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Abstract

This thesis is devoted to optical properties of Aharonov-Bohm quantum rings in external

electromagnetic fields. It contains two problems.

The first problem deals with a single-electron Aharonov-Bohm quantum ring pierced by

a magnetic flux and subjected to an in-plane (lateral) electric field. We predict magneto-

oscillations of the ring electric dipole moment. These oscillations are accompanied by

periodic changes in the selection rules for inter-level optical transitions in the ring allow-

ing control of polarization properties of the associated terahertz radiation.

The second problem treats a single-mode microcavity with anembedded Aharonov-Bohm

quantum ring, which is pierced by a magnetic flux and subjected to a lateral electric field.

We show that external electric and magnetic fields provide additional means of control

of the emission spectrum of the system. In particular, when the magnetic flux through

the quantum ring is equal to a half-integer number of the magnetic flux quantum, a small

change in the lateral electric field allows tuning of the energy levels of the quantum ring

into resonance with the microcavity mode, providing an efficient way to control the quan-

tum ring-microcavity coupling strength. Emission spectraof the system are calculated for

several combinations of the applied magnetic and electric fields.
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Chapter 1

Introduction and overview

Quantum Mechanics in Semiconductor Aharonov-Bohm Quan-
tum Rings and Quantum Electrodynamics in Microcavities



1.1 Introduction

In their celebrated paper [4]Aharonov and Bohmdemonstrated that while in classical

mechanics the fundamental equations of motion can always beexpressed in terms of

field alone, in quantum mechanics a canonical formalism is essential and, as a result,

potentials cannot be eliminated from the basic equations. Nanoscale-sized semiconductor

rings, which are now commonly called Aharonov-Bohm quantumrings, are among other

quantum systems used for experimental studies of the renowned discovery. Few-electron

quantum rings with a radial size of10 − 20nm are now easily fabricated. The mean free

path of particles confined in these nanostructures exceeds the ring length, which results in

the self-interference effects experienced by particles. The influence of the field potentials

upon this interference in the regions with vanishing field magnitudes is direct evidence of

the Aharonov-Bohm effect present in quantum rings.

This thesis is devoted to the optical properties of Aharonov-Bohm quantum rings in ex-

ternal electromagnetic fields. The research presented in Chapter 3 was motivated by a

number of works which demonstrated the beneficial influence of an external electric field

on some electronic and optical properties of an Aharonov-Bohm quantum ring. The list

of these works and a brief description of their main results can be found in Section 1.2.

In our work, we study an infinitely-narrow quantum ring subjected to a relatively weak

lateral electric field and pierced by a magnetic flux. We predict magneto-oscillations of

the ring electric dipole moment and examine their electric field and temperature depen-

dence. These oscillations are accompanied by periodic changes for the selection rules

for inter-level optical transitions in the ring. Radiationassociated with these transitions

occurs at terahertz frequencies for quantum rings with the radial size of10 − 20nm. Po-

tential applications of the discovered phenomena are discussed at in Section 3.5 and in

Chapter 5.

Exceptional opportunities to control the optical properties of quantum rings with external
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fields stimulated our further research, which is presented in Chapter 4. In this work, we

study an Aharonov-Bohm quantum ring embedded into a single-mode terahertz micro-

cavity.

Microcavity quantum electrodynamics is an area which keepsattracting a strong inter-

est of both the condensed matter and quantum optics researchcommunities. One of

the reasons of this everlasting interest is the feasibilityof utilizing novel effects orig-

inating from field-matter coupling for developing novel nanodevices such as terahertz

polariton-lasers. In our studies, we calculate the emission spectrum of the coupled quan-

tum ring-microcavity system and show how it can be tuned by variation of the magnetic

field piercing the quantum ring and the lateral electric field. Such control of the emission

spectrum was never possible with quantum dots in microcavities. Advantages arising

of using quantum rings instead of quantum dots as photon emitters in microcavities are

discussed in Section 4.3 and in Chapter 5.

The rest of this thesis is organized as follows. In Section 1.2 and Section 1.3 of this

Chapter we provide a cursory overview of quantum phenomena in quantum rings and

optical microcavities. In Chapter 2 some theoretical basics needed for understanding the

research presented later are introduced. Chapter 3 and Chapter 4 contain original work

as described above. Conclusions and possible extension of this work are included in

Chapter 5. Efforts to make each of the listed Chapters self-sufficient were made, but not

at the price of losing consistency.
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1.2 Quantum mechanics in nanoscale Aharonov-Bohm

quantum rings

Progress in epitaxial techniques in recent decades has resulted in burgeoning develop-

ments in the physics of quantum dots (QDs), i.e., semiconductor-based ‘artificial atoms’.

More recently, a lot of attention has been turned towards non-simply-connected nanos-

tructures, such as quantum rings (QRs), which have been obtained in various semicon-

ductor systems [5–19]. Originally, QRs were fabricated accidently, when optimizing

growth conditions for self-assembled InAs quantum dots on aGaAs substrate, the QD

material was splashed out from the QD centre, forming a volcano-like structure [5–8]

(see Fig. 1.1). Improved and perfected, it has now become a routine procedure for the

Figure 1.1: Capacitance-voltage spectra for three different samples. The two arrows on

the plot correspond to single-electron charging of the two spin states of the so-called

“s-shell” in the dots. The inset displays an atomic force micrograph of self-assembled

quantum rings on the surface of a reference sample. (Reproduced from Ref. [8])

fabrication of QRs with typical radii of10 − 100nm [10–13, 15, 17, 18]. In the literature,

QRs produced as described above are usually referred to as ‘type-I quantum rings’.

Nanostructures with an alternative realization of the ring-shape confinement, the so-called
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‘type-II quantum dots’, were suggested for exploring effects arising from the non-simply-

connectedness of such objects. In these nano-sized structures one carrier is confined inside

the QD and a carrier of an opposite charge is confined in the barrier [9] (see Fig. 1.2). As

Figure 1.2: Sketches of the type-II InP/GaAs QDs: (a) conduction and valence band

profiles, indicating the spatial separation of electrons and holes; (b) top view of the quan-

tum dot plane, indicating the holes confined to a ring around the quantum dot due to the

Coulomb interaction with the electron trapped in the dot. (Reproduced from Ref. [9])

a result, the carrier in the barrier experiences a rotational movement with a radius of

10− 20nm around the QD [14,19,20].

Another possible way of QRs fabrication is based on using theevaporative templating

method [16]. This fabrication procedure includes three stages: introduction of an aque-

ous solution which contains QDs and polystyrene microspheres onto the surface of a glass

substrate, evaporation, and microsphere removal. During the evaporation stage, QDs sur-

round the microspheres and merge, which finally results in the formation of a QR with

the radial dimension of80nm− 1µm.

The fascination in QRs is caused by a wide variety of purely quantum mechanical ef-

fects, which are observed in ring-like nanostructures (fora review see Refs. [21–24]).

The star amongst them is the Aharonov-Bohm effect, in which acharged particle [4, 25]

is affected by a magnetic field away from the particle’s trajectory, resulting in magnetic-
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flux-dependent oscillations of the ring-confined particle energy. The same research group

which discovered type-I QRs was the first to observe the Aharonov-Bohm type oscilla-

tions in these nanostructures [8]. This became the startingpoint for a series of exper-

iments dedicated to the Aharonov-Bohm effect in both type-IQRs [8, 18] and type-II

QDs [9,17,19,26].

There is significant interest in the excitonic Aharonov-Bohm effect in QRs, which, in

principle, should not exist as the exciton is a neutral particle and can not be influenced by

the magnetic field. However, due to the finite size of the exciton, the excitonic Aharonov-

Bohm effect is, in fact, possible. The excitonic Aharonov-Bohm effect was theoretically

studied by a number of authors in both 1D QRs [27–32] and 2D QRs[20, 33–42]. It

was shown that the Aharonov-Bohm type oscillations do existin both 1D and 2D models,

but vanish in QRs with the ring radial size larger than the exciton Bohr radius or with

increased ring width. Recently, it was demonstrated that inthe 2D exactly solvable model

previously used in Refs. [43–45] the magneto-oscillationsin the exciton ground state

survive down to regimes with radius-width ratio less than unity [46].

To reveal the excitonic Aharonov-Bohm effect it was suggested to place the QR in an ex-

ternal electric field, which delocalizes the relative electron-hole motion around the entire

ring [17, 47–49]. It was also shown that in the presence of an in-plane (lateral) electric

field exceeding a particular threshold it is possible to switch the ground state of the QR

exciton from being optically active (bright) to optically inactive (dark) [17,48].
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1.3 Quantum electrodynamics in microcavities: light-matter

coupling

The strong coupling regime requires a microcavity (MC) to sustain an isolated mode.

Otherwise, the excited mode exponentially decays into the other MC modes. There are

three main designs which achieve the goal of zero-dimensional radiation confinement,

described below.

The first design, pillar MCs, are fabricated by etching a stack of conventional Bragg

mirrors. The typical height of pillar MCs is about10µm. The lateral confinement in pillar

MCs is provided by the reflecting interface between the MC walls and the surrounding

media. The chances that the chosen pillar MC contains an emitter (usually, a QD) which

is in the strong coupling regime with the MC mode are comparably small and one has to

check all produced MCs one by one until a cavity with requiredcharacteristics is found.

In Fig. (1.3) we show SEM images of a pillar MC borrowed from Ref. [50].

Another possible realization of a single-mode MC is the photonic crystal cavity. The

original idea of a photonic crystal was developed by Yablonovich [51] and John [52]. It is

based on the same effect which leads to the appearance of bandgaps in semiconductors. A

structure with periodic modulations of permittivity becomes forbidden for several ranges

of wavelength due to the destructive interferences similarto those of Bragg physics. The

first 3D photonic crystal was created by drilling holes in a slab at three different angles,

resulting in a full bandgap in the microwave range [53]. Several years later, a 2D photonic

crystal with a bandgap in the optical spectrum was reported [54]. By introducing a defect

in the photonic crystal periodic structure it is possible tocreate a MC (the so-called ‘Noda

cavity’) - radiation becomes trapped within the defect region [55]. Originally, values of

the Q-factor in photonic crystal MC were quite small (only around400), but now using

some cunning designs of the photonic crystals periodic structure, MC with Q-factors as

large as106 can be fabricated [56]. Some MC designs which promise Q-factors up to
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Figure 1.3: SEM image of a pillar microcavity. The top and bottom mirrors are formed

by distributed Bragg reflectors. The middle layer contains multiple quantum dots (single-

photon emitters). (Reproduced from Ref. [50])

109 were also suggested [57]. The last one, the microdisk MC, confines radiation in

whispering gallery modes. For a review of microdisk cavities one can refer to Ref. [58].

One of phenomena which can be observed in semiconductor MCs in the Purcell ef-

fect [59], in which the time of spontaneous emission is affected by the environment of

an emitter. The ratio of the times of spontaneous emission when the emitter is placed

in two different environments (e.g., MC and vacuum) is usually referred as the Purcell

factor. The first observation of the Purcell effect in semiconductor MCs was done with a

QD embedded into a pillar MC [60]. In this experiment, the time of photon spontaneous

emission was affected with a Purcell factor of5. Several similar observations in differ-

ent systems (e.g., Refs. [61, 62] in pillar MCs, Ref. [63] in microdisk MC, Ref. [64] in

photonic crystal MC) followed this pioneering work. For instance, in the experiment of

Ref. [64] when a QD was placed inside a photonic bandgap of a semiconductor the time

of its spontaneous emission was extended to2.52ns comparing to the time of0.65ns when

the same QD was placed in the bulk semiconductor. The time of spontaneous emission of
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another QD placed in the same photonic bandgap and brought into the resonance with the

cavity was0.21ns.

There has been an impressive development towards a better quantum coupling with QDs

in MC and improved external control. The latest achievements in fabrication techniques

now allow one to position QDs inside MCs with spectacular accuracy. In Fig. 1.4 a

photonic crystal MC with a single QD placed exactly at the maximum of the MC field

intensity is shown. In photonic crystal MCs one can spectrally match the MC mode

Figure 1.4: SEM image of a Noda cavity in a photonic crystal. On the right, calculated

electric field, with maximum in dark is shown. The quantum dotplaced at the maxi-

mum of field intensity with a remarkable accuracy of25nm is pointed with the red cross.

(Reproduce from Ref. [65])

emission with the QD emission by artful etching of the photonic crystal periodic structure.

However, once the structure is fabricated, adjustment of any system parameters becomes

a difficult task.

The strong coupling regime in QDs in semiconductor MCs was first attained in 2004 in

two sequential papers, Ref. [66] in a photonic crystal MC andRef. [67] in a pillar MC.

The strong coupling in microdisc MC was reported a year later[68]. Since then, the

strong coupling regime in semiconductor MCs was reported byseveral research groups,

but the number of experiments that achieved this regime remains limited. In this cursory
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overview, we only provide the list of some of these works - please see Refs. [66–74]. Two

of the listed experiments deserve a more detailed discussion.

In the first work, Refs. [71,72], the authors developed an electronically controlled device

which uses the quantum confined Stark effect [75], in which the external electric field

shifts the QD exciton discrete states towards lower energies, to tune QDs in resonance

with the mode of the photonic crystal MC. This experiment presents a solution with on-

chip control of the strong coupling. But still, due to the weakness of the phenomena,

this way of controlling the QR-MC coupling strength remainssomewhat limited. In the

second work, Ref. [69], the strong coupling regime was observed with a single QD in a

photonic crystal MC. In this experiment the antibunching ofthe Rabi doublet peaks was

proved, which is possibly the first real evidence of full fieldquantization in a coupled

QD-MC system.

A system with a genuine strong coupling should noticeably change its behaviour when

an additional quantum of excitation is added or removed. In an ideal picture, an emitter

embedded in a MC (e.g., QD or QR) can be modelled as a two-levelsystem coupled to the

MC mode. Such a system possesses a Hamiltonian whose eigenstates, hybrid light-matter

states, form the so-called ‘Jaynes-Cummings ladder’. The emission measured outside of

the MC should ideally mirror the structure of this ‘ladder’.Such an emission spectrum,

which clearly reflects transitions between the steps of the ‘Jaynes-Cummings ladder’, has

not yet been observed in microcavities quantum electrodynamics but has been achieved

in atomic and circuit quantum electrodynamics [76,77].

Lastly, we would like to note that to the best of our knowledgethere are no experimental

works exploring the strong coupling phenomena in QRs embedded into MCs. We hope

that our research presented in Chapter 4 will stimulate experiments in this area.
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Chapter 2

Theoretical background

Quantum Description of Light-Matter Coupling and the Dipole
Approximation for Optical Transitions



2.1 Introduction

This Chapter contains a brief review of the background theory which is used in the rest

of this thesis: quantization of the electromagnetic field, the two-level model for a single-

photon emitter, the density matrix operator concept, the equations of motion for the den-

sity matrix operator, and the electric dipole approximation. More details of this content

can be found in various textbooks, such as Refs. [78–85].

2.2 Light-matter coupling in microcavities: quantum de-

scription

2.2.1 Quantization of the electromagnetic field

Field oscillators - harmonic oscillators

In the Coulomb gauge the vector potential of a sourceless classical electromagnetic field

(CEF) satisfies the requirement

divA (r, t) = 0, (2.1)

and the homogeneous wave-equation

1

c2
∂2A (r, t)

∂t2
−∇2A (r, t) = 0, (2.2)

wherer is the position vector andt is the time variable. The field scalar potential can be

chosen to be identically zero, so that the field is fully defined by the vector potential

E (r, t) = − ∂

∂t
A (r, t) , (2.3)

B (r, t) = ∇×A (r, t) . (2.4)
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In what follows we consider a MC of a volumeV without specifying its exact shape. The

quantization procedure, which we introduce later, does notdepend on the MC shape and

is the same in MCs with various shapes (e.g., Refs [86] in planar MCs, Ref. [87] in a

spherical MCs, Ref. [88] in cylindrical MCs). The solution of Eq. (2.2) can be written in

the following form with separated variables

A (r, t) =
√
1/ǫ0

∑

i

Qi (t)Ui (r) , (2.5)

whereQi (t) are the field amplitudes,Ui (r) is the set of field modes, andǫ0 is the vacuum

dielectric permittivity. For the present moment, we assumethat all field modes are linearly

independent and thus can be orthonormalized. We discuss this assumption in more detail

later.

Substitution of Eq. (2.5) into Eq. (2.3) and Eq. (2.4) results in the following expressions

E (r, t) = −
√

1/ǫ0
∑

i

Q̇i (t)Ui (r) , (2.6)

B (r, t) =
√
1/ǫ0

∑

i

Qi (t)∇×Ui (r) . (2.7)

Now let us return to the wave equation and substitute the chosen vector potential, given

by Eq. (2.5), into Eq. (2.2) to obtain

1

c2

[
Q̈i (t) + Ω2

iQi (t)
]
Ui (r)−Qi (t)

[
∇2Ui (r) +

Ω2
i

c2
Ui (r)

]
= 0,

HereΩi are the frequencies of the field modes. Since each of these equations should be

satisfied identically at any time moment and for any positionin the space, the expressions

in square brackets should vanish separately

Q̈i (t) + Ω2
iQi (t) = 0, (2.8)

∇2Ui (r) +
Ω2

i

c2
Ui (r) = 0. (2.9)

One can see that the above equations define CEF time (Eq. (2.8)) and spatial (Eq. (2.9))

dynamics.
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There are two boundary conditions imposed upon the electromagnetic field inside a MC.

Namely, the tangential component of the electric field and the normal component of the

magnetic field should vanish at the MC walls. Together with Eq. (2.1) they lead to the

following set of restricting conditions

Ui (r) |tang = 0 on the MC walls,

curlUi (r) |norm = 0 on the MC walls,

and

divUi (r) = 0 in all MC volume.

It can be shown that the first and the third conditions result in the electric field vanishing

on the MC walls. That, in turn, givesUi (r) |walls = 0.

Once the exact MC shape is given, using the above conditions,one can solve Eq. (2.9).

The obtained solutions are unique for a given MC. Due to this fact, these solutions are

usually called ‘normal modes’ of the MC. Normal modes fully characterize the geometry

of a particular problem.

To be able to proceed with the field quantization we now need todefine new functions,

the so-called ‘normal variables’,ai anda∗i , which reexpress the field amplitudesQi in the

following way

Qi =

√
~

2Ωi
(ai + a∗i ) ,

Q̇i = −i
√

~Ωi

2
(ai − a∗i ) .

The expressions above can be inverted. Carrying out this simple operation one obtains the

following result

ai =

√
1

2~Ωi

(
ΩiQi + iQ̇i

)
,

a∗i =

√
1

2~Ωi

(
ΩiQi − iQ̇i

)
.
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Using the normal variables we can redefine the field vector potential (Eq. (2.5)) and the

electric and magnetic fields (Eqs. (2.6)-(2.7)) as

A (r, t) =
∑

i

√
~

2ǫ0Ωi

(ai + a∗i )Ui (r) ,

E (r, t) = i
∑

i

√
~Ωi

2ǫ0
(ai − a∗i )Ui (r) ,

B (r, t) =
∑

i

√
~

2ǫ0Ωi
(ai + a∗i ) curlUi (r) .

In classical electrodynamics the energy of the electromagnetic field is given by the integral

ECEF =
ǫ0
2

∫

V

[
E2 + c2B2

]
dr.

Performing several transformations it is easy to rewrite this expression in terms of the

field amplitudes and the normal variables

ECEF =
1

2

∑

i

[
Q̇2

i + Ω2
iQ

2
i

]
=
∑

i

~Ωia
∗
i ai. (2.10)

Now we need to recall some basics of the quantum harmonic oscillator (QHO). The

Hamiltonian of one-dimensional QHO with a unit mass reads as[84]

HQHO = ~ω
(
â†â+ 1/2

)
, (2.11)

whereω is the oscillator frequency and̂a†, â are the creation and annihilation operators.

The eigenstates of the QHO can be denoted by|n〉 with n = 0, 1, 2, .., so that

HQHO |n〉 = ~ω (n+ 1/2) |n〉 .

These states form the so-called ‘QHO ladder’. Each of these states can be constructed

from the vacuum state|0〉, which possesses the propertyâ |0〉 = 0, by application of the

creation operatorn-times:

|n〉 =
(
â†
)n |0〉√
n!

.
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One can notice that the QHO Hamiltonian given by Eq. (2.11) isof the same form as the

Eq. (2.10), which defines energy of CEF expressed in terms of normal variables. The only

difference is the term~ω/2 which appears due to the non-commutativity of the creation

and annihilation operators. Later we show that this term should be omitted in order to

normalize energy of the quantized electromagnetic field (QEF) with an infinite number of

modes (e.g., QEF in vacuum).

This similarity allows us to proceed with the intuitively simple quantization of the elec-

tromagnetic field. The trick is to substitute the normal variables with the creation and an-

nihilation operators, which satisfy the commutation relation
[
âi, â

†
j

]
= δij with all other

commutators vanishing. The above commutation relation reflects the linear independence

of the field modes.

Performing this substitution we arrive at the following expressions for the field vector

potential and the electric and magnetic fields

Â =
∑

i

√
~

2ǫ0Ωi

(âi + â∗i )Ui (r) ,

Ê = i
∑

i

√
~Ωi

2ǫ0
(âi − â∗i )Ui (r) ,

B̂ =
∑

i

√
~

2ǫ0Ωi
(âi + â∗i )∇×Ui (r) .

From now on, the electromagnetic field is described with the quantum mechanical oper-

atorsÂ, Ê, andB̂. Since the creation and annihilation operators entering the equations

above do not commute, these operators do not commute as well.One can see that after

quantization the time dynamics of the electromagnetic fieldis hidden in the creation and

annihilation operatorŝai and â†i . Recall that before the quantization procedure the time

dependence was defined by the dynamical behaviour of the fieldamplitudesQi.

To finish with the electromagnetic field quantization we should define the Hilbert space

of the field eigenstates. We employ once again the analogy with the quantum harmonic
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oscillator and define the vacuum state of any of the electromagnetic field modes by the

requirement̂ai |0〉 = 0. Due to the independence of field modes we can construct all other

eigenstates as a tensor product

|n1, n2, . . . , nk, . . . 〉 = |n1〉 ⊗ |n2〉 ⊗ · · · ⊗ |nk〉 ⊗ · · · =
⊗

i

(
â†i

)ni

√
ni!

|0〉 ,

where the indexi numbers the field modes andni are the non-negative integers usually

called ‘mode occupation numbers’.

In some cases the number of the field modes in a MC can be infiniteand the field energy

should be renormalized by omitting the term which is responsible for the vacuum state

energy in the field Hamiltonian [78–83]. In this case the Hamiltonian of the QEF reads

HQEF =
∑

i

~Ωiâ
†
i âi.

In our research presented in this thesis we will consider a MCwhich sustains just one

mode of QEF. In this case the MC field Hamiltonian reads as

HMC = ~ωMC â
†â, (2.12)

whereωMC is the MC mode frequency and we have omitted creation and annihilation

operators indices to simplify notation.

Quantization in a cubic box of volume V

As was discussed above, the set of field modes which is allowedfor a particular problem

is fully defined by the geometry of a given MC. In this Section we study a MC with a

cubic shape. This case is of significant importance as it allows one to introduce the plane

wave representation for the QEF.

The most natural set of orthonormal functions in a cubic MC isthe set of plane waves

given by

fk,α =
ek,α exp (ikr)√

V
,
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wherek is the wave vector and indexα represents the wave polarization. The wave

vectork satisfies the dispersion relationωk = kc with k = |k|. This is a consequence

of the requirement for the plane wave functions to satisfy the Helmholtz equation. The

polarization vectorsek,α are complex numbers normalized to unity.

The next step is to expand the field vector potential introduced in the previous Section in

terms of the cubic MC plane waves

Â =
∑

k,α

√
~

2ǫ0ΩkV

[
ek,αâk,α exp (ikr) + e∗k,αâ

†
k,α exp (−ikr)

]
. (2.13)

In the Coulomb gauge, the field vector potentialÂ has only the transverse component.

When applied to Eq. (2.13) this requirement gives

ek,α · k = e∗k,α · k = 0.

There are only two linearly independent vectors orthogonalto the wave vectork. We refer

to them with the indexα, which, for a givenk, can now take only two values,α = 1, 2.

Real values of the polarization vector represent two linearpolarizations of the electro-

magnetic field while complex values correspond to two different circular polarizations.

Finally, to finish with the plane wave representation, we reexpress the boundary conditions

for the electric and magnetic fields inside a MC in terms of theplane wave functionsfk,α.

Using the boundary conditions imposed upon the field modesUi in the previous Section

we obtain the following periodic boundary conditions forfk,α

fk,α (r+ ljL) = fk,α (r) ,

whereL is the length of the MC sides andlj is a set of unit vectors directed along the MC

edges. From this condition it is easy to retrieve quantization rules fork

k =
2π

L
(Nxlx +Nyly +Nzlz) ,
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whereNx,Ny,Nz are integer numbers which allow an alternative way to numberthe MC

plane waves. One should not confuse this numbering with the modes occupation numbers

introduced earlier.

To conclude this Section we provide expressions for the quantized electromagnetic field

operators, the electromagnetic field Hamiltonian, and Hamiltonian eigenstates in the plane

wave representation

Ê = i
∑

k,α

√
~Ωk

2ǫ0V

[
ek,αâk,α exp (ikr)− e∗k,αâ

†
k,α exp (−ikr)

]
, (2.14)

B̂ = i
∑

k,α

√
~Ωk

2ǫ0V

[
(k× ek,α) âk,α exp (ikr)−

(
k× e∗k,α

)
â†k,α exp (−ikr)

]
, (2.15)

HQEF =
∑

k,α

~Ωkâ
†
k,αâk,α, (2.16)

|{nk,α}〉 = |. . . , nki,αi
, . . . 〉 =

⊗

k,α

(
â†k,α

)nk,α

√
nk,α!

|0〉 . (2.17)

From the Eqs. (2.14)-(2.16) it is clear that the electric andmagnetic field are related by

B̂ =
∑
k,α

(k/Ωk)× Êk,α.

2.2.2 Two-level photon emitter

In Section 2.2.1 we introduced notation in which the QEF is described in the language of

QEF modes occupation numbers. In this notation electric andmagnetic fields are defined

in terms of creation and annihilation operators. In this Section we show how fermionic

states of a single-photon emitter (SPE) can be described in the same language.

A single-photon emitter whose excitations obey fermionic statistics can populate only

a finite number of eigenstates, with a maximum of one excitation per eigenstate. This

restriction is known as the Pauli exclusion principle [84].Considering such a system in
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a general way we denote its eigenstates by|i〉 and the corresponding eigenenergies by

εi. We assume that this set of eigenstates is orthonormal,〈i|j〉 = δi,j , and complete,
∑
i

|i〉 〈i| = 1. The eigenstate’s indexi may consist of several quantum numbers.

Instead of the creation and annihilation operatorsa† anda, the system can be described

with the projector operators

σ†
ij = |j〉 〈i| ,

and

σij = |i〉 〈j| .

These projector operators induce promotion from the statei to the statej and from the

statej to the statei by creating an excitation in the system in the same way as operators

a† anda create and annihilate an excitation in a particular mode of the QEF. The main

difference is that the projector operators can be applied only once as only one excitation

is allowed for each of the emitter eigenstates. Ifεi < εj, the projector operatorσ†
ij acts

as the rising operator while the projector operatorσij acts as the lowering operator, and if

εi > εj, projector operators swap their roles.

Using this notation a single-photon emitter Hamiltonian can be defined in the following

way

HSPE =
∑

j

εj |j〉 〈j| =
∑

j

εjσ
†
ijσij . (2.18)

In most practical cases there is only one mode of the QEF whichinteracts with the single-

photon emitter in a MC. This mode is usually tuned to one of theresonances of the emitter

and has a relatively narrow spectral bandwidth. If the othereigenstates are separated

by energy gaps which are much larger than the energy associated with the MC mode,

all eigenstates other than the two which are brought into theresonance can be safely

disregarded.

From now on, we assume that the field causes transitions between only two particular

eigenstates of the single-photon emitter. We denote these eigenstates by|g〉 (the ground
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state) and|e〉 (the excited state). The energy gap between these two eigenstates we denote

by∆. This approximation to a multi-level quantum emitter we call the ‘two-level emitter’

(2LE) approximation. It should be noted that such a basic model works exceptionally

well for real systems and gives a good insight into the quantum phenomena occurring in

realistic experimental systems (e.g., see Refs. [66–69,76,89,90]).

The Hamiltonian given by Eq. (2.18) in the ‘two-level emitter’ approximation reads as

H2LE = ∆ |e〉 〈e| = ∆σ†σ, (2.19)

where we chose the zero energy level to coincide with the energy of the ground state|g〉
andσ† = (σx + iσy) /2, σ = (σx − iσy) /2 with

σx =


0 1

1 0


 , σy =


0 −i
i 0


 ,

being the Pauli matrices acting in the space of the emitter ground|g〉 and excited|e〉 states.

2.2.3 Field-emitter coupling

Coupling of the QEF to SPE is the key phenomenon which enters all further considera-

tions. Using the analogy with classical electrodynamics wetake the interaction Hamilto-

nian in the dipole approximation as

HINT = −d · E,

whered is the SPE dipole moment operator andE is the QEF electric field operator given

by Eq. (2.14) and taken at the position of the SPE. The interaction Hamiltonian can be

reexpressed in the following way

HINT = −
∑

k,α

d̂ ·
(
E+

k,α + E−
k,α

)
, (2.20)
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where

E+
k,α = i

√
~Ωk

2ǫ0V

[
ek,αak,α exp (ikrSPE)

]
, (2.21)

and

E−
k,α = −i

√
~Ωk

2ǫ0V

[
e∗k,αa

†
k,α exp (−ikrSPE)

]
. (2.22)

Note that in Eqs. (2.21)-(2.22) the field operatorsE+
k,α andE−

k,α are taken at the position of

the SPE. We would like to stress once more that the time dynamics of the QEF is hidden

in the creation and annihilation operators. The SPE electric dipole moment operator is

given by

d =
∑

i,j

dij |i〉 〈j| , (2.23)

wheredij is the dipole moment operator matrix element calculated between two different

states of the SPE

dij = 〈i|d |j〉 = e

∫
ψ∗
i (r) rψj (r) dr.

In many cases the emitter eigenfunctions possess the property of parity and thus the diag-

onal matrix elementsdii = 0. Substituting Eq. (2.23) into Eq. (2.20) we obtain

HINT = −
∑

k,α

∑

i,j

|i〉 〈j|dij ·
(
E+

k,α + E−
k,α

)
.

In order to show that the above Hamiltonian is Hermitian we open the brackets in the

expression above, swap indicesi ↔ j in the second term under summations (since the

second summation is over all possible combinations of(i, j) and the casedii = 0 is

allowed), and use the fact thatdji = d∗
ij. This results in

HINT = −
∑

k,α

∑

i,j

|i〉 〈j|dij · E+
k,α + |j〉 〈i|d∗

ji · E−
k,α. (2.24)

From this equation it can be clearly seen thatHINT is indeed Hermitian. Let us now

transform the interaction Hamiltonian into a form which will be more suitable for further
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calculations. For the case of 2LE from Eq. (2.24) we immediately get the following result

HINT =

−
∑

k,α

(
|e〉 〈g|deg ·E+

k,α + |g〉 〈e|d∗
ge · E−

k,α + |e〉 〈g|d∗
eg · E−

k,α + |g〉 〈e|dge ·E+
k,α

)
.

(2.25)

In the expression above there are four terms under summation. We discuss each of them

separately:

• The first term corresponds to the transition from the ground state|g〉 to the excited

state|e〉. As expected, a photon is absorbed as a result of this transition (due to the

presence of the anihilation operator in the expression forE+
k,α).

• The second term corresponds to the transition from the excited state|e〉 to the

ground state|g〉. As expected, a photon is emitted as a result of this transition

(due to the presence of the creation operator in the expression forE−
k,α).

• The third term corresponds to the transition from the groundstate|g〉 to the excited

state|e〉. We expect a photon to be absorbed. Contrary to this expectation, the pho-

ton is in fact created (due to the presence of the creation operator in the expression

for E−
k,α).

• The forth term corresponds to the transition from the excited state|e〉 to the ground

state|g〉. We expect a photon to be emitted. Contrary to this expectation, the

photon is in fact annihilated (due to the presence of the annihilation operator in the

expression forE+
k,α).

One can see that the third and forth terms are nonresonant, these terms do not satisfy the

energy conservation law. This fact allows one to neglect these terms in the interaction

Hamiltonian given by Eq. (2.24). Another argument which supports this approximation
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comes from time-dependent perturbation theory. It is well-known that non-resonant tran-

sitions have negligibly small probabilities. This approximation is called the ‘rotating wave

approximation’ (the name originates from the form of the interaction Hamiltonian in the

reference frame rotating with the frequency of the electromagnetic field) and is widely

used in quantum electrodynamics problems [78–83]. It can beshown that the neglected

terms lead to small corrections called Bloch-Siegert shifts [91].

Therefore, the final expression for quantized electromagnetic field - two-level emitter

(QEF-2LE) interaction Hamiltonian reads as

HINT = −
∑

k,α

(
|e〉 〈g|deg ·E+

k,α + |g〉 〈e|d∗
ge · E−

k,α

)
, (2.26)

where the electric field operatorsE+
k,α andE−

k,α are given by Eqs.(2.21)-(2.22) from the

previous Section.

2.2.4 Density matrix operator

The most general way to describe a system, whether it is isolated from the external en-

vironment or interacts with it, is based on utilizing the density matrix operator. In what

follows we first introduce the basic concept of the density matrix operator and then show

how using the master equation approach it is possible to calculate a stationary density

matrix of a system in the presence of incoherent pumping and dissipation processes.

Let us consider an ensemble ofN identical emitters in quantum states denoted byi and

with corresponding wave functionsΨi. An average value of an observableO can be

calculated for each of these emitters using corresponding operatorÔ. The statistic average

over the whole ensemble is given by

〈O〉 =

N∑
i=1

〈Ψi| Ô |Ψi〉

N
. (2.27)
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The equation above contains two types of averaging - the quantum mechanical averaging,

which is given by the matrix element, and statistical averaging, which is given by the sum

of the observable value over the ensemble elements divided by the number of elements.

As all emitters in the ensemble are identical, each of them possess the same set of eigen-

statesϕn. Thus, the total emitter’s statesΨi can be expanded in terms of the emitter’s

eigenstatesϕn as follows
∣∣Ψi
〉
=
∑

n

C i
n |ϕn〉 , (2.28)

whereC i
n = 〈ϕn|ψi〉 and

∑
n

|C i
n|

2
= 1. Substituting Eq. (2.28) into Eq. (2.27) one obtains

〈O〉 =
∑

m,n

(∑N
i=1C

i
n
∗
C i

m

N

)
Onm =

∑

m,n

ρnmOnm, (2.29)

where we have introduced a new important entity, the densitymatrixρnm, which is given

by

ρnm =
N∑

i=1

C i
n

∗
C i

m/N = C i
n
∗C i

m. (2.30)

The density matrix contains all statistical information about the considered ensemble of

emitters. It is easy to show that the density matrix is normalized

Tr{ρ̂} =
∑

n

ρnn =

N∑

i=1

∑

n

C i
n
∗
C i

n/N =

N∑

i=1

1/N = 1.

Using the matrix multiplication rule Eq. (2.29) can be written in a shorter and more con-

venient form

〈O〉 =
∑

m,n

ρmnOnm =
∑

n

(
ρ̂Ô
)
nn

= Tr{ρ̂Ô}. (2.31)

For instance, for the identity operator1̂ using Eq. (2.31) one straightforwardly obtains

〈1〉 =
∑

n,m

ρmn 〈ϕn| 1̂ |ϕm〉 =
∑

n,m

ρmnδnm = Tr{ρ̂} = 1.

The representation of the density matrix operator in terms of expansion coefficientsC i
n

is only one of many possible expansions. One can see that the final expression for the
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average value of an observableO is given by the trace of the density matrix operator.

The trace of an operator is independent of the basis chosen inthe Hilbert space. That

means that the density matrix operator can be defined in a moregeneral way. However, it

is convenient to try to define the density matrix operator in terms of system eigenstates,

but independently of any basis in the Hilbert space. One of the possible definitions is as

follows

ρ̂ =
1

N

N∑

i=1

∣∣Ψi
〉 〈

Ψi
∣∣ .

There are no restrictions on the statesΨi, these states can even be non-orthogonal, al-

though it is usually not convenient. It is easy to show that ifthe basis of the eigenstates

ϕn is chosen as the set of system eigenstates, this definition isequivalent to Eq. (2.30).

In order to give a more clear insight into the nature of the density matrix operator and

reexpress it in an even more convenient form we introduce theso-called ‘projector oper-

ators’ (similar to those discussed in Section 2.2.2)

Π̂χ = |χ〉 〈χ| .

When acting on a stateψ these operators give a projection of the stateψ in the direction

of the stateχ. For the expectation value of the projector operatorΠ̂χ in a stateψ one can

easily obtain 〈
Π̂χ

〉
= 〈ψ| Π̂χ |ψ〉 = 〈ψ|χ〉 〈χ|ψ〉 = |〈χ|ψ〉|2 . (2.32)

Eq. (2.32) gives the probability to find the system, which wasoriginally prepared in the

state|ψ〉, in the state|χ〉.

Let us now return to the ensemble of emitters. Since the traceof an operator is indepen-

dent of the basis in which this operator is defined, for convenience we will use the basis of

the emitters eigenstatesϕn. In this case for the expectation value of the projector operator

Π̂χ one obtains
〈
Π̂χ

〉
= Tr{Π̂χρ̂} =

∑

n

〈ϕn|χ〉 〈χ |ρ̂|ϕn〉 =
∑

n

〈χ |ρ̂|ϕn〉 〈ϕn|χ〉 = 〈χ |ρ̂|χ〉 .

(2.33)
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One can see that the probability of finding the ensemble of emitters in the state|χ〉 is

given by a diagonal element of the density matrix operator.

Now it is possible to make some generalization of the densitymatrix operator. Instead of

defining the density matrix operator as a sum over all emitters statesΨi one can to use the

sum over all states accessible to the ensemble elements

ρ̂ =
∑

j

∣∣ψj
〉
P (j)

〈
ψj
∣∣ . (2.34)

HereP (j) are the statistical weights which satisfy the requirement
∑
j

P (j) = 1. A few

paragraphs later, we explain the physical meaning of these coefficients in more details.

Using Eq. (2.33) and Eq. (2.34) we obtain the probability of finding the system in one of

the statesψj which were used for the density matrix operator basis

〈ψα| ρ̂ |ψα〉 =
∑

j

〈
ψα|ψj

〉
P (j)

〈
ψj|ψα

〉
=
∑

j

P (j)
∣∣〈ψα|ψj

〉∣∣2 . (2.35)

If the set of states|ψj〉 is orthonormal, Eq. (2.35) can be simplified in the followingway

〈ψα| ρ̂ |ψα〉 =
∑

j

P (j) δαj = P (α) . (2.36)

From the Eq. (2.36) one can see that the statistical weightP (α), in fact, defines the

population of the state|ψα〉 (i.e., probability that the state is occupied).

If the set|ψj〉 is not orthonormal, it is clearly not possible to obtain any simple relation

between probabilities〈ψα| ρ̂ |ψα〉 and statistical weightsP (α).

2.2.5 Equation of motion for the density matrix

Coherent coupling: the von Neumann equation for the densitymatrix

In Section 2.2.4 it was demonstrated that an average value ofan observableO in an

ensemble of emitters can be calculated using the system density matrix operator̂ρ.
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In the Schrödinger picture, all operators are time-independent and thus the time dynamics

of the average should be hidden in the time dependence of the density matrix operator

〈OS〉t = Tr{ρ̂ (t) ÔS},

where the index ‘S’ refers to the Schrödinger representation. It is clear that in order to

be able to predict time dynamics of the system, an equation ofmotion for the density

matrix operator is needed. Such an equation can be derived from the fact that the physical

contents should not depend on whether the Schrödinger or Heisenberg picture is chosen

for describing the system.

The density matrix operator̂ρ is defined as a sum of projections on a given set of states.

In the Heisenberg picture the states are time-independent,though operators are time-

dependent. In this case one can expect the density matrix operator to be defined by the

initial state of the system. Comparing expressions for the observable averages in the

Schrödinger and Heisenberg quantum mechanics descriptions we obtain

〈OS〉t = Tr{ρ̂ (t) ÔS} = 〈OH (t)〉 = Tr{ρ̂ (t0) ÔH (t)}, (2.37)

where the index “H” refers to the Heisenberg representation. The evolution ofoperators

in the Heisenberg picture can be related to the operators representation in the Schrödinger

picture in the following way

ÔH (t) = U † (t, t0) ÔSU (t, t0) . (2.38)

In Eq. (2.38)U (t, t0) is the evolution operator given by

U (t, t0) = exp
[
−iĤ (t, t0) /~

]
,

whereĤ is the system Hamiltonian. Substitution of Eq. (2.38) into Eq. (2.37) results in

Tr{ρ̂ (t) ÔS} = Tr{ρ̂ (t0)U † (t, t0) ÔSU (t, t0)}.

Using the cycling property of the trace operation the equation above can be rewritten as

Tr{ρ̂ (t) ÔS} = Tr{U (t, t0) ρ̂ (t0)U
† (t, t0) ÔS}. (2.39)
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From Eq. (2.39) one can easily obtain the following expression for the density matrix

operator time evolution

ρ̂ (t) = U (t, t0) ρ̂ (t0)U
† (t, t0) . (2.40)

Differentiation of Eq. (2.40) results in

i~
∂ρ̂ (t)

∂t
=

[
i~
∂U (t, t0)

∂t

]
ρ̂ (t0)U

† (t, t0)− U (t, t0) ρ̂ (t0)

[
−i~∂U

† (t, t0)

∂t

]
. (2.41)

We simplify Eq. (2.41) using the fact that the evolution operator U (t, t0) satisfies the

Schrödinger equation and obtain

i~
∂ρ̂ (t)

∂t
= ĤU (t, t0) ρ̂ (t0)U

† (t, t0)− U (t, t0) ρ̂ (t0) ĤU
† (t, t0) = Ĥρ̂ (t)− ρ̂ (t) Ĥ.

(2.42)

Here Eq. (2.40) was used for the last step of the simplification. This equation of motion

for the density matrix operator (mixed state) is called the ‘von Neumann equation’ [92].

It is an equivalent of the Schrödinger equation for the state vector (a pure state). The von

Neumann equation can be written in a more compact form

∂ρ̂ (t)

∂t
=
i

~

[
ρ̂ (t) , Ĥ

]
. (2.43)

It should be stressed that the von Neumann equation corresponds to the Schrödinger quan-

tum mechanics description, where all operators are time-independent. In the Heisenberg

quantum mechanics description, the density operator does not depend on time and is de-

fined by the initial conditions.

Incoherent processes: the Master Equation with the Linbladterms

A correct description of a system which interacts with the external environment should

include decoherence processes such as dissipation (decay)of particles to an external reser-

voir and income (pump) of particles from an external reservoir. In the case of the coupled

2LE-MC system these particles are either the MC photons, which can be supplied into
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the system, for instance, by the optical pumping, but eventually leak out, or the 2LE ex-

citations, which can experience nonradioactive transitions from the excited to the ground

state.

The leaking out photons not only cause decoherence in the system, but also provide an

external observer with valuable information about the field-matter interaction inside the

MC. This stresses once more the importance of considering the decoherence processes.

In order to account for the described processes the equationof motion for the density

matrix operator should be upgraded from the von Neumann equation [92] to the master

equation in the Lindblad form [93]

∂ρ

∂t
=
i

~
[ρ,HJC ] + LMC

P ρ+ LMC
γ ρ+ L2LE

γ ρ, (2.44)

In Eq. (2.44)HJC = HMC+H2LE+HINT is the full Hamiltonian of the coupled 2LE-MC

system first introduced byJaynes and Cummings[94] and now commonly called ‘Jaynes-

Cummings Hamiltonian’ withHMC given by Eq. (2.12),H2lE given by Eq. (2.19), and

HINT given by Eq. (2.26). The operatorsLMC
P ,LMC

γ , andL2LE
γ are the so-called Lindblad

terms. In the explicit form these three terms are given by

LMC
P ρ =

PMC

2
(2a†ρa− aa†ρ− ρaa† + 2aρa† − a†aρ− ρa†a),

LMC
γ rho =

γMC

2
(2aρa† − a†aρ− ρa†a),

and

L2LE
γ ρ =

γ2LE
2

(2σρσ† − σ†σρ− ρσ†σ),

wherePMC is the intensity of the MC pumping,γMC , γ2LE are the decaying rates of the

MC and 2LE excitation,a†, a are MC creation and annihilation operators (the same that

enterHMC, see Eq. (2.12)), andσ†, σ are 2LE creation and annihilation operators (the

same that enterH2LE , see Eq. (2.19)).

In the scope of this thesis we are not interested in particular pumping and dissipation

mechanisms which are present in various experimental systems. We only note that dif-

ferent pumping and dissipation process were studied by a number of authors, see, e.g.,
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Refs. [95, 96]. For our further considerations only the factthat all such processes are

well-described by the introduced master equation with Lindblad terms is important.

Mainly, there are two different derivations of the Lindbladterms in Eq. (2.44) which

can be found in the literature. The first derivation is based on a microscopic study of

the system coupling to an external reservoir, which is represented as a bath of oscilla-

tors [83,97]. The second procedure utilizes the Monte-Carlo method and quantum jumps.

This approach is preferred in Refs. [78,79] as it is closer tothe quantum information and

measurement theories. In this case, the time evolution of the system is understood as a

sequence of coherent periods of the Hamiltonian dynamics and incoherent events taking

place with some probability. In this picture the microscopic origin of the incoherent pro-

cesses is not considered and they are just assumed to be present with a given probability.

All together, the Lindblad termsLMC
P , LMC

γ , andL2LE
γ can be put in the form of a total

superoperatorL
∂ρ

∂t
=
i

~
[ρ,H ] + Lρ.

Due to the balance between the pump and decay, after some timea steady state is estab-

lished. We denote the density matrix which describes such steady state byρSS. Through-

out this thesis we consider only such values of the parametersPMC , γMC , andγ2LE which

lead to establishing of some steady state with non-divergent populations. We do not dis-

cuss exact experimental conditions which result in a particular combination of these pa-

rameters and only note that all the considered values ofPMC , γMC, andγ2LE correspond

to attainable experimental systems.
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2.3 Calculating optical transitions: electric dipole approx-

imation

Let us consider a system described by the full HamiltonianH (t) = H0 + H ′ (t) where

H0 is the stationary (time-independent) Hamiltonian with eigenfunctions|ψj〉 satisfying

H0 |ψj〉 = εj |ψj〉 ,

with εj = ~ωj, andH ′ (t) is the time-dependant perturbation given by

H ′ (t) = H̃ ′e−iωt,

whereω is the frequency of the exciting radiation. If perturbationis weak, it only causes

transitions between the states|ψj〉. According to the first order time-dependant perturba-

tion theory the rate of transitions between two different states|ψi〉 (initial state) and|ψf〉
(final state) is given by

Tif =
1

~2
|〈ψf |H ′ (t) |ψi〉|2

sin2
[
τ
2
(ωf − ωi − ω)

]

τ
[
1
2
(ωf − ωi − ω)

]2 .

Here τ is the time which corresponds to the broadening of the optical transitions and

which can be defined asτ ≥ 2π/∆ω where∆ω is the linewith of the excitation radiation.

If ∆ω is small,τ becomes large and using

δ(ξ) = lim
x→0

x

π

sin2 (ξ/x)

ξ2

we obtain the rate of transitions between the system eigenstates|ψi〉 and |ψf 〉 given by

Fermi’s golden rule

Tif =
2π

~
|〈ψf |H ′ (t) |ψi〉|2 δ(εf − εi − ~ω). (2.45)

The Hamiltonian operator of an electron interacting with electromagnetic field is given by

H =
1

2m
(p+

q

c
A)2 = H0 +

q

2mc
(A · p+ p ·A) +

1

2m

(q
c

)2
A ·A, (2.46)
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whereH0 = p/2m is the Hamiltonian of the unperturbed system,m is the electron mass,

p is the electron momentum operator, andA is the electromagnetic field vector potential.

The vector potential of a plane electromagnetic wave, hitting the sample at normal inci-

dence, can be chosen as

A = A0cos(Qr − ωt),

whereQ is the field wave vector andr is the position vector. The electric field of the

perturbing radiation is calculated as the time derivative of the vector potential

E(r, t) =
1

c

∂A(r, t)

∂t
.

In the Coulomb gauge the vector potential of a sourceless electromagnetic field in vacuum

satisfied∇ ·A = 0 and therefore

[A,p] = i~∇ ·A = 0.

The ratio of the third to the second term in Eq. (2.46) can be written in the following way

e

c

A

p
=
eE

ωp
≈ e

ωp

(
8πS

c

)1/2

(2.47)

whereE is the magnitude of the electric field associated with the perturbing radiation

andS is the Poynting vector, which gives energy flux density of theelectromagnetic field

(energy per time per unit area). Expression in Eq. (2.47) is much less than unity for the

values ofS up to1012W/m2. For most material such field intensities are higher than the

material damage threshold. Thus, the third term in Eq. (2.46) can be safely neglected

H = H0 +
q

mc
(A · p) + 1

2m

(q
c

)2
A ·A ≈ H0 +

q

mc
(A · p).

The second term in this equation can be easily expressed asH+e
−iωt +H−e

iωt with H±

given by

H± =
q

2mc
e±iQrA0 · p =

q

2mc
|A0| e±iQr (e · p) ,

where we have introduced the radiation polarization vectore and the vectorr should be

taken at the position of the electron.
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To simplify calculations we use the dipole approximation, which assumes thatQr ≪ 1

and thuse±iQr ≈ 1. Within this approximationH± becomes

H± =
q

2mc
|A0| (e · p) . (2.48)

Substituting Eq. (2.48) into Eq. (2.45) (the Fermi’s goldenrule) we get the final expression

for the rate of optical transitions between the states|ψi〉 and|ψf 〉 caused by the perturbing

electromagnetic field

Tif =
2π

~

( q

2mc

)2
|A0|2 |〈ψf | e · p |ψi〉|2 δ(εf − εi − ~ω).
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Part II
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Chapter 3

Quantum rings in classical

electromagnetic fields

Electric Dipole Moment Oscillations and Terahertz Transitions
in Aharonov-Bohm Quantum Rings



3.1 Introduction

Recently a lot of attention has been turned towards non-simply-connected nanostructures,

quantum rings, which have been obtained in various semiconductor systems [8, 9, 16].

The fascination in quantum rings is partially caused by a wide variety of purely quantum

mechanical effects, which are observed in ring-like nanostructures. The star amongst

them is the Aharonov-Bohm effect [4, 25], in which a charged particle is influenced by

a magnetic field away from the particle’s trajectory, resulting in magnetic-flux-dependent

oscillations of the ring-confined particle energy. The oscillations of the single-particle

energy are strongly suppressed by distortion of the ring shape or by applying an in-plane

(lateral) electric field, thus reducing the symmetry of the system [98, 99] (see Fig. 3.1).

However, there are other physical quantities, which might have even more pronounced

Figure 3.1: An Aharonov-Bohm quantum ring pierced by a magnetic flux and subjected

to a lateral electric field.

magneto-oscillations when the symmetry of the ring is reduced. For example, in the

presence of a lateral electric field exceeding a particular threshold it is possible to switch

the ground state of an exciton in an Aharonov-Bohm ring from being optically active

(bright) to optically inactive (dark) [17, 48]. Another hitherto overlooked phenomenon

is the flux-periodic change of an electric dipole moment of a quantum ring, which is the

main subject of this work.
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This Chapter is organized as follows. In Section 3.2 we calculate the single-electron en-

ergy spectrum of an infinitely-narrow Aharonov-Bohm ring subjected to a lateral electric

field. In Section 3.3 we consider magneto-oscillations of the ring’s electric dipole moment

and study their electric field and temperature dependence. Matrix elements of the dipole

moment calculated between different states define selection rules for optical transitions.

For experimentally attainable quantum rings these transitions occur at THz frequencies.

In Section 3.4 we discuss optical selection rules for intraband optical transitions and show

how the polarization properties of the associated THz radiation can be tuned by external

electric and magnetic fields. Section 3.5 contains a brief discussion of the potential appli-

cations of the predicted phenomena.

3.2 Energy spectrum of an infinitely-narrow quantum ring

3.2.1 Magneto-oscillations of the quantum ring eigenenergies

The Hamiltonian of an electron confined in an infinitely narrow QR pierced by magnetic

flux Φ depends only on the polar coordinateϕ

HΦ = − ~
2

2MeR2

∂2

∂ϕ2
− i~e

2π

Φ

MeR2

∂

∂ϕ
+

e2Φ2

8π2MeR2
, (3.1)

whereMe is the electron effective mass andR is the QR radius. The2π-periodic eigen-

functions of the Hamiltonian defined by Eq. (3.1) are

ψm (ϕ) =
eimϕ

√
2π

, (3.2)

and the corresponding eigenvalues are given by

εm(f) =
~
2 (m+ f)2

2MeR2
= (m+ f)2 ε1(0) . (3.3)

Herem = 0,±1,±2... is the angular momentum quantum number, andf = Φ/Φ0 is the

number of flux quanta piercing the QR (Φ0 = h/e). The electron energy spectrum defined

53



-2 -1 0 1 2
0

1

2

3

4

 

 

(a)

-0.5 0.0 0.5

0

1

 

 

(b)

Figure 3.2: (a) The energy spectrum of an infinitely narrow quantum ring pierced by a

magnetic fluxΦ. Each parabola corresponds to a particular value of the electron angular

momentumm. The electron energiesε are plotted versus the number of flux quantaΦ/Φ0.

(b) Expanded view on a smaller energy scale.

by Eq. (3.3) is plotted in Fig. 3.2. It exhibits oscillationsin magnetic flux with the pe-

riod equal toΦ0, known as Aharonov-Bohm oscillations [4,8]. One can see intersections

(degeneracy) of the energy levels with different angular momenta, whenΦ is equal to an

integer number ofΦ0/2. Optical selection rules allow transitions between stateswith an-

gular momentum quantum numbers different by unity (∆m = ±1). For typical nanoscale

rings [8, 9] the energy scale of the inter-level separation,ε1(0) = ~
2/2MeR

2, is in the

THz range. WhenΦ exceedsΦ0/2 the electron possesses a non-zero angular momentum

in the ground state.

54



3.2.2 Energy spectrum in the presence of a lateral electric field

Applying an in-plane electric fieldE removes the circular symmetry of the system. An

additional term corresponding to the electric field appearsin the Hamiltonian [1,2], which

acquires a form

H = HΦ + eER cosϕ. (3.4)

Now the angleϕ is counted from the direction of the electric field (geometryof the prob-

lem is shown in Fig. 3.3). The field mixes electron states withdifferent angular momen-

Figure 3.3: Relative directions of the external electric field E and the electron position

vectorR.

tum, which is not a good quantum number anymore. An eigenfunction of the Hamilto-

nian (3.4), which maintains the2π-periodicity inϕ, can be written as a linear combination

of the wavefunctions (3.2)

Ψn (ϕ) =
∑

m

cnme
imϕ. (3.5)

Substituting the wavefunction (3.5) into the Schrödingerequation with the Hamiltonian

(3.4), multiplying the resulting expression bye−imϕ and integrating with respect toϕ

leads to an infinite system of linear equations for the coefficientscnm

[
(m+ f)2 − λn

]
cnm + β

(
cnm+1 + cnm−1

)
= 0 , (3.6)
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whereβ = eER/2ε1(0) andλn = εn/ε1(0), with εn being thenth eigenvalue of the

Hamiltonian (3.4). It is apparent from Eq. (3.6) that all theproperties of the ring are

periodic in magnetic flux. Therefore, it is sufficient to consider 0 ≤ f ≤ 1/2, whereas

the calculations for other values off can be performed by shiftingm in Eq. (3.6) by

an integer number. Interestingly, exactly the same analysis is applicable to a nanohelix

subjected to an electric field normal to its axis [100–102]. For a helix the role of magnetic

flux is played by the electron momentum along the helical line.

It should be emphasized that we consider a single-electron problem and we are interested

only in a few low-energy states. This treatment is relevant to nanoscale-sized semicon-

ductor QRs or type-II QDs discussed in Refs. [8,9,16,17,23,48] and neglects the many-

body effects which are known to influence Aharonov-Bohm oscillations in mesoscopic

rings [21,22]. The energy levelsεn as well as the coefficientscnm can be found by cutting

off the sum in Eq. (3.5) at a particular value of|m|. The results of the numerical diagonal-

ization of the matrix corresponding to the system of linear equations (3.6), with a cut-off

value of|m| = 11, are plotted in Fig. 3.4. The same cut-off value was chosen inall nu-

merical calculations presented in this Chapter, since a further increase of the matrix size

does not lead to any noticeable change in the results for the three lowest-energy states,

which we are interested in.

In small electric fields,eER ≪ ~
2/2MeR

2, a significant change in the QR energy spec-

trum occurs only for the ground and two lowest excited states, whenΦ is close to an

integer number ofΦ0/2 (the points of degeneracy in the absence of the electric field). The

most prominent change is associated with the linear in electric field splitting between the

ground and first excited states for half-integerf . The less pronounced quadratic in electric

field splitting between the first and second excited states occurs for integerf . These split-

tings can be easily understood with the help of perturbationtheory, as there is a non-zero

matrix element ofeER cosϕ between the ground and the first excited state, whereas the

two excited states are only repelled in the second order via the ground state. It is shown
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Figure 3.4: (a) The energy spectrum of an infinitely narrow quantum rings of radiusR

pierced by a magnetic fluxΦ and subjected to an in-plane electric fieldE = 0.2ε1(0)/eR.

The electron energiesε are plotted versus the number of flux quantaΦ/Φ0. (b) Expanded

view on a smaller energy scale.

in Appendix A, these essential features of the low-energy spectrum are fully captured

by considering small-size matrices, which allow an analytical treatment: a two-by-two

matrix for half-integerf and a three-by-three matrix for integerf .

As one can see from Fig. 3.4, energy oscillations in the ground state are strongly sup-

pressed even foreER = 0.2~2/2MeR
2. This suppression is a major source of difficulty

in spectroscopic detection of Aharonov-Bohm oscillations. However, as we show in the

next two Sections, apart from the ground-state energy thereare other physical quantities,

such as a dipole moment of the QR and polarization propertiesof the inter-level transi-

tions, which have highly-pronounced magneto-oscillations when the symmetry of the ring

is reduced.
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3.3 Magneto-oscillations of the quantum ring electric dipole

moment

In this Section we consider Aharonov-Bohm oscillations of the QR electric dipole mo-

ment. If an electron occupies thenth state of the neutral single-electron QR with a uni-

form positive background, or if a positive charge+e is placed at the center of the QR

(geometry of the problem is shown in Fig. 3.3), the projection of the dipole moment on

the direction of the lateral electric field [1,2] is given by

Pn = eR

∫
|Ψn|2 cosϕdϕ. (3.7)

Substituting the wavefunction (3.5) into Eq. (3.7) yields the following expression forPn

Pn =
eR

2

∑

m

cnm
(
cnm−1 + cnm+1

)
, (3.8)

where the coefficientscnm can be found from the system of linear equations (3.6). In the

absence of an electric field, each of the electron states is characterized by a particular value

of angular momentum. The electron charge density is spread uniformly over the ring and

there is no net dipole moment. The same result is given by Eq. (3.8) - all the products

cnmc
n
m±1 entering Eq. (3.8) vanish for any value ofn resulting in the QR dipole moment

being equal to zero. Let us now consider what happens to the ground state’s dipole mo-

ment in the presence of a weak electric field,eER << ~
2/2MeR

2. ForΦ = 0, the ground

state is a practically purem = 0 state with a tiny admixture ofm 6= 0 wavefunctions.

However, the situation changes drastically near the pointsof degeneracy when the mag-

netic flux through the QR is equal to any odd integer ofΦ0/2. For a half-integer flux,

even an infinitely small field modifies entirely the wavefunction of the ground state. As

shown in Appendix A, whenf = 1/2 the ground state wavefunction angular dependence

is well-described bysin (ϕ/2). Thus, the ground state electron density distribution be-

comes shifted to one side of the ring, in the opposite direction to the applied electric field.

58



Such a shift is energetically favorable and results in the value of the dipole moment be-

ing close toeR. Simultaneously, the first excited state wavefunction angular dependence

becomes well-described bycos (ϕ/2). For the excited state, the electron is localized near

the opposite side of the ring resulting in a dipole moment of the same magnitude as for

the ground state but with the opposite sign.

The electron density distributions in the ground and first excited states, whenΦ = 0 and

Φ = Φ0/2 and the degeneracy is lifted by a weak electric field, is shownin Fig. 3.5.

With changing magnetic flux the ground state density oscillates with a periodΦ0 from
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Figure 3.5: A polar plot of the electron density distribution in a single-electron quantum

ring pierced by the magnetic fluxΦ = 0 (top row) andΦ = Φ0/2 (bottom row) and

subjected to a weak in-plane electric field,E ≪ ε1(0)/eR: (a) and (c) for the electron

ground state; (b) and (d) for the first excited state.
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an unpolarized to a strongly polarized distribution, resulting in the corresponding dipole

moment oscillations. However, the oscillations of the total dipole moment of the QR

should be partially compensated if the first excited state, which carries a dipole moment

opposite to the ground state’s dipole moment for a flux equal to an odd number ofΦ0/2,

is also occupied due to a finite temperature. The effect of temperatureT can be taken into

account by thermal averaging over all states

〈P 〉 =

∑
n

Pn exp (−εn/kBT )
∑
n

exp (−εn/kBT )
. (3.9)

The results of numerical calculations, using Eq. (3.9), forseveral temperature values

are shown in Fig. 3.6. The dipole moment oscillations, whichare well-pronounced for

kBT ≪ eER, become suppressed when the temperature increases.

In this work we consider the limit of weak electric field only.Higher fields,eER >

~
2/2MeR

2, localize the ground state electron near one side of the ringeven in the ab-

sence of a magnetic field and the change of magnetic flux through the QR can no longer

influence the electron density distribution. For all valuesof Φ the ground state wavefunc-

tion consists of a mixture of functions with different angular momenta, ensuring that this

state is always strongly polarized. The suppression of the dipole moment oscillations with

increasing electric field can be seen in Fig. 3.7 where the upper curves, corresponding to

higher electric fields and higher dipole moments, exhibit less pronounced oscillations.

The energy oscillations for several lowest states are knownto be completely suppressed

in strong electric fields [99].

At this point it is instructive to discuss conditions neededfor an experimental observation

of electric dipole moment magneto-oscillations in QRs. A typical radius for experimen-

tally attainable QRs [8, 9, 16] isR ≃ 20 nm. This gives the characteristic energy scale

of the inter-level separationε1(0) ≃ 2meV (corresponding to 0.5THz) for an electron of

effective massMe = 0.05me. For a ring withR = 20 nm, the magnitude of a magnetic

field producing a fluxΦ = Φ0 isB ≃ 3T. Therefore, a further decrease of the QR radius
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Figure 3.6: Magneto-oscillations of the dipole moment of a ring at various temperatures

for E = 0.2ε1(0)/eR. Different curves correspond to different temperatures inthe range

from T = 0.01ε1(0)/kB to T = 0.41ε1(0)/kB with the increment0.1ε1(0)/kB. The

upper curve corresponds toT = 0.01ε1(0)/kB.

would require magnetic fields which are hard to achieve. A typical electric field needed

for pronounced dipole moment oscillations isE = 0.1ε1(0)/eR ≃ 104 V/m, which can

be easily created. By far the most difficult condition to be satisfied is the requirement on

the temperature regime,T < eER/kB. For the discussed electric field and ring radius

this condition becomesT < 2K. In principle such temperatures can be achieved in labo-

ratory experiments and magneto-oscillations can be detected, for example, in capacitance

measurements. However, for practical device applications, such as quantum-ring-based

magnetometery, higher temperatures are desirable. In the next section we consider a pro-

cess, which is less sensitive to the temperature-induced occupation of excited states.
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Figure 3.7: Magneto-oscillations of the dipole moment of a ring at various magnitudes of

the in-plane electric field forT = 0.01ε1(0)/kB. Different curves correspond to different

magnitudes of the electric field in the range fromE = 0.2ε1(0)/eR toE = 1.0ε1(0)/eR

with the increment0.2ε1(0)/eR. The upper curve corresponds toE = 1.0ε1(0)/eR.

3.4 Terahertz transitions and optical anisotropy in quan-

tum rings

In this Section we study the influence of the in-plane electric field on polarization prop-

erties of radiative inter-level transitions in Aharonov-Bohm QRs. We restrict our consid-

eration to linearly-polarized radiation and dipole optical transitions only1. The case of

circular polarization is briefly discussed at the end of the Section.

1For the theoretical background on the electric dipole approximation for optical transitions please see

Section 2.3 of this thesis.
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The transition rateTif between the initial (i) and final (f ) electron states is governed by

the matrix elementPif = 〈f |eP̂|i〉 , whereP̂ is the dipole moment operator ande is the

projection of the radiation polarization vector onto the plane of the QR. For the model of

an infinitely-narrow QR

Pif(θ) = eR

∫
Ψ∗

fΨi cos (θ − ϕ) dϕ, (3.10)

whereθ is the angle between the vectore and the in-plane electric fieldE. The geometry

of the problem is shown in Fig. 3.8.

Figure 3.8: Relative directions of the external electric field E and the projectione of the

THz radiation polarization vector onto the quantum ring’s plane.

Substituting the electron wavefunctionsΨi andΨf , given by Eq. (3.5), into Eq. (3.10)

yields

Tif ∼ P 2
if (θ) = P−

if
2
+ P+

if
2 − 2P−

ifP
+
if cos 2θ, (3.11)

where

P−
if =

eR

2

∣∣∣∣∣
∑

m

cfmc
i
m−1

∣∣∣∣∣ (3.12)

and

P+
if =

eR

2

∣∣∣∣∣
∑

m

cfmc
i
m+1

∣∣∣∣∣ . (3.13)
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The double angle2θ entering Eq. (3.11) ensures that the transition rate does not depend

on the sign ofe.

Let us consider transitions between the ground state and thefirst excited state of the

Aharonov-Bohm QR in the limit of a weak in-plane electric field, eER ≪ ~
2/2MeR

2.

Away from the points of degeneracy the ground and the first excited states are character-

ized by a particular value ofm and eitherP−
if orP+

if given by Eqs. (3.12)-(3.13) vanishes.

As a result, the angular dependence in Eq. (3.11) disappearsand the transitions have no

linear polarization. The picture changes drastically whenΦ is equal to an integer number

of Φ0/2. ThenP−
if = P+

if and therefore the rate of transitions induced by the radiation

polarized parallel to the direction of the in-plane electric field (θ = 0) is equal to zero,

Tif = T‖ = 0. SimultaneouslyT⊥, the rate of transitions induced by the light polarized

perpendicular to the direction of the in-plane electric field (θ = π/2), reaches its maxi-

mum possible value. This leads to the strong optical anisotropy of the system. The results

of the calculations for the whole range ofΦ are shown in Fig. 3.9. Very sharp peaks at

Φ equal to an integer number ofΦ0 are the result of splitting between the first and sec-

ond excited states, which were degenerate with energyε1(0) in the absence of an external

electric field (see Fig. 3.4). This splitting occurs in the second order ineER and the

spectacular sharpness of the peaks is due to the very fast change in the electron first and

second excited states wavefunctions when one moves away from the point of degeneracy

(for details see Appendix A). The optical transitions between the electron ground and sec-

ond excited states are also linearly polarized, but withθ = 0, so that the polarization of

these transitions is normal to the polarization of transitions between the electron ground

and first excited states. Because these two peaks are very closely separated forΦ = 0, the

polarization effects are strongly suppressed if the finite linewidth of the radiation is taken

into account.

In the case of circularly polarized light, the degree of polarization oscillates as well. Inter-

level transitions between the ‘pure’ states, characterized by the definite angular momen-
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Figure 3.9: Magneto-oscillations of the degree of polarization for the transitions between

the ground state and the first excited state. HereT‖ andT⊥ correspond to the intensities

of transitions polarized parallel (e ‖ E) and perpendicular (e ⊥ E) to the direction of the

in-plane electric field, respectively.

tum values differing by one, are either right-hand or left-hand polarized. However, one

can easily see that transitions involving the states, whichare strongly ‘mixed’ when the

flux is an integer number ofΦ0/2, have the same probabilities for both circular polariza-

tions. Thus, the magnetic-field-induced optical chiralityof QRs oscillates with the flux.

The total probabilities of the inter-level transitions indeed depend on the populations

of the states involved. However, the discussed oscillations of the degree of polariza-

tion do not depend on temperature as the selection rules for the optical transitions are

temperature-independent. This effect allows Aharonov-Bohm rings to be used as room-

temperature polarization-sensitive detectors of THz radiation or optical magnetometers.
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3.5 Results and discussion

It is demonstrated that a lateral electric field, which is known to suppress Aharonov-Bohm

oscillations in the ground state energy spectrum of a QR, results in strong oscillations of

other physical characteristics of the system. Namely, the electric-field-induced dipole

moment oscillates as a function of the magnetic flux piercingthe QR, with pronounced

maxima when the flux is equal to an odd number of one half of the flux quantum. This

effect is caused by lifting the degeneracy of states with different angular momentum by

arbitrary small electric fields. It should be emphasized that the discussed effect is not

an artifice of the infinitely-narrow ring model used in the calculations, but it persists in

finite-width rings in a uniform magnetic field. Indeed, the essential feature required for

this effect is the degeneracy of the states with the angular momenta differing by one

at certain magnetic field values, which is known to take placefor finite-width rings as

well [43–46,103].

Future observation of the dipole moment magneto-oscillations would require careful tai-

loring of the QR parameters and experiment conditions. For example, the size of the QR

should not exceed the electron mean free path but should be large enough so that, for

experimentally attainable magnetic fields, the flux throughthe ring is near the flux quan-

tum. The electric field should not be too large to avoid polarizing the QR strongly in the

absence of a magnetic field, but it should be large enough to achieve a splitting between

the ground and first excited states exceedingkBT . Estimates presented in this Chapter

show that all these conditions can be met in existing QR systems. However, the temper-

ature constraint constitutes the major obstacle for any potential applications outside the

low-temperature laboratory.

The temperature restrictions are less essential for another predicted effect - giant magneto-

oscillations of the polarization degree of radiation associated with inter-level transitions

in Aharonov-Bohm QRs. Notably, these transitions for the QRs satisfying the remain-
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ing constraints should occur at THz frequencies. Creating reliable, portable and tun-

able sources of THz radiation is one of the most formidable problems of contempo-

rary applied physics. The unique position of the THz range inbetween the frequencies

covered by existing electronic or optical mass-produced devices results in an unprece-

dented variety of ideas aiming to bridge the so-called ‘THz gap’. For example, the pro-

posed methods of down-conversion of optical excitation range from creating ultra-fast sat-

urable absorbers [104] to utilizing magnetic-field-induced energy gap in metallic carbon

nanotubes [105–108] to recent proposals of exciting THz transitions between exciton-

polariton branches in semiconductor microcavities [109–111]. Arguably, the use of QRs

for THz generation and detection has its merits, since theirelectronic properties can be

easily tuned by external fields. The following scheme for using Aharonov-Bohm QRs as

tuneable THz emitters can be proposed. Inversion of population in semiconductor QRs or

type II QDs can be created by optical excitation across the semiconductor gap. Angular

momentum and spin conservation rules do not forbid the creation of an electron in the

first excited state as long as the total selection rules for the whole system, consisting of an

electron-hole pair and a photon causing this transition, are satisfied. Terahertz radiation

will be emitted when the electron undergoes a transition from the excited to the ground

state of the QR. As was shown in the previous Sections both thefrequency and polar-

ization properties of this transition can be controlled by external magnetic and electric

fields.

Other potential applications of the discussed effects are in the burgeoning areas of quan-

tum computing and cryptography. The discussed mixing of thetwo states, which are de-

generate in the absence of electric field, is completely controlled by the angle between the

in-plane field and a fixed axis. This brings the potential possibility for creating nanoring-

based qubits, which do not require weak spin-orbit couplingbetween the electric field

and electron spin. Arrays of the Aharonov-Bohm QRs can also be used for polarization

sensitive single-photon detection, which is essential forquantum cryptography.
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Chapter 4

Quantum rings in quantized

electromagnetic fields

Aharonov-Bohm Quantum Rings Embedded Into High-Quality
Terahertz Microcavities



4.1 Introduction

Progress in nanolithography and epitaxial techniques has resulted in burgeoning develop-

ments in the fabrication of micro-scale optical resonators, known as optical microcavities.

If the quality factor of a cavity is sufficiently large, the formation of hybrid light-matter ex-

citations occurs. Being first observed two decades ago [112], the strong coupling regime

is now routinely achieved in different kinds of microcavities [113]. From the point of

view of fundamental physics, this regime is interesting forinvestigation of various collec-

tive phenomena in condensed matter systems such as the high-temperature Bose-Einstein

condensation (BEC) [114, 115] and superfluidity [116]. Fromthe viewpoint of appli-

cations it opens a way towards to the realization of optoelectronic devices of the next

generation [117]: room-temperature polariton lasers [118], polarization-controlled opti-

cal gates, [119], effective sources of THz radiation [109,111,120], and others.

Several applications of the strong coupling regime were also proposed for quantum in-

formation processing [121–123]. In this case one should be able to tune the number of

emitted photons in a controllable way. This is hard to achieve in planar microcavities,

where the number of elementary excitations is macroscopically large, but is possible in

microcavities containing single quantum dots, where the quantum dot exciton can be cou-

pled to a confined electromagnetic mode provided by a micropillar (etched planar cav-

ity) [67], a defect of the photonic crystal [66], or a whispering gallery mode [68, 124].

That is why the strongly coupled systems based on quantum dots have attracted particular

attention recently. In the strong coupling regime the system possesses a rich multiplet

structure, which maps transitions between quantized dressed states of the light-matter

coupling Hamiltonian [66–69,90,125–128].

In this Chapter we examine a single-mode THz microcavity [129–132] with an embedded

Aharonov-Bohm quantum ring, which is pierced by a magnetic flux and subjected to a

lateral electric field. We restrict our analysis to linearlypolarized microcavity radiation
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Figure 4.1: An Aharonov-Bohm quantum ring embedded into a single-mode THz micro-

cavity.

only. The geometry of the system is shown in Fig. 4.1. The emission properties of such

a system under continuous incoherent pumping are studied theoretically. We calculate

the luminescence spectrum of the system using the master equation techniques for several

combinations of the applied external electric and magneticfields. We demonstrate that

the resonance which is best for exploring quantum features of the system [126] can be

achieved by means of tuning the magnitude of the lateral electric field. An additional

degree of control can be achieved by changing the angle between the polarization plane of

the optical pump and the lateral electric field. As we show, the quantum ring-microcavity

coupling strength depends strongly on the above mentioned angle.

4.2 Quantum rings in high-quality terahertz microcavities

4.2.1 Aharonov-Bohm quantum rings as two-level photon emitters

In this Section we briefly revise the energy spectrum and optical properties of a single-

electron Aharonov-Bohm QR pierced by a magnetic fluxΦ and subjected to a lateral

electric fieldE, which were studied in Chapter 3. We then show how the single-electron

Aharonov-Bohm QR can be utilized as a two-level, single-photon emitter.
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In the absence of the external electric field the eigenfunctions of an infinitely narrow

Aharonov-Bohm QR of a radiusR are given by

ψm (ϕ) = eimϕ/
√
2π, (4.1)

whereϕ is the polar angle coordinate andm = 0,±1,±2... is the angular momentum

quantum number. The corresponding eigenvalues are defined by

εm (f) = εQR (m+ f)2 ,

whereεQR = ~
2/2MeR

2 is the energy scale of the interlevel separation in the QR,Me is

the electron effective mass andf = Φ/Φ0 is the number of flux quanta piercing the QR

(Φ0 = h/e). For experimentally attainable QRs,εQR corresponds to the THz frequency

range.

When the lateral electric field is applied, the modified electron eigenfunctions can be

expressed as a linear combination of the unperturbed wave functions (4.1):

Ψn (ϕ) =
∑

m

cnme
imϕ. (4.2)

Substituting the wave function (4.2) into the Schrödingerequation with the Hamiltonian

containing a term which describes the presence of the lateral electric field, multiplying

the resulting expression bye−imϕ, and integrating with respect to the angleϕ results in an

infinite system of linear equations for the coefficientscnm (for details see Section 3.2)

[
(m+ f)2 − λn

]
cnm + β

(
cnm+1 + cnm−1

)
= 0 , (4.3)

whereβ = eER/2εQR is the normalized strength of the lateral electric field andλn is an

energy eigenvalue normalized byεQR. It can be seen from the system of equations (4.3)

that all the QR quantities are periodic in the magnetic fluxΦ with the period equal toΦ0.

There is also an apparent symmetry with respect to the changeof the sign ofΦ. Therefore,

in what follows we will consider only the case of0 ≤ Φ ≤ Φ0/2.
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It it shown in Appendix A that in the limit of a weak in-plane electric field,eER ≪ εQR,

all essential features of the first three states of the QR are fully captured by the following

3× 3 system of linear equations:



(f + 1)2 β 0

β f 2 β

0 β (f − 1)2







cn+1

cn0

cn−1


 = λn




cn+1

cn0

cn−1


 . (4.4)

In what follows we will be interested in the transitions between the ground and the first

excited states in the QR only. However, in order to obtain accurate ground and first excited

states eigenenergies and eigenfunctions all three listed states should be considered. The

system of linear equations (4.4) can be reduced to a cubic equation forλn, which yields

the following eigenvaluesλ1 < λ2 < λ3:

λ1 = −2/3
√
1 + 12f 2 + 6β2 cos (α/3) + f 2 + 2/3, (4.5)

λ2 = −2/3
√

1 + 12f 2 + 6β2 cos (α/3− 2π/3) + f 2 + 2/3, (4.6)

λ3 = −2/3
√

1 + 12f 2 + 6β2 cos (α/3 + 2π/3) + f 2 + 2/3, (4.7)

where

cosα =
1− 36f 2 + 9β2

(1 + 12f 2 + 6β2)3/2
.

The set of corresponding eigenvectors (non-normalized) isgiven by substituting appro-

priate values ofλn into



cn+1

cn0

cn−1


 =




[
λn − (f − 1)2

]
(λn − f 2)− β2

[
λn − (f − 1)2

]
β

β2


 . (4.8)

The energy spectrum for the electron ground and the first excited states defined by Eq. (4.5)

and Eq. (4.6) respectively forβ = 0.1 and0 ≤ f ≤ 1/2 is plotted in Fig. 4.2. Notably,

the3× 3 system of equations (4.4) provides a very good accuracy for the ground and the

first excited states whenβ . 1 (i.e. eER . εQR). A numerical check shows that the
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Figure 4.2: The normalized energy spectrum for the electronground and the first excited

states in the quantum ring as a function of dimensionless parameterf for β = 0.1.

further increase in the system of linear equations, Eq. (4.3), does not provide any notice-

able change in the results. A similar analysis is applicableto a nanohelix with an electric

field applied normal to its axis. For a helix, the role of magnetic flux in the absence of a

magnetic field is played by the electron momentum along the helical line [100–102,133].

The QR can be represented as a two-level system with the energy gap between the ground

state|g〉 (n = 1) and the excited state|e〉 (n = 2) denoted by∆. From Eqs. (4.5)–(4.6), it

is clear that∆ depends on both the external electric fieldE, applied in the QR plane, and

the magnetic fluxΦ, piercing the QR. In particular, whenΦ = 0 (Φ = Φ0/2), one obtains

∆/εQR = 1 + 2β2 (∆/εQR = 2β).

Another quantity, which is needed for further calculations, is the product of the light

polarization vectore and the matrix elementd =
〈
e
∣∣∣d̂
∣∣∣ g
〉

=
〈
g
∣∣∣d̂
∣∣∣ e
〉

of the dipole

moment calculated between the ground state|g〉 and the excited state|e〉. For linearly

polarized light this product is given by the following integral:

d · e = eR

∫ 2π

0

ΨeΨg cos (θ − ϕ) dϕ, (4.9)

whereΨg,Ψe are the ground and the first excited state wave functions defined by Eq. (4.2)

andθ is the angle betweene andE.
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Substituting eigenfunctionsΨg, Ψe given by Eq. (4.2) into Eq. (4.9) and performing the

integration with respect to the angleϕ we obtain

d · e =
(
d2− + d2+ − 2d−d+ cos 2θ

)1/2
, (4.10)

where

d− =
eR

2

∣∣ce0cg−1 + ce+1c
g
0

∣∣ , (4.11)

and

d+ =
eR

2

∣∣ce−1c
g
0 + ce0c

g
+1

∣∣ . (4.12)

Later in this work we use Eqs. (4.10)–(4.12) with coefficientsce, cg obtained from Eq. (4.8)

to calculate the QR-MC coupling strength. A detailed analysis of Eq. (4.8) and Eqs. (4.11)–

(4.12) shows that a noticeableθ-dependence in Eq. (4.10) occurs only whenf = 0 or

f = 1/2, asd− vanishes otherwise.

4.2.2 The Jaynes-Cummings Hamiltonian and the Master Equation

The full Hamiltonian describing the system of a QR coupled toa single-mode THz MC is

the Jaynes-Cummings [134]1

HJC = ∆σ†σ + ~ωMCa
†a+ G

(
σ†a + σa†

)
, (4.13)

whereωMC is the MC eigenfrequency,G is the QR-MC coupling constant,a† is the MC

photon creation operator,a is the MC photon annihilation operator,σ† = (σx + iσy)/2

is the QR electron creation operator,σ = (σx − iσy)/2 is the QR electron annihilation

operator, andσx, σy are the Pauli matrices acting in the space of|g〉 and|e〉 states. The

frequency of the MC mode and the frequency of the transition between the QR states are

1For more details on MC-2LE interaction Hamiltonian, i.e. the Jaynes-Cummings Hamiltonian, please

refer to Sections 2.2.1-2.2.3 of this thesis.
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assumed to be close enough to allow the use of the rotating wave approximation. [135,

136] If the MC mode is linearly polarized,G is given by

G = − (d · e)
√
~ωMC/2ǫ0V , (4.14)

whered · e is given by Eq. (4.10),ǫ0 is the vacuum dielectric permittivity,V is the

quantization volume, which can be estimated asV ≈ (λMC/2)
3, andλMC = 2πc/ωMC

is the MC characteristic wavelength. When the magnetic flux piercing the QR is equal

to an integer number of half-flux quanta,G strongly depends on the angleθ between the

projection of the radiation polarization vector onto the QRplane and the applied lateral

electric field.

The eigenvalues of the Hamiltonian (4.13) are the same as in the case of a single-mode

MC with embedded QD, whose excitations obey fermionic statistics [126,135].

E±
N = ~ωMC (N − 1/2) + ∆/2±

√
(~ωMC −∆)2 /4 +NG2, (4.15)

whereN is the total number of electron-photon excitations in the system, i.e. the number

of photons inside the MC if the electron is in the ground state. The corresponding eigen-

functionsX±
N can be expressed as a linear combination of the combined electron-photon

states|g,N〉 = |g〉⊗|N〉 and|e,N − 1〉 = |e〉⊗|N − 1〉, which define both the QR state

and the MC photon occupation number. Using this basis we solve a2×2 system of linear

equations which corresponds to the Hamiltonian (4.13) and obtain

X±
N = K±

g,N |g,N〉+K±
e,N |e,N − 1〉 , (4.16)

where

K±
g,N =

√
NG√(

E±
N −N~ωMC

)2
+NG2

, (4.17)

and

K±
e,N =

E±
N −N~ωMC√(

E±
N −N~ωMC

)2
+N~G2

. (4.18)
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The main advantage of using a QR instead of a QD is the opportunity to control both the

energy gap∆ between the first two states of the QR and the QR-MC coupling constantG
by changing the external electric and magnetic fields. Thesefields can be used to achieve

the resonant condition∆ = ~ωMC and provide easy means of performing a transition

from the strong to the weak coupling regime within the same system [126].

The eigenvaluesE±
N defined by Eq. (4.15) form the so-called “Jaynes-Cummings ladder”

and the emission spectrum of the system, which is observed outside of the MC, is defined

by optical transitions between the states with total numberof electron-photon excitations

N different by unity (see Fig. 4.3). Inside a non-ideal MC, a photon has a limited lifetime

Figure 4.3: Schematic diagram of the energy and emission spectra of the coupled QR-

MC system in the resonant case∆ = ~ωMC : (a) the “Jaynes-Cummings ladder”; (b) the

Mollow triplet; (c) the Rabi doublet.

and when the photon leaks out, one can measure its frequency.This provides a direct

access to the quantized coupled electron-photon states of the system.

In order to describe any realistic experiment measuring theQR-MC emission spectrum

one should introduce pump and decay in the system. We model the system dynamics

under incoherent MC pumping and account for dissipation processes using the master
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equation approach for the full density matrix of the systemρ (see, e.g., Refs. [135,136])2.

The master equation reads

∂ρ

∂t
=
i

~
[ρ,HJC ] + LMC

P ρ+ LMC
γ ρ+ LQR

γ ρ, (4.19)

whereLMC
P , LMC

γ are the Lindblad terms, which account for the MC pump and decay,

and the Lindblad termLQR
γ describes non-radiative transitions of the QR electron from

the excited state|e〉 to the ground state|g〉. In the explicit form these three terms are given

by

LMC
P ρ =

PMC

2
(2a†ρa− aa†ρ− ρaa† + 2aρa† − a†aρ− ρa†a),

LMC
γ ρ =

γMC

2
(2aρa† − a†aρ− ρa†a),

LQR
γ ρ =

γQR

2
(2σρσ† − σ†σρ− ρσ†σ),

wherePMC is the intensity of the incoherent MC pumping andγMC , γQR are the lifetimes

of the photonic and the QR excitations respectively. Due to the balance between the pump

and the decay, after some time a steady state is established.We denote the corresponding

density matrix asρSS. The steady state density matrix can be found by solving numeri-

cally Eq. (4.19) with all the matrices truncated. When performing the truncation, all the

states which can be excited as a result of the pumping should be accounted for.

4.2.3 Emission spectrum of the system under incoherent pumping

In the presence of the pump and the decay and after establishing an equilibrium, the

system is in a mixed state, which is characterized by the fulldensity matrixρSS. If ρSS

is written in the basis of eigenfunctions (4.16), the density matrix diagonal elementρSSII

gives the probability of the system to be in theIth state. At low pumping,PMC ≪ G,

and in the case of a high-Q system,γMC, γQR ≪ G, which is the best regime to elucidate

2For more details on the master equation approach for the fulldensity matrix of a general MC-2LE

system please see Sections 2.2.4-2.2.5 of this thesis.
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quantum coupling effects [126], the emission spectrum can be calculated using the so-

called manifold method, which has been proved to provide qualitatively accurate results

avoiding heavy numerical calculations (see, e.g., Refs. [126, 128], and [137]). In this

approximation the QR and MC emission spectra are given by

SQR (ω) ≈ 1

π

∑

I,F

∣∣∣MQR
IF

∣∣∣
2

ρSSII ΓIF

(~ΩIF − ~ω)2 + Γ2
IF

, (4.20)

SMC (ω) ≈ 1

π

∑

I,F

∣∣MMC
IF

∣∣2 ρSSII ΓIF

(~ΩIF − ~ω)2 + Γ2
IF

, (4.21)

where
∣∣MQR

IF

∣∣2 = |〈XF , |σ |XI〉|2,
∣∣MMC

IF

∣∣2 = |〈XF |a| XI〉|2, ~ΩIF = EI − EF , Xi and

Xf are the QR-MC initial and final states eigenfunctions definedby Eq. (4.16),Ei and

Ef are the QR-MC initial and final states eigenenergies defined by Eq. (4.15), andΓIF is

given by

ΓIF =
γQR

2

∑

J

(∣∣MQR
JI

∣∣2 +
∣∣MQR

JF

∣∣2
)
+
γMC

2

∑

J

(∣∣MMC
JI

∣∣2 +
∣∣MMC

JF

∣∣2
)

+
PMC

2

∑

J

(∣∣MMC
JI

∣∣2 +
∣∣MMC

JF

∣∣2 +
∣∣MMC

IJ

∣∣2 +
∣∣MMC

FJ

∣∣2
)

.

In Eqs. (4.20)-(4.21)SQR andSMC correspond to photons of two different origins, which

can be detected outside of the MC by an external observer: thedirect emission of the QR

and the leaking MC photons. In the first case a photon outside of the MC is created as a

result of the QR electron transition from the excited state|e〉 to the ground state|g〉 and

in the second case the photon is created due to annihilation of a MC photon. Substituting

X±
N from Eq. (4.16) into the expressions for

∣∣MIF

∣∣2 yields

∣∣MQR
IF

∣∣2 =
∣∣K±

g,NF
K±

e,NI

∣∣2 δNF ,NI−1,

∣∣MMC
IF

∣∣2 =
∣∣∣
√
NIK

±
g,NF

K±
g,NI

+
√
NFK

±
e,NF

K±
e,NI

∣∣∣
2

δNF ,NI−1.

It should be noted that only the transitions between the coupled electron-photon states

with the total number of excitations differing by unity are allowed. In the resonant case
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∆ = ωMC , for transitions from theN th state to the(N − 1)th state

∣∣∣MQR
±→∓

∣∣∣
2

= 1/4, (4.22)

∣∣∣MQR
±→±

∣∣∣
2

= 1/4, (4.23)

and
∣∣MMC

±→∓

∣∣2 =
∣∣∣
√
N −

√
N − 1

∣∣∣
2

/4, (4.24)

∣∣MMC
±→±

∣∣2 =
∣∣∣
√
N +

√
N − 1

∣∣∣
2

/4, (4.25)

with corresponding eigenfrequencies given by

Ω±→∓ = ωMC ± G
(√

N +
√
N − 1

)
/~, (4.26)

Ω±→± = ωMC ± G
(√

N −
√
N − 1

)
/~. (4.27)

One can see that the observed emission spectrum consists of two symmetric inner peaks at

frequencies (4.27) and two symmetric outer peaks at frequencies (4.26). Together, these

peaks form the so-called “Jaynes-Cummings fork”. From Eqs.(4.22)–(4.25) it follows

that when the total number of electron-photon excitations in the initial stateN = 1, both

SQR andSMC have a shape of the Rabi doublet (see Fig. 4.3 (c)), and in the case of large

excitation numbers,N ≫ 1, SQR is in the form of the Mollow triplet (see Fig. 4.3 (b))

while SMC collapses into a single lasing peak.
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4.3 Results and discussion

In this section we use the formalism which was developed in the previous Sections to

calculate emission spectra of the QR-MC system in the presence of a magnetic fluxΦ

piercing the QR and a lateral electric fieldE. The QR-MC system has apparent advan-

tages for exploring the quantum nature of light-matter coupling in nanostructured systems

compared to the well-studied QD-based setup. Namely, the parameters of the system can

be more easily tuned by external fields. Between all possiblecombinations of the applied

magnetic and electric fields there are two cases of considerable interest: (a)Φ = 0, e ⊥ E

and (b)Φ = Φ0/2, e ⊥ E. In both cases, the energy gap between the QR states is tunable

by the strength of the lateral electric field. From Eqs. (4.5)–(4.6) we get∆/εQR = 1−2β2

(∆/εQR = 2β) for Φ = 0 (Φ = Φ0/2). Thus, the energy gap∆ can be easily adjusted to

coincide with the energy of the MC mode~ωMC . From Eqs. (4.10)–(4.12) and Eq. (4.14)

one can see that whenΦ = 0 or Φ = Φ0/2 the QR-MC coupling constantG strongly de-

pends on the angleθ between the direction of the external electric field and the projection

of the MC mode polarization vector onto the QR plane. Ife ⊥ E, the coupling con-

stantG reaches its maximum possible value, and ife ‖ E, the MC mode and the QR are

completely uncoupled. By changing the direction of the lateral electric field one acquires

additional means of control of the emission spectrum of the system.

The quantum structure of the Jaynes-Cummings states discussed in the previous Section

is known to be observed only in the low dissipation regime [126]. Therefore, it is natural

to consider a QR embedded into a high-Q THz MC under a weak incoherent pumping.

Similar to Ref. [126], we choose a MC with the decay rateγMC/G = 0.1 and a QR with

the decay rateγQR/G = 0.01. The QR decay rate is chosen to be much smaller than the

MC decay rate, as is the case in most experimental systems [67,69]. In all the calculations

we chose eitherPMC/G = 0.005 or PMC/G = 0.095. These conditions satisfy the

applicability criteria of the manifold method for modelling the emission spectrum of the

systems.

80



In order to estimate experimental conditions for the observation of the predicted emission

spectra we use the following values of the other system parameters: a typical radius of

experimentally attainable [8,9,16] QRs,R = 20nm and the electron effective massM =

0.05me. This gives the energy scale of the QR interlevel separationεQR ≃ 2meV and the

magnitude of the magnetic field, which produces a magnetic flux through the QR equal

to a half of the flux quantum,B ≃ 2T. Unless specified otherwise, all the calculations

are made in the presence of a weak lateral electric fieldE ⊥ e with the magnitudeE =

0.1εQR/eR = 2 · 104V/m. The QR-MC coupling constant can now be estimated using

Eq. (4.14). we obtainG = 8.3 · 10−4meV (G = 1.2 · 10−3meV) for Φ = 0 (Φ =

Φ0/2) which results in the MC Q-factor requirementQ = ~ωMC/γMC ≈ 16000 (Q ≈
5000). THz microcavities with the Q-factor of this order of magnitude have already been

achieved [130].

We start with calculations of the emission spectrum of the system forPMC/G = 0.005

andPMC/G = 0.095 in the resonant case,~ωMC = ∆. The magnetic flux piercing the

QR is eitherΦ = 0 or Φ = Φ0/2. Results of these calculations are shown in Fig. 4.4.

Both the direct QR emission spectrum,SQR, and the MC emission spectrumSMC are

plotted. WhenPMC/G = 0.005, there are two dominant peaks (the linear Rabi doublet)

in SQR andSMC at the frequenciesω = ±G/~, which correspond to the transitions

between the twoN = 1 states and the groundN = 0 state. With increasing pumping,

PMC/G = 0.095, the higher,N > 1, states are excited. The intensity of the Rabi doublet

is decreased while the quadruplet peaks corresponding to the transitions between theN =

2 andN = 1 states emerge. Only the inner quadruplet peaks inSQR andSMC can be seen

in the selected energy range. It should be mentioned that theouter peaks in the MC

emission spectrum,SMC , become suppressed with increasingN , as can be seen from the

expression for the corresponding matrix elements, Eq. (4.24).

A different type of emission spectrum can be observed away from the resonance. This

can be achieved for the same system by changing the magnitudeof the lateral electric
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Figure 4.4: Emission spectrum of the quantum ring-microcavity system in the presence

of a lateral electric fieldE = 2.00× 104V/m for PMC/G = 0.005 andPMC/G = 0.095.

The microcavity mode is in resonance with the quantum ring transition. The upper row

(brown) corresponds to the microcavity emission and the lower row (red) corresponds to

the direct quantum ring emission. The magnetic flux piercingthe quantum ring is either

Φ = 0 or Φ = Φ0/2. The emission frequencies are normalized by the quantum ring-

microcavity coupling constantG/~ and centred aroundωMC .

field. In Figs. 4.5–4.6 we plotSMC andSQR when∆ 6= ~ωMC for several values ofE.

Fig. 4.5 corresponds toΦ = 0, whereas Fig. 4.6 corresponds toΦ = Φ0/2. Due to the fact

that there are non-zero probabilities of finding the system in states with differentN , the

emission spectrum has a pronounced multiplet structure. The MC pumping rate is taken

asPMC/G = 0.095. One can clearly see the avoided crossings in the plotted emission

spectra, manifesting that the system is in the strong coupling regime. WhenΦ = Φ0/2 and

the detuning between∆ and~ωMC is of the order ofG, the direct QR emission spectrum

has the most intensive peaks at the frequencies close toω = ∆/~. This indicates that the

QR is almost uncoupled from the MC. The more pronounced changes in the emission
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Figure 4.5: Anticrossing in the emission spectrum of the quantum ring-microcavity sys-

tem at various magnitudes of the external lateral electric fieldE from 1.98× 104V/m to

2.02× 104V/m with the increment50V/m: (a) microcavity emission spectrum (brown),

(b) direct quantum ring emission spectrum (red). The magnetic flux piercing the quantum

ring Φ = 0. The resonance case∆ = ~ωMC corresponds toE = 2.00 × 104V/m. The

microcavity pumping ratePMC/G = 0.095. The emission frequencies are normalized by

the quantum ring-microcavity coupling constantG/~ and centred aroundωMC .



SMC [a.u.] SQR [a.u.]

Figure 4.6: Anticrossing in the emission spectrum of the quantum ring-microcavity sys-

tem at various magnitudes of the external lateral electric fieldE from 1.98× 104V/m to

2.02× 104V/m with the increment50V/m: (a) microcavity emission spectrum (brown),

(b) direct quantum ring emission spectrum (red). The magnetic flux piercing the quantum

ringΦ = Φ0/2. The resonance case∆ = ~ωMC corresponds toE = 2.00×104V/m. The

microcavity pumping ratePMC/G = 0.095. The emission frequencies are normalized by

the quantum ring-microcavity coupling constantG/~ and centred aroundωMC .



spectra in Fig. 4.6 compared to Fig. 4.5 can be explained by different dependences of

the energy gap∆ on the magnitude of the lateral electric fieldE: whenΦ = Φ0/2 the

dependence is linear inE and whenΦ = 0 the dependence is quadratic inE.

For a nearly zero flux through the QR, a small change of the flux results in significant

changes inSMC andSQR, as the presence of a weak magnetic field affects strongly both

the QR gap∆ and the QR-MC coupling constantG. The dependence of the QR gap

∆ on the magnetic fluxΦ piercing the QR can be seen from Fig. 4.2, while the QR-MC

coupling constantG magnetic flux dependence can be easily calculated using Eqs.(4.10)–

(4.12) and Eq. (4.14). In Fig. 4.7 we plotSMC andSQR for several values ofΦ near zero.

The MC pumping rate is taken asPMC/G0 = 0.095, whereG0 denotes the value of the

QR-MC coupling constant forΦ = 0. The plotted emission spectra incorporate both the

anticrossing behaviour due to detuning of the QR transitionenergy from the energy of

the MC mode and the changes in the multiplet structure owing to varying the QR-MC

coupling strength.

Finally, we calculate the emission spectrum of the QR-microcavity system altering the

angleθ between the direction of the applied electric field and the projection of the mi-

crocavity mode polarization vector onto the QR plane. Again, the magnetic flux piercing

the QR is eitherΦ = 0 or Φ = Φ0/2. The system is in the resonance,∆ = ~ωMC. The

microcavity pumping rate is taken asPMC/Gπ/2 = 0.005, whereGπ/2 denotes the value

of the QR-microcavity coupling constant forθ = π/2. The results are plotted in Fig. 4.8.

One can see that as the angleθ is changed, the emission peaks shift towards the micro-

cavity eigenfrequencyωMC , which can be explained by reducing the coupling strengthG.

This effect provides an additional way to control the frequency of the satellite peaks in

the QR-microcavity emission spectrum and allows a purely spectroscopic measurement

of the pump polarization.

In this work we dealt exclusively with the QR inter-subband transitions. However, a

similar analysis should be possible for inter-band opticaltransitions, for which matrix
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SMC [a.u.] SQR [a.u.]

Figure 4.7: Anticrossing in the emission spectrum of the quantum ring-microcavity sys-

tem at various magnitudes of the magnetic fluxΦ piercing the quantum ring from0 to

0.004Φ0 with the increment5 × 10−4Φ0 and in the presence of the lateral electric field

E = 2.00 × 104V/m: (a) microcavity emission spectrum (brown), (b) direct quantum

ring emission spectrum (red). The resonance case∆ = ~ωMC corresponds toΦ = 0.

The emission frequencies are normalized by the value of the quantum ring-microcavity

coupling constant calculated forΦ = 0 (G0) and centred aroundωMC. The microcavity

pumping ratePMC/G0 = 0.095.
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Figure 4.8: Emission spectrum of the quantum ring-microcavity system when the lateral

electric fieldE = 2.00 × 104V/m is rotated. The angleθ is counted betweenE and the

projection of the microcavity mode polarization vector onto the quantum ring planee.

The upper row (brown) corresponds to the microcavity emission and the lower row (red)

correspond to the direct quantum ring emission. The system is in resonance,∆ = ~ωMC.

The emission frequencies are normalized by the value of the quantum ring-microcavity

coupling constant forθ = π/2 (Gπ/2) and centred aroundωMC . The microcavity pumping

ratePMC/Gπ/2 = 0.095.



elements and energies can also be tuned by the external fieldsmore easily than in the

widely studied QD systems.

In conclusion, we have analyzed the emission spectrum of an Aharonov-Bohm QR placed

into a single-mode quantum MC. We have shown that the emission spectrum in the strong

coupling regime has a multiplet structure and can be tuned bythe variation of the mag-

netic field piercing the QR and by changing the strength and direction of the applied lateral

electric field. Thus, it is demonstrated that a MC with an embedded QR is a promising

system for use as a tunable optical modulator in the THz range. The QR-MC system,

which allows manipulation of quantum states with external fields, might also prove to

be useful for investigating dephasing mechanisms and for engineering and exploring en-

hanced light-matter interactions for novel quantum investigations.
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Part III
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Chapter 5

Conclusions and outlook

Bridging the THz gap with Aharonov-Bohm quantum rings
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Conclusions

In our work we studied the interaction of Aharonov-Bohm quantum rings with classical

and quantized electromagnetic fields.

In Chapter 3 we examined an infinitely-narrow, single-particle quantum ring pierced

by a magnetic flux and subjected to a lateral electric field. This model is relevant to

nanoscale-sized type-I quantum rings and type-II quantum dots, such as those studied

in Refs. [5–19]. We show that the applied electric field, which is known to suppress

magneto-oscillations in the ground state of a single-particle quantum ring [98,99], results

in strong oscillations of the ring electric dipole moment and selection rules for optical

transitions between the ground and first excited states of the quantum ring. We attribute

these phenomena to electric-field induced mixing of quantumring states with different

angular momenta, which occurs when magnetic flux through thequantum ring is equal to

a half-integer of the magnetic flux quantum. It is shown that even a weak electric field

causes this mixing.

It should be emphasised that these effects are not an artificeof the infinitely-narrow ring

model used in our calculations, but persist in finite-width rings in a uniform magnetic

field. As we have shown, the only feature needed for the discussed phenomena is the

degeneracy of the states with the angular momenta differingby one at certain magnetic

field values, which is known to be present in quantum rings with finite width as well

[43–46,103].

In order to establish an understanding of the potential for observation of the predicted ef-

fects in real systems we provide estimates for experimentalconditions essential for mea-

suring these phenomena. While observation of the dipole moment magneto-oscillations

would require a low-temperature laboratory, the oscillations of selection rules for optical

transitions can be potentially observed at room temperatures. Indeed, when the ground

and the first excited stated are equally occupied the dipole moment oscillations are com-

pletely suppressed while the intensity of the optical transitions is only for times lower
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comparing to the case when the ground state is fully occupiedand the first excited state is

empty.

For experimentally attainable quantum rings these transitions occur in the THz frequency

range. It provides an opportunity of utilizing Aharonov-Bohm quantum rings as THz

emitters and detectors. Despite significant progress made towards reliable and efficient

THz sources, such as THz quantum cascade lasers [138–140], free electron THz lasers

[141,142], and recently proposed microcavity-polaritonsTHz lasers [110,111,118,120],

bridging of the so-called ‘THz gap’ remains a formidable task. The range of potential

application of THz radiation is both vast and in high demand.The vibrational modes

of many molecules, including molecules of explosive materials, occur at THz frequen-

cies [143,144], making THz spectroscopy a powerful and non-invasive tool for molecular

identification and characterization. An airport scanner, which detects molecules found in

explosives, is only one example of a highly-useful THz device. Other potential applica-

tions of the THz spectroscopy lie in the area of pharmaceutical research and biomedical

diagnostics [145].

Arguably, the use of Aharonov-Bohm quantum rings for THz radiation and detection has

its merits as polarization properties and frequencies of THz transitions in quantum rings

are fully controlled by the applied external fields.

In Chapter 4 we examined a system of an Aharonov-Bohm quantumring embedded into

a single-mode THz microcavity. It was shown that the discussed possibility to control

optical properties of quantum rings with the external electric and magnetic fields suggests

a new way of regulating the microcavity-emitter coupling strength. Such easy control

was never possible with quantum dots embedded in microcavities where all main optical

properties of the system are predefined at the growth stage. As a result, one can strongly

influence emission spectra of the system by varying externalfields.

We calculate the emission spectra of the system under continuous incoherent pumping

when the quantum ring transitions are both in or out of the resonance with the micro-
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cavity mode and for various combinations of the applied electric and magnetic fields. We

restrict our analysis to linearly polarized microcavity radiation only. It is shown that when

the system is in resonance and the magnetic flux piercing the quantum ring is equal to a

half-integer of the magnetic flux quantum, a precise controlof the satellite peaks in the

emission spectra is possible with (i) pumping intensity and(ii) the direction of the lateral

electric field with respect to the microcavity radiation polarization vector. This effect can

be used for creating the highly demanded THz electro-optical modulators. In a quantum

ring-microcavity-based optical modulator, modulation ofthe intensity, frequencies and

polarization of the THz radiation would be realized by periodic variation of the lateral

electric field direction. Potentially, such a device can be indeed created as THz micro-

cavities with high values of Q-factor based on both Bragg mirrors [146] and photonic

crystals [130] have been already achieved.

The calculated non-resonant emission spectra can be of a great help during the procedure

of modulator adjustment. As we discuss in Chapter 4, in orderto establish a resonance in

the quantum ring-microcavity system one would tune magnitudes of the applied electric

and magnetic fields. Thus, the calculated non-resonant emission spectra can serve as a

reference pattern.

To conclude, we believe Aharonov-Bohm quantum rings to be promising candidates for

creating optical devices operating with radiation at THz frequencies and hope that our

work will stimulate further experimental research in this area.

93



Outlook

A natural extension of the current work presented in Chapter3 is to repeat our calcu-

lations using a more realistic (and consequently more complicated) 2D model of the

Aharonov-Bohm quantum ring. We chose the same model as was utilized in Refs. [43–46]

as it allows an analytical treatment. Preliminary results of our calculations are shown in

Fig. (5.1). One can see that, as it was stated, the main feature required for the predicted ef-

fects - degeneracy of the energy levels with angular momentadiffering by unity at certain

magnetic field values - is indeed present in this model.

Figure 5.1: A finite-width ring in a magnetic field for different values of in-plane electric

field strength. The ring radiusr0 = 100nm and its width is20nm.

The possible extension of the work presented in Chapter 4 is to use the Quantum Regres-

sion Theorem [81–83, 135, 147] (together with the Wiener-Khintchine formula [81–83,

135,148,149]) to calculate the emission spectrum of the quantum ring-microcavity. Such

an approach can potentially reveal non-Lorentzian emission lineshapes.
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Appendix A

Analytical solutions for small matrices

In the limit of weak electric field,β = eER/(~2/MeR
2) ≪ 1, the electron ground,

first and second excited states are well-described by the following three-by-three system,

which is obtained from Eq. (3.6) for|m| ≤ 1




(f + 1)2 β 0

β f 2 β

0 β (f − 1)2







cn+1

cn0

cn−1


 = λn




cn+1

cn0

cn−1


 . (A.1)

Heref = (Φ − NΦ0)/Φ0 with N integer, so that0 ≤ f ≤ 1/2. The eigenvaluesλn of

the system (A.1) are the roots of the cubic equation

λ3n − λ2n
(
3f 2 + 2

)
+ λn

(
3f 4 + 1− 2β2

)
− f 6 + 2f 4 − f 2 + 2f 2β2 + 2β2 = 0. (A.2)

Solving Eq. (A.2) we find

λ1 = −2/3
√
1 + 12f 2 + 6β2 cos (α/3) + f 2 + 2/3, (A.3)

λ2 = −2/3
√

1 + 12f 2 + 6β2 cos (α/3− 2π/3) + f 2 + 2/3, (A.4)

λ3 = −2/3
√

1 + 12f 2 + 6β2 cos (α/3 + 2π/3) + f 2 + 2/3, (A.5)
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with

cosα =
1− 36f 2 + 9β2

(1 + 12f 2 + 6β2)3/2
.

Consideringβ ≪ 1 (the limit of weak electric field) we expand Eqs. (A.3-A.5) into Taylor

series inf to obtain

λ1 = f 2 − 2β2

∞∑

n=0

(2f)2n +O(β4), (A.6)

λ2 = 1 + f 2 + β2

[
1−

∞∑

n=0

(−1)n (2n)!

(1− 2n) (n!)2

(
f

β2

)2n
]
+ O(β4), (A.7)

λ3 = 1 + f 2 + β2

[
1 +

∞∑

n=0

(−1)n (2n)!

(1− 2n) (n!)2

(
f

β2

)2n
]
+O(β4). (A.8)

It can be shown that Eqs. (A.7,A.8) coincide with the resultsof the perturbation theory

in eER for quasi-degenerate states [85] if the coupling to the states with |m| > 1 is

neglected.

The energy spectrum given by Eqs. (A.3-A.5) is plotted in Fig. A.1. It is nearly indistin-

guishable from the energy spectrum, which was obtained by numerical diagonalization of

the23 × 23 system in Chapter 3 for the same value ofβ. A small discrepancy between

the plotted energy spectra is noticeable only for the first and second excited states. The

energy spectrum obtained by numerical diagonalization of the23× 23 system is slightly

shifted towards the smaller energies. This shift occurs because the considered3×3 matrix

does not take into account the coupling between them = ±1 andm = ±2 states. For the

infinite system andf = 0, perturbation theory up to the second order inβ yields

λ1 = −2β2, λ2 = 1− β2/3, λ3 = 1 + 5β2/3, (A.9)

whereas from Eqs. (A.6-A.8) one gets

λ1 = −2β2, λ2 = 1, λ3 = 1 + 2β2. (A.10)

Theλ2 andλ3 values in Eq. (A.9) differ from the values in Eq. (A.10) by−β2/3 which

corresponds to the repulsion between them = ±1 andm = ±2 states calculated using

the second order perturbation theory.
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Figure A.1: The normalized energy spectrum as a function of dimensionless parameterf

for β = 0.1. Dashed line - the result of analytical solution of the3×3 system. Solid line -

the result of numerical diagonalization of the23× 23 system. A horizontal line is shown

to indicateλ = 0 value.

Whenf = 1/2, and in the absence of a lateral electric field, them = 0 andm = −1

states are degenerate with energyε1 (0) /4, i.e. λ1 = λ2 = 1/4, whereas them = +1

state energy is nine times larger (λ3 = 9/4). The contribution from this remote state can

be neglected, and the electron ground and first excited states are well-described by the

following two-by-two system, which containsc−1 andc0 coefficients only,

f

2 β

β (f − 1)2




 cn0

cn−1


 = λn


 cn0

cn−1


 . (A.11)

The eigenvaluesλn of the system (A.11) are the roots of the quadratic equation

λ2n − λn
(
2f 2 − 2f + 1

)
+ f 4 − 2f 3 + f 2 − β2 = 0. (A.12)

Solving Eq. (A.12) we find

λ1,2 = f 2 − f + 1/2∓
√
f 2 − f + β2 + 1/4, (A.13)
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Figure A.2: The normalized energy spectrum as a function of dimensionless parameterf

for β = 0.1. Dashed line - the result of analytical solution of the2×2 system. Solid line -

the result of numerical diagonalization of the23× 23 system. A horizontal line is shown

to indicateλ = 0 value.

yielding for f = 1/2 the eigenvalue differenceλ2 − λ1 = 2β, corresponding to the

energy splitting ofeER as expected from the perturbation theory for degenerate states.

The energy spectrum given by Eq. (A.13) is plotted in Fig. A.2together with two lowest

eigenvalues of the23 × 23 system demonstrating a spectacular accuracy of the approxi-

mate solution forβ = 0.1.

Let us now return to the three-by-three matrix and examine how its eigenvectors are mod-

ified with changingf . Near the pointf = 0 it is convenient to write the eigenvectors of

the system (A.1) in the following form



cn+1

cn0

cn−1


 = An




[
λn − (f − 1)2

]
(λn − f 2)− β2

[
λn − (f − 1)2

]
β

β2


 , (A.14)

whereAn denotes the normalization constant corresponding to the eigenvalueλn and (A.14)
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is valid only forβ 6= 0. Forf = 0 in the limit of weak electric field (β ≪ 1) we obtain



c1+1

c10

c1−1


 =

(
1 + 1

√
1 + 8β2 + 8β2

)−1/2

√
2




−2β

1 +
√

1 + 8β2

−2β




β→0−→




0

1

0


 , (A.15)




c2+1

c20

c2−1


 =

1√
2




−1

0

1


 , (A.16)




c3+1

c30

c3−1


 =

(
1− 1

√
1 + 8β2 + 8β2

)−1/2

√
2




2β
√

1 + 8β2 − 1

2β




β→0−→ 1√
2




1

0

1


 . (A.17)

From Eqs. (A.15-A.17) one can see that forf = 0 andβ ≪ 1 the electron ground state is

almost a purem = 0 state, whereas the angular dependencies of the wavefunctions of the

first and second excited states are well-described bysinϕ andcosϕ respectively.

The structure of eigenfunctions nearf = 1/2 is best understood from Eq. (A.11), which

yields 
 c10

c1−1


 = A


 β

1/2− f −
√
f 2 − f + β2 + 1/4


 , (A.18)


 c20

c2−1


 = A


f − 1/2 +

√
f 2 − f + β2 + 1/4

β


 . (A.19)

HereA is the normalization constant andβ 6= 0. Forf = 1/2 we get

 c10

c1−1


 =

1√
2


 1

−1


 ,


 c20

c2−1


 =

1√
2


1

1


 . (A.20)

From Eq. (A.20) one can see that forf = 1/2 the angular dependencies of the ground and

first excited states wavefunctions are described bysin (ϕ/2) andcos (ϕ/2) respectively.

Fig. A.3 shows the magnetic flux dependencies of the coefficients|c0|2, |c−1|2, and|c+1|2

for the electron ground, first and second excited states. From these plots one can see that
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Figure A.3: Magnetic flux dependence of the wavefunction coefficients |c0|2 (solid line),

|c−1|2 (dotted line), and|c+1|2 (dashed line): (a) for the ground state; (b) for the first

excited state; (c) for the second excited state.

the electron ground state is almost a purem = 0 state in a wide region0 ≤ f . 1/4. An

admixture of them = −1wavefunction increases smoothly as one approaches the point of

degeneracyf = 1/2. Finally, whenf = 1/2, the ground state wavefunction is expressed

as a difference of them = −1 andm = 0 wavefunctions. The first and the second

excited states behave differently. In a small region near the pointf = 0 the electron first

and second excited states wavefunctions consist of a strongmixture of them = −1 and

m = +1 functions with a tiny admixture of them = 0 function. In particular, whenf = 0

the first and second excited states eigenfunctions with goodaccuracy can be expressed as

the difference and the sum of them = −1 andm = +1 functions respectively. Optical

transitions between these states and the ground state are only allowed if the polarization
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of the associated optical excitations is either perpendicular (for the first excited state) or

parallel (for the second excited state) to the direction of the applied in-plane electric field.

Away from thef = 0 region, only the coefficientc−1 (in the case of the first excited state)

or c+1 (in the case of the second excited state) remains in the Eq. (A.14), which now

describes almost purem = +1 andm = −1 states. Whenf exceeds1/4 the first excited

state starts to contain a noticeable ad-mixture ofm = 0 function, as discussed above, and

for f = 1/2 the first excited state eigenfunction is expressed as a sum ofthem = −1 and

m = 0 wavefunctions in equal proportions, whereas the second excited state remains an

almost purem = +1 state.

The same trend in the evolution of wavefunctions of the threelowest energy states with

changing the flux through the ring can be seen from perturbation theory. Forf = 0, the

degeneracy between the first and second excited states is removed in the second order

in eER only. Nevertheless, as a result of the degeneracy, the introduction of any weak

perturbation drastically modifies the wavefunctions corresponding to these states, turning

them from the eigenstates of the angular momentum operator to the sine and cosine func-

tions. With a slight increase off , so thatf > β2, the first and the second excited states,

which are not degenerate anymore forf 6= 0, become governed mainly by the diagonal

terms of the Hamiltonian, which do not mix them = −1 andm = +1 functions. When

f = 1/2, them = −1 andm = 0 states are degenerate in the absence of the electric field.

This degeneracy is removed in the first order ineER. The off-diagonal matrix elements

connectingm = −1 andm = 0 functions remain of the same order of magnitude as the

difference between the diagonal terms of the Hamiltonian across a broad range off val-

ues nearf = 1/2. This results in strong mixing of them = −1 andm = 0 components

in the eigenfunctions of the ground and first excited states for 1/4 . f ≤ 1/2.
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