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SUMMARY

Alzheimer’s disease (AD) is associated with the intra-
cellular aggregation of hyperphosphorylated tau and
the accumulation of b-amyloid in the neocortex. We
use transgenic mice harboring human tau (rTg4510)
and amyloid precursor protein (J20) mutations to
investigate transcriptional changes associated with
the progression of tau and amyloid pathology.
rTg4510 mice are characterized by widespread
transcriptional differences in the entorhinal cortex
with changes paralleling neuropathological burden
across multiple brain regions. Differentially ex-
pressed transcripts overlap with genes identified in
genetic studies of familial and sporadic AD. Sys-
tems-level analyses identify discrete co-expression
networks associated with the progressive accumula-
tion of tau that are enriched for genes and pathways
previously implicated in AD pathology and overlap
with co-expression networks identified in human
AD cortex. Our data provide further evidence for an
immune-response component in the accumulation
of tau and reveal molecular pathways associated
with the progression of AD neuropathology.

INTRODUCTION

Alzheimer’s disease (AD) is a chronic neurodegenerative disor-

der that is characterized by progressive neuropathology and

associated cognitive and functional decline (Scheltens et al.,

2016). In addition to the loss of synapses and neurons (manifest-

ing as brain atrophy), AD involves two neuropathological hall-

marks: (1) the formation of neurofibrillary tangles (NFTs) that

result from the intracellular aggregation of hyperphosphorylated

tau protein, also a characteristic of other neurodegenerative dis-

orders including frontotemporal dementia (FTD), and (2) the

development of amyloid plaques, which are extracellular de-

posits composed mainly of b-amyloid (Ab) protein that have

been the focus of extensive efforts in drug discovery. Although

these neuropathological signatures of AD have been relatively

well described in post-mortem human brain tissue, their exact
2040 Cell Reports 30, 2040–2054, February 11, 2020 ª 2020 The Aut
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mechanistic role in disease onset and progression remains

poorly understood (De Strooper and Karran, 2016). There have

been considerable advances in identifying the genetic risk fac-

tors for both familial and sporadic forms of AD; in addition to

the autosomal-dominant mutations in APP, PSEN1, and

PSEN2 that cause early-onset familial AD (Guerreiro et al.,

2012), the power of genome-wide association studies (GWAS)

and exome sequencing in large sample cohorts (Cruchaga

et al., 2014; Guerreiro et al., 2013; Hollingworth et al., 2011; Jan-

sen et al., 2019; Jonsson et al., 2013; Lambert et al., 2013; Sims

et al., 2017) has been used to identify both common and rare var-

iants associated with late-onset AD. Although the mechanisms

by which associated variants mediate disease susceptibility

are not well understood, many of the variants are non-coding

and hypothesized to involve regulatory disruption to transcrip-

tional networks across affected brain regions.

Mouse models of tau and amyloid have played a major role in

defining critical pathology-related processes, including facili-

tating our understanding of the brain’s transcriptional response

to the production and gradual deposition of tau and amyloid

into tangles and plaques (Götz and Ittner, 2008). Recent studies

have identified widespread gene expression differences in trans-

genic (TG) mice harboring a diverse range of AD-associated mu-

tations (Castillo et al., 2017; Landel et al., 2014; Matarin et al.,

2015; Rothman et al., 2018; Swarup et al., 2019; Wes et al.,

2014; Neuner et al., 2019). However, most analyses to date

have been undertaken on relatively small numbers of animals

and have not attempted to directly relate transcriptional alter-

ations to the progressive burden of pathology frommultiple brain

regions in the same mice.

In this study, we systematically assess transcriptional signa-

tures associated with the progression of AD pathology in the

mouse brain, using highly parallel RNA sequencing (RNA-seq)

to quantify gene expression changes in the entorhinal cortex, a

region defined by primary and early neuropathology in human

AD (Braak and Braak, 1991). We used well-characterized TG

mouse models of both tau and amyloid pathology, collecting

transcriptional data at multiple time points carefully selected to

span from early to late stages of neuropathology in each model

(see Figure S1). First, to investigate transcriptional signatures

of progressive tau pathology, we used the rTg4510 mouse

model, which overexpresses a human mutant (P301L) form of

the microtubule-associated protein tau (MAPT) (Ramsden
hor(s).
commons.org/licenses/by/4.0/).
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et al., 2005; Santacruz et al., 2005). Second, to investigate amy-

loid pathology, we used the J20 mouse line, which expresses a

mutant (K670N/M671L and V717F) form of the human amyloid

precursor protein (APP) (Hsia et al., 1999; Mucke et al., 2000).

Specific differentially expressed genes were validated using

qPCR and subsequently tested in the hippocampus, another

brain region affected by early pathology. Transcriptional profiles

were related to detailed neuropathological measurements of tau

and amyloid burden in the same mice, enabling us to directly

relate expression changes to the progressive accumulation of

neuropathology. We identified robust genotype-associated dif-

ferences in entorhinal cortex gene expression in both models

and widespread transcriptional changes paralleling the develop-

ment of tau pathology in rTg4510 mice. Systems-level analyses

uncovered discrete co-expression networks associated with the

progression of tau pathology that were enriched for genes and

pathways implicated in the onset of AD. Finally, we compared

these networks with those identified in AD patients, finding

considerable overlap with disease-associated co-expression

modules identified in the human cortex.

RESULTS

TG Mice with APP and MAPT Mutations Are
Characterized by Progressive Neuropathology
In both models, right brain hemisphere tissue sections from TG

and wild-type (WT) littermate control female mice (STAR

Methods) were used to quantify the progression of neuropa-

thology across multiple brain regions (Figures S2A and S2N).

First, in rTg4510 mice we measured levels of phosphorylated

tau at 2, 4, 6, and 8 months, comparing them with WT controls

at the same ages (n = 7–10 animals per group, total n = 74).

We identified a dramatic accumulation of tau pathology

in both the hippocampus (factorial ANOVA, F[3, 66] = 69.76,

p = 1.96E�20) and entorhinal cortex (factorial ANOVA, F

[3, 51] = 9.86, p = 3.10E�5) (Figures 1A–1C). Highly significant in-

creases in phosphorylated tau were also observed within spe-

cific sub-regions of the hippocampus and each of the additional

cortical regions we quantified (Figures S2B–S2M). Previous

studies have shown that rTg4510 mice develop pretangles

around 2.5 months of age, with NFT pathology starting in the

neocortex and progressing rapidly into the hippocampus and

limbic structures with increasing age (Ramsden et al., 2005;

Sahara et al., 2014; Santacruz et al., 2005). The spread of tau pa-

thology in rTg4510 mice therefore reflects the spread of NFTs

with increasing Braak stage in AD (Braak and Braak, 1991). Sec-

ond, we quantified levels of amyloid pathology in J20 mice at

ages 6, 8, 10, and 12 months, comparing them with WT controls

at the same ages (n = 9 or 10 animals per group, total n = 73). We

again identified dramatic increases in pathology in the hippo-

campus (factorial ANOVA, F[3, 68] = 66.85, p = 3.00E�20),

with a more modest increase in the entorhinal cortex (factorial

ANOVA, F[3, 53] = 6.42, p = 0.00086) (Figures 1D–1F), and a sig-

nificant accumulation of amyloid was also observed in each of

the other cortical regions examined (Figures S2O–S2R). To our

knowledge, no previous study has quantified amyloid progres-

sion in entorhinal cortex in J20 mice, and it is noteworthy that

we observe lower levels of pathology in this region compared
with the hippocampus and other neocortical regions. Our results

concur with previous data highlighting progressive deposition of

amyloid plaques in the hippocampus and neocortex of J20 mice

at 5–7 months and ubiquitous plaque pathology by 8–10 months

of age (Harris et al., 2010a;Mucke et al., 2000), reflecting the pro-

gressive deposition of amyloid seen in individuals with AD (Thal

et al., 2002). Finally, we quantified neuropathology in the thal-

amus from both models, which, as expected, showed markedly

lower levels of tau (rTg4150; Figure S2M) and amyloid (J20; Fig-

ure S2R) pathology relative to the other brain regions tested.

The rTg4510 Model of Tau Pathology Is Characterized
by Widespread Transcriptional Differences in the
Entorhinal Cortex
The entorhinal cortex was dissected from the left hemisphere of

the brain from each individual mouse (TG and WT) at each of the

four time points. High-quality RNA (mean RNA integrity number

[RIN] rTg4510 = 8.9 [SD = 0.2], mean RIN J20 = 8.6 [SD = 0.3])

was isolated from each sample (total n = 121) and used for highly

parallel RNA-seq (STAR Methods). After stringent quality

control (QC) of the raw RNA-seq data (STAR Methods), we

obtained a mean of 18.18 million (SD = 3.33 million) sequencing

reads per sample for the rTg4510 dataset and a mean of

22.05 million (SD = 2.88 million) sequencing reads per sample

for the J20 dataset (Table S1), with no difference in read

depth between TG and WT controls (rTg4510: two-tailed

unpaired t test, t[57] = 1.35, p = 0.18; J20: two-tailed unpaired

t test, t[60] = 0.41, p = 0.18). We quantified read counts for

each transcript and evaluated differences in gene expression be-

tween TG and WT animals for each model (STAR Methods). Our

extensive gene expression dataset generated on rodent models

of AD pathology is well powered to identify transcriptional

variation associated with mutations in MAPT and APP and the

progressive changes in gene expression accompanying the

development of AD pathology in TG mice (Figure S1C).

Across all samples, extensive differences in gene expression

were identified in rTg4510 TG animals relative to WT control

mice (n = 29 TG, n = 30 WT); gene expression results for all

18,822 detected transcripts are available for download (STAR

Methods). In total we identified 154 differentially expressed

transcripts at a stringent false discovery rate (FDR) of <0.05

(Figure 2A; Table S2). Among these, there was a significant

(exact binomial test, n = 154 transcripts, p = 0.00014) enrichment

of downregulated transcripts (n = 101 transcripts [66%] with

reduced expression in TG compared with n = 53 transcripts

[34%] with elevated expression in TG). Of note, differences for

five of these transcripts are likely to reflect known deletions of

the transgene integration sites for the CaMKIIa-tTA (encompass-

ingWdr60, Esyt2, Ncapg2, and Ptprn2) and MAPT (encompass-

ing Fgf14) transgenes (Goodwin et al., 2017; Gamache et al.,

2019). Given the high homology between transcribed regions

of the human and mouse tau gene, we also find elevated

levels of Mapt (Wald statistic = 11.11, log2 fold change = 0.50,

FDR = 7.08E�25) (Figure S3A), confirming stable activation of

the MAPT transgene in TG mice; of note, human-specific

MAPT sequence domains were detected only in TG mice

(Figures S3B and S3C). Furthermore, because the rTg4510

transgene is inserted into the context of two untranslated exons
Cell Reports 30, 2040–2054, February 11, 2020 2041
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Figure 1. Transgenic Models Expressing Mutant Human MAPT and APP Exhibit Progressive Neuropathology

(A) Representative immunohistochemistry images from the hippocampus (CA1) showing accumulation of tau pathology in rTg4510 transgenic (TG) mice

compared with wild-type (WT) control mice at 2, 4, 6, and 8 months of age.

(B) There was a progressive increase in hippocampal tau in rTg4510 TG but not WT animals (total n = 73 animals; 8–10 animals per group; factorial

ANOVA, F[3, 66] = 69.76, p = 1.96E�20).

(C) There was a progressive increase in tau in the entorhinal cortex in rTg4510 TG but not WT animals (total n = 59 animals; 6–8 animals per group; factorial

ANOVA, F[3, 51] = 9.86, p = 3.10E�5).

(D) Representative immunohistochemistry images from the hippocampus showing progressive accumulation of amyloid pathology in J20 TGmice comparedwith

WT mice at 6, 8, 10, and 12 months of age.

(E) There was a progressive increase in hippocampal amyloid in J20 TG but not WT mice (total n = 77 animals; 9 or 10 animals per group; factorial ANOVA,

F[3, 68] = 66.85, p = 3.00E�20).

(F) There was a modest increase in amyloid in the entorhinal cortex of J20 TG but not WT mice, particularly in later stages (total n = 62 animals; 7 or 8 animals per

group; factorial ANOVA, F[3, 53] = 6.42, p = 0.00086).

Dashed lines represent mean paths of pathological burden across the four age groups.
of the mouse prion protein gene (Prnp), as expected we observe

elevated expression of these Prnp domains in TG mice (Wald

statistic = 25.40, log2 fold change = 1.54, FDR = 4.88E�138).

Beyond these expected direct transgene-induced changes,

we observed evidence for widespread transcriptional conse-

quences of the rTg4510 genotype (Table S2). Themost significant

rTg4510-associated differentially expressed transcript is Car4,

which encodes carbonic anhydrase 4 (upregulated in TG

mice; Wald statistic = 8.36, log2 fold change = 1.11, FDR =

2.41E�13). Other differentially expressed genes in mice

carrying the rTg4510 transgene include Gpr17, which encodes

G protein-coupled receptor 17, which is involved in regulating

oligodendrocyte differentiation and maturation (Chen et al.,
2042 Cell Reports 30, 2040–2054, February 11, 2020
2009) (downregulated in TG mice; Wald statistic = �6.73, log2
fold change = �0.62, FDR = 5.11E�08); Blnk, which encodes a

cytoplasmic linker protein that plays a critical role in B cell devel-

opment and is involved in the TREM2 activation pathway (Zajko-

wicz et al., 2018) (upregulated in TG mice; Wald statistic = 6.48,

log2 fold change = 0.80, FDR = 2.12E�07); and Hspa5 (also

known as Bip or Grp78), which encodes a member of the heat

shock protein 70 (HSP70) family that is localized in the lumen of

the endoplasmic reticulum (ER) and involved in the folding and

assembly of proteins and has been previously implicated in neu-

roprotection and AD (Casas, 2017; Hoozemans et al., 2005)

(downregulated in TG mice; Wald statistic = �6.16, log2 fold

change = �0.58, FDR = 1.37E�06). Hierarchical clustering of
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individual mice on the basis of expression levels for genotype-

associated transcripts robustly discriminates between rTg4510

and WT groups (Figure 2A). Within the rTg4510 TG group, sam-

ples also cluster by time point, suggesting, importantly, that there

are progressive changes in gene expression within the mutant

mice and highlighting the value of performing longitudinal

analyses. Finally, using qPCR, we validated top-ranked geno-

type-associated expression differences in the entorhinal cortex

(Figure S4; Table S3) and found parallel dysregulation of these

genes in matched hippocampus samples dissected from the

same individuals (Car4: t test statistic = �29.05, FDR =

4.90E�32; Gpr17: t test statistic = �2.19, FDR = 0.035; Blnk:

t test statistic =�18.13, FDR = 3.98E�23;Hspa5: t test statistic =

4.14, FDR = 0.00019) (Figure S4; Table S3).
The J20 Model of Amyloid Pathology Is Characterized
by Differential Expression of Ccdc80, Abca8a, Htr1a,
and Hspa5

Relative to the widespread transcriptional signatures associated

with the rTg4510model, fewer significant expression differences

were identified in J20 TG mice compared with WT control mice

(n = 30 TG, n = 32WT); gene expression results for all 18,745 ex-

pressed transcripts are available for download (STAR Methods).

As expected, there was an apparent upregulation of App (Wald

statistic = 8.55, log2 fold change = 0.66, FDR = 2.37E�13) (Fig-

ure S3D), reflecting the high sequence homology with the human

APP transgene and confirming stable activation of the mutant

transgene in TG mice; of note, we mapped our RNA-seq reads

to human-specific APP sequence domains and observed signal

only in TG animals (Figures S3E and S3F). In total we identified

four additional differentially expressed transcripts at FDR <

0.05 (Figure 2B; Table S2): Ccdc80, encoding a protein involved

in cell adhesion and matrix assembly (O’Leary et al., 2013)

(upregulated in TG samples; Wald statistic = 6.37, log2 fold

change = 0.81, FDR = 1.74E�06); Abca8a, encoding a member

of the A-subclass of ATP-binding cassette (ABC) transporter

family that regulates brain lipid homeostasis and has been impli-

cated in AD (Piehler et al., 2012) (downregulated in TG samples;

Wald statistic = �4.67, log2 fold change = �0.81, FDR = 0.02);

Htr1a, encoding a major G protein-coupled serotonin receptor,

the 5-HT1A receptor, which is widely expressed in the central

nervous system (CNS) (downregulated in TG samples; Wald sta-

tistic = �4.48, log2 fold change = �0.51, FDR = 0.035); and

Hspa5 (downregulated in TG samples, Wald statistic = �4.36,

log2 fold change = �0.28, FDR = 0.049). Overall, expression of

these genotype-associated transcripts discriminates between

J20 and WT groups (Figure 2B), although, in contrast to the

rTg5410 differentially expressed transcripts, there are no clear

age effects in the J20 TG mice. Although the transcriptional

changes associated with the rTg4510 and J20 genotypes are
Figure 2. Genotype-Associated Transcriptional Variation Robustly Dis

Normalized DESeq2 read counts, relative to mean levels of expression across all

(blue).

(A) Hierarchical clustering of individual mice on the basis of expression levels for

[29 TG, 30 WT], 147 transcripts).

(B) Hierarchical clustering of individual mice on the basis of expression levels for di

32 WT], 5 transcripts).
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generally distinct—there is no robust correlation of effect sizes

(TG versusWT) betweenmodels for differentially expressed tran-

scripts identified in either the rTg4510 (Pearson correlation, r =

0.15, p = 0.063; Figure S5A) or J20 (r = 0.66, p = 0.23; Figure S5B)

models—it is noteworthy that Hspa5 is significantly downregu-

lated (FDR < 0.05) in the entorhinal cortex in the same direction

in both models, implicating a role for ER stress in both tau and

amyloid pathology. Of note, recent evidence suggests that acti-

vation of this gene is essential for the initiation of the unfolded

protein response (UPR) in Parkinson’s disease (Enogieru et al.,

2019). Finally, using qPCR we confirmed differential expression

in the entorhinal cortex and found parallel dysregulation of

two of the J20-associated transcripts in the hippocampus

dissected from the same individuals (Abca8a: t test statistic =

2.74, FDR = 0.015; Ccdc80: t test statistic = �8.57, FDR =

7.60E�11) (Figures S4I–S4L; Table S3).
Progressive Changes in Gene Expression Mirror the
Development of Neuropathology in the rTg4510 Model
of Tau Pathology
Given the progressive accumulation of brain neuropathology

in TG mice (Figure 1), we next explored temporal changes in

gene expression associated with genotype to identify transcrip-

tional signatures paralleling the increases in tau and amyloid pa-

thology in TGmice over time (Figure S1C).We initially focused on

the rTg4510 mice given the clear temporal clustering of samples

among genotype-associated differentially expressed transcripts

identified in this model (Figure 2A). First, using an approach de-

signed to identify interactions between genotype (TG versusWT)

and age group, we identified 1,762 transcripts (FDR < 0.05)

whose expression significantly changed with time in TG

rTg4510 mice (Table S4). The top progressively altered gene in

rTg4510 TGmicewasGfap, encoding glial fibrillary acidic protein

(GFAP), a gene predominantly expressed in both mouse and hu-

man astrocytes (Raff et al., 1979; Zhang et al., 2016) and known

to be upregulated in reactive astrocytes associated with brain

pathology (Ben Haim et al., 2015). GFAP is extremely sensitive

to changes in the homeostasis of the brain and responds early

in the course of neurodegenerative disease (Sofroniew, 2009).

We found that Gfap was dramatically upregulated across age

groups (Figure 3A; likelihood ratio test [LRT] statistic =

106.321, FDR = 1.28E�18), similar to results from another study

reporting age-dependent (12–18 months) upregulation of hippo-

campal Gfap in tau (CaMKII-MAPT P301L) and amyloid (APP/

PSEN1) mouse models (Matarin et al., 2015) and paralleling the

astrogliosis observed in human AD brain (Liddelow et al., 2017;

Panter et al., 1985). Other top-ranked genes progressively

altered in rTg4510 mice were notably enriched for microglial

markers previously shown to be upregulated in AD (Hopperton

et al., 2018; Keren-Shaul et al., 2017), includingCd68 (Figure 3B;
criminates between Transgenic and Wild-Type Mice

individual mice, are represented in the heatmaps (scaled) from high (red) to low

differentially expressed genes associated with rTg4510 genotype (n = 59 mice
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Figure 3. Top-Ranked Progressively Differentially Expressed Genes in rTg4510 Mice

Top row shows normalized RNA-seq read counts for entorhinal cortex. Bottom row shows targeted qPCR data for the same genes in matched hippocampus

tissue. Dashed lines represent mean paths for each time point.

(A) Gfap (LRT statistic = 106.32, log2 fold change [2–8 months] = 2.75, FDR = 1.28E�18).

(B) Cd68 (LRT statistic = 103.77, log2 fold change [2–8 months] = 1.85, FDR = 2.26E�18).

(C) Itgax (LRT statistic = 86.85, log2 fold change [2–8 months] = 4.42, FDR = 6.54E�15).

(D) Clec7a (LRT statistic = 83.20, log2 fold change [2–8 months] = 5.37, FDR = 2.97E�14).

(E) Gfap (interaction F statistic = 36.93, FDR = 3.69E�11).

(F) Cd68 (interaction F statistic = 30.86, FDR = 3.33E�10).

(G) Itgax (interaction F statistic = 12.94, FDR = 9.80E�6).

(H) Clec7a (interaction F statistic = 3.74, FDR = 0.034).
LRT statistic = 103.77, FDR = 2.26E�18), Itgax (or Cd11c) (Fig-

ure 3C; LRT statistic = 86.85, FDR = 6.54E�15), andClec7a (Fig-

ure 3D; LRT statistic = 83.20, FDR = 2.97E�14). These genes

have been previously reported to be upregulated in hippocampal

tissue from 6-month-old rTg4510 female mice (Wes et al., 2014),

in isolatedmicroglia from rTg4510mice (Wang et al., 2018), in the

cortex of amyloid mice at late stages of pathology (Rothman
et al., 2018), and in the neocortex, hippocampus, and microglia

of micewith amyloid and tau pathology (Keren-Shaul et al., 2017;

Landel et al., 2014). Of note, the list of transcripts progressively

altered in rTg4510 mice also includes genes robustly associated

with familial AD from genetic studies of human patients,

including App (Figure S6A; LRT statistic = 13.88, FDR = 0.037),

a key driver of amyloid pathology, and genes annotated to
Cell Reports 30, 2040–2054, February 11, 2020 2045
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Figure 4. Transcriptional Variation Associated with Levels of Tau Pathology in rTg4510 Entorhinal Cortex

(A) Association statistics for transcripts differentially expressed with age in rTg4510 TG mice were highly correlated with those from analyses of tau pathology in

the entorhinal cortex (r = 0.70, p < 1E�200).

(B and C) There was a notable overlap in top-ranked genes, including (B) Gfap (r = 0.89, p = 4.60E�20) and (C) Itgax (r = 0.80, p = 1.41E�13).
both common and rare variants identified in GWAS and exome-

sequencing studies of late-onset sporadic AD (LOAD), including

Trem2 (LRT statistic = 43.82, FDR = 3.73E�07), Pld3 (LRT statis-

tic = 36.80, FDR = 5.80E�06), Frmd4a (LRT statistic = 27.81,

FDR = 0.00022), Clu (LRT statistic = 27.73, FDR = 0.00023),

Apoe (LRT statistic = 22.99, FDR = 0.0014), Picalm (LRT statis-

tic = 21.37, FDR = 0.0025), Cd33 (LRT statistic = 27.32, FDR =

0.00026), and Abi3 (LRT statistic = 17.10, FDR = 0.012) (Figures

S6B–S6I).

Given that there is some variability in gene expression and tau

pathology within each of the four TG age groups, we next related

RNA-seq to immunohistochemistry data (STAR Methods) to

identify transcripts whose expression is significantly associated

with actual levels of tau quantified in the entorhinal cortex and

hippocampus (Table S5) from in the same individual mice. As ex-

pected, association statistics for transcripts differentially ex-

pressed with age in TG mice were highly correlated with those

from analyses of tau pathology in both brain regions (entorhinal

cortex: r = 0.70, p < 1E�200 [Figure 4A]; hippocampus: r =

0.58, p = 1.8E�149 [Figure S5D]), with a notable overlap in

top-ranked genes including Gfap (Wald statistic = 16.97,

FDR = 1.32E�60; Figure 4B) and Itgax (Wald statistic = 16.01,

FDR = 6.89E�54; Figure 4C). We used qPCR to (1) validate

top-ranked temporal and pathology-associated changes in

Gfap, Cd68, Itgax, and Clec7a expression; (2) confirm changes

in levels of selected genes also implicated by genetic studies

of AD (Apoe, Cd33, Clu, Frmd4a, Picalm, Pld3, and Trem2)

(FDR < 0.05 for all; Table S3); and (3) identify parallel

changes in the expression of the majority of these genes in

the hippocampus from the same individual mice (Gfap: inter-

action F statistic = 36.93, FDR = 3.69E�11; Cd68: interaction

F statistic = 30.86, FDR = 3.33E�10; Itgax: interaction

F statistic = 12.94, FDR = 9.80E�6; Clec7a: interaction F statis-

tic = 3.74, FDR = 0.034) (Figures 3E–3H; Table S3).

Overall, the progression of tau pathology is associated with

the downregulation of key neuronal markers, with an upregula-

tion of transcripts associated with astrocytes and microglia

(Figure S7). We usedGOseq (STARMethods) to identify ontolog-

ical enrichments among genes characterized by progressively
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altered gene expression in rTg4510 mice, finding highly signifi-

cant enrichments for immune related biological pathways

including ‘‘immune system process’’ (FDR = 1.03E�25),

‘‘defence response’’ (FDR= 2.98E�24), and ‘‘immune response’’

(FDR = 4.79E�24) (Table S6). Given these findings, we next

quantified Iba1, a microglia/macrophage-specific calcium-

binding protein (Ohsawa et al., 2004), in matched tissue sections

from the right brain hemisphere (n = 7–10 animals per group,

total n = 70), observing a significant increase in all brain regions

(hippocampus: factorial ANOVA, F[3, 62] = 12.60, p = 1.56E�06;

cortex: factorial ANOVA, F[3, 62] = 18.13, p = 1.47E�08;

thalamus: factorial ANOVA, F[3, 62] = 18.85, p = 8.37E�09)

(Figures S2K–S2M). Together our results reflect the dramatic

upregulation of microglial genes observed in studies of other

AD rodent models (Kamphuis et al., 2016; Kan et al., 2015;

Keren-Shaul et al., 2017; Landel et al., 2014; Matarin et al.,

2015; Rothman et al., 2018), and support a role, either causal

or consequential, for dysregulation of the CNS immune pro-

cesses in the development of AD pathology. Of note, recent tran-

scriptional studies in human brain have shown that microglial

gene networks are upregulated in response to AD neuropa-

thology (Felsky et al., 2019).

In Contrast to the Dramatic and Progressive
Transcriptional Changes Identified in rTg4510 Mice,
Relatively Few Changes Were Associated with the
Development of Pathology in J20 Mice
In total we identified five transcripts (Cst7, Wdfy1, Grxcr2, Itgax,

and Ifitm1) whose expression profiles significantly changed

(FDR < 0.05) with age in TG J20mice (Table S4). Using our immu-

nohistochemistry data, we identified 11 transcripts significantly

associated with levels of amyloid pathology in the entorhinal cor-

tex and 223 associated with hippocampal pathology (Table S5).

Although pathology association statistics for common differen-

tially expressed genes were highly correlated across both brain

regions (Pearson correlation, r = 0.87, p = 0.0011), the higher

number of associations identified for the hippocampus likely re-

flects the more abundant pathology observed in this brain region

in TG mice (Figures 1E and 1F). The relatively small overall
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Figure 5. Effect Sizes for Differentially

Expressed Transcripts Associated with

Progression of Tau in rTg4510 Mice Are

Correlated with Those Observed with Pro-

gression of Amyloid in J20 Mice

(A) Positive correlation for effect size (log2 fold

change from latest time point compared with

baseline) for significant transcripts in rTg4510

mice (r = 0.46, p = 1.50E�92; exact binomial test,

n = 1,762 transcripts, p = 1.97E�05).

(B) Two transcripts (Cst7 and Itgax) were signifi-

cantly associated with the progression of both

tau (rTg4510) and amyloid (J20) pathology (r = 0.77,

p = 0.13; exact binomial test, n = 5 transcripts,

p = 0.13).

(C) Cst7 gene expression in rTg4510 mice (total

n = 59 animals, 6–8 animals per group, LRT sta-

tistic = 36.10, log2 fold change [2–8months] = 6.59,

FDR = 7.71E�06). rTg4510 transgenic (TG) female

mice compared with wild-type (WT) littermate

control mice.

(D) Cst7 gene expression in the J20 mice (total

n = 62 animals, 6–8 animals per group, LRT sta-

tistic = 37.37, log2 fold change [6–12 months] =

2.42, FDR = 0.00072).

J20 transgenic (TG) female mice compared with

wild-type (WT) littermate control mice. Itgax gene

expression in rTg4510 and J20 mice is shown in

Figure 3C and Figure S8, respectively.
number of significantly altered genes in J20 mice potentially re-

flects the slower and later accumulation of pathology in these

mice compared with rTg4510 mice. Previous work has also

shown relatively limited amyloid pathology in J20 entorhinal cor-

tex even at 14 months of age (Harris et al., 2010b), with neuronal

cell loss varying by brain region (Wright et al., 2013). Neverthe-

less, we found that effect sizes for the transcripts identified as

being progressively dysregulated in rTg4510 and in J20 mice

were significantly correlated across both models, suggesting

some common molecular signals associated with both tau and

amyloid pathology (Figure 5). Interestingly, two genes (Cst7

and Itgax) identified as being associated with progressive tau pa-

thology in rTg4510 mice were also significantly associated with

amyloid pathology in J20 mice (Figure 5; Figure S8). Like Itgax,

Cst7 has been shown to be a marker for activated microglia
Cell Repo
and upregulated in AD pathology (Keren-

Shaul et al., 2017; Ofengeim et al.,

2017); of note, Cst7 was previously re-

ported to be the top upregulated gene in

cortex samples from 12-month-old APP

NL-G-F knockin mice (Castillo et al.,

2017). Finally, we used qPCR to confirm

significant temporal and pathology-asso-

ciated changes in expression of Cst7 and

Itgax in the J20 entorhinal cortex (Table

S3) and identified parallel changes in the

hippocampus from the same individuals

(Cst7: interaction F statistic = 48.16,

FDR = 3.76E�13; Itgax: interaction F sta-

tistic = 13.09, FDR = 1.31E�5) (Table S3).
Of note, the changes identified in the hippocampus for these

genes were considerably larger than those in the entorhinal cor-

tex, further reflecting the higher hippocampal levels of amyloid

pathology.

Transcriptional Changes Identified in rTg4510 Mice
Reflect Those Observed in Other Models of Tau
Pathology
A number of recent studies have also described evidence for

differential gene expression in TG models of familial AD

gene mutations (Castillo et al., 2017; Keren-Shaul et al.,

2017; Landel et al., 2014; Matarin et al., 2015; Rothman et al.,

2018; Wang et al., 2018; Wes et al., 2014). We therefore

explored hippocampal RNA-seq data from two other

TG models (TAU [CaMKII-MAPTP301L] and TAS10 [SwAPP,
rts 30, 2040–2054, February 11, 2020 2047



K670N/M671L]) (Matarin et al., 2015; Salih et al., 2019) to identify

consistencies in the transcriptional signatures between different

models of tau and amyloid pathology (STAR Methods; http://

www.mouseac.org). Effect sizes for rTg4510 genotype-associ-

ated transcripts also present in the Mouseac TAU RNA-seq da-

taset (n = 138) were significantly correlated between the two

models (Pearson correlation, r = 0.33, p = 7.7E�05). Despite

this consistency in effect sizes, many of the differentially ex-

pressed genes associated with rTg4510 genotype were not sta-

tistically replicated in the TAU model (Figure S5C; Table S7),

although this likely reflects the distinct genetic background of

the different TG lines and the modest power to detect effects

given the small number of samples from the Mouseac dataset

(n = 49 RNA-seq samples, one to four animals per age group, af-

ter filtering for samples with complete phenotypic data). As ex-

pected, given the limited evidence for consistency in genotype

effects between rTg4510 and J20 mice, there was no correlation

between effects observed in rTg4510 and TAS10 mice for the

145 rTg4510-associated genes present in both datasets. In

contrast, association statistics for the 1,640 transcripts identified

as being progressively altered with age in rTg4510 mice and also

present in the Mouseac datasets (Table S7) were significantly

correlated with those for the same genes in both TAU (r = 0.46,

p = 1.2E�86) and TAS10 (r = 0.23, p = 3.9E�21) TGmice (Figures

S5E and S5F). Given the small number of progressive alterations

observed in J20 mice, it was not possible to systematically

explore overlaps between differentially regulated genes in this

model and the two Mouseac models. Of note, however, the

two genes identified as being temporally altered in both

rTg4510 and J20 mice, Cst7 and Itgax, were both similarly

altered in both the TAU and TAS10 models (Figure S8).

Gene Co-expression Networks Associated with the
Progression of Tau Pathology Are Enriched for
Functional Pathways Related to Synaptic Transmission,
the Immune System, and Glial Cell Activation
Given the dramatic transcriptional changes identified in rTg4510

mice, we next used weighted gene correlation network analysis

(WGCNA) (STAR Methods) to identify discrete co-expression

modules and describe systems-level transcriptional variation

associated with rTg4510 genotype and progression of tau pa-

thology. We constructed co-expression networks using entorhi-

nal cortex RNA-seq data from rTg4510 TG and WT mice (n = 58

mice), identifying 18 discrete co-expressionmodules (Figure S9).

Next, we used a linear regression model (STAR Methods) and

identified six co-expression modules (here named ‘‘salmon,’’

‘‘turquoise,’’ ‘‘purple,’’ ‘‘yellow,’’ ‘‘light-cyan,’’ and ‘‘red’’) that

were significantly (Bonferroni-corrected p < 0.0028) associated

with rTg4510 genotype (Figures S9A and S9B; Table S8). These

tau-associated co-expression modules are highly enriched for

molecular functions and biological pathways directly related to

AD: the red module, which was downregulated in TG mice

compared with WT mice (b = �0.18, p = 1.43E�10), is highly en-

riched for functional pathways involved in synaptic transmission;

the turquoise module, which was upregulated in TG mice

compared with WT mice (b = 0.18, p = 3.04E�10), is enriched

for pathways involved in activation of the immune system; the

salmon module, which was consistently upregulated in TG
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mice compared with WT mice (b = 0.14, p = 3.58E�06), is en-

riched for genes involved in myelination and glial cell activation;

the purple module, which was downregulated in TG mice

compared with WT mice (b = �0.13, p = 0.00012), is enriched

for pathways related to cellular component disassembly; and

the yellow module, which was downregulated in TG mice

compared with WT mice (b = �0.10, p = 0.0015), is enriched

for pathways related to mitochondria and synaptic processes

(Table S6). The module eigengenes for three of these co-expres-

sion modules (turquoise, yellow, and red) exhibited a significant

interaction between genotype and age in rTg4510 mice

(Figure S9A; Table S8), suggesting that they are temporally

linked to the development of tau pathology in TG mice (Figures

6A–6C). The turquoise module becomes increasingly upregu-

lated with time in TG mice (b = 0.28, p = 4.23E�06), the red

module becomes increasingly downregulated with time in TG

mice (b = �0.21, p = 0.0022), and the yellow module becomes

downregulated specifically during the later time points in TG

mice (b = �0.29, p = 0.0018). Using the matched immunohisto-

chemistry data generated across multiple brain regions for

each mouse, we were able to explore the relationship between

co-expression modules and actual tau pathology in rTg4510

mice, confirming that the turquoise, yellow, and red modules

are robustly associated with the accumulation of tau across

the brain (Figure S9C). The association with pathology was

particularly strong in highly affected brain regions, including

the entorhinal cortex (Figures 6D–6F) and hippocampus

(Figure S10); in both regions the module eigengene for the tur-

quoise module is positively correlated with levels of tau in TG

mice (hippocampus: r = 0.85, p = 1.20E�16; entorhinal cortex:

r = 0.82, p = 4.00E�15), and those for the yellow (hippocampus:

r = �0.63, p = 2.00E�07; entorhinal cortex: r = �0.50, p =

7.52E�5) and red (hippocampus: r =�0.79, p = 4.61E�13; ento-

rhinal cortex: r = �0.75, p = 8.01E�12) modules are negatively

correlated with levels of tau in TG mice. Although these co-

expression modules were also correlated with measures of tau

pathology in the thalamus, the magnitude of effects was much

lower, reflecting the later and less aggressive accumulation of

tau in this region of the brain (Figures S10J–S10L).

Within each of these three modules we ranked transcripts on

the basis of their intramodular connectivity to identify ‘‘hub’’

genes within each network, finding many genes known to play

a major role in the neuro-immunological and neurodegenerative

processes involved in AD. In the turquoisemodule the four genes

with the highest intramodular connectivity (i.e., those with most

connections to other genes) were Cd63, Msn, Npc2, and

Tnfrsf1a (Table S9), with other highly interconnected transcripts

including several genes identified as having a role in LOAD from

GWAS (e.g., Abca1, Clu, and Apoe) in addition to genes previ-

ously implicated in AD pathology (e.g., Itgax, Clec7a, and

Cd68). Furthermore, genes identified as having the strongest

connections (edges) to other genes (nodes) in the turquoise

module included C1qb, Mpeg1, Tyrobp, and Trem2 (Figure 7A).

In the yellow module, the four transcripts with the highest intra-

modular connectivity were Atp9a, Ywhag, Rab3a, and Svop,

with App also being a highly connected gene in this module

(Table S9); genes identified as having the strongest connections

to other genes included Atp9a, Faim2, and Ppp2r1a (Figure 7B).

http://www.mouseac.org
http://www.mouseac.org
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Figure 6. Variation in Entorhinal Cortex Co-expression Modules Parallels the Accumulation of Tau Pathology in rTg4510 Mice

(A–C) Shown are module eigengene values for individual mice at four time-points for (A) the turquoise module (n = 3,091 transcripts; linear regression, F[3, 50] =

12.18, b = 0.28, p = 4.23E�06); (B) the yellow module (n = 1,102 transcripts; linear regression, F[3, 50] = 5.79, b = �0.29, p = 0.0018); and (C) the red module

(n = 726 transcripts; linear regression, F[3, 50] = 5.58, b =�0.21, p = 0.0022). The samemodules are correlated with tau pathology in entorhinal cortex in the same

individuals.

(D) Positive correlation between module eigengene in the turquoise module and tau pathology in the entorhinal cortex (Pearson correlation, r = 0.82,

p = 4.00E�15).

(E) Negative correlation betweenmodule eigengene in the yellowmodule and tau pathology in the entorhinal cortex (Pearson correlation, r =�0.50, p = 7.52E�5).

(F) Negative correlation between module eigengene in the red module and tau pathology in the entorhinal cortex (Pearson correlation, r = �0.75, p = 8.01E�12).

Total n = 58 animals (6–8 animals per group). Colored circles represent rTg4510 TG mice, and white circles represent WT control mice. Dashed lines represent

mean paths for each time point.
In the redmodule,Atxn7l3,Sept5,Cbx6, and Fbxl16were the top

most connected genes (Table S9); genes with the strongest con-

nections to other genes in the red module included Dlgap3,

Shank3, Epn1, and Fbxl16 (Figure 7C).

Co-expression Changes Identified in rTg4510 Mice
Overlap with AD-Associated Co-expression Changes in
Human Brain
We next compared the significant rTg4510 co-expression mod-

ules with AD-associated co-expression modules reported in a

recent human post-mortem RNA-seq meta-analysis (Logsdon

et al., 2019), focusing on modules identified in dorsolateral pre-

frontal cortex (DLPFC) and temporal cortex (TCX). Briefly, we

used a hypergeometric test to identify overlaps between the

six rTg4510-associated co-expression modules (salmon, tur-

quoise, purple, yellow, light cyan, and red) and four DLPFC

and five TCX AD-associated human co-expression modules

(Table S10), restricting our analysis to mouse-human homologs

(STARMethods). After controlling for the number of comparisons
performed for each of the human brain regions (DLPFC, p <

0.0021; TCX, p < 0.0017), each of the rTg4510-associated mod-

ules was found to significantly overlap with at least one AD-asso-

ciated module in both human cortical regions. For example,

genes in the turquoise rTg4510 module (enriched for pathways

involved in activation of the immune system; Table S6) were

found to overlap significantly with two human DLPFC modules

(‘‘DLPFC-blue’’ and ‘‘DLPFC-brown’’) and three TCX modules

(‘‘TCX-blue,’’ ‘‘TCX-turquoise,’’ and ‘‘TCX-yellow’’) associated

with AD from Logsdon et al. (2019); for this module, the largest

proportion of overlaps in genes were found with the ‘‘DLPFC-

blue’’ module (n = 658 genes, 40.82% of the human module

gene list, p < 2.2E�16) and the ‘‘TCX-turquoise’’ module

(n = 389 genes, 39.1% of the human module gene list, p <

2.2E�16). Interestingly, GOseq analysis highlighted a strong

enrichment for immune response processes among the

rTg4510 turquoise module genes overlapping with those in

both the ‘‘DLPFC-blue’’ module and the ‘‘TCX-turquoise’’ mod-

ule (Table S6). Reflecting the similarities between these two
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Figure 7. Network Plots Highlighting Core Members of Gene Co-

expression Modules Associated with the Development of Tau

Pathology

Shown are the top 50 nodes (i.e., genes) with the strongest edges (repre-

senting individual connections with other genes) for each module.

(A) Turquoise module (all upregulated genes).

(B) Yellowmodule (downregulated genes in yellow, upregulated genes in gray).

(C) Red module (all downregulated genes).

Stronger colors reflect higher absolute log2 fold change (8 months against

2 months). Total n = 58 animals (6–8 animals per group).
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human cortex modules, the list of overlapping genes includes

many of the core hub transcripts identified in the rTg4510 tur-

quoise module for both the ‘‘DLPFC-blue’’ (e.g., CD63,

ABCA1, CLU, APOE, ITGAX, CLEC7A, C1QB, TYROBP, and

TREM2) and ‘‘TCX-turquoise’’ (e.g., CD63, ITGAX, CLEC7A,

C1QB, TYROBP, and TREM2) human modules. Together, these

results indicate that the transcriptional networks associated with

tau pathology in rTg4510 mice overlap considerably with those

identified in human AD cortex and are involved in driving com-

mon molecular pathways.

DISCUSSION

In this study, we identified transcriptional changes in the entorhi-

nal cortex associated with the progression of AD-associated

pathology in TG models of both tau (rTg4510) and amyloid

(J20) pathology. We found genotype-associated differences in

entorhinal cortex gene expression in both models and identified

widespread changes in gene expression paralleling the develop-

ment of tau pathology in rTg4510 mice and reflecting alterations

observed in other models of tau pathology. Specific findings

were subsequently validated using qPCR and also tested in

the hippocampus, with similar patterns observed across both

brain regions. Of note, the list of transcripts progressively altered

in rTg4510 mice includes genes robustly associated with familial

AD from genetic studies of human patients, including App which

is a key driver of amyloid pathology. It also includes genes anno-

tated to both common and rare variants identified in GWAS and

exome-sequencing studies of LOAD. Systems-level analyses

identified discrete co-expression networks associated with the

progressive accumulation of tau, with these also being enriched

for genes and pathways previously implicated in neuroimmune

and neurodegenerative processes driving AD pathology. Further

support for upregulation of immune system genes in response to

tau pathology comes from our finding of increased expression of

complement pathway genes including C1qa, C1qb, and C1qc.

Finally, we compared these tau-associated networks with

those identified in human post-mortem tissue from AD individ-

uals, finding considerable overlap with disease-associated co-

expression modules.

Our study represents a systematic analysis of transcriptional

variation in mouse models of tau and amyloid pathology,

focusing primarily on changes in the entorhinal cortex, a key re-

gion of the brain implicated early in the pathogenesis of AD

(Braak and Braak, 1991). Compared with previous studies of

transcriptional variation in TG mouse models of AD we profiled

a relatively large number of samples spanning multiple time

points selected to encompass the development of pathology;



our study was therefore well powered to identify gene expres-

sion differences associated with both genotype and the progres-

sion of AD pathology. Furthermore, we implemented a statistical

approach that enabled us to detect progressive changes in gene

expression across age between the TG and WT samples, not

only identifying stable differences induced by the transgene at

each time point but also assessing temporal transcriptional

changes relative to baseline within mutant mice. Our detailed

immunohistochemical analyses also allowed us to directly

compare transcriptional variationwith actual tau and amyloid pa-

thology quantified using immunohistochemistry in both the ento-

rhinal cortex and the hippocampus from the same individual

mice. We performed extensive work to validate key findings us-

ing qPCR, confirming pathology-associated changes in the en-

torhinal cortex and exploring the extent to which they are paral-

leled in matched hippocampus tissue dissected from the same

mice.

Despite these strengths, our study has a number of important

limitations that should be considered. First, to minimize the het-

erogeneity in our analysis, we profiled only female mice. How-

ever, a number of sex differences have been previously reported

for thesemodels, with females demonstrating elevated andmore

progressive pathology than males (Blackmore et al., 2017; Yue

et al., 2011). Future work should focus on examining the extent

to which the transcriptional profiles identified here are consistent

between male and female mice. Second, our analysis was per-

formed on bulk entorhinal cortex tissue, comprising a mix of

different neural cell types; consequently, changes in the frac-

tional contribution of any given cell type to the total cellular pop-

ulation will contribute to the observed outcomes at each time

point. Given the compelling evidence in our data for an enrich-

ment of microglial markers, previously shown to be upregulated

in AD (Hopperton et al., 2018; Keren-Shaul et al., 2017), as well

as upregulation of canonical markers of astrocytes (Figure S7),

futurework should focus on identifying changes that occur within

these and other brain cell types. Of note, immunocytochemistry

analyses of tissue sections from the left-brain hemisphere of

these mice revealed a progressive increase in the microglia/

macrophage marker Iba1, indicating that our bulk-tissue RNA-

seq measurements reflect real underlying cellular changes. In

rTg4510 mice it is also interesting to consider neuron-specific

genes that are not downregulated in what is a falling total

neuronal population; these might represent transcripts that are

actually upregulated in response to neuropathology in neuronal

cells. Third, compared with the rTg4510 model, relatively few

transcriptional changes were observed in J20 mice, potentially

reflecting the slower and later accumulation of pathology (Harris

et al., 2010b), as well as the potential absence of neurodegener-

ation, in the entorhinal cortex in this model. This is confirmed by

our immunohistochemistry data, which revealed much lower

amyloid pathology in the entorhinal cortex than hippocampus

tissue from the same J20 individuals (Figures 1E and 1F), and

by our targeted qPCR data on selected genes, which highlighted

stronger effects in the hippocampus than the entorhinal cortex

(Figure S8); future work should focus on more systematic tran-

scriptional profiling in other brain regions more directly affected

in the early stages of amyloid pathology. Interestingly, however,

we found that effect sizes for the transcripts identified as being
progressively dysregulated in rTg4510 and J20mice were signif-

icantly correlated across bothmodels, suggesting common tran-

scriptional mechanisms involved in both tau and amyloid

pathology.

In summary, we observe widespread transcriptional changes

in the entorhinal cortex paralleling the progression of AD pathol-

ogy. Our data suggest that the altered expression of multiple

genes, including several known AD risk genes, is robustly asso-

ciated with the accumulation of tau, with tau-associated co-

expression networks overlapping those altered in human AD

cortex. Our data provide further support for an immune-

response component in the accumulation of tau and reveal

molecular pathways associated with the progression of AD

neuropathology.
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

fastq-mcf Aronesty, 2011 https://github.com/ExpressionAnalysis/ea-utils/

blob/wiki/FastqMcf.md

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

featureCounts Liao et al., 2014 http://subread.sourceforge.net/

DESeq2 Love et al., 2014 http://bioconductor.org/packages/release/bioc/

html/DESeq2.html

WGCNA Langfelder and Horvath,

2008

https://horvath.genetics.ucla.edu/html/

CoexpressionNetwork/Rpackages/WGCNA/

GOseq Young et al., 2010 https://bioconductor.org/packages/release/bioc/

html/goseq.html

Other

Human co-expression modules in the dorsolateral

prefrontal cortex (DLPFC) and temporal cortex

(TCX)

Logsdon et al., 2019 N/A

Supporting code This paper https://git.exeter.ac.uk:443/ic322/

ad-mice-rna-seq-cell-reports
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Prof

Jonathan Mill (j.mill@exeter.ac.uk). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal procedures were carried out at Eli Lilly and Company, in accordance with the UK Animals (Scientific Procedures) Act

1986 and with approval of the local Animal Welfare and Ethical Review Board. Only female mice were used in this study because

of their elevated and more progressive pathology compared to males (Blackmore et al., 2017; Yue et al., 2011), and to minimize

heterogeneity between samples. rTg4510 (rTg(tet-o-TauP301L)4510) (Ramsden et al., 2005; Santacruz et al., 2005), licensed from

theMayo Clinic (Jacksonville, FL, USA), were bred on amixed 129S6/SvEvTac + FVB/NCrl background (heterozygous tau responder

x heterozygous tTA effector). Bi-transgenic (CC, here referred as TG) female mice and littermate controls (WW, here identified asWT)

at ages 2, 4, 6 and 8 months-old (n = 9-10 animals per group) were used for this study. J20 (B6.Cg-Zbtb20Tg(PDGFB-APPSwInd)

20Lms/2Mmjax) (Harris et al., 2010a; Mucke et al., 2000), licensed fromGladstone Institute (San Francisco, California, United States),

with founder mice purchased from MMRRC at The Jackson Laboratory (Bar Harbor, Maine, United States), were bred on a C57BL/

6JOlaHsd background (parental generation: hemizygous male x wild-type female). Hemizygous (here identified as TG) females and

littermate controls (WT) at ages 6, 8, 10 and 12months of age (n = 9-10 animals per group) were used for this study. All micewere bred

and delivered to Eli Lilly and Company (Windlesham, UK) by Envigo (Loughborough, UK). At Eli Lilly, animals were housed under stan-

dard conditions (constant temperature and humidity) with a 12h light/dark cycle in individually ventilated cages (up to 5 animals per

cage), with free access to food (Teklad irradiated global rodent diet (Envigo, United Kingdom)) and water.

METHOD DETAILS

Brain samples
Mice were terminally anaesthetized with pentobarbital (intraperitoneal injection) and transcardially perfused with phosphate-

buffered saline (PBS), and their brains were collected. The entorhinal cortex and hippocampus were dissected from the left

brain hemisphere on wet ice (according to Heffner et al., 1980) and snap-frozen on dry ice for subsequent transcriptional analysis.

The right brain hemisphere was immersed in 10% buffered formalin for fixation (7-8 days) and processed for subsequent

immunohistochemistry pathology assessments.

Histopathology
The right hemisphere from all animals was processed using a Tissue TEK� VIP processor (GMI Inc) and embedded in paraffin wax.

6 mm serial sagittal sections (from bregma 0.84 to 3.00) were obtained using rotary microtomes (HM 200 from Ergostar and HM 355S

from Thermo Scientific), with sections mounted on glass slides (two sections per slide). Negative and positive controls were used for
e2 Cell Reports 30, 2040–2054.e1–e5, February 11, 2020

mailto:j.mill@exeter.ac.uk
https://github.com/ExpressionAnalysis/ea-utils/blob/wiki/FastqMcf.md
https://github.com/ExpressionAnalysis/ea-utils/blob/wiki/FastqMcf.md
https://github.com/alexdobin/STAR
http://subread.sourceforge.net/
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://bioconductor.org/packages/release/bioc/html/goseq.html
https://bioconductor.org/packages/release/bioc/html/goseq.html
https://git.exeter.ac.uk:443/ic322/ad-mice-rna-seq-cell-reports
https://git.exeter.ac.uk:443/ic322/ad-mice-rna-seq-cell-reports


each immunohistochemistry experiment. Deparaffinisation of the tissue was achieved using xylene (Fisher Scientific), followed by

70% ethanol (industrial methylated spirit, Fisher Scientific) and deionised water for rehydration of the sections. Heat induced epitope

retrieval was performed in a PT Module (Thermo Scientific) containing citrate buffer (dilution 1:100). Samples were blocked using

normal goat serum (Vector labs, catalog number S-1000). To assess tau pathology, we used mouse monoclonal PG5 (provided

by Peter Davies from Albert Einstein College of Medicine, Bronx, NY, USA) (Jicha et al., 1999) as the primary antibody (1:8000), which

recognizes tau phosphorylated at Ser409, and biotinylated goat anti-mouse IgG (Vector labs, catalog number BA-9200, lot number

2B0324) as the secondary antibody (1:200), as previously described (Ahmed et al., 2014). Using this same protocol, we also assessed

tau pathology with the mouse monoclonal AT8 (provided by Eli Lilly, 1:4000) primary antibody specific for tau phosphorylated at

Ser202 and Thr205. To assess amyloid pathology, we used mouse monoclonal biotinylated 3D6 (b3D6, provided by Eli Lilly,

1:1000), which binds to the amino acids 1-5 in amyloid beta (Ab) (Demattos et al., 2012). To quantify Iba1, we used rabbit polyclonal

anti-Iba1 (Wako, catalog number 019-19741, lot number LKG5732) as the primary antibody (diluted 1:6000), and biotinylated

goat anti-rabbit IgG (Vector labs, catalog number BA-1000, lot number ZB1007) as the secondary antibody (diluted 1:200). All

samples for each mouse model were immunostained together in an autostainer (Autostainer 720 for PG-5 and 720N for

b3D6, Thermo Scientific). For detection we undertook enzymatic labeling using peroxidase (Vectastain Elite ABC HRP Reagent,

Vector Laboratories) and DAB substrate (Vector Laboratories). Images were digitised with Scanscope AT slide scanner (Aperio) at

20x magnification. Visualization of the digitized tissue sections and delineation of the regions of interest (hippocampus, cortex,

thalamus and entorhinal cortex) were achieved using Imagescope software (version 12.2.1.5005; Aperio). Positivity was quantified

automatically using a positive pixel algorithm calibrated to ignore non-specific staining, and the burden of tau or amyloid pathology

was expressed as percentage area. Statistical analysis (two-way ANOVA) was performed using R (version 3.4.3).

RNA isolation and highly-parallel RNA sequencing
Samples were labeled with anonymized ID codes and processed in batches, blinding genotype from the experimenter/analyst for

individual samples. Tissue samples from each model were processed separately and individual samples were randomized to ensure

that each group was equally represented in each processing batch. Total RNA from the entorhinal cortex and hippocampus was iso-

lated using the AllPrep DNA/RNA Mini Kit (QIAGEN), with minor modifications to the manufacturer’s protocol. Briefly, we added

lysis buffer (containing added b-mercaptoethanol) to each tissue sample, disrupted the tissue using a homogenizing pestle, and ho-

mogenized the lysate using a pipette. The lysate was centrifuged and the supernatant removed and transferred to an AllPrep DNA

spin column. After centrifugation, the flow-through was used for RNA purification by mixing with 70% ethanol, running it through the

RNeasy spin column (including DNase treatment) and eluting in RNase-free water. RNA quality and quantity for all samples was

checked using RNA ScreenTape (Agilent). The optimal eight entorhinal cortex samples for each group (RIN R 8, Tables S1 and

S2) were selected for transcriptional profiling (total n = 128 samples; two models (rTg4510/J20) x two groups (TG/WT) x four time-

points x eight individual animals per group). Stranded-specific mRNA sequencing libraries were prepared using the TruSeq Stranded

mRNA Sample Prep Kit (Illumina) using the Bravo Automated Liquid Handling Platform (Agilent). cDNA libraries were prepared from

�450ng of total RNA plus ERCC spike-in synthetic RNA controls (Risso et al., 2014) (Ambion, dilution 1:100). Libraries were individ-

ually cleaned up using Ampure XP magnetic beads (Beckman Coulter), their concentrations were determined using D1000 Screen-

Tape System (Agilent), and samples were pooled together to a 2nM concentration, for subsequent sequencing (three pools of 22

samples for J20 samples and one pool of 64 samples for rTg4510 samples). Pooled libraries were quantified using a Qubit Fluorom-

eter (Thermo Fisher Scientific), Tapestation HS ScreenTape System (Agilent Technologies), and qPCR. Final library pools were

distributed across twelve HiSeq2500 (Illumina) lanes (six lanes for each model) and subjected to 125bp paired-end sequencing

yielding a mean untrimmed read depth of �20 million reads/sample (Tables S1 and S2).

Validation of specific gene expression differences using qPCR
Total RNA isolated from the entorhinal cortex and the hippocampus (n = 7-8 animals per group) was used for targeted gene expres-

sion analysis. Complementary DNA (cDNA) was reverse transcribed using the EvoScript Universal cDNA Master (Roche) and quan-

titative RT-PCR was performed in duplicate using the QuantStudio 12 K Flex (Applied Biosystems) using TaqMan low-density arrays

(TLDA) and preoptimized assays targeting (i) the top-ranked genotype-associated DEGs in each mouse model (Car4, Gpr17, Blnk,

Hspa5, Ccdc80, Abca8a, and Htr1a), (ii) selected top-ranked interaction (Genotype*Age)-associated DEGs (Gfap, Cd68, Itgax,

Clec7a, and Cst7), (iii) genes previously implicated in AD pathology from genetic studies in humans and found to progressively

change in our rTg4510 RNA-seq dataset (Trem2, Pld3, Frmd4a, Clu, Apoe, Picalm, and Cd33), (iv) three housekeeping genes

(Actb, Eif4a2, and Gapdh), and (v) one internal control (18S ribosomal RNA). The full list of qPCR assays used is described in the

Key Resources Table.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-seq data processing
All sequencing data processing was performed on a Unix-based operating system server at the University of Exeter. Raw files were

demultiplexed into FASTQ files (Phred (Q)R 35, Tables S1 and S2) and checked for potential contamination. The randomized FASTQ

files underwent quality control (QC) assessments using FastQC (Andrews, 2010) (version 0.11.4). Trimming (ribosomal sequences
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removal, quality threshold 20, minimum sequence length 35) was performed with fastqmcf. (Aronesty, 2011) (version 1.0) and

trimmed samples were aligned to the mm10 (GRCm38.p4) reference mouse genome using STAR (Dobin et al., 2013) (version

2.5.3a), with mapping R 85% (Tables S1 and S2). Gene expression quantification (quantification of fragments or templates, hereby

referred as read counts) was achieved using featureCounts (Liao et al., 2014) (version 1.5.2). Following confirmation of genotype and

QC, 7 samples were excluded from subsequent analysis leaving a final number of 121 high-quality RNA-seq datasets (6-8 animals

per group).

RNA-seq gene expression analysis
All analyses were performed in R (version 3.4.3) unless otherwise stated. Read counts were analyzed for differential expression using

the R package DESeq2 (Love et al., 2014) (version 1.16.1) downloaded fromBioconductor (Matarin et al., 2015). DESeq2 uses the raw

read counts, applies an internal normalization method, and does estimation of library size, estimation of dispersion, and negative

binomial generalized linear model fitting (Love et al., 2014). Datasets were filtered for non-expressed and lowly expressed genes

(minimum of 6 counts across all samples). We were interested in detecting both genotype effects and progressive changes across

age between the transgenic andwild-type samples.We used the following statistical model, includingmain effects for bothGenotype

and Age (both coded as categorical variables) and an interaction between these two terms:

Gene expression = Genotype+Age+Genotype � Age
To identify significant genotype effects a Wald test was used, and to identify significant effects of age and interaction effects (i.e.,

Genotype*Age) we used the likelihood-ratio test, both applied with the DESeq function from the DESeq2 package (Love et al., 2014).

To test for associations between gene expression and measures of neuropathology quantified using immunohistochemistry, we

fitted linear models usingDESeq and used aWald test to calculate P values. Thesemodels were fitted separately for neuropathology

data measured in the entorhinal cortex and hippocampus for each individual. P values were adjusted for multiple testing using the

false discovery rate (FDR) method (also known as Benjamini and Hochberg correction) (Benjamini and Hochberg, 1995) implemented

with the R function p.adjust; FDR values < 0.05 were defined as significant. Potential differences in proportions of upregulated versus

downregulated genes as well as overlapping fold changes in bothmodels were interrogated using the binomial test. Functional anno-

tation and gene ontology analyses were done with GOseq (Young et al., 2010) (1.30.0), based on genes with FDR < 0.05.

Quantifying human transgene expression
Mouse and human App/APP and Mapt/MAPT sequences were compared using BLAT (Kent, 2002) for divergent transcript

sequences representing specific mouse and human gene sequences. Two 200bp regions spanning 4 exons were chosen as repre-

sentativemouse-specificApp. Similar regions consisting of two 200bp exonic regions were also chosen for humanAPP. Mouse-spe-

cific Mapt and human-specific MAPT sequences were chosen from a 2kb region present in the 30UTR. Using Bowtie2 (Langmead

et al., 2009) (version 2.3.4.3), indices based on these sequences were then built, and alignments were performed using the FASTQ

read 1 sequences. Counts of read alignments for mouse and human specific indices were then plotted as a ratio of unique (mouse or

human) reads relative to the total number of input reads.

Comparison with RNA-seq data from the Mouseac database
RNA-seq data (transcripts per million, TPM) from two mouse models (Matarin et al., 2015; Salih et al., 2019) (TAU (CaMKII-

MAPTP301L) and TAS10 (SwAPP, K670N/M671L)) were downloaded from the Mouseac online database (www.mouseac.org),

with corresponding detailed phenotypic data downloaded from GEO (Barrett et al., 2013; Edgar et al., 2002) (accession number

GSE64398). Only genes identified as differentially expressed (FDR < 0.05) in our analysis (for rTg4510 and J20 mice) were selected

for further statistical analysis. The TPM value for each gene was log transformed (log2(x+1)) and the same linear regression model

described above (Gene expression = Genotype + Age + Genotype � Age), using ANOVA to test for significant differences associ-

ated with either the Genotype, Age, or Genotype*Age terms, was used. P values were corrected for the number of genes compared

across datasets using Bonferroni correction. Potential differences in proportions of upregulated versus downregulated genes as well

as overlapping fold changes in both models were interrogated using the binomial test.

Co-expression network analysis
Using weighted co-expression network analysis (Langfelder and Horvath, 2008; Zhang and Horvath, 2005) (WGCNA) (version 1.63),

we constructed a signed co-expression network for each mouse model using log transformed counts from all samples. Logarithmic

transformation of raw counts was achieved using the rlog function fromDESeq2, whichminimizes variability in genes with low counts

(Love et al., 2014). We checked the data for missing values and outliers, and removed one sample from the analysis for the rTg4510

dataset (flagged as an outlier) before building the networks. Signed WGCNA co-expression networks were built using the lowest

power for which the scale-free topology fit index curve flattened out after reaching 0.90 resulting in a soft-threshold power of 10

and 9 for rTg4510 and J20 datasets, respectively, and aminimummodule size of 30. For eachmodule of highly interconnected genes,

color-labeled according to theWGCNA conventions, we calculated the module eigengenes (MEs) as the first principal component of

the expression matrix, which provide a representative expression profile for each module (Langfelder and Horvath, 2008). In order

to identify modules significantly associated with pathology burden, we calculated correlation coefficients between these MEs
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with the available pathology data and explored the most significant associations. In addition we used the same linear regression

model as described for the gene-level analysis (ME = Genotype + Age + Genotype � Age) using ANOVA to test for significant dif-

ferences due to either the Genotype, Age, or Genotype*Age terms. P values were corrected for multiple comparisons using the Bon-

ferroni correction, to correct for 18 modules in the rTg4510 (statistical threshold was adjusted to 0.05/18 = 0.0028) and 21modules in

the J20 (statistical threshold was adjusted to 0.05/21 = 0.0024)mice.We used theGOseqRpackage (version 1.30.0) to perform func-

tional annotation and gene ontology (GO) analyses for each module, where significant pathways were selected using an FDR

threshold of 0.05 as previously described (Young et al., 2010). We used Cytoscape (Shannon et al., 2003) (version 3.7.0) for network

visualization using the topological overlap matrix for the log transformed expression data.

Comparison with human co-expression networks
The six rTg4510-associated co-expression modules identified in this study (‘‘salmon,’’ ‘‘turquoise,’’ ‘‘purple,’’ ‘‘yellow,’’ ‘‘light-cyan,’’

and ‘‘red’’), and AD-associated human co-expression modules in the dorsolateral prefrontal cortex (DLPFC) and temporal cortex

(TCX) (Logsdon et al., 2019), were reduced to contain only mouse-human homologs as defined by Ensembl (Zerbino et al., 2018)

(accessed on 14/11/2018). The level of overlap between gene members of each pair of modules was assessed via a hypergeometric

test using the R (version 3.5.1) function phyper. P values were corrected for multiple comparisons using Bonferroni correction in a

tissue-specific manner, where only the set of raw P values related to DLPFC (statistical threshold was adjusted to 0.05/24 =

0.0021) or TCX (statistical threshold was adjusted to 0.05/30 = 0.0017) modules’ overlap were considered. Using GOseq (version

1.30.0), we performed functional annotation and GO analyses for the common genes in each overlapping pair of modules.

Targeted qPCR analysis
The abundance of each test gene was determined using the comparative Ct method (Pfaffl, 2001), expressed relative to the mean of

the three housekeeping genes selected using RefFinder software (Xie et al., 2012) that determines the best stably expressed refer-

ence gene(s). A linear regression model using ANOVA to test for significant differences associated with either Genotype, Age, or

Genotype*Age terms was used (DCt = Genotype + Age + Genotype � Age), with P values adjusted for multiple testing using the

FDR method implemented with the R function p.adjust.

DATA AND CODE AVAILABILITY

Raw RNA-seq data has been deposited in GEO under accession number GSE125957. Results for all expressed transcripts in both

transgenic models are available to download from www.epigenomicslab.com/ADmice. The code supporting the current study is

available at https://git.exeter.ac.uk:443/ic322/ad-mice-rna-seq-cell-reports.
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