
 

The Systemic Microcirculation In Dialysis Populations 

Jennifer Williams 1,2, Mark Gilchrist 1,2, David Strain 1,2, Donald Fraser 3 and Angela Shore 1,2 

1 Diabetes and Vascular Medicine Research Centre, Institute of Biomedical and Clinical 

Science, University of Exeter Medical School, Exeter, UK.  

2 NIHR Exeter Clinical Research Facility, Royal Devon and Exeter Foundation NHS Trust, 

Exeter UK 

3 Wales Kidney Research Unit, Cardiff University, Cardiff, United Kingdom. 

Running Title: The Systemic Microcirculation In Dialysis Populations 

Corresponding Author 

Dr Jennifer Williams 

Diabetes and Vascular Medicine Research Centre 

NIHR Exeter Clinical Research Facility 

Barrack Road 

Exeter 

UK 

EX2 5DW 

j.k.williams@exeter.ac.uk  

Funding InformationJennifer Williams is funded by a Kidney Research UK Training Fellowship 

TF_013_20151127 

 

mailto:j.k.williams@exeter.ac.uk


Abstract 

In a rapidly expanding population of patients with chronic kidney disease, including 2 million people 

requiring renal replacement therapy, cardiovascular mortality is 15 times greater than the general 

population. In addition to traditional cardiovascular risk factors, more poorly defined risks related to 

uraemia and it’s treatments appear to contribute to this exaggerated risk. In this context, the 

microcirculation may play an important early role in cardiovascular disease associated with chronic 

kidney disease. Experimentally the uraemic environment and dialysis have been linked to multiple 

pathways causing microvascular dysfunction.  Coronary microvascular dysfunction is reflected in 

remote and more easily studied vascular beds such as the skin. There is increasing evidence for a 

correlation between systemic microvascular dysfunction and adverse cardiovascular outcomes.  

Systemic microcirculatory changes have not been extensively investigated across the spectrum of 

chronic kidney disease. Recent advances in non-invasive techniques studying the microcirculation in 

vivo in man are increasing the data available particularly in patients on haemodialysis.  Here, we 

review current knowledge of the systemic microcirculation in dialysis populations, explore whether 

non-invasive techniques to study its function could be used to detect early stage cardiovascular 

disease, address challenges faced in studying this patient cohort and identify potential future 

avenues for research.  
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List of Abbreviations 

ACh acetylcholine 

eGFR estimated glomerular filtration rate 

NO nitric oxide 

RBC red blood cell 

SDF side-stream darkfield 

SNP sodium nitroprusside 



Introduction 

Systemic microvascular dysfunction has been associated with increased cardiovascular morbidity 1, 2 

and mortality3, 4. This association is potentially being driven by shared underlying pathological events 

instrumental in both macro and microvascular disease. Persistent changes in vascular tone lead to 

structural remodelling. Repeated activation of the vascular endothelium by pro-atherogenic insults 

results in an imbalance in the production of  vasoactive substances, inflammation and a pro-

thrombotic state5. In combination, these changes compromise the structural and functional ability of 

the microcirculation to compensate for fluctuating demands.  

It is in the coronary circulation, where up to 80% of overall resistance resides in the microvessels6,   

that dysfunction has been most convincingly linked to clinically relevant outcomes. The presence of 

coronary microvascular and endothelial dysfunction not only predicts subsequent cardiovascular 

events 7-9, but themselves constitute the first stage of atherosclerotic coronary artery disease10, 11. 

Up to 40% of patients referred for angiography following ‘typical cardiac chest pain’ are found to 

have normal epicardial coronary arteries12. These patients can be assumed to have a combination of 

functional and structural coronary microvascular disease contributing to abnormal myocardial 

perfusion. 

This impairment of coronary microvascular structure and function is reflected in concurrent changes 

in remote and more easily studied vascular beds.  For example significant reductions in dermal 

capillary numbers have been demonstrated in patients with ‘typical cardiac chest pain’ despite 

normal coronary arteries13. Peripheral microvascular dysfunction has therefore been used as a 

surrogate for dysfunction of the coronary microcirculation.  

There are a growing number of novel methods being utilised to study the structure and function of 

the systemic microcirculation in vivo in multiple patient cohorts, including those with chronic kidney 

disease14. 

 



Why study the microcirculation in end stage renal disease? 

The global prevalence of chronic renal disease is upwards of 13%15 and more than 2 million people 

worldwide are dependent on renal replacement therapies16. In this population, rates of 

cardiovascular mortality are 15 times those of the general population17.  Although traditional 

cardiovascular risk factors are prevalent within the dialysis population their presence alone does not 

fully account for this exaggerated risk18. In this context, systemic microcirculatory dysfunction may 

be a significant contributor to cardiovascular burden. 

Patients with end stage renal disease who are on dialysis are at significant risk for systemic 

microvascular dysfunction. Uraemia is associated with endothelial cell activation19, impaired 

endothelial repair20, oxidative stress21 and impaired nitric oxide bioavailability. Additionally, these 

patients exist in a state of chronic inflammation22.  Levels of inflammatory mediators such as 

Interleukin-6 and tumour necrosis factor are strongly correlated with eGFR23, both are associated 

with endothelial dysfunction24, 25. Other dialysis specific risk factors include repeated myocardial 

stunning and haemodynamic perturbation of vascular beds26 during haemodialysis and exposure to 

non-physiological dialysis fluids in peritoneal dialysis26. 

Multiple studies have demonstrated links between surrogate markers of endothelial dysfunction and 

chronic renal disease . These include; circulating endothelial surface layer components27, markers of 

inflammation and amino acids released by the endothelial cells in response to damage 28, 29, peptides 

known to inhibit pro-atherogenic changes30 and endothelial dysfunction as measured in larger 

vessels31.  

The systemic microcirculation in dialysis patients 

Techniques that directly and non-invasively study in vivo alterations in microvascular structure 32, 33 

and function 28, 34-36 are increasingly being used to expand our knowledge of the relationship 

between chronic renal disease and microcirculatory dysfunction. Perturbation of microvascular 



function in patients with chronic renal disease has been reproducibly demonstrated in different 

vascular beds, including skin28, 36, 37, sublingual27, 32, 38 and coronary39.  

Cutaneous Microcirculation 

The cutaneous microcirculation, the most easily accessible vascular bed, has been of interest in 

patients on dialysis since histological alterations were first demonstrated in these patients in the 

1980s. Skin biopsies from haemodialysis patients without known macrovascular disease or diabetes 

demonstrated thickening of the basement membrane, endothelial activation and chronic 

inflammatory cell infiltrates in cutaneous capillaries 40. The extent of these changes correlated with 

the length of time these patients had been on haemodialysis41. In vivo the nail-fold capillary bed is 

easily visualised microscopically. Morphological changes here have also been correlated with 

duration of dialysis 42. Reduction in capillary numbers is important as it reduces the surface area 

available for exchange, jeopardising tissue health. Capillary rarefaction has been demonstrated in 

the nail-fold capillaries of  paediatric haemodialysis patients 33 compared with healthy, ‘height-age’ 

matched controls. The paediatric population is interesting to study with regards the microcirculation 

as unlike their adult counterparts, they often have a single renal limited pathology. This helps to 

differentiate microcirculatory pathology attributable to uraemia and it’s treatments from that 

attributable to other systemic pathologies for example diabetes.  This finding has been replicated in 

adult haemodialysis cohorts43, 44 well matched for age, blood pressure and BMI with healthy 

controls. 

Due to its role in temperature regulation, human skin has a high vasodilatory reserve and can change 

its flow more than a hundred-fold in response to metabolic, thermal and pharmacologic stimuli. 

Relative changes in skin blood flow can be easily and non-invasively measured using laser Doppler 

based techniques45 (Figure 1). Even in the resting state oscillations in microvascular flow are 

modulated by multiple physiological factors. Spectral analysis can be used to sub-divide laser 

Doppler acquired recordings according to their frequency into those representing; endothelial 



activity, sympathetic activity, vascular myogenic activity, respiratory activity and heart activity 14. 

Reports of baseline skin blood flow in dialysis patients did not initially seem to be significantly 

different to healthy controls28, 34, 46-48. However, when examined in more detail subtle differences 

were apparent. Although the averaged flux was not different, ‘hot spots’ or distinct spots of high 

perfusion were reduced and significant impairments were noted in the frequency domains 

corresponding to endothelial, sympathetic and cardiac activity in dialysis patients compared with 

controls36.  

Maximal vasodilation of skin blood vessels can be achieved by localised heating to between 42-44°C 

49. A reactive hyperaemia can also be provoked by a brief period of arterial occlusion50 (Figure 2). 

Impairments in the maximal vasodilatory response to heating36, 46 and maximal post-occlusive flow28, 

36 have been reported in haemodialysis patients compared with healthy controls.  

 In their study of 63 haemodialysis patients and 33 healthy controls, Stewart and colleagues36 

reported a delay in the maximal vasodilatory response to heating in the dialysis patients compared 

with controls. However, they were only able to demonstrate a significant reduction in the size of the 

maximal post-occlusive flow compared with controls in those haemodialysis patients with known 

diabetes and cardiovascular disease, not the cohort as a whole. A smaller study (16 haemodialysis 

patients versus 16 controls)28, wherein all participants were ‘free of concomitant diseases causing 

alterations in endothelium-dependant vasomotion’, did report a reduction in maximal post-occlusive 

flow in the dialysis cohort compared with controls. As would be expected, their dialysis group was 

significantly more hypertensive than their healthy controls and given that even borderline 

hypertension effects the microcirculation this may have contributed to the microvascular 

dysfunction observed. 

More direct interrogation of this apparent reduction in microvascular function can be achieved by 

combining laser Doppler measurements with iontophoretic application of vasoactive substances  51 

(Figure 3) to investigate which discreet areas of microvascular function are impaired. Impairments of 



both endothelial-dependant and -independent responses have been demonstrated in haemodialysis 

patients compared with both age, sex and BMI matched healthy controls28, 34 and pre-dialysis chronic 

renal disease patients with comparable cardiovascular burden52.  

Sublingual Microcirculation 

More recently SDF imaging has allowed for direct visualisation of flow in other vascular beds with a 

mucosal covering. The most commonly studied is the sublingual bed 53, 54 (Figure 4 a + b). To date the 

only publish study using SDF to examine chronic changes in sublingual vessel density and flow in 

dialysis patients32, reported a reduction in total and perfused vessel density plus increased vessel 

flow heterogeneity compared with controls. This was particularly pronounced in the very small 

vessels (diameter less than 20µm)32.  

Assessment of the sublingual circulation also provides an opportunity to non-invasively assess 

another component of the vascular system, the glycocalyx.  The glycocalyx covers the luminal 

surface of endothelial cells. It is a negatively charged network of proteoglycans, glycosaminoglycans 

and plasma constituents, which acts as an interface between the blood and the vascular wall.  The 

glycocalyx has important regulatory and protective roles including, regulating vascular wall 

permeability, mechano-transduction, and inhibiting leucocyte adhesion. It is susceptible to damage 

from oxidative stress, which may arise from inflammation, ischaemia, hyperglycaemia, or other 

causes55.  Due to its delicate nature, study of the glycocalyx is challenging. Historical approaches 

have included measurement of total volume using tracers, and measuring shed glycocalyx 

components in plasma. SDF-acquired images (Figure 4b) can now be combined with Glycocheck 

software to analyse spatial and temporal variations in erythrocyte column width within the 

microvasculature56. When the cell-impermeable glycocalyx is damaged, circulating red cells can 

travel closer to the endothelium. Using this approach, loss of glycocalyx barrier properties has been 

demonstrated in a mixed cohort of haemodialysis and peritoneal dialysis patients 27, and has been 



found to associate with diminished eGFR and with increased circulating levels of shed endothelial 

surface layer components syndecan-1 and thrombomodulin 38.  

Coronary Microcirculation 

The ability of the coronary microcirculation to adapt to changing demands is vital. Coronary flow 

reserve is the maximum flow resulting from stress vasodilatation of coronary arteries and the 

coronary microcirculation, measured using positron emission tomography or magnetic resonance 

imaging. In this context, 90% of myocardial blood flow takes place through vessels with diameter 

less than 150µm, which penetrate the walls of the myocardium 57. Coronary flow reserve is therefore 

a test of both endothelial dysfunction and coronary microvascular reserve. It is expressed as the 

ratio of hyperaemic to basal diastolic peak velocities, with a value above two considered normal. 

Low coronary flow reserve indicates a reduced ability to appropriately increase flow in response to 

increased oxygen demand. Coronary flow reserve has been found to be significantly lower in dialysis 

patients compared with healthy controls who were well matched for age, sex, BMI and  blood 

pressure 39, 58. In patients with angiographically normal coronary arteries, 50% of the dialysis cohort 

were found to have coronary flow reserve less than 2 compared with only 5% in the control group of 

non-dialysis patients 39. 

Potential confounding factors 

Caution must be exercised in attributing all the alterations observed in the above studies to renal 

failure and its treatments. Many patients with end stage kidney disease have co-morbid illnesses 

which may also affect the systemic microcirculation, most notably hypertension and diabetes 

mellitus. Several of the studies discussed above exclude from their control group of ‘healthy 

volunteers’ those with these conditions but hypertension, diabetes and other co-morbidities are 

present in a large proportion of the dialysis group32, 36.  In these studies, measured differences 



between groups are likely to represent the combined effects of chronic uraemia, dialysis and other 

co-morbidities.  

Even in otherwise well matched cohorts, dialysis patients frequently have increased systolic blood 

pressure compared with their control counterparts32, 33. Therefore, in addition to their dialysis 

patients and healthy controls, Farkas and colleagues studied a third group of age-matched patients 

with essential hypertension28. They were able to demonstrate a significant reduction in both 

endothelium-dependant and independent vasodilatation in their dialysis patients compared with 

controls and those with hypertension.  

Are microcirculatory changes associated with clinical outcomes? 

A link between microvascular dysfunction and adverse cardiovascular outcomes has been 

demonstrated in other populations 3, 4, 59, 60. Vascular dysfunction in the skin has been demonstrated 

to correlate with coronary disease61 and be an independent marker for cardiovascular disease in 

patients with Type 2 diabetes62. As these techniques become better understood and increasingly 

used in renal cohorts, interest has turned to how they may be used as biomarkers to identify high 

risk patients and facilitate intervention at an earlier stage.  

Coronary microvascular rarefaction has been postulated as contributory to sudden cardiac death in 

the dialysis population63. In a cohort study of nearly 4000 individuals encompassing the whole 

spectrum of chronic renal disease , coronary flow reserve was shown to be strongly associated with 

cardiovascular death independent of chronic renal disease stage64. Adjusting for coronary flow 

reserve in chronic renal disease 4,5 and dialysis-dependant groups attenuated their risk of 

cardiovascular death by 10%, supporting the concept that coronary microvascular dysfunction may 

underlie some of the increased mortality associated with chronic renal disease.  



In separate multi-variate regression analyses, microvascular impairment as measured by forearm 

post-ischaemic vasodilatation 65 and coronary flow reserve 63 were found to be independently 

associated with all-cause mortality in haemodialysis patients.  

Microvascular dysfunction of the coronary and peripheral circulations have also been correlated 

with outcome measures known to have negative prognostic implications such as 

hypoalbuminaemia66, 67 and right ventricular dysfunction68.  

Chronic renal disease mineral bone disease can cause large vessel calcification, a strong predictor of 

cardiovascular death in haemodialysis patients69.  There is some evidence for an association 

between large vessel calification and microvascular dysfunction in haemodialysis patients, those 

with femoral artery calcification exhibited lower maximal vasodilatory responses to ACh and SNP 

than both controls and haemodialysis patients without large vessel calcification 34. There is also 

increasing evidence of a relationship between markers of worsening chronic renal disease mineral 

bone disease and microvascular abnormalities in the absence of large vessel calcification. Dermal 

capillary rarefaction and impaired coronary flow reserve have been associated with increasing levels 

of both iPTH33 and phosphorous 43, 64 in chronic renal disease cohorts. Even in cohorts with normal 

renal function serum phosphate concentrations have been negatively correlated with postocclusive 

capillary recruitment70 and endothelial dysfunction in larger vessels71.  

Patients at risk of other non- cardiovascular disease outcomes which significantly impact on 

morbidity and quality of life, such as wound healing have also been identified using these 

techniques.  Those patients with lower skin blood flow both before and during haemodialysis, as 

measured by laser Doppler, have been shown to be at greater risk of developing wounds and skin 

defects66. All patients in this study who later went on to develop a skin defect had evidence of 

intradialytic ‘critical perfusion’ at the microvascular level in at least one measured area, although 

none exhibited intra-dialytic hypotension. 



What are the effects of chronic dialysis? 

Cardiovascular risk increases as patients progress through the stages of chronic renal disease 

(classified as stages 1 to 5 with progressive falls in glomerular filtration rate and increasing 

albuminuria) and with time on dialysis72. Is microvascular impairment similarly related to stage of 

chronic renal disease and time on dialysis? 

It has been found that even the creation of an arteriovenous fistula in preparation for haemodialysis 

may have systemic microvascular effects. In pre-dialysis patients, successful formation of an 

arteriovenous fistula  led to a reduction in endothelial dependant vasodilation in the fistula arm. 

Following fistula creation, these patients also exhibited a reduction in non-endothelium dependant 

vasodilation in the contralateral arm, indicating that localised changes to the structure of the 

macrocirculation can lead to widespread changes in the microcirculation. This was in contrast to 

those patients who had primary arteriovenous fistula  failure, who exhibited no recordable local or 

systemic changes73. 

Cross-sectional studies also provide evidence for a relationship between stage of kidney disease and 

microcirculatory dysfunction. Plasma levels of shed glycocalyx components such as syndecan-1 and 

markers of endothelial activation such as angiopoietin-2 correlate inversely with eGFR 38. Retinal 

microvessels also narrow progressively with each stage of chronic kidney disease74. Additionally, 

histopathological evidence of endothelial activation and infiltration by inflammatory cells in dermal 

capillaries 40, 41 and circulating levels of adhesion molecules such as sVCAM-1 correlate with duration 

of dialysis 75. The potential effects of renal replacement therapy itself on the microcirculation remain 

less well defined.  Using SDF technology, Dane and his colleagues were able to demonstrate 

impaired glycocalyx integrity associated with worsening eGFR.    However, in their end stage renal 

disease group (n=23) no statistically significant difference was seen between the dialysis patients 

(n=9) and patients with end stage renal disease who were not on dialysis(n=14)38. Common to many 



of the studies presented here small sample size may have contributed to the lack of statistically 

significant findings.  

A large American cohort study found that although coronary microvascular function assessed by 

coronary flow reserve was 23% lower in dialysis patients compared with controls with preserved 

kidney function, this reduction occurred early in chronic kidney disease, with a nadir being reached 

in chronic renal disease stage  464. The authors found no additional reductions in stage 5 or 5D. 

However, it is important to note that the chronic kidney disease stage 4 patients were on average 10 

years older than the dialysis group and had a higher incidence of known ischaemic heart disease and 

oral nitrate use. It is possible in light of this that survivor bias has limited the apparent extent of 

microvascular dysfunction detected in the patients with chronic kidney disease stage 5 in this 

retrospective study. Some of these issues could be addressed by longitudinal studies directly 

investigating microvascular function in dialysis cohorts. INTHEMO is an ongoing two-year study 

primarily designed to assess the effects of haemodialysis intensity on micro and macrovascular 

parameters76. In a preliminary report, these investigators found no statistically significant change in 

glycocalyx parameters at 6 months follow-up compared with baseline. They did however note 

significant heterogeneity in the degree and direction of change of calculated glycocalyx properties at 

6 months, and data at study completion is awaited. One important limitation of historical studies 

may be the effect of the haemodialysis procedure itself. The microcirculation is inherently dynamic, 

and as described below, timing of microvascular measurements with regards to the patients 

haemodynamic therapy itself may have significant impact on results. Standardisation of timing of 

measurements with respect to haemodialysis therapy is an important consideration for future 

studies. 

What are the acute effects of dialysis? 

Haemodialysis has been shown to cause varying degrees of macrohaemodynamic instability in 

patients often because of ultrafiltration of fluid, observed clinically as intradialytic hypotension. 



Recurrent intradialytic hypotension is considered to have negative prognostic implications77. Studies 

of the sublingual microcirculation using SDF during a single haemodialysis session have 

demonstrated a reduction in microvascular flow and decrease in the proportion of the 

microcirculation that is perfused through the course of the treatment78, 79. This reduced flow in all 

microvessels has been attributed to a reduction in circulating volume secondary to ultrafiltration.  In 

some studies, reduced microvascular perfusion has been demonstrated in patients undergoing 

isolated ultrafiltration but not in those undergoing haemodialysis with linear ultrafiltration 80. This 

finding is supported by data showing the reduced flow may be partially corrected by a manoeuvre 

designed to increase central venous filling78. These microcirculatory changes were independent of 

macrohaemodynamic changes, for example blood pressure, implying an element of compensation 

by the microcirculation.  

Decreased intradialytic perfusion has also been demonstrated in the peripheral circulation 66, 81. 

However, it has been suggested that changes in perfusion here may be dependent on the patient’s 

pre-dialysis volume status. Hypervolaemic patients who were ultrafiltrated to normovolaemia had 

improved skin perfusion82, this was accompanied by a decrease in arterial and venous pressure and 

proposed to be as a result of decreased myogenic response as a local auto regulatory effect. Another 

potential mechanism could be interstitial fluid removal with reduced external compression of 

vessels.  

Significant alterations in haemodynamics and shear stress result in stimuli noxious to the glycocalyx 

including oxidative stress83 and inflammation84. An increase in plasma shed glycocalyx constituents 

has been demonstrated over the course of a 4 hour dialysis session. However, this was not 

accompanied by a deterioration in sublingual glycocalyx parameters, potentially reflecting 

differential responses to haemodialysis in different vascular beds 85. Importantly, the reliability of 

plasma shed endothelial components as a marker of endothelial damage in patients with significant 



renal impairment has been challenged, due to decreased renal excretion and unknown dialysis 

clearance86. 

It has been suggested that haemodialysis may not be entirely detrimental to the microcirculation. 

The process of haemodialysis results in the release of local vasodilatory substances 87 and removal of 

circulating inhibitors of endothelial function such as; asymmetrical dimethylarginine, an inhibitor of 

endothelial NO production88, 89. Improvements in retinal microvascular function during single 

haemodialysis sessions have been demonstrated in several studies 90, 91. However, these potentially 

beneficial effects appear to be transient, returning to baseline within hours 88, 92. This may however 

help to explain some of the heterogeneity in the literature and highlights the importance of timing of 

investigations with regards dialysis therapy when designing and evaluating data in studies of the 

microcirculation. 

Is microcirculatory dysfunction modifiable? 

As there is evidence of a relationship between microcirculatory function and eGFR38, 41 it could be 

postulated that successful restoration of excretory function should improve microcirculatory 

parameters.  Renal transplantation is the preferred mode of renal replacement therapy for all 

eligible patients as cardiovascular outcomes and quality of life are improved compared with dialysis.   

Early skin biopsy studies indicated that ‘uraemia associated microangiopathy’ could be at least 

partially reversed by successful transplantation93. Using data and samples from a large biobank, a 

retrospective study of patients receiving their first renal transplant having previously been on 

dialysis, found that sVCAM-1 levels (a marker of endothelial injury) fell within 1 month of 

transplantation and continued to decline for at least 2 years75 supporting an improvement in 

endothelial function with improvement in renal function.  

Cross-sectional studies using SDF imaging in the sublingual circulation have demonstrated significant 

deterioration in glycocalyx and microvascular perfusion parameters in dialysis patients compared to 



age matched healthy controls and renal transplant recipients32, 38. At a median of 5 years post-

transplant, the glycocalyx parameters of patients with a stable functioning transplant were 

indistinguishable from the healthy controls38. Whilst microvascular flow was more heterogeneous in 

transplant recipients the total density of small vessels and the proportion that were perfused was 

not significantly worse than controls32. In the coronary microcirculation transplant recipients were 

found to have a significantly reduced coronary flow reserve compared with healthy controls (1.89 ‘v’ 

2.65), but better than a group of age matched haemodialysis patients (1.57) 58.  

In those with a failing or failed transplant the relationship appears to be more complex. Transplant 

recipients with evidence of interstitial fibrosis and tubular atrophy had sublingual glycocalyx 

parameters comparable to haemodialysis patients despite their median eGFR of 22ml/min38. 

Furthermore, patients who return to dialysis after a failed transplant exhibited worse coronary 

microvascular function than dialysis (both haemodialysis and peritoneal dialysis) patients of similar 

vintage who have never been transplanted67, 94. The known association between inflammation and 

microvascular dysfunction76 led the authors to speculate that inflammation associated with the 

failed allograft was partially responsible for the deterioration, in both these studies the failed 

transplant recipients had higher inflammatory markers than the transplant naïve group. This is an 

interesting hypothesis although the underlying pathology is likely to be multifaceted. While time on 

dialysis may have been similar between groups the patients with failed transplant are likely to have 

had a longer period with end stage renal failure, additionally they will have been exposed to 

immunosuppressant medications such as calcineurin inhibitors, with known vascular effects95. As 

discussed above, changes to the microcirculation occur throughout the stages of chronic renal 

disease and what is not clear from this study is how changes in the failing transplant group compare 

to patients with a native eGFR of 22ml/min.    

 

 



Issues in the current literature 

Comparison of studies in this area is impeded by methodological issues. By its nature the 

microcirculation exhibits significant temporal and spatial heterogeneity 81. Consequently, most of 

the techniques outlined above have to contend with substantial intra-subject variability.  Much of 

the literature reviewed here is cross-sectional therefore there will be significant variability in the 

outcome measures, reducing their ability to detect small differences between patient groups for 

example.  

There are other experimental issues pertinent to studying a renal cohort. End stage renal disease is a 

phenotype, not a specific pathology and therefore renal cohorts are also heterogeneous. Secular, 

geographic, and ethnic variation impact prevalent primary and co-morbid pathologies, many of 

which have direct relevance to the microcirculation such as diabetes and hypertension.  There is also 

high usage in this population of medications known to impact microvascular reactivity. 

Studying patients undergoing an intermittent therapy, such as haemodialysis, presents its own 

challenges; as outlined above, timing of investigations is important, this varies both between and 

within studies 36.  Rapidly changing flow and haematocrit, changes in room and dialysate 

temperature, different compositions of dialysate and method of vascular access are all likely to 

affect the results of these non-invasive techniques. Perhaps more importantly, such a 

haemodynamic insult is likely to affect each vascular bed differently.  

These inherent methodological issues are often compounded by small sample sizes. 

Potential future work 

The issues identified above mean several gaps remain in our knowledge with regards the state of the 

microcirculation as measured using these non-invasive techniques. What is required to adequately 

delineate the natural history of microvascular dysfunction in chronic kidney disease and dialysis are 



large-scale, longitudinal studies in a variety of vascular beds with consensus on timing of 

investigations.  

Along with the heterogeneous nature of a renal cohort there are also several treatment options 

available for renal replacement therapy. The two main forms of dialysis offered to patients, 

haemodialysis and peritoneal dialysis, are intrinsically different and likely to affect the systemic 

microcirculation in distinct ways. As a result of its acute haemodynamic effects and by virtue of the 

fact that they account for the large majority of the dialysis population, most microvascular work in 

dialysis patients has, to date, focused on haemodialysis. Studies investigating microcirculatory 

properties in peritoneal dialysis patients lag behind their haemodialysis contemporaries. When 

peritoneal dialysis patients are included in cohorts they are often analysed with the haemodialysis 

patients under the umbrella of ‘dialysis requiring’. Attempts to analyse them as a sub-group are 

undermined by small numbers27. 

Peritoneal dialysis has been demonstrated to have cardiovascular effects18 but they are both 

qualitatively and quantitatively different from those of haemodialysis. There are also other 

challenges unique to peritoneal dialysis which need examining, most notably the effect of absorbed 

glucose. There is a body of work examining the effects of peritoneal dialysis fluid variants on 

macrohaemodynamic measures such as blood pressure and cardiac output87, 96, 97. Similar work 

examining effects on the microcirculation could allow intervention at an earlier stage in the 

pathological process. The functionality of peritoneal dialysis is largely dependent on the structure 

and integrity of the peritoneal microcirculation. Are there insights to be gained from the systemic 

microcirculation that may increase understanding and aid preservation of the peritoneal 

circulation42, 98?  

Despite these gaps in knowledge there is increasing evidence of microcirculatory dysfunction in 

dialysis cohorts that precedes large vessel disease and is associated with morbidity and mortality. 

This dysfunction appears to be the result of multiple insults including; uraemia and it’s consequences 



i.e. chronic renal disease, mineral bone disease; co-morbid pathologies such as hypertension and 

diabetes and renal replacement therapy itself. This should emphasise to the clinician the importance 

of primary preventative strategies already enshrined in clinical practice such as dialysis adequacy 

targets, stringent blood pressure control and correction of bone mineral abnormalities. Greater 

insights into the pathophysiology of microvascular dysfunction in these patients could advance 

clinical care of dialysis patients in several ways. It could improve our understanding of the potential 

benefits of commonly used medications such as ACE inhibitors, routinely used in proteinuric renal 

disease, there is evidence for a protective effect on systemic vascular endothelium in animal models 

of aging99 and heart failure100. It could help us understand how best to administer renal replacement 

therapies for example the potential benefits of more ‘extended’ haemodialysis76. It could also aid 

development of more novel therapies aimed at protecting endothelial function such as eNOS 

transcriptase enhancers101.   

Conclusion 

The importance of the microcirculation in systemic diseases is becoming increasingly apparent. 

Historically study of the microcirculation in patients with renal disease especially those on dialysis 

has lagged behind other chronic conditions. Difficulties in studying a heterogeneous patient group 

on intermittent therapies may have contributed to this disparity.  

Studies have been small and largely cross-sectional. More traditional techniques for studying the 

microcirculation were often cumbersome and time consuming reducing their clinical utility. We are 

now gaining greater understanding of the role of newer, more patient friendly techniques such as 

SDF imaging which should allow expansion of participant numbers. 

Reproducible differences in microvascular structure and abnormal function have been demonstrated 

in multiple vascular beds in dialysis patients compared with controls. The exact nature and 

chronology of these changes are yet to be fully defined. 



As we anticipate an ever-expanding chronic renal disease population with its disproportionate 

cardiovascular burden, a greater understanding of this dysfunction becomes increasingly important. 

Large scale longitudinal studies are required to achieve this with the hope that the knowledge 

gained will guide future interventions to abrogate cardiovascular risk for these patients.  
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Figures 

 

Figure 1 Schematic representation of the principles of Laser Doppler measured flux.    

Laser Doppler technology measures blood flow in the microcirculation to a tissue depth of typically 

1mm. Measurements are based on the Doppler principle whereby monochromatic light changes  

wavelength when it is reflected by moving objects, in this case red blood cells. The magnitude and 

frequency of the changes in wavelength are related to the number and velocity of the moving cells, 

termed red blood cell flux47.   



Figure 2 Representative laser Doppler trace obtained before, during and after a brief period of 

arterial occlusion. 

A reactive hyperaemia can be induced by a brief period of arterial occlusion using a cuff placed 

around the upper arm or leg. This response takes the form of a post-ischaemic flow initially many 

times faster than normal followed by exponential decay to baseline54. This is a complex response 

which remains incompletely understood however NO appears to play only a minor role. 

 

 

 



 

Figure 3 Schematic representation of iontophoretic delivery of vasoactive substances. 

Iontophoresis delivers charged pharmacological agents in solution to a localised area of skin by 

applying an opposing electrical current. Laser Doppler technology in combination with iontophoretic 

application of vasoactive substances to the skin allows study of aspects of the vasodilatory capacity 

of dermal vessels. Traditionally ACh and SNP are used to provoke endothelium-dependant and 

endothelium-independent vasodilation respectively51. 

 

Figure 4a Acquisition of SDF images. 

Hand held microscopes use side-stream dark field imaging to produce high-contrast real-time videos 

of the sublingual vessels 



 

Figure 4b. Example of sublingual microcirculation as visualised using SDF imaging. 

SDF is based on the principle that scattered green light is absorbed by haemoglobin in red blood 

cells, therefore any vessels containing RBCs can be visualised using this technique.  These images can 

be used to assess; vessel density, perfusion indices and heterogeneity 45, 46. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 


