Comparison of independent evolutionary origins reveals both convergence and divergence in the metabolic mechanisms of symbiosis

Megan E. S. Sørensen¹, A. Jamie Wood², Ewan J. A. Minter¹, Chris D. Lowe³,

Duncan D. Cameron¹, Michael A. Brockhurst¹

Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10
 2TN, UK

- 2. Department of Biology, University of York, York YO10 5DD, UK
- 3. Centre for Ecology and Conservation, University of Exeter, Penryn Campus,

Cornwall TR10 9FE, UK

Lead contact Michael Brockhurst (m.brockhurst@sheffield.ac.uk)

1 Summary

2 Through the merger of once independent lineages, symbiosis promotes the 3 acquisition of new traits and the exploitation of inaccessible ecological niches [1,2], 4 driving evolutionary innovation and important ecosystem functions [3-6]. The 5 transient nature of establishment makes study of symbiotic origins difficult, but 6 experimental comparison of independent originations could reveal the degree of 7 convergence in the underpinning mechanisms [7,8]. We compared the metabolic 8 mechanisms of two independent origins of the Paramecium bursaria-Chlorella 9 photosymbiosis [9–11] using a reciprocal metabolomic pulse-chase method. This 10 showed convergent patterns of nutrient exchange and utilisation for host-derived nitrogen in the Chlorella genotypes [12,13] and symbiont-derived carbon in the P. 11 12 bursaria genotypes [14,15]. Consistent with a convergent primary nutrient exchange, 13 partner-switched host-symbiont pairings were functional. Direct competition of hosts 14 containing native or recombined symbionts against isogenic symbiont-free hosts 15 showed that the fitness benefits of symbiosis for hosts increased with irradiance but 16 varied by genotype. Global metabolism varied more between the *Chlorella* than the 17 *P. bursaria* genotypes, and suggested divergent mechanisms of light management. 18 Specifically, the algal symbiont genotypes either produced photo-protective 19 carotenoid pigments at high irradiance or more chlorophyll, resulting in 20 corresponding differences in photosynthetic efficiency and non-photochemical 21 quenching among host-symbiont pairings. These data suggest that the multiple 22 origins of the *P. bursaria-Chlorella* symbiosis use a convergent nutrient exchange, 23 whereas other photosynthetic traits linked to the functioning of the photosymbiosis have diverged. While convergence enables partner-switching among diverse strains, 24

- phenotypic mismatches resulting from divergence of secondary-symbiotic traits could
 mediate host-symbiont specificity in nature.
- 27

28 **Results and Discussion**

29 Independent evolutionary origins of a beneficial symbiotic relationship suggests that 30 a strong selective advantage has, on multiple occasions, overcome the inherent 31 conflict between the self-interest of the partners [16,17]. Independent origins of 32 symbiosis appear to be common and have been reported in diverse symbiotic 33 relationships [18–21]. Experimental comparison of independent origins could reveal 34 the degree of convergence versus divergence in the underpinning mechanisms [7,8]. 35 A convergent nutrient exchange would suggest evolutionary constraint and limited 36 viable routes to symbiosis, but may allow partner-switching between independent 37 lineages, whereas divergence would tend to drive host-symbiont specificity. Here we 38 use the experimentally tractable microbial symbiosis between the heterotrophic 39 ciliate Paramecium bursaria and the photosynthetic green alga Chlorella sp [9]. These species engage in a facultative photosymbiosis that is widely distributed in 40 41 freshwater habitats [22], wherein ~100-600 algal cells live inside a ciliate cell and 42 provide products of photosynthesis in exchange for organic nitrogen [14,23]. This 43 symbiotic interaction has originated multiple times and forms two distinct 44 biogeographical clades, specifically, the European clade and the American/Japanese 45 clade [10,11]. Using a representative of each clade [the strain 186b originally 46 isolated in the UK and strain HA1 originally isolated in Japan (Table S1); clade 47 identity was confirmed by diagnostic PCR (Figure S1)] we first tested whether these strains used convergent biochemical mechanisms of carbon (from the photosynthetic 48 49 endosymbiotic Chlorella) for nitrogen (acquired by the protist host though the

50 ingestion and digestion of free-living bacteria) exchange [14]. To do this, we devised 51 a reciprocal, temporally-resolved, metabolomic pulse chase experiment that 52 simultaneously monitored nitrogen and carbon assimilation in the symbiont and host, respectively. Specifically, using ¹⁵N-labelled bacterial necromass, we traced isotopic 53 54 enrichment derived from N assimilated through P. bursaria digestion in Chlorella 55 metabolites. In parallel, using ¹³C-lablled HCO₃ we traced isotopic enrichment 56 derived from C fixed by Chlorella photosynthesis in P. bursaria metabolites. The 57 quantity of every individual metabolite in each sample was determined using Liquid 58 Chromatography Time of Flight Mass Spectrometry (LC-ToFMS). This allowed the 59 metabolic fate of resources exchanged between symbiotic partners to be quantified 60 over time, allowing comparison of symbiotic metabolism between the strains.

61

62 We used Random Forest models, a form of computational learning involving the 63 construction of an extensive array of possible compatible decision trees, to identify 64 which metabolites were associated with isotopic enrichment. Among Chlorella metabolites we observed a shared ¹⁵N isotopic enrichment response among strains 65 (i.e. high-ranking score in both strains) in 46% of all metabolites (78 % of nitrogen-66 67 containing metabolites), suggesting that both *Chlorella* strains directed the 68 exchanged nitrogen through metabolism in similar ways (Figure 1). Similarly, we 69 observed a shared ¹³C enrichment response in 75 % of *P. bursaria* metabolites (78% 70 of carbon-containing metabolites), suggesting a high degree of convergence 71 between the *P. bursaria* host strains in how they utilised the C derived from their 72 algal symbionts (Figure 1). The pattern of shared enrichment among strains was consistently high for both ¹⁵N and ¹³C isotopic enrichment across all sampled time-73 74 points, suggesting a conserved nutrient exchange (Figure 1). Smaller proportions of

metabolites showed an asymmetric response (i.e., were high-ranked in one strain
but low-ranked in the other; for ¹⁵N enrichment, 20.55% in 186b *Chlorella* and 9.55%
in HA1 *Chlorella*; for ¹³C enrichment 13.17% in 186b *P. bursaria* and 3.42% in HA1 *P. bursaria*), suggesting only limited divergence in utilisation of exchanged
metabolites has occurred between these host-symbiont clades.

80

81 Co-enriched metabolites with the strongest enrichment over time were identified 82 using LC-ToFMS (simultaneously resolving the monoisotopic mass and 83 chromatographic retention time for each M/Z). For ¹⁵N co-enrichment in *Chlorella* 84 (Table S2), we identified metabolites associated with the amino acid and purine 85 pathways, which have both previously been suggested as probable N exchange metabolites in this symbiosis [12,24–27]. Targeted analyses of these pathways were 86 87 used to calculate the enrichment dynamics in the constituent metabolites. These 88 dynamics indicated that an amino acid is the more likely N exchange metabolite from 89 *P. bursaria* to *Chlorella* in both clades. Although our first sampling time-point was not 90 early enough to permit direct observation of metabolite exchange itself, downstream 91 enrichment profiles suggest that the most likely candidate exchange metabolite is 92 arginine (see Figure S4), an amino acid known to support growth of *Chlorella* as its 93 sole N source [28]. In addition, we observed co-enrichment in larger, N-rich 94 metabolites, including chlorophyll precursors, which most likely represent the largest N-sinks for *Chlorella*, thus becoming enriched in ¹⁵N as a function of N demand. For 95 96 ¹³C enrichment in *P. bursaria* (Table S3), we identified metabolites involved in 97 carbohydrate and lipid metabolism, suggesting that symbiont derived C was directed to carbon storage, as well as enrichment in central and amino acid metabolism, 98 99 which are likely to have a high turnover of carbon and represent strong carbon sinks.

For some carbohydrate storage metabolites, we observed stronger differences in ¹³C
enrichment between light conditions in the 186b compared to the HA1 strain (Figure
S3), indicating strain differences in the rate of flux through some of co-enriched
pathways.

104

105 The pulse-chase analysis suggests that these *P. bursaria-Chlorella* strains, 106 representing independent origins of the symbiosis, show convergent utilisation of 107 partner-derived nutrients, and we hypothesised therefore that partner-switched host-108 symbiont pairings would be functional. To test this, we performed a reciprocal cross-109 infection experiment whereby the *P. bursaria* host strains were cured of their native 110 algal symbiont, and subsequently re-infected with either their native algal symbiont or the reciprocal non-native algal symbiont. We then directly competed each host-111 112 symbiont pairing against its respective symbiont-free host strain across a light 113 gradient. Note that reinfection of aposymbiotic host populations by symbionts occurs 114 over far longer timescales (i.e. several weeks) than the competition assay, such that 115 this process is unlikely to affect relative fitness estimates. We used flow cytometry to 116 quantify the proportion of green (with symbiont) versus white (symbiont-free) host 117 cells at the start and end of the growth cycle to calculate the selection rate [23], thus 118 providing a direct measure of the fitness effect of symbiosis for hosts. All the 119 symbiont pairings showed a classic photosymbiotic reaction norm, such that the 120 relative fitness of hosts with symbionts versus hosts without symbionts increased 121 with increasing irradiance (Figure 2), and more steeply in the HA1 host background 122 (host genotype * light environment interaction, ANOVA, $F_{3,31}$ = 29.34, P< 0.001). This confirms that both host genotypes could derive the benefits of symbiosis from either 123

of the symbiont genotypes, but that the fitness effect of symbiosis varied betweenstrains.

126

These light-dependent differences in the fitness of the host-symbiont pairings 127 128 suggest that the HA1 and 186b strains may have diverged in aspects of their 129 metabolism and physiology besides the primary symbiotic nutrient exchange. To 130 characterise potential differences in global metabolism between the HA1 and 186b 131 host-symbiont strains, we performed untargeted metabolomics analyses on the 132 unlabelled metabolites from the separated Chlorella and P. bursaria fractions of both 133 the native host-symbiont pairings. We observed a range of metabolites that 134 differentiated the 186b and HA1 Chlorella strains (Table S4), and metabolism 135 differed more between strains than it did between light conditions within strains 136 (Figure 3). Notably, the HA1 *Chlorella* strain displayed higher levels of several 137 carotenoids than the 186b Chlorella strain, particularly at high irradiance, whereas 138 the 186b Chlorella strain displayed higher levels of metabolites involved in 139 chlorophyll and ubiquinol metabolism than the HA1 Chlorella strain at both low and 140 high irradiance (Figure 4). Fewer metabolites distinguished the global metabolism of 141 the *P. bursaria* strains (Table S4). In all cases these metabolites were present at 142 higher levels in the 186b P. bursaria strain compared to the HA1 P. bursaria strain 143 (Figure S2), and neither strain's metabolism varied significantly with irradiance 144 (Figure S2). The identified metabolites that distinguished the strains were associated 145 with a range of functions, including amino acid metabolism, amino sugars, and 146 sphingolipid metabolism. Several other metabolites, although present in the host 147 fraction, are likely to have been secreted into the host cytoplasm by the algal 148 symbiont or be derived from the bacterial necromass. These include a zeatin

candidate, which may play a role in *Chlorella* signalling, and several metabolitesidentified as putative antibiotics.

151

152 The clear differences in global metabolism between the algal strains suggests that 153 they may vary in their photophysiology. To test this, we measured several key 154 photochemical parameters in the native and partner-switched host-symbiont pairings 155 acclimated to a range of light levels. For two measures of photosynthetic efficiency 156 — Fv/Fm (the intrinsic efficiency of photosystem II [PSII], Figure 5a) and Φ_{PSII} (the 157 proportion of the light absorbed by chlorophyll associated with PSII that is used in 158 photochemistry, Figure 5b) [29] — we observed a significant host genotype by 159 symbiont genotype by light environment interaction (for F_vF_m ANOVA, $F_{7,232}$ = 86.41, P<0.001; for Φ_{PSII} nlme model intercept summary ANOVA, $F_{11,24}$ = 11.66, P<0.001 160 161 (see Data S1 for full statistical output)). In the HA1 P. bursaria host, the pattern of 162 photosynthetic efficiency across the light gradient did not vary with algal strain, 163 whereas in the 186b P. bursaria host, the native 186b Chlorella showed lower 164 photosynthetic efficiency than the HA1 Chlorella at low growth irradiance, but the 165 pattern was reversed at high growth irradiance. These patterns are consistent with 166 the observed differences in carotenoid metabolism among the *Chlorella* strains: The 167 HA1 Chlorella produced more carotenoids at high irradiance than the 186b Chlorella, 168 and carotenoids perform a role in photoprotection and can therefore decrease the 169 light energy that reaches the photosystems and thereby limit photosynthesis. 170

Non-photochemical quenching is used by photosynthetic organisms to safely deal
with excess and potentially damaging light energy and was estimated using the
normalised Stern-Volmer coefficient (NSV). The intercept of the NSV response

174 (Figure 5c) across the actinic light gradient was significantly affected by host 175 genotype, suggesting differences among the host genotypes in their ability to photoprotect algal symbionts (ANOVA, F_{1,34} = 4.74, P<0.05). Meanwhile, both symbiont 176 177 genotype and growth irradiance affected the first coefficient (ANOVA, $F_{3,32} = 5.56$, 178 P<0.01); and symbiont genotype affected the second coefficient (ANOVA, $F_{1,34}$ = 179 8.932, P<0.01) (see Data S1 for full statistical output). Higher levels of NSV and 180 steeper NSV reaction norms for the 186b *Chlorella*, particularly in its native host 181 background, are consistent with the greater investment in photosynthetic machinery 182 observed in the metabolome, allowing this genotype to better dissipate excess light 183 energy as heat whilst not compromising photosynthetic efficiency.

184

185 Mixotrophic photosymbioses are common and play a vital role in biogeochemical 186 cycling in terrestrial and aquatic ecosystems [30–32]. Their breakdown, often driven 187 by environmental change, can be rescued by partner-switching to restore symbiotic 188 function [33,34]. Our findings suggest that convergence among independent 189 symbiotic origins upon a shared primary symbiotic nutrient exchange enables 190 partner-switching between genetically divergent clades. This stands in contrast to the 191 diversity of exchange metabolites used in photosymbioses more broadly. For 192 example, just amongst photosymbiotic cnidaria (i.e. corals, anemones, jellyfish) 193 organic carbon transfer from symbiont to host occurs in the form of glycerol, glucose, 194 maltose, and a variety of lipids and amino acids [35]. Thus, while a variety of 195 potential metabolic solutions to the photosymbiotic nutrient exchange exist, perhaps 196 explaining the abundance and diversity of photosymbioses, within specific symbiotic 197 interactions the optimal solution may be more constrained, resulting in evolutionary 198 convergence among independent originations. The concurrent divergence in algal

199 photophysiology allowed hosts, through partner-switching, to acquire symbionts with 200 different properties, potentially enabling adaptation to new environments. Crucially, 201 symbiont replacement providing hosts with new adaptive traits is critical in natural 202 populations responding to environmental change; for example, reinfection of corals 203 by thermally tolerant symbionts enables recovery following thermal bleaching events 204 [36–38]. Finally, we observed differences among the *P. bursaria-Chlorella* clades in 205 their division of labour between host and symbiont contributions to photoprotection. 206 This may be a common feature of photosymbioses [39,40], for example some 207 pelagic zooplankton and jellyfish hosts adopt behavioural strategies to photoprotect 208 algal symbionts [41], and could be a key mechanism of host-symbiont specificity by 209 mediating genotype by genotype by environment interactions. Host-symbiont 210 specificity and partner-switching are common features of many symbioses [42–46] 211 suggesting that our findings are likely to be of wider relevance beyond 212 photosymbioses. Multiple independent evolutionary origins have occurred in diverse 213 symbiotic relationships [18–21]. While this suggests a strong selective imperative for 214 these symbioses, it may also provide important adaptive potential through functional divergence among originations enabling their resilience to environmental change. 215

216

218

217 Acknowledgements

This work was funded by grant NE/K011774/2 from the Natural Environment
Research Council, UK to MAB, CDL, DDC, and AJW, and a White Rose DTP
studentship from the Biotechnology and Biological Sciences Research Council, UK
to MESS (BB/M011151/1). The funders had no role in the design of the study, the

- 223 collection, analysis and interpretation of data, or the writing of the manuscript. We
- are grateful to Heather Walker for assistance.

Author contributions

- MB, DC, MS, EM, CL conceived and designed the study. MS and EM conducted
- experimental work. MS, CL and DC analysed the data. MS and MB drafted the
- 227 manuscript. All authors commented on the manuscript.

Conflict of interest

228 The authors declare that they have no conflicting interests.

229			
230			
231			
232			
233			
234			
235			
236			
237			
238			

239 Figure Legends

240

Figure 1: Correlated metabolite enrichment for the 186b and HA1 *Paramecium bursaria* and *Chlorella* strains over time.

- 243 Each data point represents a metabolite and the scatterplot displays the Random
- 244 Forest rank order of each metabolite in both strains. The rank order value is
- positively correlated with magnitude of the enrichment signal. A,C,E,G.) N¹⁵
- 246 enrichment in the *Chlorella* fraction. B,D,F,H.) C¹³ enrichment in the *P. bursaria*
- 247 fraction. For all panels, responses are presented as the mean (n=500), for further
- 248 details regarding the Random Forest models see the methods section.

249

- Figure 2: Fitness of the native and non-native host-symbiont pairings relative
 to isogenic symbiont-free hosts.
- 252 Selection rate measurements were calculated from the change in proportion
- 253 between the symbiotic and symbiont-free *Paramecium* over the course of the
- 254 experiment. The line of selection rate = 0 represents when the two competed
- 255 populations have equal fitness (e.g. when the symbiotic *P. bursaria* have equal
- fitness to the symbiont-free *P. bursaria*). Presented as the mean (n=3) ±SE.
- 257

Figure 3: Differences in *Chlorella* global metabolism between strains across
light conditions.

Represented as volcano plots with the fold change of each metabolite against its
statistical significance. The data points are highlighted at two false discovery rate
(FDR) values, and if the Log₂(fold change) is greater than 1 or less than -1. A.)
Comparing the expression between the two strains within the high light condition. B.)

- 264 Comparing the expression between the two strains within the low light condition. C.)
- 265 Comparing expression between the two light levels within the HA1 strain. D.)
- 266 Comparing expression between the two light levels within the 186b strain. See
- 267 Figure S2 for the equivalent plot for the *P. bursaria* metabolite comparisons.
- 268

Figure 4: Metabolites associated with the differential light responses of the 186b and HA1 *Chlorella* strains.

- 271 The metabolites presented were highlighted by the volcano plot analysis and
- represent the divergent strategies in light management between the two strains. The
- 273 relative abundance of the metabolites is plotted within the two strains at the two light
- 274 conditions. The top three panels (A-C) show metabolites that have been identified as
- 275 carotenoids and the lower three panels (D-F) show metabolites that have been
- identified as either chlorophyll or ubiquinone compounds. For all panels, responses
- 277 are presented as the mean $(n=12) \pm SE$.
- 278

279 Figure 5: Photophysiology measurements for the native and non-native host-

- symbiont pairings.
- A) Estimates of the maximum quantum yield of photosystem II (F_v/F_m) across growth
- 282 irradiances. B) Light-adapted quantum yield of photosystem II (Φ_{PSII}) across growth
- irradiances, lines represent exponential decay models using nlme package in R. C.)
- The normalised Stern-Volmer quenching coefficient (NSV = F_0'/F_v') across growth
- irradiances, presented at polynomial models. For all panels, responses are
- presented as the mean $(n=3) \pm SE$. See Data S1 for model details.
- 287
- 288

289 STAR Methods

290 LEAD CONTACT AND MATERIALS AVAILABILITY

291 Further information and requests for resources and reagents should be directed to

and will be fulfilled by the Lead Contact, Michael Brockhurst

- 293 (m.brockhurst@sheffield.ac.uk). These resources and reagents will be made294 available upon request.
- 295

297

296 EXPERIMENTAL MODEL AND SUBJECT DETAILS

298 Symbiotic Paramecium bursaria stock cultures were maintained at 25°c under a

14:10 L:D cycle with 50 μ E m⁻² s⁻¹ of light. Grown in bacterized Protozoan Pellet

300 Media (PPM, Carolina Biological Supply), made to a concentration of 0.66 g L⁻¹ with

301 Volvic natural mineral water, and inoculated approximately 20 hours prior to use with

302 Serratia marscesens from frozen glycerol stocks. The two natural strains used were:

303 186b (CCAP 1660/18) obtained from the Culture Collection for Algae and Protozoa

304 (Oban, Scotland), and HA1 isolated in Japan and obtained from the Paramecium

305 National Bio-Resource Project (Yamaguchi, Japan).

306

To isolate *Chlorella* from the symbiosis, symbiotic cultures were first washed and concentrated with a 11µm nylon mesh using sterile Volvic. The suspension was then ultra-sonicated using a Fisherbrand[™] Q500 Sonicator (Fisher Scientific, NH, USA), at a power setting of 20% for 10 seconds sonification to disrupt the host cells. The liquid was then spotted onto Bold Basal Media plates (BBM) [47], from which green colonies were streaked out and isolated over several weeks. Plate stocks were maintained by streaking out one colony to a fresh plate every 3/4 weeks.

314

Symbiont-free *P. bursaria* were made by treating symbiotic cultures with paraquat (10 μ g mL⁻¹) for 3 to 7 days in high light conditions (>50 μ E m⁻² s⁻¹), until the host cells were visibly symbiont free. The cultures were then extensively washing with Volvic and closely monitored with microscopy to check that re-greening by *Chlorella* did not occur. Stock cultures of the symbiont-free cells were maintained by batch culture at 25°c under a 14:10 L:D cycle with 3 μ E m⁻² s⁻¹ of light and were given fresh PPM weekly.

322

323 METHOD DETAILS

324

325 Cross Infections

Symbiont-free populations of the two *P. bursaria* strains were re-infected by adding a colony of *Chlorella* from the plate stocks derived from the appropriate strain. The regreening process was followed by microscopy and took between 2-6 weeks. Over the process, cells were grown at the intermediate light level of 12 μ E m⁻² s⁻¹ and were given bacterized PPM weekly.

331

332 Diagnostic PCR

333 The correct algae genotype was confirmed using diagnostic PCR. The *Chlorella*

334 DNA was extracted by isolating the *Chlorella* and then using a standard 6%

335 Chelex100 resin (Bio-Rad) extraction method. ISSR primer '65' were established for

336 *Chlorella vulgaris* by Shen (2008), and was used as described therein. Standard

- 337 PCR reactions were performed using Go Taq Green Master Mix (Promega) and
- 338 0.5µmol L⁻¹ of primer. The thermocycler programme was set to: 94°c for 5min, 40

339 cycles of (94°c for 20sec, 55°c for 1 min, 72°c for 20sec), and 6 min at 72°c.

340

341 Fitness assay

342 P. bursaria cultures, both the symbiotic cross-infections and symbiont-free cells, 343 were washed with Volvic and resuspended in bacterized PPM. The cultures were 344 then split and acclimated at their treatment light level (0,12,50 μ E m⁻² s⁻¹) for five 345 days. Cell densities were counted by fixing 360 µL of each cell culture, in triplicate, in 346 1% v/v glutaraldehyde in 96-well flat bottomed micro-well plates. Images were taken 347 with a plate reader (Tecan Spark 10M) and cell counts were made using an 348 automated image analysis macro in ImageJ v1.50i [49]. The competitions were 349 started with the target values of 20 green cells and 20 white cells per ml. Cells were 350 sampled on day 0 and day 7 and the proportion of green to white cells was 351 measured using flow cytometry analysis. Green versus white cells were 352 distinguished using single cell fluorescence estimated using a CytoFLEX S flow 353 cytometer (Beckman Coulter Inc., CA, USA) by measuring the intensity of chlorophyll fluorescence (excitation 488nm, emission 690/50nm) and gating cell size using 354 355 forward side scatter [23]. The measurements were calibrated against 8-peak rainbow 356 calibration particles (BioLegend), and then presented as relative fluorescence to 357 reduce variation across sampling sessions.

358

359 Fluorimetry

360 The cells were washed and concentrated with a 11µm nylon mesh using sterile

361 Volvic and re-suspended in bacterized PPM. The cultures were then split and

acclimated to their treatment light condition (12, 24 & 50 μ E m⁻² s⁻¹) for five days.

363 F_v/F_m , Φ_{PSII} , and NSV values were measured by fast repetition rate fluorimetry

364 (FastPro8, Chelsea instruments fluorometer [50] following the manufactures

365 procedure. Cultures were dark acclimated for 15 minutes prior to measurements. For

maximum quantum yield, measurements were repeated until F_v/F_m stabilized (typically 3-5minutes) and F_v/F_m then estimated as an average of 10 measurements. Φ_{PSII} was measured in response to an actinic light source at sequentially increasing irradiances between 0 – 2908 PFD following standard green algae protocol. Peak emission wavelengths of the LED used for excitations was 450nm. Nonphotochemical quenching was estimated by the normalised Stern-Volmer coefficient, defined as NSV = F_0'/F_v' [51] and corrects for differences in F_v/F_m between samples.

373

374 Metabolomics

375 Cultures were washed and concentrated with a 11µm nylon mesh using Volvic and re-suspended in bacterized PPM. The cultures were first grown for three days at 50 376 377 μ E m⁻² s⁻¹ to increase cell densities, and then split and acclimated at their treatment 378 light condition (6 & 50 μ E m⁻² s⁻¹) for three days. For the sampling, the cultures were split into 3 treatment: the control, N¹⁵ enrichment by the addition of labelled *Serratia* 379 marscesens (100µl per microcosm), or C¹³ enrichment by the addition of HC¹³O₃ 380 381 (100 mg L⁻¹). The cultures were sampled at four time points (0,2,6,8 hrs after the 382 enrichment event). There were three biological replicates for each sampling event. 383

At each sampling event, the symbiotic partners were separated in order to a get *P*. *bursaria* and *Chlorella* metabolic fraction. The *P. bursaria* cells were concentrated with a 11µm nylon mesh using Volvic and then the *P. bursaria* cells were disrupted by sonication (20% power for 10 secs). 1ml of the lysate was pushed through a 1.6µm filter, which caught the intact *Chlorella* cells, and the run-through was collected and stored as the *P. bursaria* fraction. The 1.6µm filter was washed with

390 5ml cold deionized water, and then reversed so that the *Chlorella* cells were

391 resuspended in 1ml of cold methanol, which was stored as the *Chlorella* fraction.

392

The samples were analysed with a Synapt G2-Si with Acquity UPLC, recording in positive mode over a large untargeted mass range (50 – 1000 Da). A 2.1x50mm Acuity UPLC BEH C18 column was used with acetonitrile as the solvent. The machine settings are listed in detail below:

397

398 Mass spectrometry settings:

399	Polarity:	positive
400	Capillary voltage:	2.3 kV
401	Sample Cone voltage:	20 V
402	Source Temperature:	100ºc
403	Desolvation temperature:	280°c
404	Gas Flow:	600 L hr-1
405	Injected volume:	5µl

406

407 Gradient information:

408

409	Time (mins)	Water (%)	Acetonitrile (%)
407	0	95	5
410	3	65	35
110	6	0	100
411	7.5	0	100
	7.6	95	5
410			

412

413 The *P. bursaria* and *Chlorella* fraction were analysed separately. The xcms R

414 package [52–54] was used for automatic peak detection by extracting the spectra

from the CDF data files, using a step argument of 0.01 m/z. The automatically
identified peaks were grouped across samples and were used to identify and correct
correlated drifts in retention time from run to run. Pareto scaling was applied to the
resulting intensity matrix.

419

420 *Isotope analysis*

For the *P. bursaria* isotope analysis the C¹³ labelled samples were compared with 421 the control, while for the *Chlorella* analysis the N¹⁵ labelled samples were compared 422 423 to the control. In order to identify isotopic enrichment without user bias, we used 424 Random Forest (RF) models to identify metabolites that associated with the isotope 425 labelling. This is a machine-learning decision-tree based approach that produces powerful multivariate regression and is an established method for high-throughput 426 427 biological data [55], including metabolomics [56]. The isotope label was used as the 428 response variable to regress against the metabolic profile of each sample. Each 429 random forest model was run with 1000 iterations, and each RF analysis was run 430 500 times to account for uncertainty in the rank score. For each run, the rank score 431 of the RF importance (measured as the mean decrease in Gini) was recorded for 432 each m/z bin. The mean and standard error of the rank score was then calculated to 433 assess the consistency of the variable importance. In total 4 RF models were 434 analysed within each fraction, 1 per timepoint.

435

The rank score values were then compared between the strains. The high proportion
of shared metabolites were selected and filtered to select those that had a higher
relative abundance in the labelled fraction than in the control. From these, the profile
of each candidate metabolite was manually checked for isotopic enrichment, and

440 when a clear enrichment profile was present the monoisotopic mass was identified. 441 The enrichment proportion of the isotopic masses to the monoisotopic mass was 442 calculated, and the natural enrichment value within the control fraction was 443 subtracted from the enrichment in the labelled fraction. Following this calculation, it 444 was possible to determine if enrichment had occurred, and if so, the monoisotopic 445 mass was considered a 'mass of interest'.

446

447 *Target Pathway analysis*

448 Given that the low molecular weight compounds in the results of the ¹⁵N co-449 enrichment in Chlorella (Table S2) were almost exclusively amino acid or purine 450 related, we focused on these pathways for a further targeted approach. Key 451 compounds of these pathways were selected and searched for in the metabolite 452 dataset. To follow the flow of enriched nitrogen in these pathways, the relative 453 enrichment profile of these compounds compared to the control fraction was 454 calculated. The results were visualised as heatmaps, with the heatmap.2() function 455 from the gplot package [57], based on the method used by Austen et al. (In Press). 456

Some of the amino acid metabolism results are plotted in Figure S4 and show that the nitrogen enrichment is focused downstream from arginine. Other aspects of amino acid metabolism, such as that centred around aspartate, serine or lysine, showed little and inconsistent enrichment. Within purine metabolism, the nitrogen enrichment occurred both up and downstream of the purine bases. The enrichment upstream of the purine bases indicates that enriched nitrogen is entering this pathway from the amino acid of central metabolism. Based on this pattern, we

believe that the purine pathway is a site of secondary enrichment and it reveals thatpurine-derivatives present a substantial nitrogen demand.

466

Unfortunately, we could not identify a candidate compound for arginine to test if it had the enrichment profile of a transfer molecule (predicted to be a very high initial enrichment that then substantially decreased over time). Such a pattern was not seen for any compound, we suggest, therefore, that our first timepoint was not early enough to capture the initial enrichment events involving the transfer compound itself.

473

474 Unlabelled analysis

475 For the unlabelled, control fraction, the data was compared between the strains by 476 calculating the log2(Fold Change) between the conditions (either between the strains 477 within each light level, or between the light levels within each strain) in a series of 478 pair-wise contrasts for each metabolite. Student T-tests were performed between the 479 relative abundances of the paired comparisons. The *Benjamini–Hochberg* procedure 480 was used to account for the high number of multiple P-value comparisons, with the 481 false discovery rate set to 0.1 and 0.05 [58] as highlighted in the volcano plots. 482 483 Identification of significant masses

484 Masses of interest were investigated using the MarVis-Suite 2.0 software

485 (http://marvis.gobics.de/) [59], using retention time and mass to compare against

486 KEGG (https://www.genome.jp/kegg/) [60,61] and MetaCyc (https://biocyc.org/) [62]

487 databases. The Metabolomics Standards Initiative requires two independent

488	measures to confirm identity, which the combination of retention time and accurate
489	mass achieves. This analysis therefore confirms level 1 identification.
490	
491	
492	QUANTIFICATION AND STATISTICAL ANALYSIS
493	Statistical analyses were performed in R v.3.5.0 [63] and all plots were produced
494	using package ggplot2 [64]. Physiology tests were analysed by both ANOVA and
495	ANCOVA, with light, host and symbiont identity as factors. Φ_{PSII} results were
496	analysed with non-linear mixed effects models (nlme) with the nlme R package [65].
497	The Φ_{PSII} data was fitted to an exponential decay function:
498	
499	$\Phi_{PSII} = ae^{(bI)}$
500	Where <i>a</i> is a normalisation constant and <i>b</i> is the rate constant. The nlme model
501	included random effects by replicate on each parameter and fixed factors of host,
502	symbiont and light factors that interacted with <i>a</i> following model reduction. See the
503	full statistics table (Data S1) for further details on the statistics used.
504	
505	DATA AND CODE AVAILABILITY
506	The data has been deposited within Mendeley Data (DOI: 10.17632/6zspctmwpj.1).
507	
508	

- 510 Legends for supplementary datasets
- 511
- 512 Data S1. Statistical outputs for analyses associated with the figures of the
- 513 main manuscript. Related to Figure 2 and 5
- 514

515 References:

- 516 1. Wernegreen, J.J. (2012). Endosymbiosis. Current Biology 22, R555–R561.
- Sudakaran, S., Kost, C., and Kaltenpoth, M. (2017). Symbiont Acquisition and
 Replacement as a Source of Ecological Innovation. Trends in Microbiology 25, 375–390.
- 519 3. Kiers, E.T., and West, S.A. (2015). Evolving new organisms via symbiosis. Science *348*, 392–394.
- 4. Powell, J.R., and Rillig, M.C. (2018). Biodiversity of arbuscular mycorrhizal fungi and
 ecosystem function. New Phytol.
- 523 5. Baker, A.C. (2003). Flexibility and Specificity in Coral-Algal Symbiosis: Diversity,
 524 Ecology, and Biogeography of Symbiodinium. Annual Review of Ecology, Evolution,
 525 and Systematics 34, 661–689.
- Zook, D.P. (2002). Prioritizing Symbiosis to Sustain Biodiversity: Are Symbionts
 Keystone Species? In Symbiosis: Mechanisms and Model Systems Cellular Origin, Life
 in Extreme Habitats and Astrobiology., J. Seckbach, ed. (Dordrecht: Springer
 Netherlands), pp. 3–12.
- 530 7. Sachs, J.L., Skophammer, R.G., and Regus, J.U. (2011). Evolutionary transitions in
 bacterial symbiosis. PNAS *108*, 10800–10807.
- Moran, N.A., and Wernegreen, J.J. (2000). Lifestyle evolution in symbiotic bacteria:
 insights from genomics. Trends in Ecology & Evolution 15, 321–326.
- 534 9. Fujishima, M., and Kodama, Y. (2012). Endosymbionts in Paramecium. European
 535 Journal of Protistology 48, 124–137.
- 10. Hoshina, R., and Imamura, N. (2008). Multiple Origins of the Symbioses in Paramecium
 bursaria. Protist *159*, 53–63.
- 538 11. Summerer, M., Sonntag, B., and Sommaruga, R. (2008). Ciliate-Symbiont Specificity of
 539 Freshwater Endosymbiotic Chlorella (trebouxiophyceae, Chlorophyta)1. Journal of
 540 Phycology 44, 77–84.
- 541 12. Kato, Y., Ueno, S., and Imamura, N. (2006). Studies on the nitrogen utilization of
 542 endosymbiotic algae isolated from Japanese Paramecium bursaria. Plant Science 170,
 543 481–486.
- 544 13. Kessler, E., and Huss, V. a. R. (1990). Biochemical Taxonomy of Symbiotic Chlorella
 545 Strains from Paramecium and Acanthocystis*. Botanica Acta *103*, 140–142.
- 546 14. Johnson, M.D. (2011). The acquisition of phototrophy: adaptive strategies of hosting
 547 endosymbionts and organelles. Photosynth Res 107, 117–132.
- 548 15. Ziesenisz, E., Reisser, W., and Wiessner, W. (1981). Evidence of de novo synthesis of
 549 maltose excreted by the endosymbiotic Chlorella from Paramecium bursaria. Planta 153,
 550 481–485.

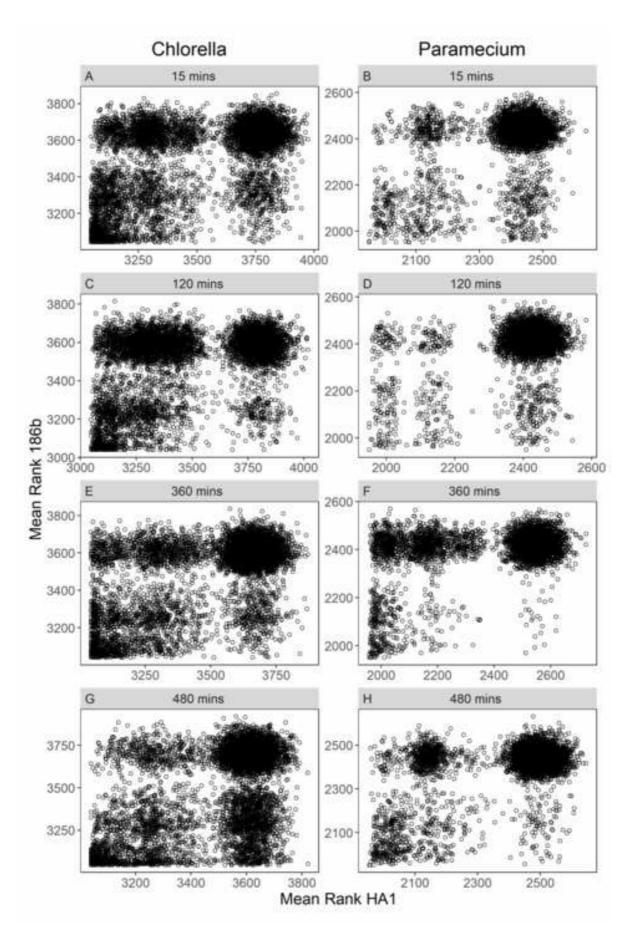
- Sachs, J.L., and Simms, E.L. (2006). Pathways to mutualism breakdown. Trends in
 Ecology & Evolution 21, 585–592.
- 17. Herre, E.A., Knowlton, N., Mueller, U.G., and Rehner, S.A. (1999). The evolution of
 mutualisms: exploring the paths between conflict and cooperation. Trends in Ecology &
 Evolution 14, 49–53.
- 18. Muggia, L., Nelson, P., Wheeler, T., Yakovchenko, L.S., Tønsberg, T., and Spribille, T.
 (2011). Convergent evolution of a symbiotic duet: The case of the lichen genus
 Polychidium (Peltigerales, Ascomycota). American Journal of Botany *98*, 1647–1656.
- Masson-Boivin, C., Giraud, E., Perret, X., and Batut, J. (2009). Establishing nitrogenfixing symbiosis with legumes: how many rhizobium recipes? Trends in Microbiology *17*, 458–466.
- 562 20. Boscaro, V., Husnik, F., Vannini, C., and Keeling, P.J. (2019). Symbionts of the ciliate
 563 Euplotes: diversity, patterns and potential as models for bacteria–eukaryote
 564 endosymbioses. Proceedings of the Royal Society B: Biological Sciences 286, 20190693.
- 565 21. Huler, J., and Stelinski, L.L. (2017). The Ambrosia Symbiosis: From Evolutionary
 566 Ecology to Practical Management. Annual Review of Entomology 62, 285–303.
- 22. Zagata, P., Greczek-Stachura, M., Tarcz, S., and Rautian, M. (2016). The Evolutionary
 Relationships between Endosymbiotic Green Algae of Paramecium bursaria Syngens
 Originating from Different Geographical Locations. Folia Biologica *64*, 47–54.
- 570 23. Kadono, T., Kawano, T., Hosoya, H., and Kosaka, T. (2004). Flow cytometric studies of
 571 the host-regulated cell cycle in algae symbiotic with green paramecium. Protoplasma
 572 223, 133–141.
- Soldo, A.T., Godoy, G.A., and Larin, F. (1978). Purine-Excretory Nature of Refractile
 Bodies in the Marine Ciliate Parauronema acutum*. The Journal of Protozoology 25,
 416–418.
- Shah, N., and Syrett, P.J. (1984). The uptake of guanine and hypoxanthine by marine
 microalgae. Journal of the Marine Biological Association of the United Kingdom *64*,
 545–556.
- 26. Quispe, C.F., Sonderman, O., Khasin, M., Riekhof, W.R., Van Etten, J.L., and Nickerson,
 K.W. (2016). Comparative genomics, transcriptomics, and physiology distinguish
 symbiotic from free-living Chlorella strains. Algal Research *18*, 332–340.
- 582 27. Minaeva, E., and Ermilova, E. (2017). Responses triggered in chloroplast of Chlorella
 583 variabilis NC64A by long-term association with Paramecium bursaria. Protoplasma, 1–8.
- 28. Arnow, P., Oleson, J.J., and Williams, J.H. (1953). The Effect of Arginine on the
 Nutrition of Chlorella vulgaris. American Journal of Botany 40, 100–104.
- 586 29. Maxwell, K., and Johnson, G.N. (2000). Chlorophyll fluorescence—a practical guide. J
 587 Exp Bot 51, 659–668.

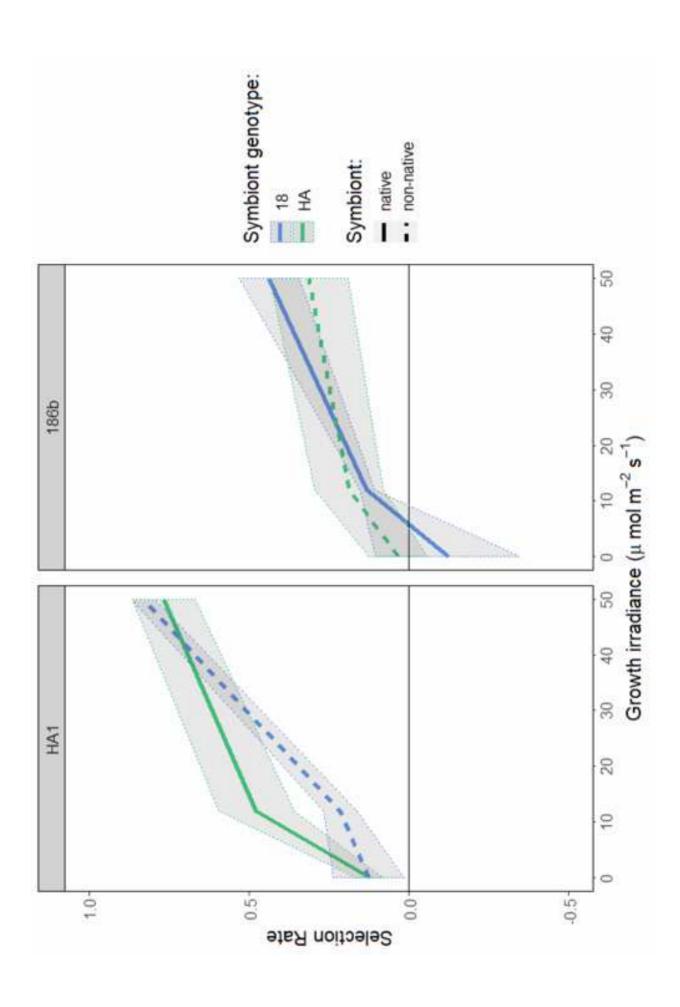
- 588 30. Esteban, G.F., Fenchel, T., and Finlay, B.J. (2010). Mixotrophy in Ciliates. Protist *161*,
 589 621–641.
- 590 31. Stanley, G.D., and Lipps, J.H. (2011). Photosymbiosis: The Driving Force for Reef
 591 Success and Failure. The Paleontological Society Papers 17, 33–59.
- 592 32. Caron, D.A. (2016). Mixotrophy stirs up our understanding of marine food webs. PNAS
 593 113, 2806–2808.
- 33. Boulotte, N.M., Dalton, S.J., Carroll, A.G., Harrison, P.L., Putnam, H.M., Peplow, L.M.,
 and van Oppen, M.J. (2016). Exploring the *Symbiodinium* rare biosphere provides
 evidence for symbiont switching in reef-building corals. The ISME Journal *10*, 2693–
 2701.
- 598 34. Lefèvre, C., Charles, H., Vallier, A., Delobel, B., Farrell, B., and Heddi, A. (2004).
 599 Endosymbiont Phylogenesis in the Dryophthoridae Weevils: Evidence for Bacterial
 600 Replacement. Mol Biol Evol 21, 965–973.
- 35. Yellowlees, D., Rees, T.A.V., and Leggat, W. (2008). Metabolic interactions between
 algal symbionts and invertebrate hosts. Plant, Cell & Environment *31*, 679–694.
- 36. Berkelmans, R., and van Oppen, M.J.H. (2006). The role of zooxanthellae in the thermal
 tolerance of corals: a 'nugget of hope' for coral reefs in an era of climate change.
 Proceedings of the Royal Society B: Biological Sciences 273, 2305–2312.
- 606 37. Rowan, R. (2004). Thermal adaptation in reef coral symbionts. Nature 430, 742–742.
- 607 38. Kinzie, R.A., Takayama, M., Santos, S.R., and Coffroth, M.A. (2001). The Adaptive
 608 Bleaching Hypothesis: Experimental Tests of Critical Assumptions. The Biological
 609 Bulletin 200, 51–58.
- 39. Ye, S., Bhattacharjee, M., and Siemann, E. (2019). Thermal Tolerance in Green Hydra:
 Identifying the Roles of Algal Endosymbionts and Hosts in a Freshwater Holobiont
 Under Stress. Microb Ecol 77, 537–545.
- 40. Venn, A.A., Loram, J.E., and Douglas, A.E. (2008). Photosynthetic symbioses in
 animals. J Exp Bot 59, 1069–1080.
- 41. Cimino, M.A., Patris, S., Ucharm, G., Bell, L.J., and Terrill, E. (2018). Jellyfish
 distribution and abundance in relation to the physical habitat of Jellyfish Lake, Palau.
 Journal of Tropical Ecology *34*, 17–31.
- 42. Husnik, F., and McCutcheon, J.P. (2016). Repeated replacement of an intrabacterial
 symbiont in the tripartite nested mealybug symbiosis. PNAS *113*, E5416–E5424.
- 43. Koga, R., and Moran, N.A. (2014). Swapping symbionts in spittlebugs: evolutionary
 replacement of a reduced genome symbiont. The ISME Journal *8*, 1237–1246.
- 44. Matsuura, Y., Moriyama, M., Łukasik, P., Vanderpool, D., Tanahashi, M., Meng, X.-Y.,
 McCutcheon, J.P., and Fukatsu, T. (2018). Recurrent symbiont recruitment from fungal
 parasites in cicadas. PNAS *115*, E5970–E5979.

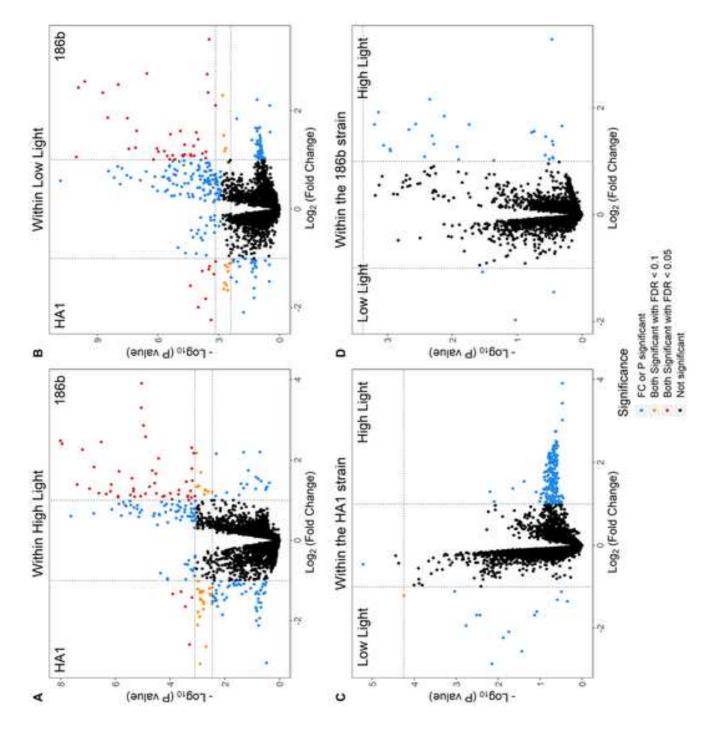
- 45. Sepp, S.-K., Davison, J., Jairus, T., Vasar, M., Moora, M., Zobel, M., and Öpik, M.
 (2019). Non-random association patterns in a plant–mycorrhizal fungal network reveal host–symbiont specificity. Molecular Ecology 28, 365–378.
- 46. Parker, B.J., Hrček, J., McLean, A.H.C., and Godfray, H.C.J. (2017). Genotype
 specificity among hosts, pathogens, and beneficial microbes influences the strength of
 symbiont-mediated protection. Evolution *71*, 1222–1231.
- 47. Stein, J.R. (1979). (ED.) Handbook of Phycological Methods: Culture Methods and
 Growth Measurements (Cambridge University Press).
- 48. Shen, S. (2008). Genetic diversity analysis with ISSR PCR on green algae <Emphasis
 Type="Italic">Chlorella vulgaris</Emphasis> and <Emphasis Type="Italic">Chlorella
 pyrenoidosa</Emphasis>. Chin. J. Ocean. Limnol. 26, 380–384.
- 49. Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25
 years of image analysis. Nature Methods.

50. Oxborough, K., Moore, C.M., Suggett, D.J., Lawson, T., Chan, H.G., and Geider, R.J.
(2012). Direct estimation of functional PSII reaction center concentration and PSII
electron flux on a volume basis: a new approach to the analysis of Fast Repetition Rate
fluorometry (FRRf) data. Limnology and Oceanography: Methods *10*, 142–154.

- 51. McKew, B.A., Davey, P., Finch, S.J., Hopkins, J., Lefebvre, S.C., Metodiev, M.V.,
 Oxborough, K., Raines, C.A., Lawson, T., and Geider, R.J. (2013). The trade-off between
 the light-harvesting and photoprotective functions of fucoxanthin-chlorophyll proteins
 dominates light acclimation in Emiliania huxleyi (clone CCMP 1516). New Phytologist
 200, 74–85.
- 52. Benton, H.P., Want, E.J., and Ebbels, T.M.D. (2010). Correction of mass calibration gaps
 in liquid chromatography-mass spectrometry metabolomics data. Bioinformatics 26,
 2488–2489.
- 53. Smith, C.A., Want, E.J., O'Maille, G., Abagyan, R., and Siuzdak, G. (2006). XCMS:
 Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak
 Alignment, Matching, and Identification. Anal. Chem. 78, 779–787.
- 54. Tautenhahn, R., Böttcher, C., and Neumann, S. (2008). Highly sensitive feature detection
 for high resolution LC/MS. BMC Bioinformatics 9, 504.
- 55. Touw, W.G., Bayjanov, J.R., Overmars, L., Backus, L., Boekhorst, J., Wels, M., and van Hijum, S.A.F.T. (2013). Data mining in the Life Sciences with Random Forest: a walk in the park or lost in the jungle? Brief. Bioinformatics *14*, 315–326.
- 658 56. Hopkins, D.P., Cameron, D.D., and Butlin, R.K. (2017). The chemical signatures
 659 underlying host plant discrimination by aphids. Scientific Reports 7, 8498.
- 57. Warnes, G.R., Bolker, B., Bonebakker, L., Gentleman, R., Huber, W., Liaw, A., Lumley,
 T., Maechler, M., Magnusson, A., and Moeller, S. (2009). gplots: Various R
 programming tools for plotting data. R package version 2, 1.


- 58. Storey, J.D., and Tibshirani, R. (2003). Statistical significance for genomewide studies.
 PNAS *100*, 9440–9445.
- 59. Kaever, A., Lingner, T., Feussner, K., Göbel, C., Feussner, I., and Meinicke, P. (2009).
 MarVis: a tool for clustering and visualization of metabolic biomarkers. BMC
 Bioinformatics 10, 92.
- 668 60. Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes.
 669 Nucleic Acids Res. 28, 27–30.
- 670 61. Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., and Tanabe, M. (2019). New
 671 approach for understanding genome variations in KEGG. Nucleic Acids Res. 47, D590–
 672 D595.
- 673 62. Caspi, R., Billington, R., Fulcher, C.A., Keseler, I.M., Kothari, A., Krummenacker, M.,
 674 Latendresse, M., Midford, P.E., Ong, Q., Ong, W.K., *et al.* (2018). The MetaCyc
 675 database of metabolic pathways and enzymes. Nucleic Acids Res *46*, D633–D639.
- 676 63. R Core Team (2018). R: A Language and Environment for Statistical Computing.
 677 Available at: https://www.R-project.org/.
- 678 64. Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis.
- 679 65. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R core Team (2019) (2019). nlme:
 680 Linear and Nonlinear Mixed Effects Models. Available at: https://CRAN.R681 project.org/package=nlme.
- 682
- 683

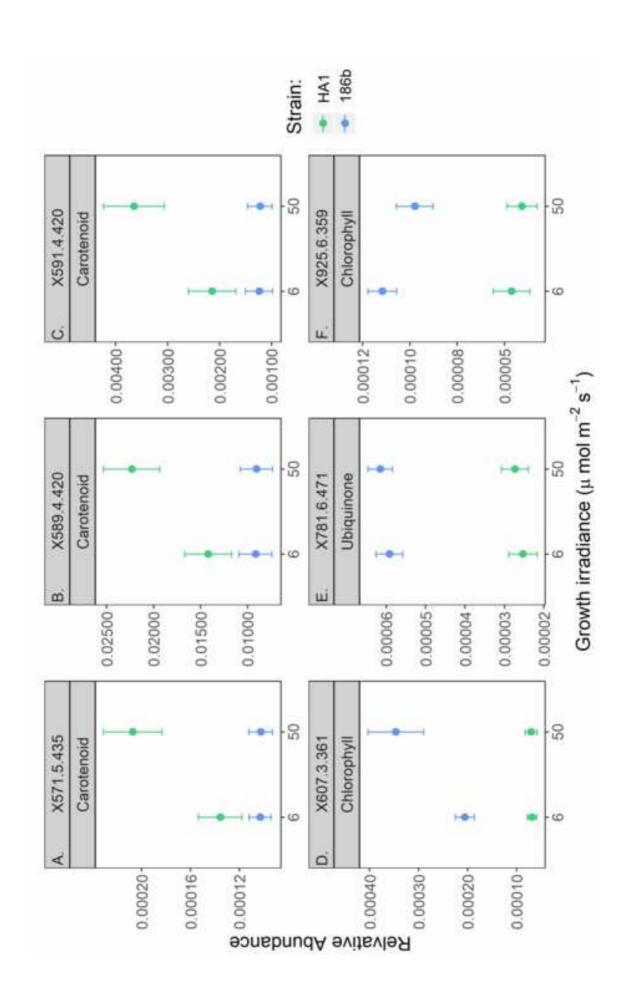
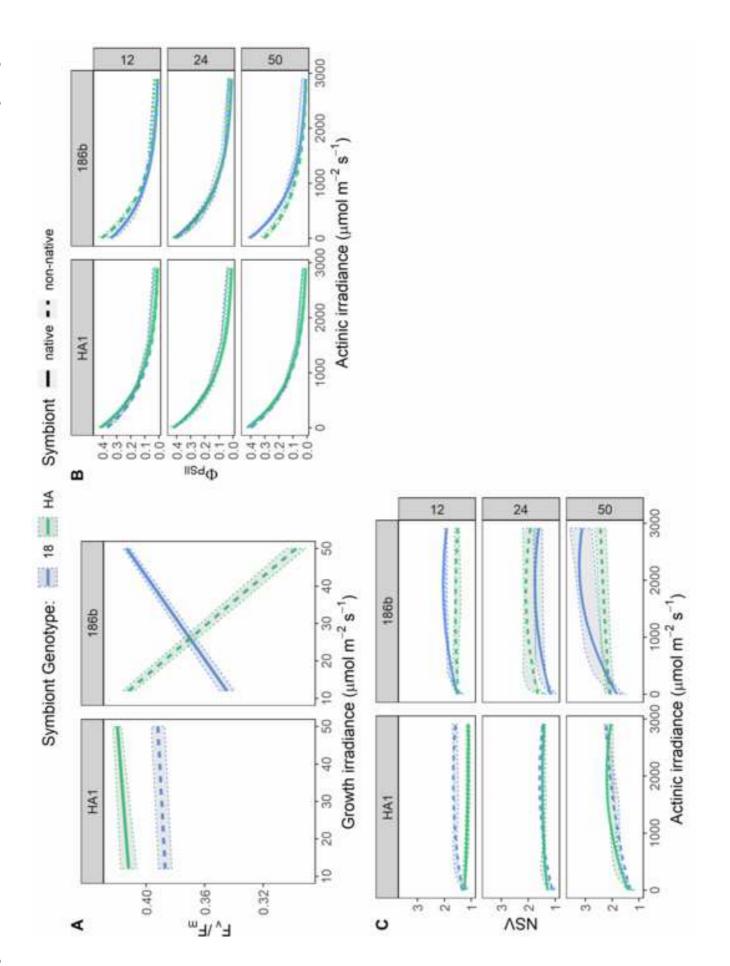
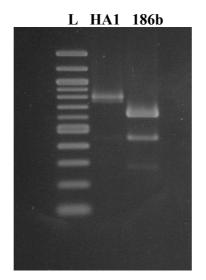

684

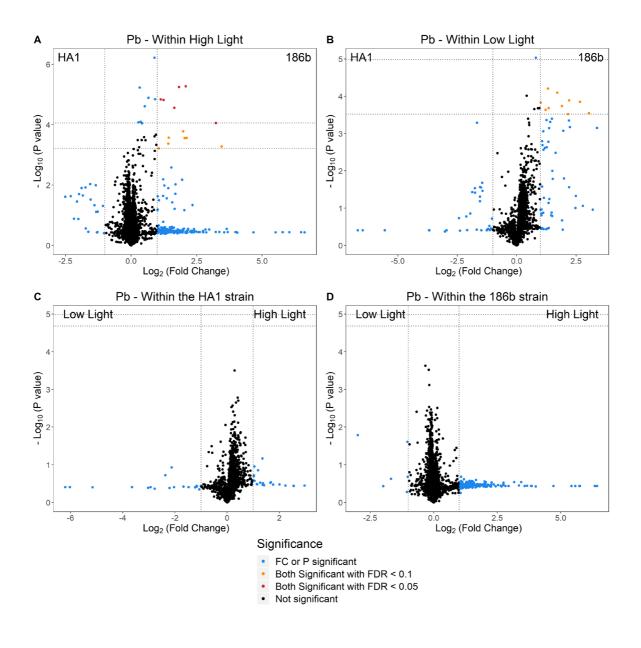

685

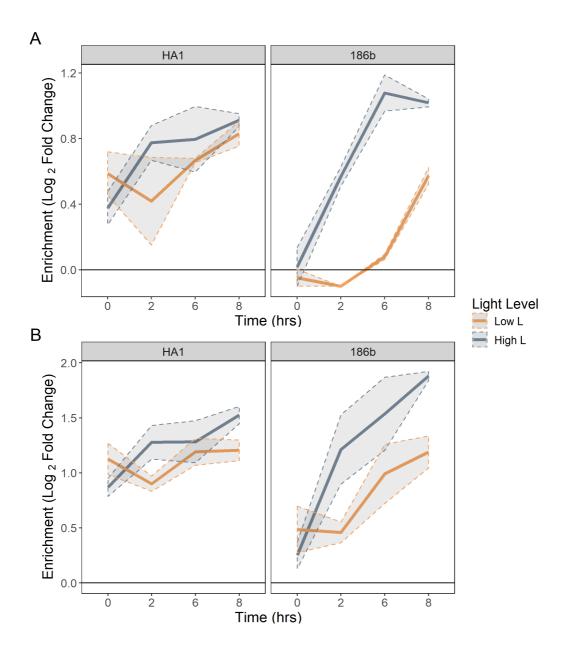
KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Bacterial and Virus Strains		
Serratia marscesens	Collection of Institut Pasteur	CIP 103235T
Chemicals, Peptides, and Recombinant Proteins		
Protozoan Pellet Media	Carolina Biological Supply	132360
Paraquat dichloride	Sigma-Aldrich	36541; CAS: 75365-73-0
8-peak rainbow calibration particles	BioLegend	422903
Chelex100 resin	Bio-Rad Laboratories	1421253
Deposited Data		
Mass spectrometry data, fluorimetry data and flow cytometry data	This paper	DOI: 10.17632/6zspctmwpj.1
Experimental Models: Organisms/Strains		
<i>P. bursaria – Chlorella</i> 186b strain	Culture Collection of Algae and Protozoa	CCAP 1660/18
P. bursaria – Chlorella HA1 strain	National BioResource project	NBRP ID: PB034004A
Oligonucleotides		1
ISSR primer '65': AGAGAGAGAGAGAGAGAGCC	Shen (2008)	N/A
Software and Algorithms		
ImageJ v1.50i	Schneider et al., 2012	https://imagej.nih.gov/ij/
xcms R package	Benton et al., 2010; Smith et al., 2006; Tanutenhahn et al., 2008	https://bioconductor.org/p ackages/release/bioc/html /xcms.html
MarVis-Suite 2.0 software	Kaever et al., 2009	http://marvis.gobics.de/

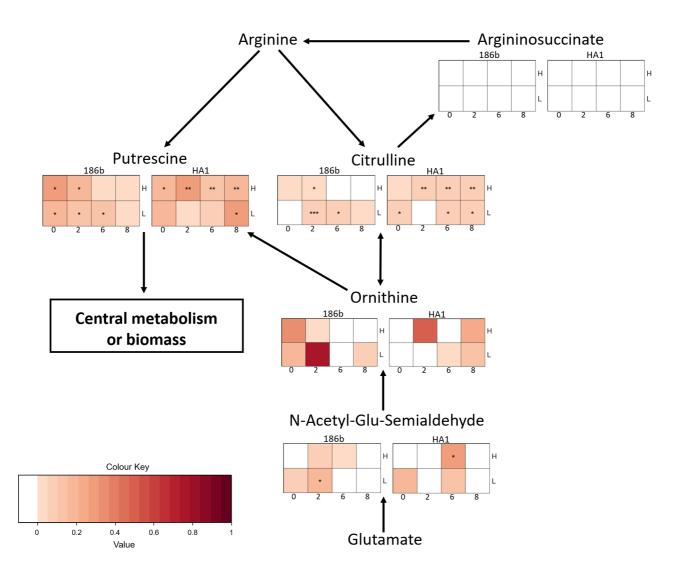
Click here to access/download;Figure;Figure 4.tif ≛


Figure 4


Figure S1: Diagnostic PCR between the HA1 and 186b *Chlorella* strains. Related to main text.

Showing clear banding pattern differences with the '65 ISSR' primer. Shown with a 100 bp ladder.


Figure S2: Comparisons of the unlabelled *Paramecium* metabolites between the strains and light conditions. Related to Figure 3.

Volcano plots for the unlabelled *Paramecium* metabolite comparisons. Plotting the fold change of each metabolite against its statistical significance. The data points are highlighted at two false discovery rate (FDR) values, and if the Log₂(fold change) is greater than 1 or less than -1. A.) Comparing the expression between the two strains within the high light condition. B.) Comparing the expression between the two strains within the low light condition. C.) Comparing expression between the two light levels within the HA1 strain. D.) Comparing expression between the two light levels within the 186b strain.

Figure S3: The interaction of light intensity and strain identity on the C¹³ enrichment profile of carbohydrate metabolites in the *Paramecium* fraction. Related to the main text.

For all panels, the enrichment value is the Log2 of the Fold Change in enrichment of the C¹³ labelled fraction compared to the control. Presented as the mean (n=3) ±SE. The low light level refers to 6 μ mol m⁻² s⁻¹ and the high light to 50 μ mol m⁻² s⁻¹. A) Profile of 689.2 mz, 16 rt, Glycogen. B) Profile of 365.1 mz, 16 rt, a disaccharide, thought to be sucrose.

Figure S4: Schematic pathway diagram of nitrogen enrichment in the amino acid metabolism of the *Chlorella* metabolic fraction. Related to the main text and STAR methods.

The tables show relative N¹⁵ enrichment across time (in hrs), in the two light conditions (H = 50 μ mol m⁻² s⁻¹, L = 6 μ mol m⁻² s⁻¹). The colour corresponds to the fold change of the enrichment compared to the control, with significance stars indicating the statistical strength of this change. The nitrogen enrichment is focused downstream from arginine; ornithine, putrescine and citrulline possessed clear enrichment profiles while upstream compounds such as arginosuccinate had no detectable enrichment. This analysis is further explained in the STAR methods section.

Strain Year	Year	Location	Latitude and	Elevation	Latitude and Elevation Average Temperature	Average Total Sunshine	Culture Collection
			Longitude		Range	hours a year	
186b	2006	Lilly Loch,	56°26'03.8"N	20-40m	2.3° c to 17.9° c ¹	1,219.4 hrs ¹	CCAP 1660/18 ²
		Inverawe,	5°12'22.1"W				
		Scotland, UK					
HA1	2010	Hirosaki-city,	40°35'35.02"N	45m	-5° c to 28° c ³	2013.2 hrs ³	NBRP ID: PB034004A ⁴
		Aomori pref,	140°28'21"E				
		Japan					

Table S1. Details of the *P. bursaria* – *Chlorella* strains. Related to main text.

climate-averages) ¹ Based on the Met Office UK Climate averages data for Dunstaffnage (https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-

² https://www.ccap.ac.uk/strain_info.php?Strain_No=1660/18

³ Based on data for Hirosaki city and Aomori airport (https://www.japanhoppers.com/en/tohoku/hirosaki/weather/) (https://www.worldweatheronline.com/hirosaki-weather-averages/aomori/jp.aspx)

⁴ http://nbrpcms.nig.ac.jp/paramecium/wp-content/themes/paramecium/data/strain_ha1g.pdf

RF Time	Detected Mass	Retention Time	Pathway	Candidate Compounds	Exact Mass	Adduct	Adduct KEGG/ MetaCyc
1	113	482	Pyrimidine/Amino acid	Uracil	112.0273	H+	C00106
				1,3-diaminopropane	74.0844	K+	C00986
1	166	478	Purine	5-Amino-4-imidazole carboxylate	127.0382	K+	C05516
1,2	237.1	286	Biotin	Dethiobiotin	214.1317	Na+	C01909
1,2,3,4	871.6	405	Chlorophyll	Pheophytin A	870.5659	H+	C05797
1,2,4	593.3	405	Chlorophyll	Pheophorbide A	592.2686	H+	C18021
				Urobilinogen	592.3261	H+	C05790
2,3	140	213	Amino acid	L-Aspartate 4-semialdehyde	117.0426	Na+	C00441
				Indole	117.0578	Na+	C00463
				1-Aminocyclopropane-carboxylate	101.0477	Ŧ	C01234
				5-Aminopentanal	101.0841	K+	C12455
3	482.4	324	Folate biosynthesis	Dihydrofolate	443.1553	K+	C00415
3	848.6	294	Ubiquinone	Rhodoquinone-10	847.6842	H+	CPD-9613
4	227.1	460	Amino acid/Chlorophyll	Tryptophan	204.0899	Na+	C00078
				Porphobilinogen	226.0954	H+ +	C00931

Table S2. List of metabolite IDs found to be co-enriched with N¹⁵ in the *Chlorella* fraction and their candidate identifications. Related to Figure 1.

RF Time	RF Time Detected Mass	Retention Time	Pathway	Candidate Compounds	Exact Mass Adduct	Adduct
1	100	16	Glycerophospholipid	Ethanolamine	61.0528	$\widehat{+}$
1	689.2	16	Carbohydrate	Glycogen	666.2219	Na+
1,2	124	15	Vitamins and Cofactors	Niacin	123.032	Т +
1,2	261	14	Carbohydrate	Monosaccharide phosphate	260.0297	Т +
1,2,3	251	17	Isoprenoid pathway	(R)-5-Phosphomevalonate	228.0399	Na+
1,2,3,4	190	341	Phosphonate	Demethylphosphinothricin	167.0347	Na+
1,2,3,4	441.3	310	Lipid	Hydroxycholesterol	402.3498	Ŧ
1,2,3,4	639.2	414	Heme biosynthesis	Haem	616.1773	Na+
1,2,3,4	212.9	479	Chlorocyclohexane and		1 73 073	5
			chlorobenzene degradation	CITIOLOGIETIETACCOTTE	1/3.3/2	Na T
1,2,4	109	479	Quinone	p-Benzoquinone	108.0211	H +
1,2,4	345.9	480	Amino acid metab	3-lodo-L-tyrosine	306.9705	~
1,3,4	169	19	Central metabolism	2-Oxoglutarate	146.0215	Na+
				2-Oxoisocaproate	130.063	Ŧ
				3-Methyl-2-oxopentanoate	130.063	Ŧ
				2-Dehydropantoate	146.0579	Ŧ
				3-Phosphonopyruvate	167.9824	Т +
				Phosphoenolpyruvate	167.9824	<u></u> +
2	313.2	287	Lipid	HPODE	312.2301	H +
2,3,4	519.1	400	Peptide	Nitro-hydroxy-glutathionyl-	496.1264	Na+
				dihydronaphthalene		
2,4	71.1	373	Amino acid	Aminopropiononitrile	70.0531	Н +
3	405.1	236	Isoprenoid pathway	Farnesyl diphosphate	382.131	Na+

Table S3. List of metabolite IDs found to be co-enriched with C¹³ in the *P. bursaria* fraction and their candidate identifications. Related to Figure 1.

										186	Low																Chlorella HA1	Fraction in	Upre	Table S4. The m These metabolite
										186 Strain	Low Light																HA1 strain		Upregulated	etabolite II s were ther
										H & L light	HA1 strain													H light			H & L light	Condition		Ds and car efore upre
273.2								169		105	743.5				591.4				589.4	571.5	385.2	265.3		218.2	283.3		247.2	Mass	Detected	ndidate ide gulated in e
395								17		15	373				420				420	435	375	337		17	336		336	Time	Retention	ither one o
*								* *		,* ,**	*				*				*	*	*	*		*	,* ,**		`* * `**	FDR	J	for the m f the strair
Fatty Acid								Central metabolism		Central metabolism	Phosphoglyceride				Carotenoid				Carotenoid	Carotenoid	Plant Hormone	Fatty acid		Amino acid	Fatty acid		Alkaloid/quinone	Pathway		etabolites of interest fr is or in one of the light cc
16-Hydroxypalmitate		Coumarin	2-Dehydropantoate	3-Methyl-2-oxopentanate	2-Oxoisocaproate	3-Phosphonopyruvate	Phosphoenolpyruvate	2-Oxoglutarate	Allophanate	Hydroxypyruvate	1-18:3-2-trans-16:1- phosphatidylglycerol	Xanthophyll	beta-Cryptoxanthin	Zeinoxanthin	Zeaxanthin	3-Hydroxyechinenone	Hydroxychlorobactene	Anhydrorhodovibrin	Echinenone	Methoxyneurosporene	Gibberellin A36	1-Hexadecanol	Alanyl-L-lysine	L-Glutamylputrescine	Oleate	Geranylhydroquinone	Anapheline	Candidate Compounds		Table S4. The metabolite IDs and candidate identification for the metabolites of interest from the unlabelled metabolic analyses. Related to Figure 3 and S2. These metabolites were therefore upregulated in either one of the strains or in one of the light conditions. This table includes both the Chlorella and P. bursaria results.
L/L.LULL	272 2251	146.0368	146.0579	130.063	130.063	167.9824	167.9824	146.0215	104.0222	104.011	742.4785 H+	568.428	552.4331	552.4331	568.428	566.4124	550.4175	566.4488	550.4175	570.4801	362.1729	242.261	217.1426	217.1426	282.2559	246.162	224.1889	Exact Mass		ses. Related to Fig
-	⊥ +	Na+	Na+	Ŧ	Ŧ	Ŧ	Ŧ	Na+	H+	H+	5 H+	Na+	Ŧ	Ŧ	Na+	Na+	Ŧ	Na+	K+	H+	Na+	Na+	H+	H+	H+	Ŧ	Na+	Adduct		jure 3 and <i>irsaria</i> res
	C18218	C05851	C00966	C00671	C00233	C02798	C00074	C00026	C01010	C00168	CPD-2186	C08601	C08591	C08590	C06098	C15966	C15911	C15877	C08592	C15895	C11862	C00823	C05341	C15699	C00712	C10793	C06183	Metacyc	Kegg /	ults.

													P. bursaria											Chlorella	Fraction		Table S4 continued
													186 strain												in	Upregulated	ontinued
L light					H light								H & L light	L light					H light						Condition		
418.2	434.1		416.1	390.1	352.2		396.1	364.2			170	126	124	273.3	751.5	335.3	323.2		262.1	925.6	/ ð T. þ	701 C	607.3	337.3	Mass	Detected	
268	249		250	237	237		237	236			237	217	238	268	366	372	248		248	359	4/1	7 T V	361	380	time	Retention	
*	*		* *	*	*		`* `*	、* *			** `*	** `*	** `*	* *	* *	*	*		*	* *	-	*	*	*	FDR		
Sphingolipid	Antibiotic ?		Antibiotic ?	Amino/nucleotide sugar	Plant hormone?		Antibiotic ?	Antibiotic ?			Amino acid	Sulfur metabolism	Vitamins and Cofactors	Diterpenoid	Ubiquinone	Isoprenoids	Photoreception		Folate	Chlorophyll	auoninhian		Chlorophyll	Fatty acids	Pathway		
Sphingosine 1-phosphate	Novobiocic acid	Chlorobiocic acid	Cephalosporin C	N-Acetylneuraminate 9-phosphate	trans-Zeatin riboside	Novobiocic acid	Deacetylcephalosporin C	ACV	Glutamate 5-semialdehyde	5-Amino-4-oxopentanoate	Glutamate	Taurine	Niacin	Ent-Kaurene	Octaprenyl-methyl-hydroxy-methoxy- 1;4-benzoquinone	Phytol	Vitamin A aldehyde	6-Lactoyl-5;6;7;8-tetrahydropterin	Dihydrobiopterin	Bacterio-pheophytins	nonaprenylbenzoate	3-methoxy-4-hydroxy-5-	Protoporphyrinogen IX	13;16-Docosadienoic acid	Candidate Compounds		
379.2488	395.1369	415.0823	415.1049	389.0723	351.1543	395.1369	373.0944	363.1464	131.0582	131.0582	147.0532	125.0147	123.032	272.2504	712.5431	296.3079	284.214	239.1018	239.1018	888.5765	/ 80.2	C 005	568.305	336.3028	Exact mass		
K +	Ţ	Ŧ	Ŧ	Ŧ	H+	Т +	Na+	Ŧ	주	Ŧ	Na+	Ŧ	Ŧ	Ŧ	Ŧ		Ŧ	Na+	Na+	~	1 +	-	K+	H+	Adduct		
C06124	C12474	C12471	C00916	C06241	C16431	C12474	C03112	C05556	C01165	C00430	C00025	C00245	C00253	C06090	C05815	C01389	C00376	C04244	C00268	C05798			C01079	C16533	t KEGG		