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Abstract:
We study the dynamic consequences of lost sales when there is insufficient inventory to satisfy
demand. Demand is assumed to be independently and identically distributed and drawn from
a normal distribution. We consider the industrially popular order-up-to policy with unit lead
time is used to make replenishment orders. In this scenario, we obtain expressions for the order
and inventory distributions, allowing us to quantify the Bullwhip and Net Stock Amplification
ratios. We show that both these metrics are equivalent. We also determine the mean inventory
levels held, and the achieved fill rate. We do this when the lost sales are fully observable, and
when the lost sales are unobservable. Copyright c© 2019 IFAC.
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1. INTRODUCTION

Verbeke et al. (1998) investigated the response of 1,750
customers after encountering an out-of-stock situation,
finding only 20% of them would postpone the purchase
(and buy the same product in the same store later).
A decade later, Van Woensel et al. (2007) analyzed the
behavior of 3,800 customers of a Dutch grocery retail
chain and revealed that only 12% of regular customers
and 6% of occasional customers would opt to delay a
purchase when faced with an out-of-stock situation. Both
studies observed that most customers facing a stock-out
would either forfeit the planned purchase and look for
the same item in another store or purchase a substitute
product. These examples illustrate that many practical
supply chain settings are governed by the rules of lost-sales
inventory systems. It also seems reasonable to assume that
customers’ tolerance of lost sales is decreasing over time
as more purchasing alternatives become available.

In contrast, the majority of inventory theory is based upon
backlog systems, where excess demand is accumulated in
an order book and delivered as soon as inventory becomes
available, Bijvank and Vis (2011). Zipkin (2008) also ar-
gues that while we have a deep understanding of the behav-
ior of backlog systems, we have much less comprehension of
lost-sales systems. Note, the backlog assumption keeps the
system linear 1 , whereas lost-sales systems have a nonlin-
ear nature, hampering their mathematical analysis. Indeed

1 Linear inventory models rely on assumptions that provide a
physical meaning for the negative values of variables, see Ponte et al.
(2017); in this case, negative inventories indicate backlogs.

complex dynamics emerge when the linearity assumption
is removed, Wang et al. (2014), which may even dominate
the system behavior, Nagatani and Helbing (2004).

A noteworthy line of research has analytically investigated
the optimality of traditional inventory policies in lost-
sales environments. Karlin and Scarf (1958) showed the
optimal reorder quantity with backlogs can be derived
from a single number (the sum of inventory-on-hand and
on-order), but under lost sales this quantity is function of
the on-hand inventory as well as the timing and quantity
of all outstanding orders. Since then, several authors have
mined this vain, searching for replenishment policies under
different cost models; see e.g. Morton (1969), Johansen
(2001), Chen et al. (2006), and Goldberg et al. (2016).
We refer interested readers to the comprehensive literature
review by Bijvank and Vis (2011) for more details on prior
literature in the lost-sales inventory discipline.

Our approach here is different to the established litera-
ture. We aim to investigate the impact of the lost-sales
non-linearity on the dynamics of the supply chain under
the well-known, industrially popular, order-up-to (OUT)
replenishment policy. We are concerned with the implica-
tions of lost sales compared to backlogging demand. To
this end, we explore the inventory and order variances
maintained by the OUT policy. To the best of our knowl-
edge, no prior study in the field of supply chain dynamics
provides a clear understanding to these research questions.
Indeed, Wang and Disney (2016) flag this as a key area for
future research in a recent literature review. This is impor-
tant due to the prevalence of the OUT policy in industry
and the commonality of lost sales in B2C environments.
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of all outstanding orders. Since then, several authors have
mined this vain, searching for replenishment policies under
different cost models; see e.g. Morton (1969), Johansen
(2001), Chen et al. (2006), and Goldberg et al. (2016).
We refer interested readers to the comprehensive literature
review by Bijvank and Vis (2011) for more details on prior
literature in the lost-sales inventory discipline.

Our approach here is different to the established litera-
ture. We aim to investigate the impact of the lost-sales
non-linearity on the dynamics of the supply chain under
the well-known, industrially popular, order-up-to (OUT)
replenishment policy. We are concerned with the implica-
tions of lost sales compared to backlogging demand. To
this end, we explore the inventory and order variances
maintained by the OUT policy. To the best of our knowl-
edge, no prior study in the field of supply chain dynamics
provides a clear understanding to these research questions.
Indeed, Wang and Disney (2016) flag this as a key area for
future research in a recent literature review. This is impor-
tant due to the prevalence of the OUT policy in industry
and the commonality of lost sales in B2C environments.
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2. LOST-SALES INVENTORY MODEL

To gain a thorough understanding of the lost sales-induced
dynamics in the supply chain, we study a single echelon.
We focus on the retailer, as this echelon frequently oper-
ates within a lost-sales environment, (Verbeke et al., 1998;
Van Woensel et al., 2007).

The discrete-time sequence of events that governs this
operation is composed of three main stages in each time
period t. At the beginning of t, the inventory is received
from the upstream supplier. During the course of t, con-
sumer demand is satisfied as long as on-hand inventory
is available. Finally, at the end of t, the state of the
inventory is reviewed, a forecast of demand is made, and
the order is issued. Formally this can be modeled with
difference equations, which we describe below, together
with a discussion of the implicit assumptions they entail.

First, the retailer receives the product. The receipts, rt,
respond to the orders, qt, placed in the previous period,

rt = qt−1. (1)

We assume what was ordered is always delivered. That is,
production and transportation constraints are not present.
We also assume the supplier is able to satisfy the order in
the next period. That is, a unit lead time exists.

The consumer demand, dt, is assumed to be an indepen-
dent and identically distributed (i.i.d.) variable, zt, drawn
from a normal distribution with mean µ and variance σ2,

dt = zt : zt ∈ N (µ, σ2). (2)

Let γ be the coefficient of variation, γ = σ/µ. We assume
the mean demand is sufficiently high so that the probabil-
ity of negative demand is negligible. We adopt the normal-
ity assumption 2 as this distribution captures the behavior
of many real demand patterns (Schneeweiss, 1974; Disney
et al., 2016). The demand fluctuates randomly around a
constant mean; that is, no trends, seasonal effects, or auto-
correlation exist.

The on-hand, end-of-period, inventory level, it, is the ac-
cumulated difference between receipts and demand. Under
lost-sales, inventory is constrained to non-negative values,

it = [it−1 + rt − dt]
+. (3)

with [·]+ = max{·, 0}, the maximum operator, truncating
negative values. Note, it=0 indicates that stock-outs have
occurred in t (except in the particular case when demand is
exactly equal to the available inventory, i.e., dt=it−1+rt).
We do not consider any other nonlinear effects, e.g. defec-
tive products, quality loss, or limited storage capacity.

The satisfied demand, st, is given by,

st = min{it−1 + rt, dt}. (4)

As backlogs are not allowed, the difference between the
actual and the satisfied demand, dt − st, represents the
size of the stock-out 3 . We assume the retailer is aware
the demand is i.i.d. and forecasts it with a static model:

ft = η. (5)

2 This is acceptable when demand originates from many indepen-
dent customers as the central limit theorem can be evoked.
3 Note, the double-accounting-of-backlogs problem (Cachon and
Terwiesch, 2006; Disney et al., 2015) when calculating the fill-rate
does not occur in lost sales systems.

Ideally, the retailer is able to observe the lost sales and
can forecast the mean demand with η = µ, resulting
in a minimum mean squared error (MMSE) forecast, see
Disney et al. (2016). However, in other settings, retailers
may be unable to observe the whole demand, and may
under-estimate the actual mean demand, that is, η < µ.

Finally, orders are generated with the OUT replenishment
decision (Lalwani et al., 2006), which accounts for (i) the
demand forecast; and (ii) the discrepancy between the
target and actual inventory. Following common practice,
Lin et al. (2017), we consider the safety stock to be the
product of the safety factor δ and the expected demand
ft. Note, δ is a decision variable. The order quantity is

qt = ft + (δft − it) = (1 + δ)ft − it. (6)

Here the first addend, (1 + δ)ft, represents the OUT level
(that is, the desired inventory at the beginning of t) and
the second addend, it, represents the actual inventory.

2.1 Performance indicators

To measure performance, we employ two common and
practically relevant approaches. First, we explore the vari-
ability of orders and inventories. These are well-known
sources of inefficiencies in production and distribution sys-
tems, Disney and Lambrecht (2008). Second, we consider
the trade-off between the fill rate and the average inventory
held, another key business concern.

We measure order variability via the Bullwhip ratio,

BW = var(qt)/var(dt), (7)

where var(·) is the variance operator. BW is directly
related to capacity costs (Disney and Lambrecht, 2008).
To measure the variability in inventories, we employ the
Net Stock Amplification (NSAmp) metric,

NSAmp = var(it)/var(dt). (8)

NSAmp is directly related to inventory costs (Disney and
Lambrecht, 2008). In linear systems, the BW and NSAmp
metrics represent a key trade-off for managers, as it is often
possible to decrease one at the cost of increasing the other,
see e.g. Disney et al. (2004).

We measure customer service through the fill rate, β. This
is a popular metric in the fast moving consumer goods
industry, representing the proportion of demand satisfied
immediately from stock (Disney et al., 2015). In this sense,
the fill rate is the ratio of the mean positive satisfied
demand to the mean positive demand by

β = E[(st)+]/E[(dt)+], (9)

Sobel (2004), where E[·] is the expectation operator. In
order to measure the stock required to meet customer
demand, we consider the average on-hand inventory, τ ,

τ = E[it]. (10)

Again there is a key trade-off to consider, as the fill rate
can be improved at the cost of an higher average inventory.

3. ANALYTICAL STUDY

Under our assumptions, the following equations can be
obtained by substituting (1) and (5) into (3), (4), and
(6). Here we focus on the on-hand inventory, satisfied
demand, and orders, which we define as the state variables
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of the lost-sales system, as they determine the performance
metrics we employ.

it = [it−1 + qt−1 − dt]
+, (11)

st = min{it−1 + qt−1, dt}, (12)

qt = (1 + δ)η − it. (13)

An important property of the lost-sales system emerges
from (13): for all periods, qt + it = (1 + δ)η. This implies
the on-hand inventory position at the beginning of every
period will be (1 + δ)η.

Theorem 1. (Fundamental relations). The following fun-
damental relationships exist in our lost-sales system:

it = [(1 + δ)η − dt]
+, (14)

st = min{(1 + δ)η, dt}, (15)

qt = st. (16)

Proof. Eqs. (14) and (15) can be easily obtained by
substituting qt + it = (1 + δ)η into (11) and (12). Using
[a − b]+ = max{a − b, 0} = a − min{a, b}, (14) can be
expressed as it = (1 + δ)η −min{(1 + δ)η, dt}. Note that
the second addend represents the satisfied demand, see
(15); thus obtaining it = (1 + δ)η − st. Replacing (1 + δ)η
by it + qt leads to (16). �

Eq. (16) defines another interesting property of the lost-
sales system: the equality of satisfied demand and orders.
Thus, the OUT model results in the retailer ordering every
period exactly what they sold during the period 4 .

3.1 Distributions of the state variables

Eqs. (14), (15), and (16) express the state variables of
the lost-sales system as functions of constants and the
demand. First, we discuss the statistical distributions of
these variables, as they will allow us to derive analytical
expressions for all our metrics.

From inspection of (14), we can see the inventory is a
translated, scaled, and truncated demand distribution.
This leads to the following probability density function
(pdf) of the on-hand inventory:

φi[x] =
h[x]

σ
φ

[
x− (1 + δ)η + µ

σ

]
+

∆[x]Φ

[
µ− (1 + δ)η

σ

]
. (17)

Here φ[·] and Φ[·] are respectively the pdf and cumulative
distribution function (cdf) of the standard normal distri-
bution N(0, 1), h[x] = {1, if x ≥ 0; 0, otherwise} is the
Unit Step function, and ∆[x] = {1, if x = 0; 0, otherwise}
is the Dirac Delta function. To obtain (17), the translation
and scaling is dealt with by changing the mean and stan-
dard deviation of the standard normal distribution, while
the Unit Step function attends to the trunction. Finally,
the pdf at x = 0 is captured by the product of the Dirac
Delta function and the cdf at x = 0.

We can use a similar approach to obtain the pdf of the
orders and the satisfied demand from (15). Eq. (13) reveals
the pdf of the orders (and the pdf of the satisfied demand)

4 Notice the difference with the linear model, in which backlog
is allowed, where the considered assumptions results in a pass-on-
orders strategy, qt = dt; see e.g. Disney et al. (2016).

is a translated reflection of the pdf of the inventory. Note
that this suggests an important implication for our study:
the variance of the orders and the variance of on-hand
inventories are equal, thus

BW = NSAmp. (18)

The pdf of the orders and the satisfied demand in the lost-
sales system is given by

φq[x] = φs[x] =
h[(1 + δ)η − x]

σ
φ

[
x− µ

σ

]
+

∆[(1 + δ)η − x]Φ

[
µ− (1 + δ)η

σ

]
. (19)

3.2 Deriving expressions for the performance metrics

From the pdfs of the state variables, we can derive the
expressions of the four metrics. First, we investigate the
mean of the variables to consider the trade-off between
the fill rate β and the average inventory τ . Looking at
the pdf of inventories, the expected inventory held in any
single period, τ , is given by

τ = E[it] =
∫ ∞

0

xφi[x]dx = σφ

[
µ− (1 + δ)η

σ

]
+

((1 + δ)η − µ) Φ

[
(1 + δ)η − µ

σ

]
. (20)

The fill rate is given by the ratio of the expected positive
satisfied demand to the expected positive demand,

β =
E[(st)+]
E[(dt)+]

=

∫ ∞

0

xφs[x]dx

/∫ ∞

0

xφd[x]dx, (21)

where φd[x] is the pdf of the demand.

Second, consider the variances. As discussed, the variance
of the three variables, that is, it, qt, and st, is the same.
The variance of the inventories is given by

σ2
i =

∫ ∞

0

(x− τ)2φi[x]dx

=

∫ ∞

0

x2φi[x]dx− τ2

=σ((1 + δ)η − µ)φ

[
(1 + δ)η − µ

σ

]
+ (22)

(
((1 + δ)η − µ)2 + σ2

)
Φ

[
(1 + δ)η − µ

σ

]
−

(
σφ

[
µ− (1 + δ)η

σ

]
+

((1 + δ)η − µ)Φ

[
(1 + δ)η − µ

σ

])2

This allows us to obtain the NSAmp metric, and by (18)
also the BW metric,

BW = NSAmp =
σ2
i

σ2
. (23)

Exposition of the four relevant metrics can be greatly
simplified by defining the relative safety margin,

λ =
(1 + δ)η − µ

σ
. (24)

Physically λ can be interpreted the protection of the on-
hand inventory against shortages in relative terms to the
standard deviation of the demand 5 .
5 Note that λ > 0 indicates that (1 + δ)η is higher than the mean
demand; hence the system will be able to satisfy the whole demand
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of the lost-sales system, as they determine the performance
metrics we employ.

it = [it−1 + qt−1 − dt]
+, (11)

st = min{it−1 + qt−1, dt}, (12)

qt = (1 + δ)η − it. (13)

An important property of the lost-sales system emerges
from (13): for all periods, qt + it = (1 + δ)η. This implies
the on-hand inventory position at the beginning of every
period will be (1 + δ)η.

Theorem 1. (Fundamental relations). The following fun-
damental relationships exist in our lost-sales system:

it = [(1 + δ)η − dt]
+, (14)

st = min{(1 + δ)η, dt}, (15)

qt = st. (16)

Proof. Eqs. (14) and (15) can be easily obtained by
substituting qt + it = (1 + δ)η into (11) and (12). Using
[a − b]+ = max{a − b, 0} = a − min{a, b}, (14) can be
expressed as it = (1 + δ)η −min{(1 + δ)η, dt}. Note that
the second addend represents the satisfied demand, see
(15); thus obtaining it = (1 + δ)η − st. Replacing (1 + δ)η
by it + qt leads to (16). �

Eq. (16) defines another interesting property of the lost-
sales system: the equality of satisfied demand and orders.
Thus, the OUT model results in the retailer ordering every
period exactly what they sold during the period 4 .

3.1 Distributions of the state variables

Eqs. (14), (15), and (16) express the state variables of
the lost-sales system as functions of constants and the
demand. First, we discuss the statistical distributions of
these variables, as they will allow us to derive analytical
expressions for all our metrics.

From inspection of (14), we can see the inventory is a
translated, scaled, and truncated demand distribution.
This leads to the following probability density function
(pdf) of the on-hand inventory:

φi[x] =
h[x]

σ
φ

[
x− (1 + δ)η + µ

σ

]
+

∆[x]Φ

[
µ− (1 + δ)η

σ

]
. (17)

Here φ[·] and Φ[·] are respectively the pdf and cumulative
distribution function (cdf) of the standard normal distri-
bution N(0, 1), h[x] = {1, if x ≥ 0; 0, otherwise} is the
Unit Step function, and ∆[x] = {1, if x = 0; 0, otherwise}
is the Dirac Delta function. To obtain (17), the translation
and scaling is dealt with by changing the mean and stan-
dard deviation of the standard normal distribution, while
the Unit Step function attends to the trunction. Finally,
the pdf at x = 0 is captured by the product of the Dirac
Delta function and the cdf at x = 0.

We can use a similar approach to obtain the pdf of the
orders and the satisfied demand from (15). Eq. (13) reveals
the pdf of the orders (and the pdf of the satisfied demand)

4 Notice the difference with the linear model, in which backlog
is allowed, where the considered assumptions results in a pass-on-
orders strategy, qt = dt; see e.g. Disney et al. (2016).

is a translated reflection of the pdf of the inventory. Note
that this suggests an important implication for our study:
the variance of the orders and the variance of on-hand
inventories are equal, thus

BW = NSAmp. (18)

The pdf of the orders and the satisfied demand in the lost-
sales system is given by

φq[x] = φs[x] =
h[(1 + δ)η − x]

σ
φ

[
x− µ

σ

]
+

∆[(1 + δ)η − x]Φ

[
µ− (1 + δ)η

σ

]
. (19)

3.2 Deriving expressions for the performance metrics

From the pdfs of the state variables, we can derive the
expressions of the four metrics. First, we investigate the
mean of the variables to consider the trade-off between
the fill rate β and the average inventory τ . Looking at
the pdf of inventories, the expected inventory held in any
single period, τ , is given by

τ = E[it] =
∫ ∞

0

xφi[x]dx = σφ

[
µ− (1 + δ)η

σ

]
+

((1 + δ)η − µ) Φ

[
(1 + δ)η − µ

σ

]
. (20)

The fill rate is given by the ratio of the expected positive
satisfied demand to the expected positive demand,

β =
E[(st)+]
E[(dt)+]

=

∫ ∞

0

xφs[x]dx

/∫ ∞

0

xφd[x]dx, (21)

where φd[x] is the pdf of the demand.

Second, consider the variances. As discussed, the variance
of the three variables, that is, it, qt, and st, is the same.
The variance of the inventories is given by

σ2
i =

∫ ∞

0

(x− τ)2φi[x]dx

=

∫ ∞

0

x2φi[x]dx− τ2

=σ((1 + δ)η − µ)φ

[
(1 + δ)η − µ

σ

]
+ (22)

(
((1 + δ)η − µ)2 + σ2

)
Φ

[
(1 + δ)η − µ

σ

]
−

(
σφ

[
µ− (1 + δ)η

σ

]
+

((1 + δ)η − µ)Φ

[
(1 + δ)η − µ

σ

])2

This allows us to obtain the NSAmp metric, and by (18)
also the BW metric,

BW = NSAmp =
σ2
i

σ2
. (23)

Exposition of the four relevant metrics can be greatly
simplified by defining the relative safety margin,

λ =
(1 + δ)η − µ

σ
. (24)

Physically λ can be interpreted the protection of the on-
hand inventory against shortages in relative terms to the
standard deviation of the demand 5 .
5 Note that λ > 0 indicates that (1 + δ)η is higher than the mean
demand; hence the system will be able to satisfy the whole demand
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The average inventory divided by the mean demand, is

τ/µ = γ (φ [λ] + λΦ [λ]) . (25)

The fill rate is given by

β =h[1 + γλ]

(
1− φ[λ] + λ(Φ[λ]− 1)

φ [γ−1] + γ−1Φ [γ−1]

)
, (26)

Finally, the BW and NSAmp metrics simplify to

BW = NSAmp =λφ [λ] + (λ2 + 1)Φ [λ]−
(φ [λ] + λΦ [λ])

2
. (27)

4. INSIGHTS FROM THE ANALYSIS

In this section we first study the BW and NSAmp ratios
before analyzing the trade-off between the fill rate and
average inventory holding. We consider two different cases:

(1) Full demand observation (FDO), the ideal case, where
the retailer is able to observe the whole customer
demand, despite only satisfying a portion of it (due
to the lost-sales condition). For example, this may
be relevant for an internet retailer who could track
customers browsing history. This scenario is described
by η = µ, which results in a simplified variant of the
relative safety margin, λ = δ/γ.

(2) Partial demand observation (PDO), where excess
demand becomes unobserved lost sales, leading the
retailer to under-estimate the mean demand. This
case, characterized by η < µ, might be representative
of a customer who upon experiencing a stock-out
in store, departs without leaving a trace of their
disappointment. In such cases, employing high safety
stock factors would help the retailer approximate µ.

As discussed by Lariviere and Porteus (1999), the condi-
tions of lost sales (vs. backlog) and unobserved demand
(vs. observed demand) lead to different scenarios; all are
practically relevant in different settings.

4.1 BW and NSAmp: A study of system volatility

In the linear backlog system, under our assumptions,
BW = 1 and NSAmp = 1 (Disney et al., 2006). In
the lost-sales system, however, (27) illustrates that BW
and NSAmp depend upon λ, which in turn is a function
of {µ, σ, δ, η}. Fig. 1 represents the S-shaped relationship
between the variance ratios and λ. Both BW and NSAmp
are increasing in λ; when λ is sufficiently high, the retailer
rarely experiences lost sales and operates as a linear system
would. Small values of λ reduce supply chain volatility.

FDO case. As λ = δ/γ, BW and NSAmp only depend
on δ and γ. Lines without markers in Fig. 2 represent these
metrics in the lost-sales system as a function of the safety
stock factor δ for three different demand’s coefficients of
variation γ, 15%, 30%, and 45%, which are typical of
retail time series, (Dejonckheere et al., 2004). When δ
is sufficiently high, the lost sales are marginal, and the
nonlinear lost-sales system behaves as the linear backlog
system does. However, for low and medium values of δ, the
variability of orders and inventory decreases significantly.
Note, larger γ require greater δ to ensure linear operation.

more than 50% of the periods. However, under λ < 0, the system
would only satisfy the whole demand in less than 50% of the periods.

Fig. 1. BW and NSAmp as a function of λ.

Fig. 2. BW and NSAmp as a function of δ under FDO
(lines without markers) and PDO (with markers).

Nonetheless, γ does not impact on the value of the ratios
for δ = 0 (which is the value for λ = 0, see Fig. 1).

PDO case. To analyze the impact of η, we assume γ =
30%, with µ = 100, σ = 30. Lines with markers in Fig.
2 display BW and NSAmp as a function of δ for three
different values of η: 70, 85, and 100. The η = 100 case is
equivalent to the FDO model (for γ = 30%); while η = 85
and η = 70 represent the case when unobserved demand
leads to biased demand forecasts. Fig. 2 shows that both
BW and NSAmp are very sensitive to the static forecast
η. In this sense, the system benefits from lower BW and
lower NSAmp in the case of partial demand observation in
the lost-sales system. Note, unlike δ before, η does impact
on the value of the ratios for δ = 0 (under PDO, δ = 0
does not result in λ = 0). Again, lower η require larger δ
to ensure linear operation.

4.2 τ and β: The fill rate–inventory trade-off

The previous variance analysis suggests the dynamics of
the lost-sales system benefits from the non-linearity. How-
ever, the lost-sales condition introduces behavioral differ-
ences that should be carefully considered. Note, while in
the linear system the mean demand matches the mean
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Fig. 3. τ and β as a function of λ.

order, lost sales create a gap between them 6 . This means
that in some cases BW may be decreased in the nonlinear
system as a consequence of an increase in the lost sales
(via a reduction in the mean order quantity). Similarly,
NSAmp may be reduced in the lost-sales systems by
negative forecast errors due unobserved demand. These
perspectives explain why BW = NSAmp = 0 when
λ << 0 (see Fig. 1). Importantly, while the simultaneous
consideration of BW and NSAmp provides a complete
picture of the performance of replenishment policies in lin-
ear systems (Disney and Lambrecht, 2008), these metrics
need to be considered alongside others which account for
the difference between mean demand and mean orders in
the nonlinear lost-sales system.

In light of this, we analyze the trade-off between the fill
rate, β, and average inventory, τ , in lost-sales systems.
Assuming γ = 30% (again µ = 100, σ = 30), Fig.
3 represents β and τ/µ in the nonlinear system under
consideration. For λ << 0, τ = 0 and β = 0. For larger
values of λ, τ is increasing and convex in λ. In contrast, β
is increasing and concave in λ, with β = 1 for λ >> 0.

FDO case. Employing the same rationale as before, Fig.
4 and 5 display respectively τ/µ and β as a function of
δ for the three values of γ. Generally, similar to a linear
system, lower δ reduces the average inventory held, but
also reduces the fill rate achieved. In Fig. 4, we observe
that for higher γ, there is a more noticeable gap between
τµ and the slope τµ = δ (which characterizes the linear
system) for small δ. The fill rate, β, is the same as for
the linear backlog version. Despite the difference between
linear and nonlinear orders (see footnote 4), the unit lead
time ensures all backlogs are cleared in the next period.

PDO case. We now look at the lines with markers in Fig.
4 and 5, representing the relation between τ/µ and β with
δ for three different values of η, with γ = 30%. Similar
to the study of variances, we observe the impact of η is
meaningful. That is, not being able to observe the whole
demand causes a large reduction in the fill rate β, even
with relatively large safety stock factors δ. For example,

6 Here, orders define the physical system input, while the satisfied,
rather than the actual, demand defines the physical system output.
The mean order should then be equal to the mean satisfied demand
to avoid lost-sales systems suffering from a long-term inventory drift.

Fig. 4. Average inventory, τ , as a function of δ under FDO
(lines without markers) and PDO (with markers).

Fig. 5. Fill rate, β, as a function of δ under FDO (lines
without markers) and PDO (with markers).

if η = µ, δ ≈ 0.2 is required to achieve 95% fill rate,
while if η = 0.7µ, δ ≈ 0.7 is required. Our PDO analysis
highlights that using inventory configurations derived from
linear models in lost-sales environments with unobserved
lost sales is risky, as this may result in a dramatically
decreased service level.

5. CONCLUSIONS

With most inventory control literature investigating linear
models, the dynamics of nonlinear inventory systems is
not yet well understood. We focused on the non-negative
inventory assumption in order to investigate the behavioral
differences between backlog and lost-sales systems. We
observe the lost-sales condition influences the dynamics of
supply chains. Deriving the expression of the popular BW
and NSAmp metrics, we show the linear approximation
only works under strict circumstances; thus ignoring the
lost-sales condition in such settings may result in a radi-
cally different system behaviour. Remarkably, the impact
of such non-linearity is the same on BW and NSAmp,
depending on a relative safety margin λ. Both order and
inventory variances are mitigated as λ decreases.
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Fig. 3. τ and β as a function of λ.

order, lost sales create a gap between them 6 . This means
that in some cases BW may be decreased in the nonlinear
system as a consequence of an increase in the lost sales
(via a reduction in the mean order quantity). Similarly,
NSAmp may be reduced in the lost-sales systems by
negative forecast errors due unobserved demand. These
perspectives explain why BW = NSAmp = 0 when
λ << 0 (see Fig. 1). Importantly, while the simultaneous
consideration of BW and NSAmp provides a complete
picture of the performance of replenishment policies in lin-
ear systems (Disney and Lambrecht, 2008), these metrics
need to be considered alongside others which account for
the difference between mean demand and mean orders in
the nonlinear lost-sales system.

In light of this, we analyze the trade-off between the fill
rate, β, and average inventory, τ , in lost-sales systems.
Assuming γ = 30% (again µ = 100, σ = 30), Fig.
3 represents β and τ/µ in the nonlinear system under
consideration. For λ << 0, τ = 0 and β = 0. For larger
values of λ, τ is increasing and convex in λ. In contrast, β
is increasing and concave in λ, with β = 1 for λ >> 0.

FDO case. Employing the same rationale as before, Fig.
4 and 5 display respectively τ/µ and β as a function of
δ for the three values of γ. Generally, similar to a linear
system, lower δ reduces the average inventory held, but
also reduces the fill rate achieved. In Fig. 4, we observe
that for higher γ, there is a more noticeable gap between
τµ and the slope τµ = δ (which characterizes the linear
system) for small δ. The fill rate, β, is the same as for
the linear backlog version. Despite the difference between
linear and nonlinear orders (see footnote 4), the unit lead
time ensures all backlogs are cleared in the next period.

PDO case. We now look at the lines with markers in Fig.
4 and 5, representing the relation between τ/µ and β with
δ for three different values of η, with γ = 30%. Similar
to the study of variances, we observe the impact of η is
meaningful. That is, not being able to observe the whole
demand causes a large reduction in the fill rate β, even
with relatively large safety stock factors δ. For example,

6 Here, orders define the physical system input, while the satisfied,
rather than the actual, demand defines the physical system output.
The mean order should then be equal to the mean satisfied demand
to avoid lost-sales systems suffering from a long-term inventory drift.

Fig. 4. Average inventory, τ , as a function of δ under FDO
(lines without markers) and PDO (with markers).

Fig. 5. Fill rate, β, as a function of δ under FDO (lines
without markers) and PDO (with markers).

if η = µ, δ ≈ 0.2 is required to achieve 95% fill rate,
while if η = 0.7µ, δ ≈ 0.7 is required. Our PDO analysis
highlights that using inventory configurations derived from
linear models in lost-sales environments with unobserved
lost sales is risky, as this may result in a dramatically
decreased service level.

5. CONCLUSIONS

With most inventory control literature investigating linear
models, the dynamics of nonlinear inventory systems is
not yet well understood. We focused on the non-negative
inventory assumption in order to investigate the behavioral
differences between backlog and lost-sales systems. We
observe the lost-sales condition influences the dynamics of
supply chains. Deriving the expression of the popular BW
and NSAmp metrics, we show the linear approximation
only works under strict circumstances; thus ignoring the
lost-sales condition in such settings may result in a radi-
cally different system behaviour. Remarkably, the impact
of such non-linearity is the same on BW and NSAmp,
depending on a relative safety margin λ. Both order and
inventory variances are mitigated as λ decreases.
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By exploring the trade-off between fill rate and holding
requirements, we noticed that λ can be used to optimize
inventory-related costs. As NSAmp is minimized for λ =
−∞, the above has an important theoretical and practical
implication: the interpretation of NSAmp needs to be
revisited in nonlinear lost-sales settings. While in linear
systems it determines one’s ability to meet a defined fill
rate in a cost-effective manner; constraining the inventory
distorts the NSAmp metric–lowering NSAmp does not
necessarily result in an improved inventory performance.
Our results also show unobserved demand in lost-sales
systems lowers fill rates and increases safety stocks.

We restricted our study to unit lead times and static
forecasting in an OUT policy. Future research could be
directed to understanding the general lead time case
as well as the dynamics induced by other forecasting
techniques and/or replenishment policies. Similarly, we
only considered one source of non-linearity. Investigating
the interactions of the lost-sales condition with other
non-linearities, such as capacity constraints or forbidden
returns, is a important area for future research. Finally,
one might wonder how these non-linear aspects would
affect the dynamics of multi-echelon supply chains.
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