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Substantial progress has been made in the past 15 years regarding how prey
use a variety of visual camouflage types to exploit both predator visual
processing and cognition, including background matching, disruptive color-
ation, countershading and masquerade. By contrast, much less attention has
been paid to how predators might overcome these defences. Such strategies
include the evolution of more acute senses, the co-opting of other senses not
targeted by camouflage, changes in cognition such as forming search
images, and using behaviours that change the relationship between the cryp-
tic individual and the environment or disturb prey and cause movement.
Here, we evaluate the methods through which visual camouflage prevents
detection and recognition, and discuss if and how predators might evolve,
develop or learn counter-adaptations to overcome these.

This article is part of the theme issue ‘Signal detection theory in
recognition systems: from evolving models to experimental tests’.
1. Introduction
Natural systems are visually noisy environments with each scene comprising a
huge variety of colours, textures, shapes and perspectives that must be pro-
cessed by an observer. Given the vast amount of visual information present
in a scene, an observer must attempt to extract ecologically relevant information
by reducing the amount of extraneous noise during visual and cognitive proces-
sing mechanisms [1]. Animal colour patterns can exploit mechanisms of vision,
including pre-existing perceptual biases, to either stand out against the visual
background noise (for example to attract a mate) or to blend into it (for
example to avoid predation) [2]. Animal coloration has been studied
for well over 150 years [3], but advances in experimental methods and new
technologies in recent years have more formally applied knowledge of how
visual information is processed to reveal new insights into the perception of
camouflage from the view of the predator and test how different types of
camouflage work [4,5].

Animal camouflage can be thought of as adaptations that act to reduce the
likelihood that a target animal is detected and/or recognized by visually hunt-
ing predators, through combinations of colour, pattern, morphology and
behaviour [4,6]. Note that some camouflage strategies can also work against
other modalities (see [7]), but we mostly focus on visual ones here since
these have received by far the most attention. A number of distinct strategies
that exploit predator vision and cognition in a variety of ways have been ident-
ified (table 1; for comprehensive reviews also see [4] and [1]). All strategies
exploit some aspect of visual processing and/or cognition and often act to
reduce the signal-to-noise ratio (SNR), whereby cues from the camouflaged
individual constitute the signal and additional factors that interfere with the
true identification of the signal comprise noise. The SNR contrasts the
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Table 1. Brief definitions of common camouflage terms discussed in this
review (see [4] for more detailed overview).

Background matching: general appearance matches the colour, contrast,

lightness and pattern of one (specialist) or multiple (generalist)

backgrounds.

Disruptive coloration: contrasting markings that generate the

appearance of false edges within the body surface and/or break up

the true body outline to thwart detection or recognition of body

shape.

Countershading: where coloration of the body surface facing ambient

lighting (usually the dorsal surface) is darker than the opposite

body surface. This may act to reduce the effect of shadowing from

directional lighting (self-shadow concealment) or removing cues of

three-dimensional form (obliterative shading).

Transparency: body tissues rendered colourless owing to lack of

pigment expression, preventing detection. This may involve the

entire body volume (common in many pelagic invertebrates) or

discrete body panels (as displayed in Lepidoptera spp).

Masquerade: hindering recognition after detection by resembling an

uninteresting or inedible object from within the environment, such

as a stick or leaf.

Distractive markings: colour patches or patterns that draw the attention

of observer away from cues such as body outline that would

facilitate object detection.
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amount of useful information within a visual scene of an
observer to that which is either irrelevant or deceptive, and
so camouflage can act to reduce the SNR by manipulating
the signal, noise or both [8].

Since predator vision and cognition impose selection on
the evolution of camouflage [9], the importance of incorporat-
ing an understanding of predator perception into the
quantification and analysis of camouflage has been widely
recognized for many years [10]. If the defensive coloration of
prey has been under selection to exploit weaknesses within
predator cognitive and visual processes, then it is likely that
selection has also acted on predator perception to increase
the camouflage-breaking capacity of the cognitive and visual
processes themselves. While we have made significant
advances in understanding how camouflage acts to exploit
predator cognition and visual processing [2,8,9,11,12], there
has been comparably less recent empirical investigation of
the predators themselves and what camouflage-breaking
counter-adaptations may have arisen owing to the selective
pressures imposed on the predator by the need to find
camouflaged prey. Several decades ago, work focused pre-
dominantly on predator behaviours such as search rates
and aspects of attention in finding hidden prey (see [13,14]
for discussion) but neglected how camouflage itself works
and the types of camouflage strategy that exist (i.e. prey
defences). Here, we bring these various avenues of research
together. We briefly review recent advances in how camou-
flage prevents detection and recognition, discuss if and how
predators might overcome these strategies and conclude by
identifying several areas for future research.
2. Camouflage strategies
In recent years, there have been several thorough reviews
synthesizing the field of animal camouflage and underlying
mechanisms (for example: [1,4,8]). Here, we introduce and
discuss how certain camouflage strategies act against preda-
tor vision and cognition with reference to recent additions
to the literature to minimize cross-over with these earlier
works. In doing so, we set the scene to discuss potential
predator counter-adaptations.
(a) The signal
Background matching (table 1) acts to reduce the SNR by
concealing the body’s appearance within the animal’s back-
ground. Perhaps the most quintessential camouflage strategy,
it is found across a variety of taxa, including the classically
studied peppered moth (Biston betularia) [15,16], as well as
multiple other species in terrestrial [17] and aquatic environ-
ments [18–20]. This strategy can be limiting as backgrounds
in nature are rarely uniform, and the camouflaged individual
loses the selective benefits of coloration if it leaves its ‘matched
patch’ [21,22]. There are multiple solutions that may overcome
this, including optimizing camouflage so that it works effec-
tively across multiple visual scenes (see review by [23]), and
using behaviour to choose appropriate substrates [6,24], such
that background matching can still be an effective camouflage
strategy [16,25]. However, regardless of how perfect back-
ground matching may be in terms of disguising the body
surface, the outline of the body (i.e. the edges) can provide
predators with a cue to home in on [26,27].

The edges of objects have a crucial role in visual proces-
sing, aiding object detection and recognition by revealing
the boundaries between objects and between objects and
their backgrounds [8,28,29]. Disruptive coloration (table 1)
manipulates the SNR and can exploit different mechanisms
of visual processing. It can act to minimize the signal by com-
bining camouflage-matched colours (differential blending)
with markings breaking up the true body edges, while also
creating noise through contrasting colour patches that create
the appearance of false edges over an animal’s body surface
that are more salient than true edges (maximum disrupted
contrast) [28–30]. In doing so, it can exploit the way that
visual systems encode edges and boundaries [31,32]. While
it can hinder detection by naïve observers, disruptive color-
ation has also been shown to hinder camouflage-breaking
capabilities of predators that have some degree of familiarity
with prey. This includes by impeding search image formation
(a temporary increase in attention of predators towards specific
prey phenotypes) and switching to new camouflage types,
even with increasing experience [30] (discussed in §3c). Dis-
ruptive patterning is also commonly associated with edge
enhancement, where dark markings have darker edges and
light markings have lighter edges [28]. Edge-enhanced mark-
ings may benefit a camouflaged target by masking salient
features, but they may also create false depth cues that
impair shape discrimination and recognition [28,29,33].

Another difficulty that must be overcome to improve
camouflage is to counteract shadowing from directional light-
ing. Countershading (table 1) acts to reduce the SNR by
obliterating cues to three-dimensional shape via self-
shadow concealment and/or by enhancing the level of back-
ground matching [34,35]. The effectiveness of countershading
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is highly dependent on the orientation of the animal and the
surrounding lighting conditions [36–38]. This ‘illumination-
dependence’ of countershading has been further tested with
humans in simulated three-dimensional environments,
where visual search was slower and less accurate when the
target’s countershading was optimal for the lighting con-
ditions of the scene [34]. Animals from aquatic
environments often display two-tone coloration analogous
to that observed in countershading terrestrial species. In
these conditions, countershading may reduce the SNR from
multiple angles providing directional background matching
in aquatic environments with the lighter ventral surface
being viewed against downwelling irradiance and the
darker ventral surface viewed against deeper water [39,40].

Transparency is conceptually perhaps the ideal form of
camouflage since an animal’s body would provide a
window through to its background, providing mobile and
accurate camouflage. However, while the absence of pigment
minimizes surface radiance, the tissues themselves must also
minimize the scattering of light and inevitably some organs
will persist that could attract predator attention [41–43].
Transparency acts to minimize the SNR by reducing the
body silhouette while simultaneously potentially allowing
noise from the environment to transverse the body, allowing
for camouflage in open environments where there are no sur-
faces to match. Therefore, it is unsurprising that transparency
is most strongly represented in pelagic communities, facili-
tated by the fact that water is closer in refractive index to
many biological constituents compared to air, reducing scat-
tering [41]. However, there are terrestrial exceptions: for
example, many Ithomiine butterflies possess transparent or
partially transparent wings [44]. Transparency enhances
crypsis to both avian and human predators by reducing the
chance of detection compared to more opaque species [44].
Similarly, in a recent study, the survival of cryptic moths
with wings that include transparent windows was compar-
able to wingless bodies but significantly higher than
opaque cryptic forms, suggesting that transparency is also a
suitable antipredator strategy for terrestrial prey [45].

The camouflage strategies discussed so far act to reduce
the likelihood of detection by predator vision, but predator
cognition is also intrinsically linked to the evolution of
camouflage [9]. Masquerade (table 1) exploits predator cogni-
tion, promoting misclassification by increasing noise via a
false signal [8]. Conceptually, the key difference between
crypsis and masquerade is that the former is dependent on
avoiding detection, whereas the latter involves being detected
but then misidentified as an inedible or unimportant feature
of the environment. Masquerade has been predominantly
studied in caterpillars that masquerade as twigs [46–48],
but has recently been demonstrated in animals that can dyna-
mically change their appearance. The European cuttlefish
Sepia officinalis appears to be able to modify skin colour and
texture to resemble uniformly coloured smooth rocks or
mottled irregularly shaped rocks [49]. However, demonstrat-
ing that the intended receiver perceives masquerading
cuttlefish as inanimate rocks, as opposed to blending into a
rock background, is challenging.
(b) The environment
A core prediction for the success of most types of camouflage
is that there will be close associations between an animal’s
phenotype and elements of its environment. This may also
influence the type of camouflage that predominates. For
example, juvenile shore crabs Carcinus maenas live in a
range of intertidal habitats and exhibit facultative habitat-
specific and ontogenetic camouflage strategies. Crabs in visu-
ally complex rock pool habitats display high variation among
individuals and increased levels of disruptive coloration,
whereas crabs in more visually uniform mudflat habitats
show less variation and rely on matching the colour, pattern
and brightness of their backgrounds [22,50]. Furthermore,
crabs also change their own appearance with age, likely
linked to changes in habitat use and camouflage strategy [51].

Cryptic species face a significant constraint in that generally
motion breaks camouflage [1]. However, the complexity of a
visual environment can be temporal as well as spatial, and
motion such as wind-blown foliage and photic changes in
illumination is ubiquitous in natural environments [52–54].
Species may be able to capitalize on large amounts of dynamic
noise within the visual environment to mask movement.
Behaviour can facilitate camouflage of moving objects. For
example, Macleay’s spectre stick insects Extatosoma tiaratum
use environmental cues to adjust their swaying behaviour in
response to wind, resulting in motion that is quantitatively
similar to wind-blown vegetation [55]. Environments contain-
ing dynamic illumination such as dappled light and water
caustics can also act as potential movement refuges owing to
the large amount of background noise [52,53]. Dappled light-
ing appears to disrupt motion detection capabilities, as
search efficiency is worse in simulated dappled lighting and
water caustics compared to static scenes [53] and it increases
latency to identify and target prey [56]. Overall, these studies
demonstrate that dynamic noise can mask movement and
that animals may be able to decrease their SNR through tem-
poral background matching via movement or seeking out
environments with more dynamic noise.
3. Predator strategies
As previously discussed, camouflage can be described as
reducing the cues from a given animal (signal) to better
blend in with visual information from the environment
(noise), or those that create false signals. However, how preda-
tors overcome camouflage strategies has received far less study.
Logically, predators must directly oppose the reduction in SNR
in order to successfully locate and/or identify prey, with one
way to do so being to widen the difference between the
signal of the prey species and the environmental noise via
selection for greater sensitivity in relevant senses. Alternatives
also include using other sensory modalities, either in concert
with, or instead of the originally targeted senses. Finally, preda-
tors could adjust behaviours to improve searching methods,
improve perceptual filtering methods and alter attention by
changing the environmental context that camouflage depends
on (such as viewing angle or lighting condition, figure 1), or
flush prey to cause movement and increase conspicuousness.
Here, we describe some of what is known or can be inferred
about predator strategies for overcoming camouflage.

(a) Improvements in the sensory pathways involved in
prey detection

By increasing sensitivity or selecting for characteristics of
vision that are better suited for the task, predators could



prey camouflaged
against the
background

prey (with a distinct
marking) camouflaged
against the background

attention and search image formation

provide salient cues for
learning and attention

remove background/
generate detectable
movement

remove conditions
needed for camouflage

generate three-
dimensional cues/
mismatch

avoid camouflaged
pathway

increase edge
detection

increase perceived
spectral contrast

increase perceived
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vity to diffe
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change viewing conditions

cause prey movement

use other salient sensory information

Figure 1. A graphical representation of the potential effects of predator strategies for overcoming camouflage on prey crypsis. Hypothetical backgrounds represented
as green rectangles, and prey as green triangles.
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widen the SNR to increase the likelihood of detection, recog-
nition and subsequent capture. Early discussions and work
proposed that dichromatic animals may be better able to
break colour camouflage since they could more readily
detect luminance and contrast differences and be less affected
by colour noise. Initial evidence supported this; reduced
colour sensitivity aiding camouflage discrimination was
suggested in humans where, for example, the lack of colour
information may aid object recognition where colour patches
would otherwise obscure an object’s outline [57]. Further
research supported this idea, showing how humans with
colour vision deficiency outperform trichromatic individuals
in searching for camouflaged targets where colour is irrele-
vant to the task (i.e. colour adds noise when differentiating
textures) [58,59]. However, in these studies, the stimuli were
highly artificial with little analogy to natural cryptic systems.
Beyond humans, there is evidence in vision-polymorphic pri-
mates that while trichromats are ultimately better at finding
prey, dichromatic individuals found camouflaged prey more
often, especially in situations where colour is less important
or light levels are low [60,61]. However, these and other
studies tend to be indirect/correlative and do not experimen-
tally test for differences in the detection of camouflaged
targets with different visual systems. In more recent compu-
ter experiments, however, trichromatic humans searching for
camouflaged birds showed an overall advantage in finding
cryptically coloured prey over simulated dichromatic con-
ditions, although dichromats were less affected by luminance
conditions [62]. Trichromats may be better able to discriminate
between the colours of the prey and substrate at any given
time. By contrast, dichromats may be less affected by chro-
matic noise, especially at low light levels, that otherwise may
obscure textural or achromatic differences between prey and
substrate. Overall, we can assume prey camouflage could
play a role in the selection for predator colour vision.

Spatial/contrast acuity also varies between species, and
greater acuity may help in breaking camouflage. A significant
part of object recognition is the identification of shapes and
outlines [8], and predators with better acuity should be
better able to perceive these cues, as well as differences
between masqueraders and the objects they match. They
also should be better able to overcome the effects of camou-
flage types like background matching and disruptive
camouflage [63], as the increased sensitivity to spatial differ-
ences should compensate for the reduction in the clarity of
edge cue. Another factor to consider is distance-dependent
camouflage, which relies on the limitations of predator acuity
to obscure patterns, allowing prey to camouflage when
viewed from a distance [2,64]. Predators with high spatial
acuity may be able to resolve these patterns (and any other sali-
ent features) and locate prey. However, the role of visual acuity
in breaking camouflage requires further exploration.
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Predators could also evolve systems that obtain more
complex information that may make it harder for prey to
maintain camouflage. Stereopsis has been demonstrated in
a variety of taxa (reviewed in [65], see also [66,67]). Using
the differences in information from each eye, three-dimen-
sional structures can be resolved, providing an additional
cue in prey detection and recognition. This means that prey
have an additional characteristic they must hide in order to
prevent detection. Binocular/static disparity has been
shown to reduce the effectiveness of disruptive markings
with edge enhancement, by clarifying the true three-dimen-
sional structure of the camouflaged object [68], although it
is less effective when faced with moving objects [69]. This is
likely owing to edge enhancement causing artificial depth,
which is revealed when binocular disparity identifies the
true three-dimensional shape of the object. Motion
parallax—the differential shift in the relative positions of
prey and substrates during predator movement—may also
provide these cues but this does require predator movement
to generate the shift [68]. Other higher level cognitive pro-
cesses may also play a role in perceiving prey movement
when camouflaged. Praying mantises (Sphodromantis lineola)
use second-order cues to detect the movement of prey that
were otherwise matching the average luminance of the back-
ground, potentially overcoming the camouflage of first-order
motion cues, such as changes in luminance over time [70].
(b) Using additional sensory pathways to the primary
modality underlying camouflage

Predators may use a specific region within a sensory
modality in which animals are not camouflaged. For
example, a variety of species exhibit spectral sensitivity that
extends into the ultraviolet (UV) region of the light spectrum,
something invisible to humans [71]. There are examples of
animals that are cryptic in the visible spectrum but are non-
matching in the UV region [72,73], and UV-sensitive preda-
tors could have an advantage in detecting them [74].
Alternatively, predators can use other physical properties of
light; for example, cuttlefish are sensitive to polarized light,
which may break the silvering/countershading camouflage
of fish, as individuals preferentially attack fish that reflected
linearly polarized light [75]. While the effectiveness of polar-
ization vision at longer ranges is limited [76], at closer range,
it could aid in defeating the luminance and chromatic camou-
flage of countershading/silvering [77], and also potentially of
transparency.

Less well studied are examples where entirely separate
modalities help in breaking camouflage. Given human
reliance on vision, the concept of camouflage has mostly
been focused on visual crypsis and less is known generally
about other signalling modalities as a result (but see [7]).
Chemical cues can attract predators to prey location [78],
and multiple species use auditory cues in prey location and
capture [79], but there is little empirical testing of their
effect on predation of camouflaged prey. Many elasmobranch
species are capable of using weak electrochemical cues to
locate prey [80] that are often cryptic, such as flatfish [81].
While it is evident that electroreception aids in overcoming
prey camouflage, it is unclear if it evolved in response to
prey crypsis. The complexity lies in identifying whether
these sensory systems have been co-opted from another
primary purpose in response to camouflaged prey or have
evolved as the primary sensory system for predation.
(c) Changes in cognitive processes and behaviour
Search images, where predators use previous experience of
prey to improve search efficiency by focusing attention on
salient features, have been a concept in behavioural ecology
and psychology for more than half a century [82]. Predators
can improve their ability to find prey by focusing on specific
features, specializing in detecting and recognizing them, even
if the prey are camouflaged, especially if these features are
common in the prey population. In a situation with multiple
cryptic species or morphs within a species, predators show an
improved ability to locate and capture the more common
prey, based on the increased experience in locating and hand-
ling those individuals [83]. When prey phenotypes could
evolve in response to predation, they showed increased phe-
notypic variation compared to control non-evolved prey,
suggesting selection for disruption of the predator search
image. While this is one example in systems relevant to
camouflage, multiple other studies provide evidence of
search image formation [84,85]. As discussed above, camou-
flage strategies such as disruptive patterns can interfere
with search image formation [30], whereas conspicuous ‘dis-
tractive’ markings thought to draw attention away from the
prey outline reduced prey survival [86,87], perhaps by pro-
viding distinctive markings used in search image formation.
Predators that can learn to recognize key features of camou-
flage may be better able to locate them in the future,
increasing the likelihood of prey detection because of the
camouflage meant to hide them. Learning has also been
shown to be effective in overcoming masquerade, based on
the size disparity between mimics and models [47].

As part of searching behaviour, the viewing conditions of
the predator may also have an impact on camouflage efficacy.
Prey orientation relative to resting substrate has a significant
effect on the effectiveness of various camouflage strategies
[6,24,37]. Taking countershading as an example, there is
experimental evidence that the effectiveness of countershad-
ing is dependent on the illumination conditions of prey
[34]. It relies on the strength of countershading being appro-
priate to the strength and directionality of illumination.
Predators could search at specific times of days or under
weather conditions that reduce the effectiveness of counter-
shading and crypsis in general. Orientation relative to
observers is also important, with deviations from an opti-
mum viewing angle by as little as 15° resulting in increased
detection speed and accuracy [88]. As predators move
through the environment while searching for prey, the orien-
tation of prey relative to both the predator and any
illumination is unlikely to be consistently optimal, which
could increase the likelihood of successful detection, recog-
nition and capture. Types of predator that are particularly
mobile in three dimensions, such as birds, could move up
or down in the habitat to search for prey from below, side
on and above, such that certain viewpoints may reveal prey
better. In the aquatic environment, predators can also move
freely in the water, circling around possible prey locations
to detect targets [89]. While countershading may improve
background matching and remove shape from shading
cues, in many terrestrial animals, the animal itself will still
cast a shadow on the ground that can be used as a cue by
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predators. Prey orientation, strength and direction of illumi-
nation and predator location will all affect the presence and
strength of these cues, but the role of ground shadows in
breaking camouflage has received little attention. Habitat
selection could also play a role in defeating camouflage, with
predators potentially searching in more uniform backgrounds
to improve target detection. Background complexity is known
to facilitate camouflage [90,91] and so predators should benefit
from focusing their efforts on patches of lower complexity.

Finally, perhaps the simplest way to overcome camou-
flage is to bypass it entirely. Motion has been shown to
break, or at least significantly limit the efficacy of camouflage
[8,92,93]. If predators manage to disturb prey sufficiently,
then they can move them off matching substrates and
widen the SNR and improve detection. Painted redstarts
(Myioborus pictus), for example, perform a series of stereotypi-
cal behaviours involving body pivoting coupled with wing
and tail spreading, and high contrast colours. These elicit a
flush response from prey that can disturb cryptic species
from matching resting substrates, increasing detection and
capture [94,95]. Although prey species vary in their propen-
sity to flush depending on their defensive strategies, with
cryptic prey less likely to flush (81%) compared to structural
(95%) or aposematic (90%) defended species, the overall high
response rate suggests this is an effective way to overcome
camouflage [96].
4. Future directions
(a) Identifying other forms of camouflage-breaking

adaptations
We have proposed only a handful of potential anti-camouflage
strategies, and there are undoubtedly other strategies that the
sensory and cognitive systems of predators have evolved to
overcome camouflage. How does the tuning of sensory
systems affect detection success? Animals have demonstrated
a variety of ways of focusing aspects of senses to specific
tasks: do these adaptations aid in the improvement of prey
detection, and did they evolve in response to camouflage strat-
egies, or were they merely co-opted into that task? These and
other adaptations need to be investigated for their potential
effect on camouflage.
(b) Breaking camouflage in other sensory modalities
Camouflage is generally considered in terms of visual con-
cealment, but animals also mask other sensory cues that
this review has not discussed. There are increasing examples
of animals camouflaging themselves via other sensory mod-
alities (reviewed in [7]); for example, moths use auditory
camouflage to avoid detection by bats [97]. In response,
some bats appear to use textural cues from acoustic differ-
ences between moths and substrates to overcome this
camouflage and locate prey [79]. However, our understand-
ing of camouflage in non-visual modalities is generally
lacking and focus on camouflage and anti-camouflage strat-
egies in other sensory modalities is needed. The same
approach taken in modern studies of camouflage should be
applied, where differences between environmental noise
and prey signal are quantified relative to predator senses,
allowing for the formation of measures of detectability.
(c) Evolutionary history of predators and sensory
systems

As discussed above, it is likely that predators will not rely on
a single sense when detecting prey. How multiple senses
interact, whether they are integrated or hierarchical, how
they are differentially selected for and how important they
are, are all questions that must be answered in order to
fully understand how predators overcome camouflage.
Empirical tests that model predator effectiveness with differ-
ent combinations of senses available to them could start
identifying each sense’s priority based on how its removal
affects prey capture success. Understanding the evolutionary
history of predator senses and prey camouflage strategies
could also give an insight into the influence they have on
each other and how new strategies might arise. If there are
links between the use of specific senses to overcome specific
camouflage strategies, we would expect to see these associ-
ations reflected in the evolutionary history of the species.
As prey generally evolve defences that are effective against
a wide range of predators they face, we might predict that
predator strategies to overcome these defences are also gener-
alist. It is also worth considering the asymmetrical selective
pressures facing predators and prey. The life-dinner hypoth-
esis [98] indicates that there should be a greater pressure on
camouflage to defeat predator detection, given the higher
costs of it failing: death of the prey versus a missed meal
for the predator. An additional related factor is that many
predators will not solely depend on one prey species and
may simply switch to targeting other non-camouflaged
prey when their success is low. This will further influence
the degree of selection on coevolution between prey defences
and predator counter-adaptations. Targeting specific preda-
tor–prey dyads that have co-evolved would allow us to
identify how prey evolve new strategies to avoid predators
and how predators respond.

(d) Empirical testing of different camouflage strategies
and predator strategies to overcome them

Much of what we have proposed about the potential mechan-
isms predators use to break camouflage (figure 1) are at best
based on inferences from research on what conditions best
favour camouflage. What is needed moving forward is to
continue directly testing the effectiveness of anti-camouflage
strategies, either with real predators or with human partici-
pants and modified stimuli to mimic realistic predator
vision. These methods can be used to directly test variation
in prey capture success in real/artificial predators with, for
example, manipulated acuity. Are predators with poor
visual acuity able to overcome texture/pattern-based mark-
ings similar to colour in dichromat versus trichromat? Or
do camouflage strategies shift with predator acuity, for
example, with high acuity selecting for disruptive markings,
and low acuity selecting for background matching?

(e) Further investigation of the role of cognition in
breaking camouflage

Evolutionary change in visual systems may take significantly
more time than the development of cognitive flexibility or
changes in attention-based behaviours. Consequently, there
may be a greater diversity and abundance of cognitive
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adaptations to break camouflage, especially as these are likely
to be much more flexible in the short term. While predator
cognition in relation to breaking camouflage is still somewhat
limited to the examples discussed in this review, more work
has been done on how Batesian mimics (where an unde-
fended prey resembles a defended prey) exploit the
cognitive processes of their predators to avoid predation
[99,100]. As with masquerade, quantifying the sensory and
cognitive processes involved in misclassification is more
straightforward because we can identify what perfect resem-
blance (i.e. the model) looks like, and manipulate various
aspects of prey appearance and predator experience to
quantify when misclassification breaks down. Although a
similar approach is more challenging for cryptic prey, we
can now more accurately quantify and account for predator
perception, which will allow us to begin to identify when
cognitive processes come into play.

Senses perform a variety of functions, and the cost of
focusing on one task over another could be the reduction in
efficacy of the latter. In a hypothetical trade-off, changing fea-
tures of vision to focus more on camouflage than other tasks
could limit other visually guided behaviours such as naviga-
tion. Cognitive and behavioural adaptations may allow
predators to break camouflage without compromising other
sensory functions, and their relative benefits compared to
physical adaptations should be investigated further.
5. Concluding remarks
There is a significant and ever-growing body of literature sur-
rounding the diversity, mechanisms, functions and evolution
of camouflage. Increasingly its success is quantified based on
the sensory systems of relevant predators targeted by camou-
flage. However, there is a lack of empirical testing of how
predators overcome camouflage. This is likely owing to the
relative ease of identifying the impacts of selection imposed
by predation, where changes in morphological characteristics
and phenotypes can be quantified. It is more complex, but
still necessary, to identify the changes in the visual systems,
cognition and behaviour of predators. Just as any one species
often uses multiple forms of crypsis, it is likely that their pre-
dators have multiple means of overcoming them, in response
to multiple prey types. The next steps should be to directly
investigate these camouflage-breaking adaptations, both to
identify them and characterize their relationship to, and effec-
tiveness against camouflage strategies. If possible,
phylogenetic history could be investigated to identify the selec-
tive pressures acting on camouflage and its opponents, and
whether one imposes a greater selective pressure upon the
other.
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