High target utilisation sputtering for the development of advanced materials for magnetic data storage applications

Submitted by Denh Tran to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Engineering, June 2012

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

(signature)...
Abstract

High target utilisation sputtering (HiTUS) is a relatively new thin film deposition technique that generates a high density plasma remotely from the sputter target. This method has been employed firstly to investigate FePt and FePtN thin films for high density data storage media applications and secondly to investigate the production of a GMR/PZT hybrid structure (multi-ferroism) for improvements to magneto-resistive read-sensor devices in hard disk drives and potentially for other novel multi-ferroic applications.

The magnetic and structural properties of FePt and FePtN films, prepared by the HiTUS method, on both silicon and glass substrates have been investigated before and after annealing at temperatures in the range of 300 to 800 °C. It is shown that during thermal annealing there is a degradation in magnetic properties of the FePt films at around 400 °C due to the formation of silicides as the thermal processing promotes the reaction of the film with the substrate. However, in the FePtN samples coercivity values continue to rise with annealing temperatures above 400 °C. XRD analysis confirms that silicide formation is suppressed in films containing nitrogen up to 800 °C. Using the HiTUS technique, there is evidence that L_1_0 ordering of FePt has occurred at annealing temperature of 400 °C with in plane and out of plane coercivities of 7180 Oe and 6300 Oe respectively.

Finally, it is shown that HiTUS is capable of depositing ultra thin multilayer GMR structures onto a variety of substrates; silicon, glass, flexible kapton film and PZT. It is interesting to find that the GMR ratio obtained on kapton film (14.39 %) is almost as high as that on silicon (16.15 %), with much scope for improvement. Multi-ferroic composite films consisting of the GMR multilayer structure $[\text{Co}(8 \, \text{Å})/\text{Cu}(21 \, \text{Å})]_{20}/\text{Co}(12 \, \text{Å})$ on PZT substrates were fabricated and magneto-electric coupling effects explored. It was found that AC voltages applied across the composite GMR/PZT structure produced a marked decrease in the coercivity of the GMR layer. However, DC voltages did not produce any measurable magnetic effects. Careful investigation revealed that the reduction in coercivity observed during AC measurements was, in fact, due to sample heating effects.
Contents

1 Introduction 12

1.1 Overview of thesis ... 14

2 Thin film fabrication 16

2.1 Introduction .. 16
2.2 Vacuum Evaporation .. 18
2.3 Sputtering ... 19
 2.3.1 Glow discharges .. 20
 2.3.2 DC cathode sputtering 22
 2.3.3 Magnetron sputtering 24
2.4 High target utilisation sputtering 27
 2.4.1 System overview ... 29
 2.4.2 Plasma generation and HiTUS process 30
 2.4.3 Sputtering of magnetic materials 39

3 Magnetic materials 45

3.1 Magnetism ... 45
3.2 Classification of magnetic materials 46
3.3 Characteristics of ferromagnetic materials 48
 3.3.1 Ferromagnetic domains 48
 3.3.2 Magnetostatic energy 49
 3.3.3 Magnetic anisotropy 50
 3.3.4 Magnetocrystalline anisotropy 51
 3.3.5 Stress anisotropy .. 53
 3.3.6 Domain walls ... 54
 3.3.7 Shape anisotropy and inter-particle interactions 55
 3.3.8 Hysteresis loops ... 56
4 Magnetic data storage

4.1 The basic hard disk drive .. 58
4.1.1 The recording process .. 58

4.2 Data read out ... 61
4.2.1 Magneto-resistive Effect 61
4.2.2 Giant Magneto-resistive Effect 62
4.2.3 Giant magneto-resistance in multilayers 63
4.2.4 Basic principles of the reading process using GMR spin valves 63

4.3 Exchange coupling .. 65

4.4 Magnetic Tunnel Junctions ... 66

4.5 Data storage media .. 68
4.5.1 Important magnetic properties of magnetic recording media 71
4.5.2 Recording media challenges 72

4.6 High K_u materials ... 74

4.7 Crystal structures .. 76
4.7.1 Miller System .. 78

4.8 $L1_0$ FePt structure and phases 79

4.9 Challenges for FePt .. 81
4.9.1 Controlling the easy axis 81
4.9.2 Reduction of ordering temperature 84
4.9.3 Reduction of grain size ... 85

5 Multi-ferroism ... 86

5.1 Ferroelectricity .. 86

5.2 Ferroelasticity ... 88

5.3 The piezoelectric effect ... 90

5.4 Lead zirconate titanate .. 92

5.5 Combining ferromagnetism and ferroelectricity 94

5.6 Magneto-electric coupling mechanisms 97
5.6.1 Interface charge mediated coupling 97
5.6.2 Exchange bias mediated coupling 97
5.6.3 Strain mediated coupling 98
6 Characterisation techniques

6.1 Vibrating sample magnetometry 100
 6.1.1 Theory of VSM ... 101
6.2 Magneto-optical Kerr effect magnetometry 103
 6.2.1 Magneto-optic effect 103
 6.2.2 Magneto-optic Kerr effect 104
 6.2.3 Operating geometries 105
6.3 X-ray diffractometry .. 107
 6.3.1 Theory .. 107
 6.3.2 Diffraction measurements 110
 6.3.3 Crystallite size .. 111
6.4 Atomic force microscopy .. 112
 6.4.1 Optical lever detection 112
 6.4.2 AFM modes ... 113
6.5 Magneto-resistivity measurements 115

7 Fabrication and characterisation of annealed FePt thin films 118

7.1 Introduction .. 118
7.2 Sputtering with nitrogen .. 119
 7.2.1 Silicon nitride ... 121
7.3 Project Introduction .. 123
7.4 Experimental ... 124
7.5 Results .. 126
 7.5.1 Magnetic properties 126
 7.5.2 X-Ray diffractometry 134
 7.5.3 Electrical properties 143
 7.5.4 Surface morphology 146
 7.5.5 Crystallite size .. 147
 7.5.6 High coercivity FePt 147
7.6 Summary and conclusions ... 153

8 Multi-ferroics for future data read sensors 156

8.1 ME for data storage read out applications 157
8.2 The GMR effect on ferroelectric PZT 159