a complementary set of simulations at φ = 45◦, in
which we fix ν = 10−3.3 and Ω = 10, and vary F from .01 to 15.
We also set H = 1 as before. Along this path in parameter space,
Ek = 3.54 × 10−5, so that variations in F correspond directly to
changes in the supercriticality of the convection. (Note that changing
F is equivalent to keeping F = 1 and changing Ω and ν such that
their ratio is fixed.)

In Figure 11 (a), we show the results in flux units (see Table
1), plotting the temperature gradient normalised by F2/3 against
rotation rate normalised by F1/3. This panel is essentially equivalent
to Figure 3(c), except for the extension to lower values of Ω/F1/3,
and for the slightly different path in parameters space taken here.
We see that the RMLT prediction (red line) begins to fail at small
Ω, as may be expected (see also Paper I).

In (b), we re-plot these results in terms of more traditional
nondimensionalmeasures of buoyancy driving and of heat transport,
namely RaF and Nubulk = F/(ν |d〈T〉/dz |), (where |d〈T〉/dz |
is the bulk temperature gradient as calculated in §3.1). Note that
variations in RaF are equivalent to variations in the viscosity in
flux units (i.e., RaF = ((ν/(F1/3H4/3))−3). The RMLT prediction
from panel (a) becomes Nu = const Ra3/5

F
and is shown by the red

line. Clearly, this scaling law holds for our simulations with φ =
45◦ over several decades in convective supercriticality. For ease of
comparison with prior results, we have also shown the x-axis scaled
by Ek4/3 (see top axis of panel (b)). As discussed in §1, the RMLT
prediction in the rapidly rotating limit is, in this nondimensional
view, equivalent to the relation Nu ∝ (RaFEk4/3)3/5, derived in
a very different manner by Julien et al. (2012) (extended here to
the tilted case) and explored by many other authors. Since Ek is
constant for these simulations, the two versions of the x-axis differ
only by a constant factor (and are in turn a constant multiple of the
convective supercriticality).

Instead of Nubulk , the heat transport in convection simulations
is often characterised by a Nusselt number defined over the full
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Figure 9. RMS vertical velocity (a), (b); RMS temperature fluctuation (c), (d) and "dominant" wavenumber k̂ at the midplane for simulations with Ω = 10
and varying φ using setup A (1st column) and setup B (second column). The symbols represent data from simulations, the solid lines are predictions from
multi-mode theory (with A = 0.36) and the dashed lines are from single-mode theory (with A = 50). The grey circles highlight the simulations with strongest
zonal flow, characterised by Γ > 0.1 (see section 5.2).
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Figure 10. (a) Variation of k̂ (black crosses) and konset (blue circles) with
Ω for a series of simulations with φ = 60◦. The red line shows the scaling
of k̂ expected from RMLT. (b) Heat flux spectra for five different ν at fixed
Ω = 10, φ = 45◦, Lx = Ly = 1.5 (black solid lines; the thicker the line, the
larger ν). The vertical lines show the value of konset for the largest (left) and
smallest (right) viscosities considered here; konset varies with ν whereas the
peaks of the spectra do not.

depth of the domain, i.e., Nu∆T = FLz/(ν∆T). For comparison
to such work, Figure 11 (c) replots panel (b), but using Nu∆T .
There appears to be a new regime at high RaF (i.e., low Ω/F1/3,
or high Rossby number), with a new power-law. The slope of the
power law in this regime is consistent with previously-proposed
“non-rotating” scaling relations (Nu ∝ Ra1/3

F
, or Nu ∝ Ra1/4

F
);

we have overplotted the Nu ∝ Ra1/3
F

scaling for comparison. Note
that this is equivalent to the diffusion-free scaling of non-rotating
MLT. However, we argue that this measure provides a somewhat
misleading view of the convective transport. Naively, one might
expect that Nu∆T is an adequate proxy for Nubulk , because they
differ from each other by the factor dT/dz/(∆T/Lz ), which might

be expected to be around unity. But if a simulation possesses thin
thermal boundary layers at the top and bottom of the computational
domain, across which the temperature falls considerably, this factor
can become very small. The apparent break in Figure 11(c) arises
because these boundary layers “throttle” the overall transport at slow
rotation rates; at higher rotation rates, the bulk transport dominates,
and so measures of Nubulk or Nu∆T give comparable results. See
also Paper 1 for further discussion of the role of boundary layers.

5 EFFECTS OF ZONAL FLOWS ON HEAT TRANSPORT

In section 4.3 we demonstrated that multi-mode RMLT does a rea-
sonably good job in describing the behaviour of the bulk properties
of convection, however, some discrepancies remain. We believe
there are two main reasons for these discrepancies. First, as we have
already discussed, the periodic boundaries in y are likely to strongly
constrain the flow when cot φ & Ly/Lz , which is always satisfied
when φ approaches 0◦. This means that simulations very close to
the equator cannot reliably test RMLT. Second, large-scale flows
are generated by the convection as alluded to in section 3, and these
flows are not accounted for in the theory presented in section 4. In
figures 4 and 9, we highlighted the cases with strongest zonal flows
(grey circles) and demonstrated that these have the largest discrep-
ancies from the theoretical predictions. In this section we briefly
describe the large-scale flows, and investigate their effects on heat
transport further.

5.1 Generation of large-scale flows: effects of varying the
horizontal box sizes

In our simulations we observe significant large-scale zonal and
meridional jets. We find that the strength and direction of these
flows is strongly dependent on the horizontal box sizes Lx and Ly
(see Fig. 12). This dependence on box size highlights the somewhat
artificial nature of the mean flows realised in our simulations; how-
ever, it means that by varying box sizes at fixed rotation rate and
latitude, we can systematically excite flows of different strength,
and explore how these influence the heat transport, in a manner
that would be difficult or impossible in other setups. (In reality,
and in some global calculations, zonal flows arise naturally as a
consequence of convective angular momentum transport, and their
strength cannot easily be "dialed in".) In this sub-section, we briefly
describe the strength of the flows and how this depends on the aspect
ratios of our simulated system; in the next, we discuss how the flows
affect the heat transport.

In Fig. 12, we sample the zonal andmeridional flows realised in
a few different calculations atΩ = 10 and φ = 45◦, but with varying
box sizes Lx and Ly in the two horizontal dimensions. In general,
we find that if Ly > Lx , meridional flows (uy) are suppressed and
zonal flows (ux) are enhanced, and if Lx > Ly zonal flows are
suppressed and meridional flows enhanced. When Lx = Ly , strong
jets are observed in both directions, which may correspond with a
large scale vortex. The strongest jets are therefore always aligned
parallel to the shortest side, as also observed by Guervilly &Hughes
(2017) in their simulations at the pole.

The example zonal jets in Fig. 12 are quasi-geostrophic flows
that do not vary alongΩ, so they are tilted in the (y, z)-plane (similar
zonal jets have also been obtained recently by Novi et al. 2019). The
zonal (and meridional) jets exhibit a preferred wavelength in y (x),
which is much larger than the typical wavelengths of the dominant
convective lengthscales.
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Figure 11. The crosses represent a set of simulations using setup A in which φ = 45◦, ν = 10−3.3, Ω = 10, and F varies from .01 to 15; equivalently,
Ek = 3.54 × 10−5 for a range of RaF . In (a) the bulk temperature gradient (measured over the middle one-third of the domain) is shown against the rotation
rate, both expressed in "flux units". The red line represents the scaling predicted by RMLT. In (b), the same data is displayed in terms of a bulk Nusselt number
against either RaF (bottom axis) or RaFEk4/3 (top axis). Again, the red line represents the scaling expected from RMLT. (c) shows a Nusselt number
measured over the whole depth against RaF ; the red line represents the scaling expected from RMLT and the black dashed line, the scaling as predicted by
MLT without rotation.

We have observed that if Ly (or Lx) is increased for a fixed
Lx (Ly), the zonal flow (meridional flow) strength tends to become
approximately independent of Ly (or Lx) once we contain at least
one full wavelength of this structure in y (x), however the strength
of these flows has not saturated in time in all of our simulations. In
addition, the strength of these flows does depend on the horizontal
aspect ratio Lx/Ly .

In general, these flows arise as a consequence of the organised
Reynolds stresseswithin the rotating convection.We defer a detailed
analysis of the generation and saturation of the flows to other work,
but note that the equilibrated amplitude of the flowsmay be expected
to depend both on the convective Reynolds stresses and viscosity,
and also on the presence or absence of "parasitic" instabilities that
can sap the energy of these flows.

Each of the simulations listed in Table A1 have been run for a
minimum time interval of 30 time-units (and up to 200 time-units)
once a turbulent convective quasi-steady state has been reached.
The run time of our simulations was found to be sufficient to ob-
tain adequately converged statistics for bulk properties such as the
mean temperature gradient (i.e., those discussed in sections 3 and
4). However, the development of the large scale flows can take many
convective turnover times (particularly when Lx = Ly) and so some
of our simulations could still be undergoing longer-term behaviour
such as jetmerging on a viscous time-scale (e.g.Guervilly&Hughes
2017), but capturing these effects is not our primary focus. Never-
theless, the example flows shown in Fig. 12 are representative of
those that we observe in our simulations, and similar results are
found with both setups.

Unlike in Hathaway & Somerville (1983), we observe no sig-
nificantmean (i.e., x and y-averaged) flows in our simulations except
very close to the boundaries. This can be seen in Fig. 13 in an ex-
ample simulation, where the contours show 〈ux〉xy (a) and 〈uy〉xy
(b) as a function of z and time (here averages of a quantity over both
x and y are represented by 〈·〉xy). The over-lying solid black lines

show the time average of these quantities as a function of z. Clearly,
whilst at any one time there can be non-trivial horizontally-averaged
flows in the bulk, these are oscillatory and cancel out on space and
time-averaging to leave only a very weak mean flow. Close to the
boundaries where the flows are more laminar there are systematic
flows similar to those seen in Hathaway & Somerville (1983) except
that they observe significant mean flows throughout the entire do-
main (not just close to the boundaries). We attribute this difference
to the more rapidly rotating, turbulent regime in which our simula-
tions lie (similar effects on the mean flow of rotation and turbulence
have been reported by Brummell et al. (1996) in compressible con-
vection, for example). Indeed, we do find more systematic mean
flows if we increase ν (equivalently Ek). The picture in Fig. 13
is typical of all our rapidly rotating simulations, and very similar
results are also found using both setups. This indicates that rapidly
rotating turbulent convection in the setups considered here does not
generate significant, persistent x and y-averaged mean flows, except
close to boundaries. (Note that periodic boundary conditions pre-
vent the convection from generating mean horizontal temperature
gradients in x and y.)

5.2 Bulk properties as a function of large-scale flow strength

To investigate the effect of the large-scale flows on the bulk con-
vective properties we first characterise the strength of the flow by
defining the RMS value of each horizontal component;

ξrms =

√
〈ξ2〉xyz (25)

where ξ is taken to be ux or uy and the subscript on the angled
brackets denotes the coordinates that are averaged over. In addition,
we consider the following two measures

〈ux〉x,rms =

√
〈(〈ux〉x)2〉yz, (26)
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Figure 12. Snapshots of the horizontal velocity components for cases 10A45e (a-b), 10A45c (c-d) and 10A45h (e-f). (a), (c) and (e) are zonal velocities (ux )
and (b), (d) and (f) are meridional velocities (uy ). In all cases Ω = 10 and φ = 45◦. In (a) and (b), Lx = 2, Ly = 4, in (c) and (d), Lx = 2, Ly = 2 and in (e)
and (f), Lx = 4, Ly = 2. When Ly > Lx strong zonal jets are visible which are aligned in the x-direction, for Ly ∼ Lx both coherent meridional and zonal
jets are visible and for Lx > Ly meridional jets aligned with the y-axis are visible.

〈uy〉y,rms =

√
〈(〈uy〉y)2〉xz . (27)

Since the zonal (ux) jets extend over the entire domain in x and
alternate in the y-direction, and similarly, the meridional (uy) jets
extend over the entire domain in y- and alternate in x, the quanti-
ties

√
〈(〈ux〉y)2〉xz and

√
〈(〈uy〉x)2〉yz are small and so we do not

consider these further.
In Fig. 14 we plot the measures of the large-scale flow given

by (25)-(27) against the midplane temperature gradient and rms
vertical velocity. There is a strong correlation between the zonal
flow strength (either measured by uxrms or 〈ux〉xrms ) and the aver-

age bulk temperature gradient with stronger flows corresponding to
larger temperature gradients in the bulk. There is also a strong cor-
relation between the vertical velocities and the zonal flow strength,
whereby the stronger flows correspond to slower vertical velocities.
We interpret that the large-scale zonal flow inhibits the convection,
leading to slower vertical velocities, and a larger temperature gradi-
ent to carry the same heat flux through the domain. The inhibiting
effects of zonal flows on convection have been observed in other sys-
tems (see e.g., Teed et al. 2012; Goluskin et al. 2014), and proposed
relations between shear and heat transport also figure prominently
in the theoretical models of Balbus et al. (2009).

The correlation between the meridional flow strength and the
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Figure 13. Horizontally-averaged x and y components of ux (a) and uy
(b) as a function of z and time (bottom x axis). The corresponding time-
averaged profiles as a function of depth are given by the overlying thick black
lines and their values are given by the top x axis. In this case the parameters
are taken to be the same as those used in Fig. 12 (a), (b) (case 10A45e in
Table A1). The time-averaged mean flows are small in the interior but are
more significant in the boundary layers; this is typical of all our simulations.

temperature gradient (and vertical velocity) does not exhibit the
same behaviour. In fact the largest temperature gradients and small-
est vertical velocities occur at the smallest values of uyrms or
〈uy〉yrms (where the zonal flows are dominant). This indicates that
it is the zonal flows that have themost important effects on inhibiting
heat transport.

Fig. 14 shows that the strongest flows tend to be zonal (in the
x-direction); we can investigate the anisotropy in the two horizontal
directions with the scalar Γ defined as follows:

Γ =
uxrms − uyrms

uxrms + uyrms

. (28)

A positive value of Γ corresponds to cases where the zonal flow
is stronger than the meridional flow, whereas, a negative value of
Γ corresponds to cases where the zonal flow is weaker than the
meridional flow, and values close to zero indicate the meridional
and zonal flows are roughly of equal strength. Γ is plotted against
|d〈T〉/dz | in Fig. 15. The magnitude of Γ is larger for cases in which
the sign of Γ is positive. This plot highlights that for values of Γ
that are large and positive, the temperature gradient is increased
(convection is less efficient). For values of Γ close to zero the
temperature gradient remains roughly the same. For negative Γ the
temperature gradient is reduced from the cases with Γ = 0. This

again demonstrates that in these cases the large-scale (meridional)
flows do not increase the mid-layer temperature gradient in the same
way as the large-scale zonal flows.Note the criterion for highlighting
which simulations in figures 4 and 9 had significant zonal flow was
Γ > 0.1.

Our conclusion that the heat transport is strongly affected by
the zonal flow qualitatively agrees with the findings of Guervilly &
Hughes (2017) who considered local box simulations at the poles
with Ly ≥ Lx . They find that heat transport is reduced in cases
with a large-scale flow and argue that increases in the local rotation
rate, rather than shearing of the convection by zonal flows, cause the
inhibition of heat transport. Likewise, some spherical shell models
have shown the effect of large-scale flows on heat transport may be
quite complex (see e.g., Yadav et al. 2015; Raynaud et al. 2018).
We defer a more detailed analysis of the relationship between heat
transport and the zonal flows in our simulations to future work.

6 DISCUSSION & CONCLUSIONS

We have examined the effect of rotation on the temperature gradient
established by convection in a layer in which rotation and gravity
are misaligned. Our 3D simulations, though highly idealised repre-
sentations of a small portion of a star or planet at a given latitude,
have yielded new constraints on how the convective heat transport is
influenced by rotation, by changes in latitude, and by other physical
and numerical effects (including zonal flows).

In particular, we have argued that many aspects of the convec-
tion – including, crucially, the temperature gradient it establishes
– are (in cases with weak zonal flow) well-described by "rotating
mixing length theory" (RMLT). Our version of RMLT is funda-
mentally akin to that developed by Stevenson (1979) and explored
in Paper I: at its core, it assumes (as they did) that the equilibrated
amplitude of each mode is set by equating its linear growth rate
(which can be calculated analytically) to its nonlinear cascade rate,
and also employs the linearised equations to link the temperature
fluctuations at a given point to the background temperature gradient
and the velocity field. The theory of S79 further simplified matters
by assuming that the flow was dominated by the mode that trans-
ports the most heat, allowing for an analytical solution for d〈T〉/dz
(and other quantities) as a function of rotation rate. Our simulations
confirm that the overall scaling implied by this single-mode theory,
which predicts that d〈T〉/dz ∝ Ω4/5 in the rapidly rotating limit,
describes our data well at all latitudes (see, e.g., Fig. 3), extending
prior work that studied only the polar region (Paper I) and comple-
menting results on heat transport in rotating spherical shells (e.g.,
Gastine et al. 2016).

However, our simulations have also revealed that at latitudes far
from the poles, the single-mode theory fails to capture the horizontal
anisotropy of the heat transport, which in turn leads to less-accurate
estimates of d〈T〉/dz and other quantities. We have thus turned to
a multi-mode theory, described in Section 4, which provides pre-
dictions for the temperature gradient that, in cases with weak zonal
flows, gives better agreement with our simulations with varying
latitudes – see, for example, Fig. 4.

The theory also predicts other aspects of the convective flow,
including the spectrum as a function of wavenumber and typical
velocity and temperature fluctuations. Some of these predictions
(e.g., for the heat flux spectrum — see Fig. 8) are likewise in rea-
sonably good accord with the results of our simulations, but some
others (e.g., for the fluctuating temperature field as a function of
latitude — see Fig. 9) do not agree especially well. However, for
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Figure 14. Measure of the large-scale flow strength as a function of | d〈T 〉dz | (a-d) and as a function of uz ,rms (e-h). In all cases Ω = 10 and φ = 45◦ but the
horizontal box size and aspect ratio are varied which leads to different flows. There is a strong correlation between zonal flow strength as measured using (25)
or (26) and | d〈T 〉dz | and uz ,rms ; stronger flows lead to higher | d〈T 〉dz | and lower uz ,rms . The correlation between the meridional flow strength is much weaker
though the strongest flows have the opposite effect to the zonal flows and correspond to lower | d〈T 〉dz | and higher uz ,rms . The data used here is from cases
10A45(a-k) in Table A1.

all quantities, the largest disagreements between RMLT and the
simulations tend to be found in cases with strong zonal flows, as
discussed further below.

Although in extending the theory to include multiple modes
one loses the ability to write down closed-form analytic expressions
for the bulk properties as a function of rotation rate, the multi-mode
theory is still quick and easy to compute (in particular, orders of
magnitude cheaper than running full 3D simulations). This suggests
that some version of the theory, appropriately extended, may ulti-
mately be suitable for inclusion in 1D evolutionary models of stars
or planets, in place of current MLT models that do not include the
effects of rotation at all. It must be reiterated, though, that some as-
pects of the convective dynamics may not be well-captured by any
variant of MLT, including the multi-mode RMLT studied here—
such as overshooting and upflow/downflow asymmetry. More so-
phisticated models (including the closure-based theories of Xiong

et al. (1997); Canuto (2011), or indeed full numerical simulations),
may be required to capture such effects.

Of course our simulations operate in parameter regimes very
different from those in any real astrophysical object, and it is appro-
priate to examine the extent to which our results are influenced by
this. In Section 3.2, we briefly assessed how our results depend on
the artificially high viscosities in our calculations, finding that our
models appear to be approaching a regime in which diffusion-free
scalings provide an apt description. We also showed in section 4.5
that our results hold over several decades of supercriticality.

We must caution, though, that many effects that are present
in real stars or planets, but absent from the RMLT presented here,
likely have a significant effect on the convective heat transport.
As an example, we point to the zonal flows (differential rotation)
analyzed in Section 5. In our simulations, the magnitude and char-
acter of these flows is dependent on the aspect ratio and size of the
computational domain; this dependence, though artificial, in turn
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Figure 15. Measure of the anisotropy in the large-scale flows as quantified
by Γ (defined in (28) as a function of | d〈T 〉dz |. In all cases Ω = 10 and
φ = 45◦ but the horizontal box size and aspect ratio are varied which leads
to different flows. Cases with stronger zonal flow (Γ > 0) impact the heat
transport the most and correspond to a larger | d〈T 〉dz |. The data used here is
from cases 10A45(a-k) in Table A1

allowed us to examine how the heat transport changes as the zonal
flow is altered, while keeping other factors (namely the rotation rate,
diffusivities, and heat flux) constant. We showed (see, e.g., Fig. 15)
that stronger zonal flows inhibit the convective transport, leading
to larger temperature gradients and significant departures from the
predictions of RMLT. These results may ultimately constrain mod-
els of stellar convection in which the interplay between shear and
heat transport is an essential element (e.g., Balbus et al. 2009).

Still other effects are entirely absent from our simulations
but surely play a role in astrophysical objects. Among these, the
overall spherical geometry of stars or planets (and the β-effect of
latitudinally-varying Coriolis parameter), their strong density strati-
fication, and their ubiquitous magnetism are likely to be particularly
significant. By adopting the Boussinesq approximation, we have ne-
glected the effects of compressibility and imposed a symmetry be-
tween upflows and downflows that does not exist in the full system,
which may well have implications for the stratification that is estab-
lished (e.g., Korre et al. 2017; Käpylä et al. 2017a). Moreover, in
strongly stratified systems, dissipative heating can be large resulting
in convective fluxes that greatly exceed the luminosity (see e.g., Cur-
rie & Browning 2017). Furthermore, when stratification is present,

the convective velocities will also generally vary with depth, so
the influence of rotation on the dynamics may be depth-dependent
as well (see, e.g., discussions in Ireland & Browning 2018). By
using an f-plane model, we have considered only single latitudes
in isolation from one another; in reality, the behaviour at different
latitudes is coupled by large-scale flows. We have not accounted
for, or imposed, thermal variations in latitude, which are undoubt-
edly present in real stars and will in many cases lead to a thermal
wind (e.g., Rempel 2005; Miesch et al. 2006). Finally, most stars or
planets are affected by magnetism at some level, with this acting to
hinder convective transport in some regimes and to aid it in others
(e.g., Chandrasekhar 1961); these effects are likewise not consid-
ered here. Future work including these processes – for example,
3D spherical calculations with strong stratification and magnetism
– will be necessary to examine how robust the conclusions drawn
here really are. As noted in §1, already-extant models along these
lines (e.g., Yadav et al. 2015; Gastine et al. 2016) show broadly good
agreement with many of our results, albeit in a somewhat different
parameter regime, but many issues remain to be explored.

We conclude by reiterating that the simulations here, though
highly idealised, nonetheless appear to capture some important
facets of the interaction between convection, rotation, and shear
– processes which figure, alongside many others, in the interiors of
virtually every star or planet. The agreement between these simu-
lations and the simplified RMLT presented here, though far from
perfect, is remarkable given the simplicity of the theory and the
ease with which it may be computed. We hope in future work to
explore how the many dynamical elements not captured here – in-
cluding magnetism and density stratification – affect these results,
and hence to assess their relevance for the evolution and structure
of astrophysical objects.
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APPENDIX A: TABLE OF SIMULATIONS

A summary of the input parameters, and some outputted quantities,
for the simulations is given in Table A1.

APPENDIX B: SINGLE-MODE THEORY

Here we derive the scaling predictions of RMLT as determined by
S79 by assuming that a single mode dominates the transport. S79
approximates the total flux in equation (16) by considering only the
single mode that maximises Fλ. This produces simple analytical
predictions for the bulk properties, which can be obtained by max-
imising Fλ over each of kx , ky and n. Following this procedure,
we obtain the corresponding maximal flux Fmax , the linear growth
rate σmax , the wavenumbers (kx,max, ky,max,nπ) and the RMS
vertical velocity vz,max :

Fmax = C1
N3
∗

1 + 4Ω2
z/N2
∗

, σmax =
3
5

N∗, (B1)

k2
x,max =

3π2

2

(
1 +

20
3
Ω2
z

N2
∗

)
, ky,max = 0, (B2)

nmax = 1, vz,max = C2
N∗√

π2 + k2
x,max

. (B3)

The numerical coefficients here agree with those in S79 Eq. 40.
These predict the mode that transports the most heat in rotating
convection, and contain two constants C1 and C2. The modes that
transport the most heat are y-aligned rolls that do not vary along
the horizontal component of Ω. As a result, the predictions depend
only on Ωz , and not on Ωy .

We canmanipulate Eqs.B1–B3 to determine the dependence of
the bulk properties in rotating convection onΩz for a given imposed
heat flux F. To do so, we assume that this single mode dominates,
so that Fmax = F, and solve Eqs. B1–B3 to determine N2

∗ and vz ,
then use Eq. 19 to determine the temperature fluctuation δT . To
simplify Eqs.B1–B3 and for comparison with paper I, we consider
the limit of rapid rotation (Ω2

z/N
2 � 1) and re-introduce the vertical

length-scale H. This allows us to obtain simple scaling relations
describing how the mean temperature gradient, vertical velocity
and temperature fluctuations, and the horizontal wavenumber of the
modes that dominate heat transport, scale with Ωz , heat flux F and
the depth of convective zone H:
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These relations were obtained in a different but equivalent way at
the poles (whereΩz = Ω) using simple physical arguments in Paper
I. In particular, the key points are that the convection is dominated
by the mode that transports the most heat, that a mode grows for a

cascade time (Eq. 14), and that as hot plumes rise, they carry the
background temperature gradient for a time 1/σ ∼ 1/N∗ before
cascading (Eq. 13).

Excellent agreement was obtained between this simple single-
mode theory and numerical simulations of rapidly rotating convec-
tion at the poles in Paper I, over more than two orders of magnitude
in rotation rate for cases in which rotation and gravity were aligned4.
The single-mode RMLT presented here suggests that when the di-
rection of gravity is oblique to the rotation vector, i.e., at non-polar
latitudes, we should simply varyΩz in these relations. However, we
demonstrate in section 4.3 that the single-mode theory above works
only approximately, and there is a systematic departure from this
theory which we have accounted for by including all of the modes
in a multi-mode theory.

This paper has been typeset from a TEX/LATEX file prepared by the author.

4 These results have also been confirmed using setup A, but to save space
we have not presented these results.
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Table A1. A summary of input and output quantities for the simulations described in the main text. Column one gives each simulation a name, for easy
reference; the capital letter denotes which setup was used for the simulation. Columns two to six are input quantities, namely the rotation rate, Ω, latitude φ,
horizontal box sizes Lx and Ly and the kinematic viscosity ν. Column seven gives the resolution of each simulation (Nx × Ny × Nz ) . For simulations with
Dedalus (setup A), this is the number of Fourier (Chebyshev) modes in the horizontal (vertical) directions after de-aliasing has been applied (i.e., the total
number of modes in each direction is 3/2 times the numbers quoted here). For the Nek5000 simulations (setup B), we give the total number of points in each
dimension using a polynomial order 10 in each element (using 3/2 times the number quoted here for the nonlinear terms). The data in the final five columns are
derived from the simulation results, more traditional non-dimensional numbers (such as those given in (8)) can be obtained from quantities given in the table.
The definitions of | d〈T 〉dz |, uz ,rms , and δTrms are given in §3.1 and §4.3.3 respectively. The Rossby number Ro is defined by Ro = uz ,rms/(2ΩH), and
the vertical Reynolds number, Rez from Rez = uz ,rmsH/ν. Our simulation units are determined by setting F = H = 1. To restore units one should replace
Ω→ ΩH2/3/F1/3, L⊥ → L⊥/H ,ν → ν/(F1/3H4/3), vz → vz/(FH)1/3, and dT/dz → dT/dzH4/3/F2/3. Note that ν = κ is assumed throughout.

Name Ω φ Lx Ly − log10 ν Resolution |
d〈T 〉
dz | uz ,rms δTrms Ro Rez

6B80a 6 80◦ 2 2 2.9 200 × 200 × 200 8.0 ± 0.5 0.64±0.03 2.16±0.12 5.33 × 10−2 508
6B70a 6 70◦ 2 2 2.9 200 × 200 × 200 7.93 ± 0.63 0.65±0.04 2.21±0.14 5.41 × 10−2 516
6B60a 6 60◦ 2 2 2.9 200 × 200 × 200 8.39 ± 0.61 0.64±0.04 2.29±0.14 5.33 × 10−2 508
6B50a 6 50◦ 2 2 2.9 200 × 200 × 200 8.3 ± 0.77 0.64±0.04 2.40±0.16 5.33 × 10−2 508
6B40a 6 40◦ 2 2 2.9 200 × 200 × 200 8.3 ± 1.1 0.64±0.06 2.50±0.28 5.33 × 10−2 508
6B30a 6 30◦ 2 2 2.9 200 × 200 × 200 6.7 ± 1.62 0.7±0.1 2.52±0.42 5.83 × 10−2 556
6B30b 6 30◦ 3 3 2.9 200 × 200 × 200 7.17 ± 0.92 0.67±0.06 2.58±0.29 5.58 × 10−2 532
6B20a 6 20◦ 2 2 2.9 200 × 200 × 200 3.05 ± 1.77 0.91±0.15 2.09±0.43 7.58 × 10−2 723

10B90a 10 90◦ 1 1 2.9 200 × 200 × 200 10.8 ± 0.98 0.59±0.06 2.44±0.18 2.95 × 10−2 469
10B85a 10 85◦ 2 1 2.9 200 × 200 × 200 11.26 ± 0.65 0.58±0.04 2.29±0.17 2.90 × 10−2 461
10B75a 10 75◦ 1 1 2.9 200 × 200 × 200 10.8 ± 0.98 0.61±0.06 2.44±0.18 3.05 × 10−2 485
10B75b 10 75◦ 2 1 2.9 200 × 200 × 200 11.31 ± 0.76 0.58±0.04 2.44±0.17 2.90 × 10−2 461
10B75c 10 75◦ 2 2 2.9 200 × 200 × 200 11.34 ± 0.69 0.58±0.03 2.42±0.14 2.90 × 10−2 461
10B75d 10 75◦ 4 2 2.9 200 × 200 × 200 11.26 ± 0.35 0.59±0.02 2.45±0.07 2.95 × 10−2 469
10B70a 10 70◦ 2 2 2.9 200 × 200 × 200 11.12 ± 0.57 0.60±0.03 2.44±0.13 3.00 × 10−2 477
10B60a 10 60◦ 1 1 2.9 200 × 200 × 200 11.6 ± 1.12 0.60±0.06 2.59±0.22 3.00 × 10−2 477
10B60b 10 60◦ 1 1.5 2.9 200 × 200 × 200 11.3 ± 0.89 0.58±0.05 2.55±0.23 2.90 × 10−2 461
10B60c 10 60◦ 1 2 2.9 200 × 200 × 200 11.86 ± 0.82 0.57±0.04 2.59±0.19 2.85 × 10−2 453
10B60d 10 60◦ 2 2 2.9 200 × 200 × 200 11.46 ± 0.61 0.59±0.03 2.53±0.14 2.95 × 10−2 469
10B60e 10 60◦ 4 4 2.9 200 × 200 × 200 11.41 ± 0.25 0.59±0.01 2.58±0.07 2.95 × 10−2 469
10B55a 10 55◦ 2 2 2.9 200 × 200 × 200 11.23 ± 0.59 0.59±0.03 2.60±0.15 2.95 × 10−2 469
10B45a 10 45◦ 1 1 2.9 200 × 200 × 200 10.59 ± 0.25 0.60±0.08 2.74±0.37 3.00 × 10−2 477
10B45b 10 45◦ 1.5 1.5 2.9 200 × 200 × 200 11.9 ± 1.14 0.57±0.05 2.81±0.33 2.85 × 10−2 453
10B45c 10 45◦ 1 2 2.9 200 × 200 × 200 12.42 ± 1.24 0.55±0.06 2.83±0.3 2.75 × 10−2 437
10B45d 10 45◦ 1 4 2.9 200 × 200 × 200 12.7 ± 0.83 0.55±0.04 2.86±0.2 2.75 × 10−2 437
10B45e 10 45◦ 2 2 2.9 200 × 200 × 200 11.86 ± 0.75 0.57±0.04 2.78±0.2 2.85 × 10−2 453
10B45f 10 45◦ 4 2 2.9 200 × 200 × 200 10.99 ± 0.57 0.58±0.03 2.75±0.14 2.90 × 10−2 461
10B45g 10 45◦ 4 4 2.9 200 × 200 × 200 11.36 ± 0.34 0.58±0.02 2.77±0.11 2.90 × 10−2 461
10B45h 10 45◦ 10 10 2.9 400 × 400 × 200 11.1 ± 0.14 0.58±0.01 2.77 2.90 × 10−2 461
10B40a 10 40◦ 2 2 2.9 200 × 200 × 200 11.36 ± 0.69 0.58±0.04 2.67±0.15 2.90 × 10−2 461
10B30a 10 30◦ 2 2 2.9 200 × 200 × 200 9.8 ± 1.8 0.55±0.08 2.98±0.14 2.75 × 10−2 437
10B30b 10 30◦ 1 4 2.9 200 × 200 × 200 15.4 ± 1.5 0.48±0.05 3.37±0.34 2.40 × 10−2 381
10B30c 10 30◦ 8 8 2.9 200 × 200 × 200 9.08 ± 0.35 0.62±0.02 2.91±0.08 3.10 × 10−2 492
10B30d 10 30◦ 10 10 2.9 400 × 400 × 200 8.82 ± 0.37 0.63±0.02 2.92±0.08 3.15 × 10−2 500
10B15a 10 15◦ 10 10 2.9 400 × 400 × 200 7.04 ± 1.58 0.66±0.07 2.99±0.21 3.30 × 10−2 524
10B10a 10 10◦ 10 10 2.9 400 × 400 × 200 1.6 ± 3.0 1.04±0.24 5.20 × 10−2 826

10A90a 10 90◦ 1 1 3.3 128 × 128 × 256 12.95 ± 1.13 0.60 ± 0.06 2.47 ± 0.22 3.02 × 10−2 1205
10A90b 10 90◦ 1 1 3 128 × 128 × 128 12.17 ± 0.98 0.57 ± 0.05 2.43 ± 0.20 2.86 × 10−2 571
10A90c 10 90◦ 2 2 3 128 × 128 × 128 12.83 ± 0.66 0.57 ± 0.03 2.96 ± 0.13 2.86 × 10−2 572
10A75a 10 75◦ 1 1 3.3 128 × 128 × 256 13.43 ± 1.01 0.60 ± 0.05 2.53 ± 0.23 3.01 × 10−2 1199
10A75b 10 75◦ 1 2 3 128 × 128 × 128 13.16 ± 0.90 0.56 ± 0.03 2.56 ± 0.16 2.82 × 10−2 563
10A75c 10 75◦ 2 1 3 128 × 128 × 128 12.87 ± 0.76 0.57 ± 0.03 2.53 ± 0.16 2.84 × 10−2 568
10A75d 10 75◦ 2 2 3 128 × 128 × 128 12.57 ± 0.63 0.59 ± 0.03 2.70 ± 0.12 2.96 × 10−2 592
10A60a 10 60◦ 1 1 3.3 128 × 128 × 256 13.73 ± 1.21 0.60 ± 0.05 2.68 ± 0.24 3.00 × 10−2 1197
10A60b 10 60◦ 1 2 3 128 × 128 × 128 13.57 ± 1.01 0.55 ± 0.04 2.69 ± 0.18 2.77 × 10−2 554
10A60c 10 60◦ 2 1 3 128 × 128 × 128 13.01 ± 0.92 0.57 ± 0.03 2.63 ± 0.17 2.83 × 10−2 566
10A60d 10 60◦ 2 2 3 128 × 128 × 128 12.74 ± 0.70 0.58 ± 0.03 2.62 ± 0.14 2.91 × 10−2 582
10A60e 10 60◦ 1.5 1.5 3 128 × 128 × 128 12.94 ± 0.85 0.57 ± 0.03 2.62 ± 0.15 2.83 × 10−2 565
10A45a 10 45◦ 1 1 3.3 128 × 128 × 256 13.22 ± 1.54 0.59 ± 0.06 2.87 ± 0.34 2.97 × 10−2 1185
10A45b 10 45◦ 1.5 1.5 3 128 × 128 × 128 13.13 ± 1.21 0.56 ± 0.04 2.84 ± 0.21 2.79 × 10−2 562
10A45c 10 45◦ 2 2 3 128 × 128 × 128 12.96 ± 0.94 0.56 ± 0.03 2.84 ± 0.16 2.81 × 10−2 558
10A45d 10 45◦ 2 2 3 128 × 128 × 128 13.21 ± 0.94 0.56 ± 0.04 2.85 ± 0.18 2.79 × 10−2 558
10A45e 10 45◦ 2 4 3 128 × 384 × 128 15.22 ± 0.68 0.52 ± 0.02 3.10 ± 0.13 2.62 × 10−2 525
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Table A1 – continued

Name Ω φ Lx Ly − log10 ν Resolution |
d〈T 〉
dz | uz ,rms δTrms Ro Rez

10A45f 10 45◦ 2 6 3 192 × 384 × 128 13.96 ± 0.56 0.54 ± 0.02 2.93 ± 0.09 2.68 × 10−2 535
10A45g 10 45◦ 2 8 3 128 × 768 × 128 14.74 ± 0.42 0.53 ± 0.02 2.96 ± 0.08 2.67 × 10−2 534
10A45h 10 45◦ 4 2 3 384 × 192 × 128 12.75 ± 0.61 0.56 ± 0.02 2.84 ± 0.12 2.81 × 10−2 563
10A45i 10 45◦ 4 4 3 384 × 384 × 128 12.90 ± 0.47 0.57 ± 0.02 2.84 ± 0.08 2.83 × 10−2 566
10A45k 10 45◦ 8 2 3 768 × 192 × 128 12.67 ± 0.43 0.57 ± 0.01 2.86 ± 0.09 2.83 × 10−2 566
10A30a 10 30◦ 1 1 3.3 128 × 128 × 256 9.46 ± 2.71 0.69 ± 0.13 2.79 ± 0.54 3.45 × 10−2 1377
10A30b 10 30◦ 2 2 2.5 128 × 128 × 128 10.73 ± 1.92 0.51 ± 0.06 3.00 ± 0.34 2.54 × 10−2 161
10A30c 10 30◦ 2.5 2.5 2.5 128 × 128 × 128 11.85 ± 1.30 0.49 ± 0.05 3.10 ± 0.28 2.46 × 10−2 155
10A30d 10 30◦ 1 3 3 128 × 256 × 128 17.12 ± 1.64 0.49 ± 0.05 3.42 ± 0.36 2.47 × 10−2 493
10A30e 10 30◦ 3 1 3 256 × 128 × 128 9.17 ± 1.69 0.64 ± 0.08 2.85 ± 0.40 3.18 × 10−2 636
10A20a 10 20◦ 4 4 3 256 × 256 × 128 12.90 ± 1.56 0.59 ± 0.06 3.45 ± 0.24 2.95 × 10−2 589
10A15a 10 15◦ 5 5 3 128 × 384 × 384 6.21 ± 1.26 0.73 ± 0.07 3.01 ± 0.24 3.67 × 10−2 734

20B80a 20 80◦ 1.5 1.5 3.3 200 × 200 × 200 18.9 ± 0.52 0.59±0.03 2.80±0.14 1.48 × 10−2 1177
20B70a 20 70◦ 1.5 1.5 3.3 200 × 200 × 200 18.2 ± 0.49 0.61±0.03 2.84±0.13 1.53 × 10−2 1217
20B60a 20 60◦ 1.5 1.5 3.3 200 × 200 × 200 18.7 ± 0.53 0.58±0.03 2.96±0.17 1.45 × 10−2 1157
20B50a 20 50◦ 1.5 1.5 3.3 200 × 200 × 200 18.8 ± 0.74 0.55±0.03 3.1±0.19 1.38 × 10−2 1097
20B40a 20 40◦ 1.5 1.5 3.3 200 × 200 × 200 21.8 ± 1.0 0.51±0.04 3.48±0.26 1.28 × 10−2 1018
20B40b 20 40◦ 3.0 3.0 3.3 400 × 400 × 200 18.13 ± 1.2 0.52±0.02 3.27±0.15 1.30 × 10−2 1038
20B30a 20 30◦ 1.5 1.5 3.3 200 × 200 × 200 22.2 ± 1.47 0.56±0.01 3.79±0.44 1.40 × 10−2 1117
20B30b 20 30◦ 3.0 3.0 3.3 400 × 400 × 200 20.4 ± 1.72 0.48±0.03 3.65±0.15 1.20 × 10−2 958
20B20a 20 20◦ 1.5 1.5 3.3 200 × 200 × 200 8.38 ± 2.0 0.69±0.13 2.99±0.61 1.73 × 10−2 1377

30B75a 30 75◦ 0.6 0.6 3.8 200 × 200 × 200 27.7 ± 1.47 0.56±0.08 2.94±0.29 9.33 × 10−3 3533
30B60a 30 60◦ 0.6 0.6 3.8 200 × 200 × 200 28.2 ± 2.05 0.53±0.07 3.20±0.31 8.83 × 10−3 3344
30B60b 30 60◦ 1 1 3.3 200 × 200 × 200 25.3 ± 1.05 0.49±0.04 3.31 8.17 × 10−3 978
30B60c 30 60◦ 1 1.5 3.3 200 × 200 × 200 27.6 ± 0.8 0.48±0.03 3.36 8.00 × 10−3 958
30B45a 30 45◦ 0.6 0.6 3.2 200 × 200 × 200 25.7 ± 1.82 0.54±0.07 3.82 9.00 × 10−3 856
30B45b 30 45◦ 0.6 1 3.3 200 × 200 × 200 26.0 ± 1.45 0.48±0.05 3.57±0.41 8.00 × 10−3 958
30B45c 30 45◦ 0.6 1.5 3.3 200 × 200 × 200 29.1 ± 1.12 0.45±0.04 3.86±0.26 7.50 × 10−3 898
30B45d 30 45◦ 0.6 1.2 3.3 200 × 200 × 200 28.15 ± 1.2 0.45±0.04 3.71±0.38 7.50 × 10−3 898
30B30a 30 30◦ 0.8 0.8 3.2 200 × 200 × 200 18.6 ± 3.6 0.55±0.13 3.32±0.82 9.17 × 10−3 872
30B30b 30 30◦ 0.8 0.8 3.3 200 × 200 × 200 16.6 ± 2.9 0.54±0.14 3.32±0.82 9.00 × 10−3 1077
30B20a 30 20◦ 0.8 0.8 3.3 200 × 200 × 200 6.6 ± 2.4 0.65±0.17 2.55±0.70 1.08 × 10−2 1297

30A90a 30 90◦ 0.4 0.4 3.5 128 × 128 × 128 26.50 ± 1.89 0.52 ± 0.07 8.64 × 10−3 1640
30A90b 30 90◦ 0.8 0.8 3.2 128 × 128 × 128 27.77 ± 0.89 0.48 ± 0.03 3.10 ± 0.21 8.06 × 10−3 766
30A90c 30 90◦ 1.2 1.2 3.2 192 × 192 × 192 28.30 ± 0.62 0.49 ± 0.02 3.23 ± 0.17 8.09 × 10−3 769
30A75a 30 75◦ 0.4 0.4 3.8 128 × 128 × 128 27.15 ± 1.59 0.55 ± 0.07 3.03 ± 0.39 9.15 × 10−3 3462
30A75b 30 75◦ 0.8 0.8 3.5 192 × 192 × 192 28.24 ± 1.13 0.55 ± 0.04 3.16 ± 0.19 9.13 × 10−3 1733
30A60a 30 60◦ 0.4 0.4 3.8 128 × 128 × 128 28.59 ± 1.95 0.53 ± 0.06 3.35 ± 0.42 8.80 × 10−3 3333
30A60b 30 60◦ 0.8 0.8 3.5 192 × 192 × 192 28.74 ± 1.08 0.52 ± 0.05 3.36 ± 0.28 8.63 × 10−3 1637
30A45a 30 45◦ 0.6 0.6 3.5 128 × 128 × 128 27.94 ± 1.78 0.52 ± 0.07 3.65 ± 0.44 8.75 × 10−3 1660
30A45b 30 45◦ 1.5 1.5 3.5 192 × 192 × 192 31.13 ± 0.99 0.45 ± 0.02 3.80 ± 0.19 7.55 × 10−3 904
30A30a 30 30◦ 0.8 0.8 3.2 192 × 192 × 192 20.06 ± 3.69 0.55 ± 0.15 3.77 ± 0.98 9.20 × 10−3 875
30A30b 30 30◦ 2 2 3.2 256 × 256 × 192 33.48 ± 1.48 0.42 ± 0.05 4.32 ± 0.45 7.02 × 10−3 667
30A26a 30 25.7◦ 0.8 0.8 3.3 128 × 128 × 128 16.12 ± 2.78 0.56 ± 0.12 3.55 ± 0.83 9.36 × 10−3 1120
30A26b 30 25.7◦ 1.6 1.6 3.3 128 × 128 × 128 29.69 ± 3.13 0.50 ± 0.09 4.22 ± 0.51 8.28 × 10−3 991

50B75a 50 75◦ 1 1 3.6 400 × 400 × 200 37.3 ± 0.85 0.51 ± 0.03 3.38 ± 0.16 5.10 × 10−3 2030
50B60a 50 60◦ 1 1 3.6 400 × 400 × 200 36.5 ± 0.66 0.50 ± 0.02 3.51 ± 0.17 5.00 × 10−3 1991
50B45a 50 45◦ 1 1 3.6 400 × 400 × 200 39.0 ± 0.8 0.45 ± 0.05 3.98 ± 0.27 4.50 × 10−3 1791
50B30a 50 30◦ 0.6 0.6 3.6 200 × 200 × 200 26.1 ± 4.9 0.52 ± 0.16 5.20 × 10−3 2070

70B75a 70 75◦ 1 1 3.6 400 × 400 × 200 49.0 ± 0.37 0.44 ± 0.02 3.57 ± 0.13 3.14 × 10−3 1752
70B45a 70 45◦ 1 1 3.6 400 × 400 × 200 43.3 ± 0.75 0.43 ± 0.03 3.96 ± 0.28 3.07 × 10−3 1712

100B75a 100 75◦ 0.5 0.5 4 300 × 300 × 400 67.4 ± 1.3 0.44 ± 0.04 3.97 ± 0.22 2.20 × 10−3 4400
100B60a 100 60◦ 0.5 0.5 4 300 × 300 × 400 63.1 ± 0.9 0.45 ± 0.04 4.09 ± 0.24 2.25 × 10−3 4500
100B45a 100 45◦ 0.3 0.3 4 200 × 200 × 200 64.2 ± 2.2 0.43 ± 0.01 2.15 × 10−3 4300
100B30a 100 30◦ 0.4 0.4 4 200 × 200 × 200 45.8 ± 5.3 0.46 ± 0.12 2.30 × 10−3 4600
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