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Abstract

This thesis is devoted to optical properties of AharonowBajuantum rings in external

electromagnetic fields. It contains two problems.

The first problem deals with a single-electron Aharonov-4Rajuantum ring pierced by
a magnetic flux and subjected to an in-plane (lateral) etefitrid. We predict magneto-
oscillations of the ring electric dipole moment. These kstions are accompanied by
periodic changes in the selection rules for inter-levelagbtransitions in the ring allow-

ing control of polarization properties of the associatedhertz radiation.

The second problem treats a single-mode microcavity wittnabedded Aharonov-Bohm
guantum ring, which is pierced by a magnetic flux and subgetdie lateral electric field.
We show that external electric and magnetic fields providétaxhal means of control
of the emission spectrum of the system. In particular, winennhagnetic flux through
the quantum ring is equal to a half-integer number of the raigflux quantum, a small
change in the lateral electric field allows tuning of the ggdevels of the quantum ring
into resonance with the microcavity mode, providing an effitway to control the quan-
tum ring-microcavity coupling strength. Emission spectrthe system are calculated for

several combinations of the applied magnetic and elec#iiddi
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Chapter 1

Introduction and overview

Quantum Mechanics in Semiconductor Aharonov-Bohm Quan-
tum Rings and Quantum Electrodynamics in Microcavities



1.1 Introduction

In their celebrated paper![#haronov and Bohndemonstrated that while in classical
mechanics the fundamental equations of motion can alwaysxpeessed in terms of
field alone, in quantum mechanics a canonical formalism semgl and, as a result,
potentials cannot be eliminated from the basic equatioasoscale-sized semiconductor
rings, which are now commonly called Aharonov-Bohm quantungs, are among other
quantum systems used for experimental studies of the rezmbdiscovery. Few-electron
quantum rings with a radial size ®0 — 20nm are now easily fabricated. The mean free
path of particles confined in these nanostructures exceedsig length, which results in
the self-interference effects experienced by particlés imfluence of the field potentials
upon this interference in the regions with vanishing fieldgmiaudes is direct evidence of

the Aharonov-Bohm effect present in quantum rings.

This thesis is devoted to the optical properties of AhareBoam quantum rings in ex-
ternal electromagnetic fields. The research presented apt€i3 was motivated by a
number of works which demonstrated the beneficial influetiem @xternal electric field
on some electronic and optical properties of an AharonokrBguantum ring. The list
of these works and a brief description of their main resudis loe found in Section_1.2.
In our work, we study an infinitely-narrow quantum ring subgel to a relatively weak
lateral electric field and pierced by a magnetic flux. We prediagneto-oscillations of
the ring electric dipole moment and examine their electaetdfand temperature depen-
dence. These oscillations are accompanied by periodicgelsafor the selection rules
for inter-level optical transitions in the ring. Radiatiassociated with these transitions
occurs at terahertz frequencies for quantum rings withadet size ofl0 — 20nm. Po-
tential applications of the discovered phenomena are siégrliat in Section 3.5 and in

Chaptefb.

Exceptional opportunities to control the optical propestof quantum rings with external
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fields stimulated our further research, which is preseme@haptef 4. In this work, we
study an Aharonov-Bohm quantum ring embedded into a simglde terahertz micro-

cavity.

Microcavity quantum electrodynamics is an area which kespacting a strong inter-
est of both the condensed matter and quantum optics reseancimunities. One of
the reasons of this everlasting interest is the feasibdftytilizing novel effects orig-
inating from field-matter coupling for developing novel ovdevices such as terahertz
polariton-lasers. In our studies, we calculate the emmsspectrum of the coupled quan-
tum ring-microcavity system and show how it can be tuned biiatian of the magnetic
field piercing the quantum ring and the lateral electric fi@dch control of the emission
spectrum was never possible with quantum dots in micraeavitAdvantages arising
of using quantum rings instead of quantum dots as photortemsiin microcavities are
discussed in Sectidn 4.3 and in Chapfer 5.

The rest of this thesis is organized as follows. In Sediighand Sectiof 113 of this
Chapter we provide a cursory overview of quantum phenomerguantum rings and
optical microcavities. In Chaptét 2 some theoretical lsas@eded for understanding the
research presented later are introduced. Chapter 3 andeZiapontain original work
as described above. Conclusions and possible extensidmsofvork are included in
Chaptei 5. Efforts to make each of the listed Chapters séficent were made, but not

at the price of losing consistency.
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1.2 Quantum mechanics in nanoscale Aharonov-Bohm

guantum rings

Progress in epitaxial techniques in recent decades haledsa burgeoning develop-
ments in the physics of quantum dots (QDs), i.e., semicaodioased ‘artificial atoms’.
More recently, a lot of attention has been turned towardsswmply-connected nanos-
tructures, such as quantum rings (QRs), which have beemebtan various semicon-
ductor systems [5—-19]. Originally, QRs were fabricatedigautly, when optimizing
growth conditions for self-assembled InAs quantum dots @wés substrate, the QD
material was splashed out from the QD centre, forming a valdike structure([5-8]

(see Fig[11). Improved and perfected, it has now becometimeoprocedure for the

capacitance (a.u.)

4.2 -0.8 -0.4 0
gate voltage (V)

Figure 1.1: Capacitance-voltage spectra for three diftesamples. The two arrows on
the plot correspond to single-electron charging of the tpim states of the so-called
“s-shell” in the dots. The inset displays an atomic forcerogecaph of self-assembled

quantum rings on the surface of a reference sample. (Repeddtom Ref.[[8])

fabrication of QRs with typical radii of0 — 100nm [10-+13| 15, 17, 18]. In the literature,

QRs produced as described above are usually referred tgpas|‘juantum rings’.

Nanostructures with an alternative realization of the1sh@pe confinement, the so-called

19



‘type-1l quantum dots’, were suggested for exploring efearising from the non-simply-
connectedness of such objects. In these nano-sized s&sicite carrier is confined inside

the QD and a carrier of an opposite charge is confined in thiéeb{@] (see FiglL.1R). As

(a) (b)
cb

o | vb | GaAs

Figure 1.2: Sketches of the type-Il InP/GaAs QDs: (a) cotidncand valence band
profiles, indicating the spatial separation of electrorgavles; (b) top view of the quan-
tum dot plane, indicating the holes confined to a ring arotmedguantum dot due to the

Coulomb interaction with the electron trapped in the doegR®duced from Ref. [9])

a result, the carrier in the barrier experiences a rotatiomavement with a radius of

10 — 20nm around the QDI[14, 19, 20].

Another possible way of QRs fabrication is based on usingetlaporative templating
method [16]. This fabrication procedure includes thregesa introduction of an aque-
ous solution which contains QDs and polystyrene microsggghento the surface of a glass
substrate, evaporation, and microsphere removal. Dun@gvaporation stage, QDs sur-
round the microspheres and merge, which finally results enféihmation of a QR with

the radial dimension df0nm — 1um.

The fascination in QRs is caused by a wide variety of purelgnjum mechanical ef-
fects, which are observed in ring-like nanostructures &oeview see Refsl [21-24]).
The star amongst them is the Aharonov-Bohm effect, in whichaged particle |4, 25]

is affected by a magnetic field away from the particle’s wagey, resulting in magnetic-

20



flux-dependent oscillations of the ring-confined particiergy. The same research group
which discovered type-I QRs was the first to observe the Al@ard8ohm type oscilla-
tions in these nanostructures [8]. This became the staptimgt for a series of exper-
iments dedicated to the Aharonov-Bohm effect in both tyggRs [8/18] and type-II
QDs [9]17.19, 26].

There is significant interest in the excitonic Aharonov-Bokffect in QRs, which, in
principle, should not exist as the exciton is a neutral perénd can not be influenced by
the magnetic field. However, due to the finite size of the exgithe excitonic Aharonov-
Bohm effect is, in fact, possible. The excitonic Aharonowhih effect was theoretically
studied by a number of authors in both 1D QRs| [27-32] and 2D (2B$33+42]. It
was shown that the Aharonov-Bohm type oscillations do exisbth 1D and 2D models,
but vanish in QRs with the ring radial size larger than theitercBohr radius or with
increased ring width. Recently, it was demonstrated théter2D exactly solvable model
previously used in Refs| [43—45] the magneto-oscillationghe exciton ground state

survive down to regimes with radius-width ratio less tharyuj#6].

To reveal the excitonic Aharonov-Bohm effect it was sugegsb place the QR in an ex-
ternal electric field, which delocalizes the relative alecthole motion around the entire
ring [17,47+-49]. It was also shown that in the presence ohagplane (lateral) electric

field exceeding a particular threshold it is possible to slwithe ground state of the QR

exciton from being optically active (bright) to opticallyactive (dark)[1/7, 48].
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1.3 Quantum electrodynamics in microcavities: light-mater

coupling

The strong coupling regime requires a microcavity (MC) tstain an isolated mode.
Otherwise, the excited mode exponentially decays into theraC modes. There are
three main designs which achieve the goal of zero-dimeasi@diation confinement,

described below.

The first design, pillar MCs, are fabricated by etching alstaicconventional Bragg
mirrors. The typical height of pillar MCs is aboutpm. The lateral confinement in pillar
MCs is provided by the reflecting interface between the MCsnahd the surrounding
media. The chances that the chosen pillar MC contains arnegrtusually, a QD) which
is in the strong coupling regime with the MC mode are comdsrsimall and one has to
check all produced MCs one by one until a cavity with requitkdracteristics is found.

In Fig. (1.3) we show SEM images of a pillar MC borrowed fronf.R&Q].

Another possible realization of a single-mode MC is the phmt crystal cavity. The
original idea of a photonic crystal was developed by Yablacto[51] and John [52]. It is
based on the same effect which leads to the appearance afdg@ith semiconductors. A
structure with periodic modulations of permittivity becestforbidden for several ranges
of wavelength due to the destructive interferences sinléinose of Bragg physics. The
first 3D photonic crystal was created by drilling holes in @bsat three different angles,
resulting in a full bandgap in the microwave range [53]. $aMWgears later, a 2D photonic
crystal with a bandgap in the optical spectrum was repofidfi By introducing a defect
in the photonic crystal periodic structure it is possibleteate a MC (the so-called ‘Noda
cavity’) - radiation becomes trapped within the defect oegh5]. Originally, values of
the Q-factor in photonic crystal MC were quite small (onlpamd400), but now using
some cunning designs of the photonic crystals periodicttra, MC with Q-factors as

large asl0° can be fabricated [56]. Some MC designs which promise faatp to
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Figure 1.3: SEM image of a pillar microcavity. The top andtbot mirrors are formed
by distributed Bragg reflectors. The middle layer containdtiple quantum dots (single-
photon emitters). (Reproduced from Ré&f.|[50])

10° were also suggested [57]. The last one, the microdisk MCfirves radiation in

whispering gallery modes. For a review of microdisk cagitime can refer to Ref, [58].

One of phenomena which can be observed in semiconductor M@sei Purcell ef-
fect [59], in which the time of spontaneous emission is dafddy the environment of
an emitter. The ratio of the times of spontaneous emissioenwthe emitter is placed
in two different environments (e.g., MC and vacuum) is ulyuadferred as the Purcell
factor. The first observation of the Purcell effect in semuabactor MCs was done with a
QD embedded into a pillar MC [60]. In this experiment, thediof photon spontaneous
emission was affected with a Purcell factorfof Several similar observations in differ-
ent systems (e.g., Refs, [61)62] in pillar MCs, Réf.|[63] ircmdisk MC, Ref. [64] in
photonic crystal MC) followed this pioneering work. For tasce, in the experiment of
Ref. [64] when a QD was placed inside a photonic bandgap ofréceaductor the time
of its spontaneous emission was extendelidns comparing to the time df.65ns when

the same QD was placed in the bulk semiconductor. The timparftaneous emission of
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another QD placed in the same photonic bandgap and broughhmresonance with the

cavity was0.21ns.

There has been an impressive development towards a bettetugo coupling with QDs
in MC and improved external control. The latest achievesentabrication techniques
now allow one to position QDs inside MCs with spectacularuaacy. In Fig.[14 a
photonic crystal MC with a single QD placed exactly at the mmaxm of the MC field

intensity is shown. In photonic crystal MCs one can spdgtnalatch the MC mode

| — 1001111}

Figure 1.4. SEM image of a Noda cavity in a photonic crystah t@e right, calculated
electric field, with maximum in dark is shown. The quantum gdlaiced at the maxi-
mum of field intensity with a remarkable accuracy26fim is pointed with the red cross.

(Reproduce from Ref._[65])

emission with the QD emission by artful etching of the phatanystal periodic structure.
However, once the structure is fabricated, adjustment pkgatem parameters becomes

a difficult task.

The strong coupling regime in QDs in semiconductor MCs was &ttained in 2004 in
two sequential papers, Ref. [66] in a photonic crystal MC Redl [67] in a pillar MC.
The strong coupling in microdisc MC was reported a year If8f. Since then, the
strong coupling regime in semiconductor MCs was reporteddweral research groups,

but the number of experiments that achieved this regimeirenianited. In this cursory
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overview, we only provide the list of some of these works apkesee Refs. [66—-74]. Two

of the listed experiments deserve a more detailed disaussio

In the first work, Refs.[[71,72], the authors developed antedaically controlled device
which uses the quantum confined Stark effect [75], in whiah @kternal electric field
shifts the QD exciton discrete states towards lower engrgeetune QDs in resonance
with the mode of the photonic crystal MC. This experimentsprés a solution with on-
chip control of the strong coupling. But still, due to the Weass of the phenomena,
this way of controlling the QR-MC coupling strength remaswsnewhat limited. In the
second work, Ref[ [69], the strong coupling regime was oleskwith a single QD in a
photonic crystal MC. In this experiment the antibunchingref Rabi doublet peaks was
proved, which is possibly the first real evidence of full figjJdantization in a coupled

QD-MC system.

A system with a genuine strong coupling should noticeabnge its behaviour when
an additional quantum of excitation is added or removed.nlidaal picture, an emitter
embedded in a MC (e.g., QD or QR) can be modelled as a twodgsem coupled to the
MC mode. Such a system possesses a Hamiltonian whose aigsnstybrid light-matter
states, form the so-called ‘Jaynes-Cummings ladder’. Thisgon measured outside of
the MC should ideally mirror the structure of this ‘laddeBuch an emission spectrum,
which clearly reflects transitions between the steps ofihgries-Cummings ladder’, has
not yet been observed in microcavities quantum electragyecgbut has been achieved

in atomic and circuit quantum electrodynamics| [76, 77].

Lastly, we would like to note that to the best of our knowletlgere are no experimental
works exploring the strong coupling phenomena in QRs emdxetdato MCs. We hope

that our research presented in Chapter 4 will stimulate rax@ats in this area.
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Chapter 2

Theoretical background

Quantum Description of Light-Matter Coupling and the Dipol
Approximation for Optical Transitions



2.1 Introduction

This Chapter contains a brief review of the background thedrich is used in the rest
of this thesis: quantization of the electromagnetic fidha, two-level model for a single-
photon emitter, the density matrix operator concept, theagqgns of motion for the den-
sity matrix operator, and the electric dipole approximatiMore details of this content

can be found in various textbooks, such as Réfs.[[78-85].

2.2 Light-matter coupling in microcavities: quantum de-

scription

2.2.1 Quantization of the electromagnetic field
Field oscillators - harmonic oscillators

In the Coulomb gauge the vector potential of a sourcelessicial electromagnetic field
(CEF) satisfies the requirement
divA (r,t) =0, (2.1)

and the homogeneous wave-equation

1A (r,1)

G~V Ar)=0, (2.2)

wherer is the position vector andis the time variable. The field scalar potential can be

chosen to be identically zero, so that the field is fully defibg the vector potential

E (r,t) = —%A (r,1), (2.3)

B(r,t) =V x A(r,t). (2.4)
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In what follows we consider a MC of a voluméwithout specifying its exact shape. The
guantization procedure, which we introduce later, doeslepend on the MC shape and
is the same in MCs with various shapes (e.g., Refs [86] ingrldiCs, Ref. [[87] in a
spherical MCs, Ref[[88] in cylindrical MCs). The solutiohkq. (2.2) can be written in

the following form with separated variables
Art)=+1/e Y Qi (1)U (x), (2.5)

whereQ); (t) are the field amplituded]; (r) is the set of field modes, anrgis the vacuum
dielectric permittivity. For the present moment, we asstimaeall field modes are linearly
independent and thus can be orthonormalized. We discissashumption in more detail

later.

Substitution of Eq.[{2]5) into E(.(2.3) and Elg. (2.4) resuitthe following expressions

E(r,1) = =1/ ) Qi (1) Ui (), (2.6)
B (r,t) = /1/e ZQi )V x U; (r). (2.7)

Now let us return to the wave equation and substitute theerhwesctor potential, given
by Eq. [2.5), into Eq.[(2]2) to obtain

1 S 2 2 QzQ

5 @)+ 2 (0] Ui (1) = s (1) [VPUs () + 5 Ui ()| =0,
Here(); are the frequencies of the field modes. Since each of thesgieqs should be

satisfied identically at any time moment and for any positiothe space, the expressions

in square brackets should vanish separately

Qi (t) + Qi (t) =0, (2.8)
V32U, (r) + S—SU (r) = 0. (2.9)

One can see that the above equations define CEF time[(ED). éad@}patial (EqL(2]19))

dynamics.
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There are two boundary conditions imposed upon the eleetgoetic field inside a MC.
Namely, the tangential component of the electric field ardriitbrmal component of the
magnetic field should vanish at the MC walls. Together with @gql) they lead to the

following set of restricting conditions
U; (1) |tang = 0 on the MC walls,

curlU; (1) |norm = 0 on the MC walls,

and

divU; (r) = 0 in all MC volume.

It can be shown that the first and the third conditions resuibée electric field vanishing

on the MC walls. That, in turn, givas; (r) |wans = 0.

Once the exact MC shape is given, using the above conditmmescan solve EqL(2.9).
The obtained solutions are unique for a given MC. Due to th$, fthese solutions are
usually called ‘normal modes’ of the MC. Normal modes fulhacacterize the geometry

of a particular problem.

To be able to proceed with the field quantization we now neeatkfme new functions,

the so-called ‘normal variablesi; anda;, which reexpress the field amplitud@sin the

h *
Qi = \/Q—Qi(aﬂrai),
. ey
Qi = —1 i Z(ai—a;‘k)-
2
The expressions above can be inverted. Carrying out thislsiaperation one obtains the
] 1 (QAQA + Q)
a’Z - 27’_LQZ (2 (2 ? (2 1
@i =\ g, (@ —iQ1)
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Using the normal variables we can redefine the field vectaemiat (Eq. [(2.5)) and the
electric and magnetic fields (Eqs._(2.6)-(2.7)) as

A(rt) = 3oy () U ().
E (r, 1) :iz,/zz (a; — a’) U, (r),
B(r,t) = Z \ /% (a; + a}) curlU; (r) .

In classical electrodynamics the energy of the electrormatgfield is given by the integral

Eopr =5 | [B?+ B dr.
14

Performing several transformations it is easy to rewriie &xpression in terms of the

field amplitudes and the normal variables

Ecpr = %Z [Q? + Q?Qﬂ = Z h§Ya; a;. (2.10)

)

Now we need to recall some basics of the quantum harmonidlaieci(QHO). The

Hamiltonian of one-dimensional QHO with a unit mass read84k
Hono = hw (ata +1/2), (2.11)

wherew is the oscillator frequency and, a are the creation and annihilation operators.

The eigenstates of the QHO can be denotethbyith n = 0,1, 2, .., so that

These states form the so-called ‘QHO ladder’. Each of the#escan be constructed
from the vacuum statl)), which possesses the propeidty)) = 0, by application of the

creation operaton-times:



One can notice that the QHO Hamiltonian given by [Eq. (2.10f the same form as the
Eq. (2.10), which defines energy of CEF expressed in termerofal variables. The only
difference is the terniw/2 which appears due to the non-commutativity of the creation
and annihilation operators. Later we show that this ternukhbe omitted in order to
normalize energy of the quantized electromagnetic fieldfQ&th an infinite number of

modes (e.g., QEF in vacuum).

This similarity allows us to proceed with the intuitivelyngpdle quantization of the elec-
tromagnetic field. The trick is to substitute the normal ables with the creation and an-
nihilation operators, which satisfy the commutation rieiat[di, &}] = 4,; with all other
commutators vanishing. The above commutation relatioactflthe linear independence

of the field modes.

Performing this substitution we arrive at the following eagsions for the field vector

potential and the electric and magnetic fields

~ h R -
A= EZ ,/260% (a; +a’)U; (r),
. IR . .
E=1 E 260 (CLZ' — Cll-) UZ (I') y

R h
B=Y /o (@t (r).
: e, (a; +a’)V x U, (r)

From now on, the electromagnetic field is described with thengum mechanical oper-

atorsA, E, andB. Since the creation and annihilation operators enterirgetfuations
above do not commute, these operators do not commute as@ued.can see that after
quantization the time dynamics of the electromagnetic feelddden in the creation and
annihilation operators; anddj. Recall that before the quantization procedure the time

dependence was defined by the dynamical behaviour of theafepditudes?);.

To finish with the electromagnetic field quantization we dtalefine the Hilbert space

of the field eigenstates. We employ once again the analodytivt quantum harmonic
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oscillator and define the vacuum state of any of the electgmetéc field modes by the

requirement; |0) = 0. Due to the independence of field modes we can constructet ot

a”
(@) 0),

’I’Li!

eigenstates as a tensor product

1 ng, ) =) @ na) @ @ ) @ -+ = (X

where the index numbers the field modes amg are the non-negative integers usually

called ‘mode occupation numbers'’.

In some cases the number of the field modes in a MC can be indindehe field energy
should be renormalized by omitting the term which is resgmnedor the vacuum state

energy in the field Hamiltonian [78-83]. In this case the Hamian of the QEF reads
Hopr =Y  h%ala;.

In our research presented in this thesis we will consider awh@h sustains just one

mode of QEF. In this case the MC field Hamiltonian reads as
HJWC = hijchCAL, (212)

wherew,,¢ is the MC mode frequency and we have omitted creation anchéation

operators indices to simplify notation.

Quantization in a cubic box of volume V

As was discussed above, the set of field modes which is alléeveadparticular problem
is fully defined by the geometry of a given MC. In this Sectioa study a MC with a
cubic shape. This case is of significant importance as #allone to introduce the plane

wave representation for the QEF.

The most natural set of orthonormal functions in a cubic M@hes set of plane waves

given by
_ exqexp (tkr)

fioo = oo TP
k, \/V
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wherek is the wave vector and index represents the wave polarization. The wave
vectork satisfies the dispersion relatian = kc with & = |k|. This is a consequence
of the requirement for the plane wave functions to satisé/ kelmholtz equation. The

polarization vectorgy , are complex numbers normalized to unity.

The next step is to expand the field vector potential intreduao the previous Section in

terms of the cubic MC plane waves

A= ; \/ Qeogkv [ek,adk,a exp (ikr) + e;a&La exp (—ikr)] : (2.13)

In the Coulomb gauge, the field vector potentdalhas only the transverse component.

When applied to Eq[(2.13) this requirement gives

exo-k=ey, k=0

There are only two linearly independent vectors orthogtmtie wave vectok. We refer
to them with the indexy, which, for a giverk, can now take only two values, = 1, 2.
Real values of the polarization vector represent two linedarizations of the electro-

magnetic field while complex values correspond to two déifeercircular polarizations.

Finally, to finish with the plane wave representation, wepeess the boundary conditions

for the electric and magnetic fields inside a MC in terms ofglame wave functionf .

Using the boundary conditions imposed upon the field madeis the previous Section

we obtain the following periodic boundary conditions fQr,
fk,a (I‘ + le) = fk,a (I‘) ,

whereL is the length of the MC sides angdis a set of unit vectors directed along the MC

edges. From this condition it is easy to retrieve quantratules fork

9
Kk — % (N1, + N1, + N.L),
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whereN,, N,, N, are integer numbers which allow an alternative way to nurtteeMC
plane waves. One should not confuse this numbering with theiesioccupation numbers

introduced earlier.

To conclude this Section we provide expressions for the tiggthelectromagnetic field
operators, the electromagnetic field Hamiltonian, and Htamian eigenstates in the plane

wave representation

i e
o zkz(; y 260"; [ekﬂdk,a exp (ikr) — e al, , exp (—z’kr)] . (214)

L R . . £\ A :
B=i ; \/ 260{; [(k X €xa) i q exp (ikr) — (k x ef ) aLa exp (—zkr)] , (2.15)

Hopr =Y ha} ixa, (2.16)
k,a
(i)™
Hnead) =1 Mgy -2 ) :®7'|0>. (2.17)
k,Cll nk,a-

From the Eqs.[(2.14)-(2.16) it is clear that the electric axajnetic field are related by
B = (k/Q) X Ey.a.
k,a

2.2.2 Two-level photon emitter

In Sectiori 2.2.11 we introduced notation in which the QEF sctdbed in the language of
QEF modes occupation numbers. In this notation electricnaagnetic fields are defined
in terms of creation and annihilation operators. In thistidacwve show how fermionic

states of a single-photon emitter (SPE) can be describédxtisame language.

A single-photon emitter whose excitations obey fermionatistics can populate only
a finite number of eigenstates, with a maximum of one exomagier eigenstate. This

restriction is known as the Pauli exclusion principlel [8@onsidering such a system in
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a general way we denote its eigenstategibyand the corresponding eigenenergies by
;. We assume that this set of eigenstates is orthonor{ijg), = ¢, ;, and complete,

> i) (i] = 1. The eigenstate’s indexmay consist of several quantum numbers.

Instead of the creation and annihilation operatdranda, the system can be described

with the projector operators

and

oij = i) (J1-
These projector operators induce promotion from the statethe statej and from the
statej to the state by creating an excitation in the system in the same way asatqrer
a' anda create and annihilate an excitation in a particular modénefQEF. The main
difference is that the projector operators can be appliég amce as only one excitation
is allowed for each of the emitter eigenstatess; Ik ¢;, the projector operatofjj acts
as the rising operator while the projector operatgracts as the lowering operator, and if

; > €;, projector operators swap their roles.

Using this notation a single-photon emitter Hamiltonian ba defined in the following

way

Hspp =Y e;1i) (il =Y _ejol04. (2.18)
: j

J
In most practical cases there is only one mode of the QEF whiehacts with the single-
photon emitter in a MC. This mode is usually tuned to one ofésenances of the emitter
and has a relatively narrow spectral bandwidth. If the o#igenstates are separated
by energy gaps which are much larger than the energy assdamth the MC mode,
all eigenstates other than the two which are brought intoréisenance can be safely

disregarded.

From now on, we assume that the field causes transitions betamly two particular

eigenstates of the single-photon emitter. We denote thgeaestates byy) (the ground
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state) ande) (the excited state). The energy gap between these two ¢idessve denote
by A. This approximation to a multi-level guantum emitter wd tta ‘two-level emitter’

(2LE) approximation. It should be noted that such a basicehaarks exceptionally
well for real systems and gives a good insight into the quarmibenomena occurring in

realistic experimental systems (e.g., see Refs. [66—683/60]).
The Hamiltonian given by Eq._(2.118) in the ‘two-level emitt@pproximation reads as
Hypp = Ale) {e] = Ac'o, (2.19)

where we chose the zero energy level to coincide with theggrarthe ground statgy)

ando' = (0, +i0,) /2,0 = (0, — io,) /2 with

being the Pauli matrices acting in the space of the emittargl|g) and excitede) states.

2.2.3 Field-emitter coupling

Coupling of the QEF to SPE is the key phenomenon which entefgrther considera-
tions. Using the analogy with classical electrodynamicdake the interaction Hamilto-

nian in the dipole approximation as

HINT =—d- Ea

whered is the SPE dipole moment operator dnds the QEF electric field operator given
by Eq. [2.14) and taken at the position of the SPE. The interat¢iamiltonian can be

reexpressed in the following way

Hixy=-)Y d- (Ef, +E,). (2.20)
k,«
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where

.| hQ .
El—:a =1 260‘]; |:ek,Oéa’k,O¢ eXp (ZkrSPE):| ’ (221)
Eo= N 9 ‘k/ [ek,aa;a exp (—ZkI'SPE)} : (2.22)
0

Note that in Eqs[{Z.21)-(2.22) the field operathifs, andE,_, are taken at the position of
the SPE. We would like to stress once more that the time dycsaafithe QEF is hidden

and

in the creation and annihilation operators. The SPE etedipole moment operator is
given by
d=> dyli) (il (2.23)
irj

whered,; is the dipole moment operator matrix element calculatediéen two different

states of the SPE
i = (id1j) = e [ v () w0y (x) .
In many cases the emitter eigenfunctions possess the pyajgrarity and thus the diag-

onal matrix elementd;; = 0. Substituting Eq.[(2.23) into Eq._(Z]20) we obtain

Hinr = — Z Z |2) (il dij - (Eliroz + El:,a) '

ko 4,j
In order to show that the above Hamiltonian is Hermitian werothe brackets in the
expression above, swap indices+ j in the second term under summations (since the
second summation is over all possible combinationgiof) and the casel;; = 0 is

allowed), and use the fact thdt;, = d;;. This results in

Hiny ==Y > [iy (jldy - By, + 1) (1| &5 - By .. (2.24)
Ko i

From this equation it can be clearly seen thty+ is indeed Hermitian. Let us now

transform the interaction Hamiltonian into a form whichMaié more suitable for further
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calculations. For the case of 2LE from Hg. (2.24) we immedyeget the following result

HINT =

- Z (|€> <g| deQ ' El—:a + |g> <6| dZe ' El;,a + |€> <g| ng ' El;,a + |g> <€| dge ’ E:,a) )
k,«
(2.25)

In the expression above there are four terms under summatierdiscuss each of them

separately:

e The first term corresponds to the transition from the groudates;) to the excited
statele). As expected, a photon is absorbed as a result of this tiamgitue to the

presence of the anihilation operator in the expressioEﬁ;C[).

e The second term corresponds to the transition from the exkdtate|e) to the
ground statdg). As expected, a photon is emitted as a result of this tramsiti

(due to the presence of the creation operator in the exprefsi E, ).

e The third term corresponds to the transition from the grostate|g) to the excited
statele). We expect a photon to be absorbed. Contrary to this expactéte pho-
ton is in fact created (due to the presence of the creatioratpen the expression

forE, ).

e The forth term corresponds to the transition from the excstatele) to the ground
state|g). We expect a photon to be emitted. Contrary to this expectathe
photon is in fact annihilated (due to the presence of thehaliation operator in the

expression foE; ).

One can see that the third and forth terms are nonresonasg thrms do not satisfy the
energy conservation law. This fact allows one to neglectéhterms in the interaction

Hamiltonian given by Eql(2.24). Another argument whichpsants this approximation
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comes from time-dependent perturbation theory. It is \etiwn that non-resonant tran-
sitions have negligibly small probabilities. This approition is called the ‘rotating wave
approximation’ (the name originates from the form of therattion Hamiltonian in the
reference frame rotating with the frequency of the elecagnetic field) and is widely
used in quantum electrodynamics problems [78-83]. It cashioevn that the neglected

terms lead to small corrections called Bloch-Siegert sétl].

Therefore, the final expression for quantized electromigtield - two-level emitter

(QEF-2LE) interaction Hamiltonian reads as

Hine = =) (le) (9l deg - B, + 19) (| 5. - By, (2.26)

k,o

where the electric field operatoEy, , andE,_, are given by Eq.(2.21)-(2.22) from the

previous Section.

2.2.4 Density matrix operator

The most general way to describe a system, whether it istesbfaom the external en-
vironment or interacts with it, is based on utilizing the siéynmatrix operator. In what
follows we first introduce the basic concept of the densityrm@perator and then show
how using the master equation approach it is possible taledéc a stationary density

matrix of a system in the presence of incoherent pumping &silétion processes.

Let us consider an ensemble dfidentical emitters in quantum states denoted layd
with corresponding wave function’. An average value of an observalflecan be
calculated for each of these emitters using correspongirgatorO. The statistic average
over the whole ensemble is given by

N RN .
_ rwiow)

O)=——F— (2.27)
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The equation above contains two types of averaging - thetqmamechanical averaging,
which is given by the matrix element, and statistical averggwhich is given by the sum

of the observable value over the ensemble elements divigétetmumber of elements.

As all emitters in the ensemble are identical, each of thess@es the same set of eigen-
statesy,,. Thus, the total emitter’s statds’ can be expanded in terms of the emitter’s

eigenstates,, as follows

[T =" C len) (2.28)

whereCi = (p,|[¢") and>" |C |* = 1. Substituting Eq[{2.28) into E_{2127) one obtains

0)=>" (%) Onm =Y PumOnm, (2.29)

where we have introduced a new important entity, the dens&iyix p,,,.,, which is given
by
N S
prm = Y CLClL /N = Ci*Cp,. (2.30)

=1
The density matrix contains all statistical informatioroabthe considered ensemble of

emitters. Itis easy to show that the density matrix is norzedl

N N
Te{p} =D pun=»_ > CL'CL/N=>"1/N=1.
n i=1 n =1

Using the matrix multiplication rule Eq.(2.29) can be weittin a shorter and more con-

venient form

0) =3 pmOun =3~ (20)  =Tx(30}. (2:31)

n

For instance, for the identity operatbusing Eq.[(2.3/1) one straightforwardly obtains
<_1> = men {@n] i |Pom) = menénm =Tr{p} = 1.

The representation of the density matrix operator in terfrexpansion coefficient€’

is only one of many possible expansions. One can see thatidecfipression for the
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average value of an observalileis given by the trace of the density matrix operator.
The trace of an operator is independent of the basis chosteiRlilbert space. That
means that the density matrix operator can be defined in a georeral way. However, it
is convenient to try to define the density matrix operatoemms of system eigenstates,
but independently of any basis in the Hilbert space. One®ptbssible definitions is as

follows
13N,
p=5 2 1w (v.
=1
There are no restrictions on the state’s these states can even be non-orthogonal, al-

though it is usually not convenient. It is easy to show thalé basis of the eigenstates

v, is chosen as the set of system eigenstates, this definitemquisalent to Eq[(Z2.30).

In order to give a more clear insight into the nature of thesitgrmatrix operator and
reexpress it in an even more convenient form we introduceahealled ‘projector oper-

ators’ (similar to those discussed in Secfion 2.2.2)

When acting on a staté these operators give a projection of the state the direction
of the statey. For the expectation value of the projector operzf[grin a state) one can

easily obtain
(TL) = @I TL[9) = (1) (x[9) = (X9 (2.32)

Eq. (2.32) gives the probability to find the system, which weginally prepared in the
state|y), in the statdy).

Let us now return to the ensemble of emitters. Since the tvhea operator is indepen-
dent of the basis in which this operator is defined, for corerre we will use the basis of
the emitters eigenstates. In this case for the expectation value of the projector ajoer

I1, one obtains

(T} = Tr{TLp} = 3 {ealn) (18l 20) = D Ox 1l ) al) = (X 1Al )
' ! (2.33)
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One can see that the probability of finding the ensemble oftersiin the statey) is

given by a diagonal element of the density matrix operator.

Now it is possible to make some generalization of the demsdtrix operator. Instead of
defining the density matrix operator as a sum over all ersittatesi’ one can to use the

sum over all states accessible to the ensemble elements
p=>_|v) P (). (2.34)
j
Here P (j) are the statistical weights which satisfy the requwen@ﬁ)( ) = 1. Afew

paragraphs later, we explain the physical meaning of thaasm(ments in more details.

Using Eq. [2.3B) and Ed.(2.B4) we obtain the probability ndling the system in one of

the stateg)’ which were used for the density matrix operator basis
(| p 1) Z (W) P G) (W) = D PG (). (2:39)
j
If the set of stateg)’) is orthonormal, Eq[{2.35) can be simplified in the followingy
p ™) Z P(j (a). (2.36)

From the Eq.[(2.36) one can see that the statistical weitfat), in fact, defines the
population of the statg)*) (i.e., probability that the state is occupied).

If the set|v’) is not orthonormal, it is clearly not possible to obtain aimpe relation
between probabilitie&)*|  [¢)*) and statistical weight® («).

2.2.5 Equation of motion for the density matrix

Coherent coupling: the von Neumann equation for the densitynatrix

In Section[2.Z14 it was demonstrated that an average valan afbservable) in an

ensemble of emitters can be calculated using the systenityleretrix operato.
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In the Schrodinger picture, all operators are time-indeleat and thus the time dynamics

of the average should be hidden in the time dependence ottty matrix operator

(Os), = Tr{p (1) Os},

where the indexS’ refers to the Schrodinger representation. It is cleat tharder to
be able to predict time dynamics of the system, an equatianaifon for the density
matrix operator is needed. Such an equation can be deriwetthre fact that the physical
contents should not depend on whether the Schrodinger isehlgerg picture is chosen

for describing the system.

The density matrix operatgris defined as a sum of projections on a given set of states.
In the Heisenberg picture the states are time-independemigh operators are time-
dependent. In this case one can expect the density matriratopdéo be defined by the
initial state of the system. Comparing expressions for theeovable averages in the

Schrodinger and Heisenberg quantum mechanics desaigptie obtain
(Os), = Tr{p (t) Os} = (Ou (8)) = Tr{p (o) Ou (1)}, (2.37)

where the indexH” refers to the Heisenberg representation. The evolutioopefators
in the Heisenberg picture can be related to the operatorsseptation in the Schrodinger

picture in the following way
Ou (t) = U (t,t0) OsU (t,to) . (2.38)
In Eq. (2.38)U (¢, t,) is the evolution operator given by
U (t,to) = exp [—sz (t,t0) /1] |
where[] is the system Hamiltonian. Substitution of Eq. (2.38) intp &.37) results in
Te{p (1) Os} = Te{p (to) UT (t,10) OsU (L, 1)}
Using the cycling property of the trace operation the equedibove can be rewritten as
Te{p (t) Os} = Te{U (t,t0) p (to) U (¢, to) Os}. (2.39)
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From Eq. [2.3P) one can easily obtain the following exp@sgor the density matrix

operator time evolution
p(t) =U (t,to) p(to) U (t,t0) - (2.40)
Differentiation of Eq.[(2.40) results in

. T
ha%—it) _ [h%} P (to) U (t,t0) — U (¢, t0) p (to) [—h%} . (241

We simplify Eq. (2.41) using the fact that the evolution aer U (¢,t,) satisfies the

Schrodinger equation and obtain

w22 _ gy (t,to) p(to) UT (t,t0) — U (t,t0) p (to) HUT (t,t0) = Hp (t) — p (t) H.

ot
(2.42)
Here Eq.[(2.40) was used for the last step of the simplificatithis equation of motion
for the density matrix operator (mixed state) is called tren‘Neumann equation’ [92].
It is an equivalent of the Schrodinger equation for theesvatctor (a pure state). The von
Neumann equation can be written in a more compact form

op i .
50 . ] =

It should be stressed that the von Neumann equation comdspo the Schrodinger quan-
tum mechanics description, where all operators are tidepandent. In the Heisenberg
guantum mechanics description, the density operator dategapend on time and is de-

fined by the initial conditions.

Incoherent processes: the Master Equation with the Linbladerms

A correct description of a system which interacts with theeexal environment should
include decoherence processes such as dissipation (dggqayjicles to an external reser-
voir and income (pump) of particles from an external reserho the case of the coupled

2LE-MC system these patrticles are either the MC photonsclwban be supplied into
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the system, for instance, by the optical pumping, but exadlytieak out, or the 2LE ex-
citations, which can experience nonradioactive transitioom the excited to the ground

State.

The leaking out photons not only cause decoherence in thersy$ut also provide an
external observer with valuable information about the fimlgtter interaction inside the

MC. This stresses once more the importance of consideradeboherence processes.

In order to account for the described processes the equatiorotion for the density
matrix operator should be upgraded from the von Neumanntiequi®?2] to the master

equation in the Lindblad form [93]

% = %[,0, Hycl+ Ly p+ LY p+ L2, (2.44)
In Eq. (2.44)H ;o = Hy;c+ Hop g+ Hrnr is the full Hamiltonian of the coupled 2LE-MC
system first introduced bhjaynes and Cumming84] and now commonly called ‘Jaynes-
Cummings Hamiltonian’ withi7 ;- given by Eq.[(2.1R)H,x given by Eg.[(2.19), and
H;nr given by Eq.[2.26). The operatofg/“, £/, and(2"" are the so-called Lindblad

terms. In the explicit form these three terms are given by
P
L¥Cp = %(2@%@ —aa'p — paa' + 2apa’ — a’ap — pa'a),
MC _ YMmc t t t
L% rho = T(Zapa —a'ap — pa'a),
and
2LE = V2LE i t 1
L7 p= T(Qapa —o'op—po'o),
where Py;¢ is the intensity of the MC pumpingq;c, V21 are the decaying rates of the
MC and 2LE excitationg', a are MC creation and annihilation operators (the same that
enter ¢, see Eq.[(Z.12)), and’, o are 2LE creation and annihilation operators (the

same that entefl,; ;, see Eq.[(2.19)).

In the scope of this thesis we are not interested in partiquianping and dissipation
mechanisms which are present in various experimental regst&Ve only note that dif-

ferent pumping and dissipation process were studied by éeuwf authors, see, e.g.,
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Refs. [95/96]. For our further considerations only the fiett all such processes are

well-described by the introduced master equation with blad terms is important.

Mainly, there are two different derivations of the Lindbleetms in Eq.[(2.44) which
can be found in the literature. The first derivation is basedaamicroscopic study of
the system coupling to an external reservoir, which is regmeed as a bath of oscilla-
tors [83.97]. The second procedure utilizes the Montedadthod and quantum jumps.
This approach is preferred in Refs. [[78], 79] as it is closeéhéoquantum information and
measurement theories. In this case, the time evolutionesylstem is understood as a
sequence of coherent periods of the Hamiltonian dynamidsramoherent events taking
place with some probability. In this picture the micros@opiigin of the incoherent pro-

cesses is not considered and they are just assumed to batpubea given probability.

All together, the Lindblad termg}'“, £2¢, and£2"* can be put in the form of a total
superoperatof

% = %[p, H] + Lp.
Due to the balance between the pump and decay, after soma steady state is estab-
lished. We denote the density matrix which describes swedststate by*°. Through-
out this thesis we consider only such values of the paras&igs, vic, andysy, z which
lead to establishing of some steady state with non-diveéng@pulations. We do not dis-
cuss exact experimental conditions which result in a paarccombination of these pa-
rameters and only note that all the considered valud3,gf, vi:c, and~.;z correspond

to attainable experimental systems.
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2.3 Calculating optical transitions: electric dipole apptox-

imation

Let us consider a system described by the full Hamiltorfiaft) = H° + H' (¢) where

H" is the stationary (time-independent) Hamiltonian withegifyinctions;) satisfying
HO[y;) = €5 [y),

with ¢; = fw;, andH’ (¢) is the time-dependant perturbation given by
H'(t) = H'e ™",

wherew is the frequency of the exciting radiation. If perturbatienveak, it only causes
transitions between the states). According to the first order time-dependant perturba-
tion theory the rate of transitions between two differeatest|+);) (initial state) andy)

(final state) is given by

T = o g H 1))

Here 7 is the time which corresponds to the broadening of the dptieasitions and
which can be defined as> 27 /Aw whereAw is the linewith of the excitation radiation.

If Aw is small,m becomes large and using

we obtain the rate of transitions between the system eigtasst);) and|y ) given by

Fermi’s golden rule
27 y 2
Tip = S g H' (1) [4) 8(e5 — &3 — o). (2.45)

The Hamiltonian operator of an electron interacting witgc#lomagnetic field is given by

1 q 0o, 4 L rq\?
H=—({p+ A) =H +2—(A~p+p~A)+2— =) A-A, (2.46)

2m mc m \c
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whereH® = p/2m is the Hamiltonian of the unperturbed systemis the electron mass,

p is the electron momentum operator, afds the electromagnetic field vector potential.

The vector potential of a plane electromagnetic wave,ngtthe sample at normal inci-
dence, can be chosen as

A = Agcos(Qr — wt),

whereQ is the field wave vector and is the position vector. The electric field of the
perturbing radiation is calculated as the time derivativine vector potential

_ 10A(r1)

E(r,t) R

In the Coulomb gauge the vector potential of a sourcelestrefaagnetic field in vacuum

satisfiedV - A = 0 and therefore
[A,p] =iV - A = 0.

The ratio of the third to the second term in Hq. (2.46) can b#ewrin the following way

1/2
cA_cE e (@) (2.47)

cp N wp - w_p c

where E is the magnitude of the electric field associated with theypeing radiation
andS is the Poynting vector, which gives energy flux density ofélexztromagnetic field
(energy per time per unit area). Expression in Eq. (2.47)ushriess than unity for the
values ofS up to10'*W /m?. For most material such field intensities are higher than the

material damage threshold. Thus, the third term in Eq. 246 be safely neglected

0, 4 L rq\? 0, 4
H=H+—A-p)+—(-) A-A=~H +—(A-p).
mc 2m \c mc

The second term in this equation can be easily expressé as“! + H_e™“! with H.
given by

4 1iQr q +iQr
H, = — Ag-p=—IA .
* 2mc6 0P 2mece | O| ¢ (e p) ’

where we have introduced the radiation polarization veetand the vector should be

taken at the position of the electron.
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To simplify calculations we use the dipole approximatiomjatr assumes th&)r < 1

and thus*Qr ~ 1. Within this approximatiorf/,. becomes

__1 .

Substituting Eq[(2.48) into Eq.(2.45) (the Fermi’s goldele) we get the final expression
for the rate of optical transitions between the statesand|« ;) caused by the perturbing

electromagnetic field

2
Ty =5 (goe) Aol 16l e Pl oley — & = ).

2mc
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Chapter 3

Quantum rings In classical

electromagnetic fields

Electric Dipole Moment Oscillations and Terahertz Transis
in Aharonov-Bohm Quantum Rings



3.1 Introduction

Recently a lot of attention has been turned towards nonigiegnnected nanostructures,
quantum rings, which have been obtained in various semigtind systems 8,9, 16].
The fascination in quantum rings is partially caused by aewidriety of purely quantum
mechanical effects, which are observed in ring-like namestires. The star amongst
them is the Aharonov-Bohm effect![4,125], in which a chargedtiple is influenced by
a magnetic field away from the particle’s trajectory, rasglin magnetic-flux-dependent
oscillations of the ring-confined particle energy. The Watons of the single-particle
energy are strongly suppressed by distortion of the ringeioa by applying an in-plane
(lateral) electric field, thus reducing the symmetry of thistem [98] 99] (see Fif. 3.1).

However, there are other physical quantities, which migieheven more pronounced

THz radiation

¢

QR

>E

Figure 3.1: An Aharonov-Bohm quantum ring pierced by a m#grikeix and subjected

to a lateral electric field.

magneto-oscillations when the symmetry of the ring is reducFor example, in the
presence of a lateral electric field exceeding a partichil@shold it is possible to switch
the ground state of an exciton in an Aharonov-Bohm ring fraemd optically active
(bright) to optically inactive (dark) [17, 48]. Another h&rto overlooked phenomenon
is the flux-periodic change of an electric dipole moment ofiargqum ring, which is the

main subject of this work.
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This Chapter is organized as follows. In Secfiod 3.2 we dateuthe single-electron en-
ergy spectrum of an infinitely-narrow Aharonov-Bohm rindgpgcted to a lateral electric
field. In Sectio 3.3 we consider magneto-oscillations efrthg’s electric dipole moment
and study their electric field and temperature dependenegriMelements of the dipole
moment calculated between different states define seteaties for optical transitions.
For experimentally attainable quantum rings these tremmsitoccur at THz frequencies.
In Sectiori.3.4 we discuss optical selection rules for irgraboptical transitions and show
how the polarization properties of the associated THz tamhiacan be tuned by external
electric and magnetic fields. Sectlon|3.5 contains a brifudision of the potential appli-

cations of the predicted phenomena.

3.2 Energy spectrum of an infinitely-narrow quantum ring

3.2.1 Magneto-oscillations of the quantum ring eigenenergs

The Hamiltonian of an electron confined in an infinitely nar@R pierced by magnetic
flux ® depends only on the polar coordinate

R 0* ihe ® 0 e2 P2

Hyp = — _the ® O, 2
T MR 0 27 M.R20p | STMR

(3.1)

where M, is the electron effective mass aftdis the QR radius. Ther-periodic eigen-

functions of the Hamiltonian defined by EQ. (3.1) are

m = ) 3.2
Um () NG (3.2)
and the corresponding eigenvalues are given by
h? (m + f)2 2
em(f) = TOMRE (m+ f)"e1(0). (3.3)

Herem = 0,+1, +2... is the angular momentum quantum number, @nd ®/d is the

number of flux quanta piercing the QR{ = h/e). The electron energy spectrum defined
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Figure 3.2: (a) The energy spectrum of an infinitely narrowrgum ring pierced by a
magnetic flux®. Each parabola corresponds to a particular value of théreteangular
momentumm. The electron energiesare plotted versus the number of flux quadiab,,.

(b) Expanded view on a smaller energy scale.

by Eq. [3.8) is plotted in Fid._3l2. It exhibits oscillatiomsmagnetic flux with the pe-

riod equal to®,, known as Aharonov-Bohm oscillations [4, 8]. One can seersgictions
(degeneracy) of the energy levels with different angulanmanta, whenb is equal to an
integer number ob, /2. Optical selection rules allow transitions between staiés an-

gular momentum quantum numbers different by unity/( = +1). For typical nanoscale
rings [8/9] the energy scale of the inter-level separatiqff)) = h?/2M,R?, is in the

THz range. WherP exceedsb, /2 the electron possesses a non-zero angular momentum

in the ground state.
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3.2.2 Energy spectrum in the presence of a lateral electricdid

Applying an in-plane electric fiel@ removes the circular symmetry of the system. An
additional term corresponding to the electric field appeatise Hamiltonian[1,2], which
acquires a form

H = Hg + eERcos . (3.4)

Now the anglep is counted from the direction of the electric field (geometiyhe prob-

lem is shown in Fig._313). The field mixes electron states wifferent angular momen-

Figure 3.3: Relative directions of the external electri¢tdfie and the electron position

vectorR.

tum, which is not a good quantum number anymore. An eigetiiomof the Hamilto-
nian [3.4), which maintains ther-periodicity ing, can be written as a linear combination

of the wavefunctiong (312)
U, () =D cpe™. (3.5)

Substituting the wavefunctiof (3.5) into the Schrodingguation with the Hamiltonian
(3.4), multiplying the resulting expression ly™ and integrating with respect tp

leads to an infinite system of linear equations for the caefiisc],

[(m + £ An] ey B (G + ¢ 1) =0, (3.6)
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where = eER/2¢,(0) and A, = ¢,/¢:(0), with ¢,, being thenth eigenvalue of the
Hamiltonian [3.4). It is apparent from Ed. (B.6) that all {m®perties of the ring are
periodic in magnetic flux. Therefore, it is sufficient to coles 0 < f < 1/2, whereas
the calculations for other values ¢fcan be performed by shifting: in Eq. (3.6) by
an integer number. Interestingly, exactly the same arglgsapplicable to a nanohelix
subjected to an electric field normal to its axis [100-+102}. &helix the role of magnetic

flux is played by the electron momentum along the helical line

It should be emphasized that we consider a single-electabigom and we are interested
only in a few low-energy states. This treatment is relevamanoscale-sized semicon-
ductor QRs or type-ll QDs discussed in Refs| [8,9, 16, 17/48Band neglects the many-
body effects which are known to influence Aharonov-Bohm l@g@ns in mesoscopic
rings [21/22]. The energy levets as well as the coefficient$, can be found by cutting
off the sum in Eq.[(3]5) at a particular value|of|. The results of the numerical diagonal-
ization of the matrix corresponding to the system of linepragions[(3.6), with a cut-off
value of|m| = 11, are plotted in Fig._3]4. The same cut-off value was chosetl imu-
merical calculations presented in this Chapter, sincethduincrease of the matrix size
does not lead to any noticeable change in the results forhtiee iowest-energy states,

which we are interested in.

In small electric fieldse ER < h*/2M_.R?, a significant change in the QR energy spec-
trum occurs only for the ground and two lowest excited stard®en® is close to an
integer number ob /2 (the points of degeneracy in the absence of the electrig fi€lke
most prominent change is associated with the linear inrtdatld splitting between the
ground and first excited states for half-integiehe less pronounced quadratic in electric
field splitting between the first and second excited statesrsdor integerf. These split-
tings can be easily understood with the help of perturbahenry, as there is a non-zero
matrix element ok E R cos ¢ between the ground and the first excited state, whereas the

two excited states are only repelled in the second ordethea@tound state. It is shown
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Figure 3.4: (a) The energy spectrum of an infinitely narroargum rings of radius?
pierced by a magnetic fluk and subjected to an in-plane electric fiéld= 0.2¢,(0)/eR.
The electron energiesare plotted versus the number of flux quaétab,. (b) Expanded

view on a smaller energy scale.

in Appendix[A, these essential features of the low-energcspm are fully captured
by considering small-size matrices, which allow an anedjtireatment: a two-by-two

matrix for half-integerf and a three-by-three matrix for integgr

As one can see from Fi@. 3.4, energy oscillations in the gitastate are strongly sup-
pressed even farER = 0.2kh%/2M,R?. This suppression is a major source of difficulty
in spectroscopic detection of Aharonov-Bohm oscillatiodswever, as we show in the
next two Sections, apart from the ground-state energy #rerether physical quantities,
such as a dipole moment of the QR and polarization propesfitise inter-level transi-

tions, which have highly-pronounced magneto-oscillaiwhen the symmetry of the ring

is reduced.
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3.3 Magneto-oscillations of the quantum ring electric dip¢e

moment

In this Section we consider Aharonov-Bohm oscillationshe QR electric dipole mo-
ment. If an electron occupies thh state of the neutral single-electron QR with a uni-
form positive background, or if a positive charge is placed at the center of the QR
(geometry of the problem is shown in Fig, 13.3), the projectd the dipole moment on

the direction of the lateral electric field![1, 2] is given by
P, = eR/ |W,,|? cos @ dp. (3.7)

Substituting the wavefunctioh (3.5) into EQ. (3.7) yields following expression foP,

eR

P, = 5 Z Crm (02171 + Cnm+1) , (3.8)

where the coefficients?, can be found from the system of linear equatidns| (3.6). In the
absence of an electric field, each of the electron statesiracterized by a particular value
of angular momentum. The electron charge density is spreiormly over the ring and
there is no net dipole moment. The same result is given by[ES§) ¢ all the products

cr e, entering EQ.[(318) vanish for any value ofresulting in the QR dipole moment
being equal to zero. Let us now consider what happens to thendrstate’s dipole mo-
ment in the presence of a weak electric field R << h?/2M_R?. For® = 0, the ground
state is a practically purer = 0 state with a tiny admixture of. # 0 wavefunctions.
However, the situation changes drastically near the paht®generacy when the mag-
netic flux through the QR is equal to any odd integerbgf2. For a half-integer flux,
even an infinitely small field modifies entirely the wavefuaotof the ground state. As
shown in AppendiX A, wherf = 1/2 the ground state wavefunction angular dependence
is well-described byin (¢/2). Thus, the ground state electron density distribution be-

comes shifted to one side of the ring, in the opposite divedi the applied electric field.
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Such a shift is energetically favorable and results in tHaevaf the dipole moment be-
ing close toeR. Simultaneously, the first excited state wavefunction éarglependence
becomes well-described lys (¢/2). For the excited state, the electron is localized near
the opposite side of the ring resulting in a dipole momentefsame magnitude as for

the ground state but with the opposite sign.

The electron density distributions in the ground and firsiitexl states, whe® = 0 and
® = d,/2 and the degeneracy is lifted by a weak electric field, is showhig. [3.5.

With changing magnetic flux the ground state density ogeslavith a periodd, from

%0 (b)
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Figure 3.5: A polar plot of the electron density distributio a single-electron quantum
ring pierced by the magnetic fluk = 0 (top row) and® = &,/2 (bottom row) and
subjected to a weak in-plane electric field, < £,(0)/eR: (a) and (c) for the electron

ground state; (b) and (d) for the first excited state.
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an unpolarized to a strongly polarized distribution, réaglin the corresponding dipole
moment oscillations. However, the oscillations of the ltolipole moment of the QR

should be partially compensated if the first excited stateéclvcarries a dipole moment
opposite to the ground state’s dipole moment for a flux equahtodd number ob, /2,

Is also occupied due to a finite temperature. The effect opezaturel’ can be taken into

account by thermal averaging over all states
> Pyexp (—e,/kT)
> oexp (—e,/kT)

(P) = (3.9)

The results of numerical calculations, using Hg.|(3.9), deveral temperature values
are shown in Fig._316. The dipole moment oscillations, whaoh well-pronounced for

ksT < eE R, become suppressed when the temperature increases.

In this work we consider the limit of weak electric field onlfigher fields,eEFR >
h?/2M.R?, localize the ground state electron near one side of theaveq in the ab-
sence of a magnetic field and the change of magnetic flux thrdwgQR can no longer
influence the electron density distribution. For all valoé the ground state wavefunc-
tion consists of a mixture of functions with different angunomenta, ensuring that this
state is always strongly polarized. The suppression ofifd@&lmoment oscillations with
increasing electric field can be seen in [Eigl 3.7 where theupgrves, corresponding to
higher electric fields and higher dipole moments, exhilsslpronounced oscillations.
The energy oscillations for several lowest states are kriovioe completely suppressed

in strong electric fields [29].

At this point it is instructive to discuss conditions needi@dan experimental observation
of electric dipole moment magneto-oscillations in QRs. pitgal radius for experimen-
tally attainable QR4 8,9, 16] i® ~ 20nm. This gives the characteristic energy scale
of the inter-level separation (0) ~ 2meV (corresponding to 0.5THz) for an electron of
effective mass\/, = 0.05m.. For a ring withR = 20 nm, the magnitude of a magnetic

field producing a fluxd = ¢, is B ~ 3 T. Therefore, a further decrease of the QR radius
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Figure 3.6: Magneto-oscillations of the dipole moment oiing it various temperatures
for E = 0.2¢,(0)/eR. Different curves correspond to different temperaturehérange
from T = 0.01¢,(0)/kg to T = 0.41¢,(0)/kp with the increment).1¢,(0)/kg. The

upper curve corresponds1o= 0.01¢,(0)/kg.

would require magnetic fields which are hard to achieve. Acsipelectric field needed
for pronounced dipole moment oscillationsfis= 0.1¢,(0)/eR ~ 10* V/m, which can

be easily created. By far the most difficult condition to bessied is the requirement on
the temperature regimé, < eE£'R/kg. For the discussed electric field and ring radius
this condition becomées < 2K. In principle such temperatures can be achieved in labo-
ratory experiments and magneto-oscillations can be detefdr example, in capacitance
measurements. However, for practical device applicatisnsh as quantum-ring-based
magnetometery, higher temperatures are desirable. Iretktesaction we consider a pro-

cess, which is less sensitive to the temperature-inducapation of excited states.
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Figure 3.7: Magneto-oscillations of the dipole moment ahg at various magnitudes of
the in-plane electric field fof’ = 0.01¢,(0)/kg. Different curves correspond to different
magnitudes of the electric field in the range frém= 0.2¢,(0)/eRto £ = 1.0e,(0)/eR
with the incremen®.2¢,(0) /eR. The upper curve correspondsio= 1.0¢,(0)/eR.

3.4 Terahertz transitions and optical anisotropy in quan-

tum rings

In this Section we study the influence of the in-plane eledteld on polarization prop-
erties of radiative inter-level transitions in AharonoefBn QRs. We restrict our consid-
eration to linearly-polarized radiation and dipole optitansitions only. The case of

circular polarization is briefly discussed at the end of thet®n.

For the theoretical background on the electric dipole axipmation for optical transitions please see

Sectior 2B of this thesis.
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The transition ratd;; between the initiali) and final (f) electron states is governed by
the matrix elemenp;; = (f|eP|i), whereP is the dipole moment operator ands the
projection of the radiation polarization vector onto thar@ of the QR. For the model of

an infinitely-narrow QR
Pis(0) = eR/ W, cos (0 — ) do, (3.10)

wheref is the angle between the vectoand the in-plane electric field. The geometry

of the problem is shown in Fi§. 3.8.

Figure 3.8: Relative directions of the external electritfié and the projectior of the

THz radiation polarization vector onto the quantum rindane.

Substituting the electron wavefunctiods and ¥, given by Eq.[(3.5), into Eq[(3.10)

yields
Ty ~ P2 (0) = P, + P* — 2P P; cos 20, (3.11)
where
P = ? S el (3.12)
and
Py = ? Zcf;cfnﬂ (3.13)




The double angled entering Eq.[(3.11) ensures that the transition rate doedeypend

on the sign ok.

Let us consider transitions between the ground state andirtteexcited state of the
Aharonov-Bohm QR in the limit of a weak in-plane electricdiet FR < h?/2M_ R
Away from the points of degeneracy the ground and the firstexstates are character-
ized by a particular value of. and either?’;; or PJ given by Eqs.[(3.12)-(3.13) vanishes.
As a result, the angular dependence in Eqg. (3.11) disappedrthe transitions have no
linear polarization. The picture changes drastically witda equal to an integer number
of &y/2. ThenP;; = P;; and therefore the rate of transitions induced by the raufiati
polarized parallel to the direction of the in-plane elexfreld (¢ = 0) is equal to zero,
T;y = T) = 0. Simultaneously’’;, the rate of transitions induced by the light polarized
perpendicular to the direction of the in-plane electricdfi@l = 7/2), reaches its maxi-
mum possible value. This leads to the strong optical aropgtof the system. The results
of the calculations for the whole range ®fare shown in Fig._3]9. Very sharp peaks at
® equal to an integer number @ are the result of splitting between the first and sec-
ond excited states, which were degenerate with engr@y in the absence of an external
electric field (see Fid._3/4). This splitting occurs in the@®d order ineER and the
spectacular sharpness of the peaks is due to the very fagjelathe electron first and
second excited states wavefunctions when one moves awaytli®point of degeneracy
(for details see AppendixIA). The optical transitions beswéhe electron ground and sec-
ond excited states are also linearly polarized, but With 0, so that the polarization of
these transitions is normal to the polarization of transsibetween the electron ground
and first excited states. Because these two peaks are veghcteparated fob = 0, the
polarization effects are strongly suppressed if the fimitewidth of the radiation is taken

into account.

In the case of circularly polarized light, the degree of piaktion oscillates as well. Inter-

level transitions between the ‘pure’ states, charactdrigethe definite angular momen-
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Figure 3.9: Magneto-oscillations of the degree of poldrarafor the transitions between
the ground state and the first excited state. Hgrand7', correspond to the intensities
of transitions polarized paralle¢ (| E) and perpendiculak(L E) to the direction of the

in-plane electric field, respectively.

tum values differing by one, are either right-hand or leititi polarized. However, one
can easily see that transitions involving the states, whrehstrongly ‘mixed’ when the
flux is an integer number ab, /2, have the same probabilities for both circular polariza-

tions. Thus, the magnetic-field-induced optical chiratitfQRs oscillates with the flux.

The total probabilities of the inter-level transitions @&l depend on the populations
of the states involved. However, the discussed oscillationthe degree of polariza-
tion do not depend on temperature as the selection rulehéooptical transitions are
temperature-independent. This effect allows AharonotBaings to be used as room-

temperature polarization-sensitive detectors of THzatain or optical magnetometers.
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3.5 Results and discussion

Itis demonstrated that a lateral electric field, which iswnao suppress Aharonov-Bohm
oscillations in the ground state energy spectrum of a QRiJtsem strong oscillations of
other physical characteristics of the system. Namely, tbetréc-field-induced dipole
moment oscillates as a function of the magnetic flux pier¢chegQR, with pronounced
maxima when the flux is equal to an odd number of one half of theduantum. This
effect is caused by lifting the degeneracy of states witfetbht angular momentum by
arbitrary small electric fields. It should be emphasized tha discussed effect is not
an artifice of the infinitely-narrow ring model used in thectadtions, but it persists in
finite-width rings in a uniform magnetic field. Indeed, thsestial feature required for
this effect is the degeneracy of the states with the anguamenmta differing by one
at certain magnetic field values, which is known to take placdinite-width rings as

well [43-46/103].

Future observation of the dipole moment magneto-os@ativould require careful tai-
loring of the QR parameters and experiment conditions. kamgle, the size of the QR
should not exceed the electron mean free path but shouldr@pe ésnough so that, for
experimentally attainable magnetic fields, the flux throtighring is near the flux quan-
tum. The electric field should not be too large to avoid palag the QR strongly in the
absence of a magnetic field, but it should be large enoughhieae a splitting between
the ground and first excited states exceedig@. Estimates presented in this Chapter
show that all these conditions can be met in existing QR systélowever, the temper-
ature constraint constitutes the major obstacle for angmi@t applications outside the

low-temperature laboratory.

The temperature restrictions are less essential for anptadicted effect - giant magneto-
oscillations of the polarization degree of radiation agsed with inter-level transitions

in Aharonov-Bohm QRs. Notably, these transitions for thes@Rtisfying the remain-
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ing constraints should occur at THz frequencies. Creataligble, portable and tun-
able sources of THz radiation is one of the most formidabtEblegms of contempo-

rary applied physics. The unique position of the THz rangbatween the frequencies
covered by existing electronic or optical mass-producedces results in an unprece-
dented variety of ideas aiming to bridge the so-called ‘Tldp’'g For example, the pro-
posed methods of down-conversion of optical excitatiolgegnom creating ultra-fast sat-
urable absorbers [104] to utilizing magnetic-field-inddiemergy gap in metallic carbon
nanotubes|[105—108] to recent proposals of exciting THasiteons between exciton-
polariton branches in semiconductor microcavities [1A9}1Arguably, the use of QRs
for THz generation and detection has its merits, since #letronic properties can be
easily tuned by external fields. The following scheme fongghharonov-Bohm QRs as
tuneable THz emitters can be proposed. Inversion of papulat semiconductor QRs or
type Il QDs can be created by optical excitation across thec®ductor gap. Angular

momentum and spin conservation rules do not forbid the ioreaif an electron in the

first excited state as long as the total selection rules fontmole system, consisting of an
electron-hole pair and a photon causing this transitiom satisfied. Terahertz radiation
will be emitted when the electron undergoes a transitiomftbe excited to the ground
state of the QR. As was shown in the previous Sections botlfrélaggiency and polar-

ization properties of this transition can be controlled Iyeenal magnetic and electric
fields.

Other potential applications of the discussed effectsratba burgeoning areas of quan-
tum computing and cryptography. The discussed mixing ofwestates, which are de-
generate in the absence of electric field, is completelyrotiad by the angle between the
in-plane field and a fixed axis. This brings the potential gmkty for creating nanoring-
based qubits, which do not require weak spin-orbit coupbetyveen the electric field
and electron spin. Arrays of the Aharonov-Bohm QRs can a¢soded for polarization

sensitive single-photon detection, which is essentiatjt@ntum cryptography.
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Chapter 4

Quantum rings in quantized

electromagnetic fields

Aharonov-Bohm Quantum Rings Embedded Into High-Quality
Terahertz Microcavities



4.1 Introduction

Progress in nanolithography and epitaxial techniquesdssdted in burgeoning develop-
ments in the fabrication of micro-scale optical resonatamewn as optical microcavities.
If the quality factor of a cavity is sufficiently large, therfoation of hybrid light-matter ex-
citations occurs. Being first observed two decades lago [1i@]strong coupling regime
is now routinely achieved in different kinds of microcag&i[113]. From the point of
view of fundamental physics, this regime is interestingfeestigation of various collec-
tive phenomena in condensed matter systems such as théeehigierature Bose-Einstein
condensation (BEC) [114, 115] and superfluidity [116]. Frtra viewpoint of appli-
cations it opens a way towards to the realization of optaedacc devices of the next
generation[[117]: room-temperature polariton lasers [1@8larization-controlled opti-

cal gates,[[119], effective sources of THz radiation [109,,1120], and others.

Several applications of the strong coupling regime were pl®posed for quantum in-
formation processing [121-123]. In this case one shoulddbe @ tune the number of
emitted photons in a controllable way. This is hard to aahigvplanar microcavities,
where the number of elementary excitations is macroschpieage, but is possible in
microcavities containing single quantum dots, where trentium dot exciton can be cou-
pled to a confined electromagnetic mode provided by a mitaogetched planar cav-
ity) [67], a defect of the photonic crystal [66], or a whisimgr gallery model[68, 124].
That is why the strongly coupled systems based on quantusrha@et attracted particular
attention recently. In the strong coupling regime the syspossesses a rich multiplet
structure, which maps transitions between quantized édestates of the light-matter

coupling Hamiltonian [66—69, 90, 125-128].

In this Chapter we examine a single-mode THz microcavit@HIB2] with an embedded
Aharonov-Bohm quantum ring, which is pierced by a magnetix #8nd subjected to a

lateral electric field. We restrict our analysis to linegplylarized microcavity radiation
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Figure 4.1: An Aharonov-Bohm quantum ring embedded intaglsimode THz micro-

cavity.

only. The geometry of the system is shown in [Fig] 4.1. The simisproperties of such
a system under continuous incoherent pumping are studesmdtically. We calculate
the luminescence spectrum of the system using the mastatieqtechniques for several
combinations of the applied external electric and magrfegids. We demonstrate that
the resonance which is best for exploring quantum featuiréiseosystem[[126] can be
achieved by means of tuning the magnitude of the lateratradefteld. An additional

degree of control can be achieved by changing the angle batthe polarization plane of
the optical pump and the lateral electric field. As we show,ghantum ring-microcavity

coupling strength depends strongly on the above mentiongie a

4.2 Quantumrings in high-quality terahertz microcavities

4.2.1 Aharonov-Bohm quantum rings as two-level photon emiérs

In this Section we briefly revise the energy spectrum andcapfiroperties of a single-
electron Aharonov-Bohm QR pierced by a magnetic flevand subjected to a lateral
electric fieldE, which were studied in Chapter 3. We then show how the sialgletron

Aharonov-Bohm QR can be utilized as a two-level, singletph@mitter.
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In the absence of the external electric field the eigenfanstiof an infinitely narrow

Aharonov-Bohm QR of a radiuB are given by
U (@) = €™ /2, (4.2)

wherey is the polar angle coordinate amd = 0,+1,+2... is the angular momentum

quantum number. The corresponding eigenvalues are defined b

em (f) =cqr(m+ f)?,

whereegr = h?/2M,.R? is the energy scale of the interlevel separation in the @Ris
the electron effective mass arfd= ®/®, is the number of flux quanta piercing the QR
(®o = h/e). For experimentally attainable QRs, 5 corresponds to the THz frequency

range.

When the lateral electric field is applied, the modified elmtteigenfunctions can be

expressed as a linear combination of the unperturbed wasatifuns [(4.1):
U, (p) = Z e, 4.2)

Substituting the wave functiofi (4.2) into the Schrodingguation with the Hamiltonian
containing a term which describes the presence of the laetric field, multiplying
the resulting expression ey ¥, and integrating with respect to the angleesults in an

infinite system of linear equations for the coefficietjts(for details see Sectidn 3.2)
[(m 4 f)? = Aa] €+ B (s +y) =0, (4.3)

wheres = eER/2¢qp is the normalized strength of the lateral electric field apds an
energy eigenvalue normalized byy. It can be seen from the system of equatidns| (4.3)
that all the QR quantities are periodic in the magnetic ffuwith the period equal t@®,.
There is also an apparent symmetry with respect to the chafrige sign of®. Therefore,

in what follows we will consider only the case @< ¢ < ¢, /2.
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It it shown in AppendiXx_A that in the limit of a weak in-planeeetric field,e ER < egr,
all essential features of the first three states of the QRullsedaptured by the following

3 x 3 system of linear equations:

(f+1* B 0 cy i
B f? B aqgl=M|cq | (4.4)
0 B (f?_‘l)z cy cy

In what follows we will be interested in the transitions beem the ground and the first

excited states in the QR only. However, in order to obtaimeate ground and first excited

states eigenenergies and eigenfunctions all three listé¢elssshould be considered. The
system of linear equations (4.4) can be reduced to a cubiatiequfor \,,, which yields

the following eigenvalues; < Ay < As:

A = —2/3y/1 +12f2 4 632 cos (a/3) + f2 +2/3, (4.5)
Ao = —2/3/1+12f2 + 652 cos (/3 — 21/3) + 2 +2/3, (4.6)
A3 = —2/3y/1 +12f2 + 632 cos (a/3 + 21 /3) + f2 +2/3, (4.7)
where
o 136074957

(1+12f2 +662)°*
The set of corresponding eigenvectors (non-normalizedjvisn by substituting appro-

priate values o, into

) (D= (=17 0= 1) - B2

| = M= (f=1)%] 8 : (4.8)

cy 52
The energy spectrum for the electron ground and the firstezkstates defined by E@. (#.5)
and Eq.[(4.b) respectively fgt = 0.1 and0 < f < 1/2is plotted in FigL4.R. Notably,
the3 x 3 system of equation§ (4.4) provides a very good accuracyhéogtound and the

first excited states whefi < 1 (i.e. eER < egr). A numerical check shows that the
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Figure 4.2: The normalized energy spectrum for the elegyronnd and the first excited

states in the quantum ring as a function of dimensionlesapeaterf for g = 0.1.

further increase in the system of linear equations, [Eq) (dd@es not provide any notice-
able change in the results. A similar analysis is applictatkenanohelix with an electric
field applied normal to its axis. For a helix, the role of magm#ux in the absence of a

magnetic field is played by the electron momentum along thedidine [100+10%,133].

The QR can be represented as a two-level system with theyegapgoetween the ground
state|g) (n = 1) and the excited state) (n = 2) denoted byA. From Eqgs.[(45)£(416), it
is clear thatA depends on both the external electric figldapplied in the QR plane, and
the magnetic fluxb, piercing the QR. In particular, wheh = 0 (® = ®,/2), one obtains
Aleqr=1+28 (A/egr = 2D).

Another quantity, which is needed for further calculatiorssthe product of the light

o) - (ol

moment calculated between the ground stafeand the excited state). For linearly

polarization vectoe and the matrix elemerd = <e

e> of the dipole

polarized light this product is given by the following integ)
27
d-e= eR/ U W, cos (0 — @) do, 4.9
0

whereV , U, are the ground and the first excited state wave functionsetkbig Eq.[(4.R)

andd is the angle betweemandE.
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Substituting eigenfunctiong,, ¥, given by Eq.[(4.2) into Eq[(4.9) and performing the

integration with respect to the anglewe obtain

d-e= (dQ_ + di —2d_d, cos 26) 12 , (4.10)
where
R
d- = 5 [ehel + el (4.11)
and
R
dy = % | 1cd + 5y |- (4.12)

Later in this work we use Eq$. (4]10)=(4l.12) with coefficgefit ¢ obtained from EqL(4]18)
to calculate the QR-MC coupling strength. A detailed analgsEq. [4.8) and Eqd. (4.111)—
(4.12) shows that a noticeabfedependence in Eq.(4.110) occurs only when= 0 or

f =1/2, asd_ vanishes otherwise.

4.2.2 The Jaynes-Cummings Hamiltonian and the Master Equabn

The full Hamiltonian describing the system of a QR coupled single-mode THz MC is
the Jaynes-Cummings [134]

H;c = Ao'o + hwycala + G (aTa + aaT) : (4.13)

wherew,,¢ is the MC eigenfrequency is the QR-MC coupling constant] is the MC
photon creation operatod, is the MC photon annihilation operatet! = (o, + io,)/2
is the QR electron creation operator= (o, — io,)/2 is the QR electron annihilation
operator, and,, o, are the Pauli matrices acting in the spacg¢gpfand|e) states. The

frequency of the MC mode and the frequency of the transitetavben the QR states are

1For more details on MC-2LE interaction Hamiltonian, i.ee thaynes-Cummings Hamiltonian, please
refer to Sections 2.2[1-2.2.3 of this thesis.
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assumed to be close enough to allow the use of the rotating @proximation. [135,

136] If the MC mode is linearly polarized;, is given by

g = — (d . e) \/ hijc/QEQV, (414)

whered - e is given by Eq.[(4.10)¢, is the vacuum dielectric permittivityy” is the
guantization volume, which can be estimated/as- (AMC/2)3, and\ ;o = 2mc/wyc

is the MC characteristic wavelength. When the magnetic fiexcpng the QR is equal
to an integer number of half-flux quanta,strongly depends on the andgldetween the
projection of the radiation polarization vector onto the QIRne and the applied lateral

electric field.

The eigenvalues of the Hamiltonidn (4.13) are the same dweicdse of a single-mode

MC with embedded QD, whose excitations obey fermionic stias [126, 135].

EE = ho (N = 1/2) + A/2 4/ (hone — AP /A + NG, (4.15)

whereN is the total number of electron-photon excitations in th&tem, i.e. the number
of photons inside the MC if the electron is in the ground st&tee corresponding eigen-
functionsX’E can be expressed as a linear combination of the combinetlarigahoton
stateqg, N) = |¢g) ®|N) andle, N — 1) = |e) ® [N — 1), which define both the QR state
and the MC photon occupation number. Using this basis weesdlw 2 system of linear

equations which corresponds to the Hamiltonian (4.13) dotdio

Xy =K, ylg.N)+ K yle,N—1), (4.16)
where
N
Kfy = VNG : , (4.17)
V(ES = Nhwye) + NG?
and

E% — Nhwye
V(B = Nhwe)” + Nhg?

Kiy= (4.18)

75



The main advantage of using a QR instead of a QD is the opptyrtwcontrol both the
energy gap\ between the first two states of the QR and the QR-MC couplingtemtg

by changing the external electric and magnetic fields. Thekis can be used to achieve
the resonant conditiolh = fw,y;c and provide easy means of performing a transition

from the strong to the weak coupling regime within the sanstesy [126].

The eigenvalueg’s defined by Eq.[(4.15) form the so-called “Jaynes-Cummingdda’
and the emission spectrum of the system, which is observisttewof the MC, is defined
by optical transitions between the states with total nunolbefectron-photon excitations

N different by unity (see Fig. 4.3). Inside a non-ideal MC, afaim has a limited lifetime

A(a)
" ) +VNG (b)
wWnmc T
—VNG
hwne (N = 1) VN9 I -—-- -—- I
e vie Srw T Y
.................................... ﬁ(W—WMc)/g
+G ©
hwye + -G ‘
10 41
0+ 0 I(w —wne)/G

Figure 4.3: Schematic diagram of the energy and emissioctrspef the coupled QR-
MC system in the resonant cade= hwy,c: (a) the “Jaynes-Cummings ladder”; (b) the

Mollow triplet; (c) the Rabi doublet.

and when the photon leaks out, one can measure its frequdiniy. provides a direct

access to the quantized coupled electron-photon statbe s/stem.

In order to describe any realistic experiment measuringdReMC emission spectrum
one should introduce pump and decay in the system. We modedytsiem dynamics

under incoherent MC pumping and account for dissipatiortgsses using the master

76



equation approach for the full density matrix of the systefsee, e.g., Refs. [135, 138])

The master equation reads

% = %[p, Hyol+ Ly p+ LYo+ L9, (4.19)
where£}¢, £}/ are the Lindblad terms, which account for the MC pump and yleca
and the Lindblad termC,‘fR describes non-radiative transitions of the QR electromfro
the excited statg) to the ground statly). In the explicit form these three terms are given
by

L¥Cp = %(2@%@ —aa'p — paa' + 2apa’ — a'ap — pa'a),

Efycp = 7]\/[—0(2apaT —a'ap — pa'a),

Eng = WTR(ZUpUT —olop — polo),

whereP,,¢ is the intensity of the incoherent MC pumping andc, vor are the lifetimes
of the photonic and the QR excitations respectively. Dubéddalance between the pump
and the decay, after some time a steady state is establMlgedenote the corresponding
density matrix a$°°. The steady state density matrix can be found by solving mdme
cally Eq. [4.19) with all the matrices truncated. When perfimg the truncation, all the

states which can be excited as a result of the pumping shewddounted for.

4.2.3 Emission spectrum of the system under incoherent puniug

In the presence of the pump and the decay and after estalglisim equilibrium, the
system is in a mixed state, which is characterized by thedfisity matrixp®°. If p°9

is written in the basis of eigenfunctioris (4.16), the dgnsiatrix diagonal element;?
gives the probability of the system to be in thih state. At low pumpingPyc < G,
and in the case of a high-Q systef;c, 7or < G, which is the best regime to elucidate

2For more details on the master equation approach for thed@sity matrix of a general MC-2LE
system please see Sectiéns 2[2.4-2.2.5 of this thesis.
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guantum coupling effects [126], the emission spectrum eaocdbculated using the so-
called manifold method, which has been proved to providditatigely accurate results
avoiding heavy numerical calculations (see, e.g., Ref36,[128], and([137]). In this

approximation the QR and MC emission spectra are given by

QR|™ $S§
1 )MIF ‘ pirlrr
Son (W) ~ = | (4.20)
QR( ) WZF(hQIF_hW) +F%F
2
Sue @) =Y ML P Lo (4.21)
™ - (hQIF—hw)quF%F

where| M&F|* = [(Xp, |0 |X0) %, | MM = (Xr |a| X0) %, BQur = EF — EF, X, and
X; are the QR-MC initial and final states eigenfunctions defibgdEq. [4.16),£" and
E7 are the QR-MC initial and final states eigenenergies defiyegidp (4.15), and ;- is
given by

Drp = 985 (MG + | MEF?) + 24E S (|aaie)? + |M3ie)?)
J J

# O3 (M L+ P 4 ).
J

In Egs. (4.2D)1(4.215,r andS),c correspond to photons of two different origins, which
can be detected outside of the MC by an external observeditbet emission of the QR
and the leaking MC photons. In the first case a photon outditleedVIC is created as a
result of the QR electron transition from the excited statd¢o the ground statgy) and

in the second case the photon is created due to annihilat@M& photon. Substituting

X5 from Eq. [4.186) into the expressions WIF’2 yields
RI2 2
‘MIQF ’ gNFK:NI‘ 5NF7NI*1’

M%’C} —’\/NI 9,Np N+\/NF eNp eNI

It should be noted that only the transitions between the leauplectron-photon states

5NF,N171-

with the total number of excitations differing by unity ardoaved. In the resonant case
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A = wyc, for transitions from theVth state to thé N — 1)th state

2
]Mfg] —1/4, (4.22)
2
]Mfﬁi] —1/4, (4.23)
and
2
MYC [ = VN - VN =] /4 (4.24)
2
MY = VN + VN =T] /4 (4.25)
with corresponding eigenfrequencies given by
Oive = wre £G (\/N +VN = 1) I, (4.26)
Osovs — e+ G (\/N VN = 1) /h. 4.27)

One can see that the observed emission spectrum consists gfnmetric inner peaks at
frequencies(4.27) and two symmetric outer peaks at frerjasifd.26). Together, these
peaks form the so-called “Jaynes-Cummings fork”. From E§22){4.25b) it follows
that when the total number of electron-photon excitatiornthe initial stateV = 1, both
Sor and Sy have a shape of the Rabi doublet (see [Eig. 4.3 (c)), and irethe af large
excitation numbersN > 1, Sgr is in the form of the Mollow triplet (see Fig. 4.3 (b))

while Sy, collapses into a single lasing peak.
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4.3 Results and discussion

In this section we use the formalism which was developed éenptevious Sections to
calculate emission spectra of the QR-MC system in the poeseha magnetic fluxp
piercing the QR and a lateral electric fidid The QR-MC system has apparent advan-
tages for exploring the quantum nature of light-matter ¢imgpn nanostructured systems
compared to the well-studied QD-based setup. Namely, trenpeters of the system can
be more easily tuned by external fields. Between all possiimebinations of the applied
magnetic and electric fields there are two cases of consideirgterest: (ap = 0,e L E
and (b)® = ®,/2, e L E. In both cases, the energy gap between the QR states is¢unabl
by the strength of the lateral electric field. From EQS.](4&)B) we get\ /eqr = 1—2/3?
(A/egr = 2B) for & = 0 (¢ = ©,/2). Thus, the energy gafd can be easily adjusted to
coincide with the energy of the MC modie;. From Eqs.[(4.10)E£(4.12) and EQ. (4.14)
one can see that whan= 0 or & = ®,/2 the QR-MC coupling constarst strongly de-
pends on the angkebetween the direction of the external electric field and ttoggation

of the MC mode polarization vector onto the QR planee IfL E, the coupling con-
stantG reaches its maximum possible value, and jf E, the MC mode and the QR are
completely uncoupled. By changing the direction of therkdtelectric field one acquires

additional means of control of the emission spectrum of yistesn.

The quantum structure of the Jaynes-Cummings states desturs the previous Section

is known to be observed only in the low dissipation regimes|12 herefore, it is natural

to consider a QR embedded into a high-Q THz MC under a weakharemt pumping.
Similar to Ref. [126], we choose a MC with the decay ratg-/G = 0.1 and a QR with

the decay rateyr/G = 0.01. The QR decay rate is chosen to be much smaller than the
MC decay rate, as is the case in most experimental systen@&Zl Tn all the calculations

we chose eithePy,/G = 0.005 or Pyc/G = 0.095. These conditions satisfy the
applicability criteria of the manifold method for modelljthe emission spectrum of the

systems.
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In order to estimate experimental conditions for the olestgom of the predicted emission
spectra we use the following values of the other system patienst a typical radius of
experimentally attainablé[8//9,16] QRBZ,= 20nm and the electron effective masd$ =
0.05m.. This gives the energy scale of the QR interlevel separatigin~ 2meV and the
magnitude of the magnetic field, which produces a magnetkctfitough the QR equal
to a half of the flux quantumi3 ~ 2T. Unless specified otherwise, all the calculations
are made in the presence of a weak lateral electric Held e with the magnitudey =
0.1egr/eR = 2 - 10*V/m. The QR-MC coupling constant can now be estimated using
Eq. (4.14). we obtairf = 8.3 - 107*meV (G = 1.2 - 102meV) for ® = 0 (& =
®,/2) which results in the MC Q-factor requiremeft = hwyc/vme ~ 16000 (Q ~
5000). THz microcavities with the Q-factor of this order of mamie have already been
achieved([130].

We start with calculations of the emission spectrum of theteay for Py;/G = 0.005

and Py;¢/G = 0.095 in the resonant caséw,;,c = A. The magnetic flux piercing the
QR is either® = 0 or & = ®,/2. Results of these calculations are shown in Eigl 4.4.
Both the direct QR emission spectruilyz, and the MC emission spectruf),c are
plotted. WhenP,,;-/G = 0.005, there are two dominant peaks (the linear Rabi doublet)
in Sgr and Sy, at the frequenciess = +G/h, which correspond to the transitions
between the twaV = 1 states and the ground = 0 state. With increasing pumping,
Pye/G = 0.095, the higherV > 1, states are excited. The intensity of the Rabi doublet
is decreased while the quadruplet peaks corresponding tegthsitions between theé =
2andN = 1 states emerge. Only the inner quadruplet peak,inandS,,- can be seen

in the selected energy range. It should be mentioned thabuker peaks in the MC
emission spectruny,,;c, become suppressed with increasivigas can be seen from the

expression for the corresponding matrix elements,[Eq4j4.2

A different type of emission spectrum can be observed away fhe resonance. This

can be achieved for the same system by changing the magrfutie lateral electric

81



Puc/G = 0.005 Puc/G = 0.095.

Figure 4.4: Emission spectrum of the quantum ring-micrdgasystem in the presence
of a lateral electric field? = 2.00 x 10*V/m for Py;c/G = 0.005 and Py;¢/G = 0.095.
The microcavity mode is in resonance with the quantum riagdition. The upper row
(brown) corresponds to the microcavity emission and theefaww (red) corresponds to
the direct quantum ring emission. The magnetic flux pier¢chggquantum ring is either
® = 0ord = Py/2. The emission frequencies are normalized by the quantuga rin

microcavity coupling constardt/# and centred aroundyc.

field. In Figs[4.5416 we plo$,,- andSgr whenA # Fuvy o for several values oF.
Fig.[4.5 corresponds ® = 0, whereas Fid. 416 correspondsiio= ®,/2. Due to the fact
that there are non-zero probabilities of finding the systemstates with differentv, the
emission spectrum has a pronounced multiplet structure.M@ pumping rate is taken
as Py /G = 0.095. One can clearly see the avoided crossings in the plottedsaoni
spectra, manifesting that the system is in the strong cogpéigime. Whed = ¢, /2 and
the detuning betweeA andhw,,¢ is of the order of, the direct QR emission spectrum
has the most intensive peaks at the frequencies clase-ta\ /4. This indicates that the

QR is almost uncoupled from the MC. The more pronounced awmimgthe emission
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Figure 4.5: Anticrossing in the emission spectrum of thenfjuia ring-microcavity sys-
tem at various magnitudes of the external lateral eleceld f7 from 1.98 x 10V /m to
2.02 x 10*V /m with the incremen50V /m: (a) microcavity emission spectrum (brown),
(b) direct quantum ring emission spectrum (red). The magflak piercing the quantum
ring ® = 0. The resonance casge = hwy ¢ corresponds td& = 2.00 x 10*V/m. The
microcavity pumping raté’,;-/G = 0.095. The emission frequencies are normalized by

the quantum ring-microcavity coupling constght: and centred around,¢.
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Figure 4.6: Anticrossing in the emission spectrum of thenfjua ring-microcavity sys-
tem at various magnitudes of the external lateral eleceld f from 1.98 x 10V /m to
2.02 x 10*V /m with the incremen50V /m: (a) microcavity emission spectrum (brown),
(b) direct quantum ring emission spectrum (red). The magfiak piercing the quantum
ring ® = ®,/2. The resonance cage= hwy;c corresponds t& = 2.00 x 10*V/m. The
microcavity pumping raté’,;-/G = 0.095. The emission frequencies are normalized by

the quantum ring-microcavity coupling constght: and centred around,¢.



spectra in Figl 416 compared to Fig.14.5 can be explained tigreint dependences of
the energy gap\ on the magnitude of the lateral electric field when® = &,/2 the

dependence is linear il and when® = 0 the dependence is quadraticfin

For a nearly zero flux through the QR, a small change of the #sxilts in significant
changes irb),c andSqr, as the presence of a weak magnetic field affects strongly bot
the QR gapA and the QR-MC coupling constagt The dependence of the QR gap
A on the magnetic fluxp piercing the QR can be seen from Hig.14.2, while the QR-MC
coupling constan magnetic flux dependence can be easily calculated usindEd48)—
(4.12) and EqL(4.14). In Fig.4.7 we pl&t,;c andSqr for several values o near zero.
The MC pumping rate is taken d%,-/G, = 0.095, whereG, denotes the value of the
QR-MC coupling constant fob = 0. The plotted emission spectra incorporate both the
anticrossing behaviour due to detuning of the QR transigioargy from the energy of
the MC mode and the changes in the multiplet structure owongatying the QR-MC

coupling strength.

Finally, we calculate the emission spectrum of the QR-nuavdty system altering the
angled between the direction of the applied electric field and treggmtion of the mi-
crocavity mode polarization vector onto the QR plane. Agtia magnetic flux piercing
the QR is eithe® = 0 or & = ®(/2. The system is in the resonande,= hw,;c. The
microcavity pumping rate is taken #&%,c/G.» = 0.005, whereg, , denotes the value

of the QR-microcavity coupling constant fér= /2. The results are plotted in Fig. 4.8.
One can see that as the andles changed, the emission peaks shift towards the micro-
cavity eigenfrequency,,c, which can be explained by reducing the coupling streggth
This effect provides an additional way to control the fregueof the satellite peaks in
the QR-microcavity emission spectrum and allows a puregcspscopic measurement

of the pump polarization.

In this work we dealt exclusively with the QR inter-subbamnansitions. However, a

similar analysis should be possible for inter-band opticahsitions, for which matrix

85



Svc [a.u.] @ Sar [a.U.] (b)

/0, /0,
0 N V V'V A 0

0.0005 A ‘ . . ‘ PR 0.0005
0.0010 oA ‘ . .‘ N 0.0010
0.0015 N ‘ . “ R 0.0015
0.0020 AAL ‘ . . 0.0020

0.0025 A ‘ ‘ " 0.0025

0.0030 0.0030

0.0035 0.0035

0.0040 . 0.0040
2 i 0 | 2 2 i i] i 2
Iw — ware)/Go h(w — we)/Go

Figure 4.7: Anticrossing in the emission spectrum of thenfjuia ring-microcavity sys-
tem at various magnitudes of the magnetic fibopiercing the quantum ring frora to
0.004®, with the incremend x 10-*®, and in the presence of the lateral electric field
E = 2.00 x 10*V/m: (a) microcavity emission spectrum (brown), (b) direct ifuan
ring emission spectrum (red). The resonance ¢ase hw,,- corresponds t@ = 0.
The emission frequencies are normalized by the value of tla@tgm ring-microcavity
coupling constant calculated fdr = 0 (G,) and centred around,,.. The microcavity

pumping ratePy,¢ /Gy = 0.095.
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Figure 4.8: Emission spectrum of the quantum ring-micragaystem when the lateral
electric fieldE = 2.00 x 10*V/m is rotated. The anglé is counted betweeR and the
projection of the microcavity mode polarization vector @tite quantum ring plane.
The upper row (brown) corresponds to the microcavity erarsand the lower row (red)
correspond to the direct quantum ring emission. The sysgsemresonance) = haw,c.
The emission frequencies are normalized by the value of tla@tgm ring-microcavity

coupling constant fof = /2 (G./,) and centred around,;c. The microcavity pumping

rate Pryc/Gx/2 = 0.095.



elements and energies can also be tuned by the external mields easily than in the

widely studied QD systems.

In conclusion, we have analyzed the emission spectrum otamohov-Bohm QR placed
into a single-mode quantum MC. We have shown that the enmisgiectrum in the strong
coupling regime has a multiplet structure and can be tunethéyariation of the mag-
netic field piercing the QR and by changing the strength arettion of the applied lateral
electric field. Thus, it is demonstrated that a MC with an eddeel QR is a promising
system for use as a tunable optical modulator in the THz rafige QR-MC system,
which allows manipulation of quantum states with externald8, might also prove to
be useful for investigating dephasing mechanisms and fginerring and exploring en-

hanced light-matter interactions for novel quantum ingasions.
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Chapter 5

Conclusions and outlook

Bridging the THz gap with Aharonov-Bohm quantum rings
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Conclusions

In our work we studied the interaction of Aharonov-Bohm quamrings with classical

and quantized electromagnetic fields.

In Chapter. B we examined an infinitely-narrow, single-géetiquantum ring pierced
by a magnetic flux and subjected to a lateral electric fieldis Thodel is relevant to
nanoscale-sized type-lI quantum rings and type-Il quantats, duch as those studied
in Refs. [5+19]. We show that the applied electric field, vishis known to suppress
magneto-oscillations in the ground state of a single-glarjuantum ring [98,99], results
in strong oscillations of the ring electric dipole momentaelection rules for optical
transitions between the ground and first excited stateseofjtiantum ring. We attribute
these phenomena to electric-field induced mixing of quantag states with different
angular momenta, which occurs when magnetic flux througljtla@tum ring is equal to
a half-integer of the magnetic flux quantum. It is shown thesnea weak electric field

causes this mixing.

It should be emphasised that these effects are not an adffibe infinitely-narrow ring
model used in our calculations, but persist in finite-widtigs in a uniform magnetic
field. As we have shown, the only feature needed for the déistiphenomena is the
degeneracy of the states with the angular momenta diffdayngne at certain magnetic
field values, which is known to be present in quantum ring$ witite width as well

[43-46(103].

In order to establish an understanding of the potential bseovation of the predicted ef-
fects in real systems we provide estimates for experimeotaditions essential for mea-
suring these phenomena. While observation of the dipole embmagneto-oscillations
would require a low-temperature laboratory, the oscdlagi of selection rules for optical
transitions can be potentially observed at room temperatumdeed, when the ground
and the first excited stated are equally occupied the dipol@memt oscillations are com-

pletely suppressed while the intensity of the optical tit&mss is only for times lower
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comparing to the case when the ground state is fully occugmeldhe first excited state is

empty.

For experimentally attainable quantum rings these trimmsitoccur in the THz frequency
range. It provides an opportunity of utilizing AharonoviBo quantum rings as THz
emitters and detectors. Despite significant progress nadards reliable and efficient
THz sources, such as THz quantum cascade lasers[[138—1d®lelectron THz lasers
[141,142], and recently proposed microcavity-polaritdhkz lasers([110,111, 118, 120],
bridging of the so-called ‘THz gap’ remains a formidablekta3he range of potential

application of THz radiation is both vast and in high demarithe vibrational modes

of many molecules, including molecules of explosive matsrioccur at THz frequen-
cies [143,144], making THz spectroscopy a powerful and inwasive tool for molecular

identification and characterization. An airport scanndriclv detects molecules found in
explosives, is only one example of a highly-useful THz devi©ther potential applica-
tions of the THz spectroscopy lie in the area of pharmacalutesearch and biomedical

diagnostics/[145].

Arguably, the use of Aharonov-Bohm quantum rings for THzadn and detection has
its merits as polarization properties and frequencies af Treinsitions in quantum rings

are fully controlled by the applied external fields.

In Chaptef 4 we examined a system of an Aharonov-Bohm quarihigrembedded into
a single-mode THz microcavity. It was shown that the disedgsossibility to control
optical properties of quantum rings with the external ele@nd magnetic fields suggests
a new way of regulating the microcavity-emitter couplingeagth. Such easy control
was never possible with quantum dots embedded in microeawithere all main optical
properties of the system are predefined at the growth stagje.rAsult, one can strongly

influence emission spectra of the system by varying extéieidks.

We calculate the emission spectra of the system under ecantgnincoherent pumping

when the quantum ring transitions are both in or out of themaace with the micro-
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cavity mode and for various combinations of the appliedtaleand magnetic fields. We
restrict our analysis to linearly polarized microcavitdietion only. It is shown that when
the system is in resonance and the magnetic flux piercingubetgm ring is equal to a
half-integer of the magnetic flux quantum, a precise cordfahe satellite peaks in the
emission spectra is possible with (i) pumping intensity @ndhe direction of the lateral

electric field with respect to the microcavity radiationgraation vector. This effect can
be used for creating the highly demanded THz electro-dpticalulators. In a quantum
ring-microcavity-based optical modulator, modulationtloé intensity, frequencies and
polarization of the THz radiation would be realized by pditovariation of the lateral

electric field direction. Potentially, such a device can itdeed created as THz micro-
cavities with high values of Q-factor based on both Braggong [146] and photonic

crystals[130] have been already achieved.

The calculated non-resonant emission spectra can be o&halgrkp during the procedure
of modulator adjustment. As we discuss in Chapter 4, in aestablish a resonance in
the quantum ring-microcavity system one would tune magieisuof the applied electric
and magnetic fields. Thus, the calculated non-resonants@mnispectra can serve as a

reference pattern.

To conclude, we believe Aharonov-Bohm quantum rings to loenmsing candidates for
creating optical devices operating with radiation at THzgfrencies and hope that our

work will stimulate further experimental research in thisa
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Outlook

A natural extension of the current work presented in ChaBtex to repeat our calcu-
lations using a more realistic (and consequently more cated) 2D model of the
Aharonov-Bohm quantum ring. We chose the same model as viiaeditn Refs. [43-46]
as it allows an analytical treatment. Preliminary resuftewr calculations are shown in
Fig. (5.1). One can see that, as it was stated, the main éeaquired for the predicted ef-
fects - degeneracy of the energy levels with angular monwiffeing by unity at certain

magnetic field values - is indeed present in this model.

0.15

0.1 ~\

0.05

energy

-0.05

2 B / &,

Figure 5.1: A finite-width ring in a magnetic field for differevalues of in-plane electric

field strength. The ring radiug = 100nm and its width is20nm.

The possible extension of the work presented in Chapterahise the Quantum Regres-
sion Theorem([81-83, 135, 147] (together with the Wieneirkdhine formula[[81-83,
135/148,149]) to calculate the emission spectrum of thatgma ring-microcavity. Such

an approach can potentially reveal non-Lorentzian enmdgieshapes.
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Appendix A

Analytical solutions for small matrices

In the limit of weak electric field3 = eER/(h*/M.R?) < 1, the electron ground,
first and second excited states are well-described by thenfiolg three-by-three system,
which is obtained from Eq[(3.6) fdm| < 1

(f+1* 8 0 cy c
g £ B al=x|al- (A.1)
0 B (f - 1)2 "y "y

Heref = (& — N®y)/P, with N integer, so thad < f < 1/2. The eigenvalues,, of
the system(All) are the roots of the cubic equation

A= X237 42) + N (3f 41287 — fO+2f = fP4+2287+ 2682 =0. (A2)

Solving Eq.[(A.2) we find

A= —2/3/1+12f2 + 652 cos (a/3) + f* +2/3, (A.3)
Ao = —2/3\/1 +12f2 + 632 cos (a/3 — 21 /3) + f2 +2/3, (A.4)
A3 = —2/3\/1+12f2 + 652 cos (/3 + 21/3) + > +2/3, (A.5)
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with
1— 362 + 9532
(1+12f2 +662)°*
Considering? < 1 (the limit of weak electric field) we expand Eqs. (A.3-A.5)amaylor

COS ¥ =

series inf to obtain

= [2=2687) (21" + 08, (A.6)

n=0

1—2n) (n!)* \ 52

— 2 2 (=1)" (2n)! iQn 4
A3=1+f*+8 H;a—%)(.) (62> +0(8Y. (A.8)

It can be shown that Eqm.& coincide with the resuﬁme perturbation theory

Ao =1+ 245 1—Z#<i)n + 0(8Y, (A.7)
(2

in eER for quasi-degenerate statés|[85] if the coupling to theestatith || > 1 is

neglected.

The energy spectrum given by Eds. (A.3-A.5) is plotted in Bidl. It is nearly indistin-
guishable from the energy spectrum, which was obtained byemnigal diagonalization of
the 23 x 23 system in Chaptér 3 for the same valueSofA small discrepancy between
the plotted energy spectra is noticeable only for the first sgcond excited states. The
energy spectrum obtained by numerical diagonalizatioh®@®3 x 23 system is slightly
shifted towards the smaller energies. This shift occurabge the consider&dk 3 matrix
does not take into account the coupling betweemthe +1 andm = +2 states. For the

infinite system and’ = 0, perturbation theory up to the second ordefiyields
M= —28% N =1-0%/3, A3 =1+ 55%/3, (A.9)
whereas from Eqsl_(Al6-Al.8) one gets
Mo=—-26% =1 =1+25% (A.10)

The )\, and \; values in Eq.[(AD) differ from the values in EQ.(Al10) by3?/3 which
corresponds to the repulsion between the= +1 andm = 42 states calculated using

the second order perturbation theory.
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Figure A.1: The normalized energy spectrum as a functionroédsionless parametgr
for 5 = 0.1. Dashed line - the result of analytical solution of the 3 system. Solid line -
the result of numerical diagonalization of th& x 23 system. A horizontal line is shown

to indicate\ = 0 value.

When f = 1/2, and in the absence of a lateral electric field, the= 0 andm = —1
states are degenerate with enetgy0) /4, i.e. A\; = X\o = 1/4, whereas then = +1
state energy is nine times larges (= 9/4). The contribution from this remote state can
be neglected, and the electron ground and first excitedsssaeewell-described by the

following two-by-two system, which contains; andc, coefficients only,

fro s G a9, (A.11)
B(f=17) \ey oy

The eigenvalues,, of the system((A.11) are the roots of the quadratic equation
A= (2 =2f+ 1)+ [P =2+ fP= B =0. (A.12)

Solving Eq. [A2) we find

Mo=f2—f+12FV/f2—f+52+1/4 (A.13)
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Figure A.2: The normalized energy spectrum as a functionroédsionless parametgr
for 5 = 0.1. Dashed line - the result of analytical solution of the 2 system. Solid line -
the result of numerical diagonalization of th& x 23 system. A horizontal line is shown

to indicate\ = 0 value.

yielding for f = 1/2 the eigenvalue differenc®, — \; = 24, corresponding to the
energy splitting ole £ R as expected from the perturbation theory for degeneratessta
The energy spectrum given by EQ. (Al13) is plotted in Eig.] fa@ether with two lowest
eigenvalues of th@3 x 23 system demonstrating a spectacular accuracy of the approxi

mate solution fors = 0.1.

Let us now return to the three-by-three matrix and examineitgeigenvectors are mod-
ified with changingf. Near the pointf = 0 it is convenient to write the eigenvectors of

the system (A1) in the following form

e e = (f = 1)°] (A — f2) — 32
| =An [\ — (f=1)°] 8 ; (A.14)
"y 3?

whereA,, denotes the normalization constant corresponding to teealue\,, and [A.14)
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is valid only for 5 # 0. For f = 0 in the limit of weak electric field§ < 1) we obtain

e NI —28 0
<1+1\/1+85 188 )
i - gl e (A.15)
&t | = NG 1+/1+8B 1], .
C£1 —26 0
2y 1 -1
2 - 0 , A.16
Co \/§ ( )
2, 1
3 —1/2 2 1
CJrl (1_1 /1+852+862> 6 1
3| = 11832 —1| 22— |ol|. (A1)
0 V2 V2
Cil 26 1

From Eqgs.[(AIB-A.17) one can see that for 0 andS < 1 the electron ground state is
almost a puren = 0 state, whereas the angular dependencies of the wavefnactidhe

first and second excited states are well-describediby andcos ¢ respectively.

The structure of eigenfunctions nefe= 1/2 is best understood from Ed._(A]11), which

yields
1
R b | (A.18)
Ly 12— f—/P—F+pB>+1/4
2 _ —
020 . f=1/2+\/f2—f+B2+1/4 (A19)
) B

Here A is the normalization constant agd# 0. For f = 1/2 we get

e R 2 IENE (A.20)
o) v2\-1)\e ) v2\1)’ '

From Eq.[(A.20) one can see that fb= 1/2 the angular dependencies of the ground and

first excited states wavefunctions are describesibyy/2) andcos (¢/2) respectively.

Fig.[A.3 shows the magnetic flux dependencies of the codffisje,|*, |c_;|*, and|c.|?

for the electron ground, first and second excited statesn finese plots one can see that
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Figure A.3: Magnetic flux dependence of the wavefunctiorffaents |c0|2 (solid line),

lc_1|* (dotted line), andc,,|* (dashed line): (a) for the ground state; (b) for the first

excited state; (c) for the second excited state.

the electron ground state is almost a pure- 0 state in a wide regiofi < f < 1/4. An
admixture of then = —1 wavefunction increases smoothly as one approaches thiegboin
degeneracy = 1/2. Finally, whenf = 1/2, the ground state wavefunction is expressed
as a difference of then = —1 andm = 0 wavefunctions. The first and the second
excited states behave differently. In a small region neaupthint f = 0 the electron first
and second excited states wavefunctions consist of a stnaxtgre of them = —1 and

m = +1 functions with a tiny admixture of the. = 0 function. In particular, wherf = 0

the first and second excited states eigenfunctions with goodracy can be expressed as
the difference and the sum of the = —1 andm = +1 functions respectively. Optical

transitions between these states and the ground state lgralloed if the polarization
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of the associated optical excitations is either perperaidtor the first excited state) or
parallel (for the second excited state) to the directiormefapplied in-plane electric field.
Away from thef = 0 region, only the coefficient_; (in the case of the first excited state)
or c,; (in the case of the second excited state) remains in thelE§4)Awhich now
describes almost pure = +1 andm = —1 states. Wherf exceedd /4 the first excited
state starts to contain a noticeable ad-mixturexcf 0 function, as discussed above, and
for f = 1/2 the first excited state eigenfunction is expressed as a stineof = —1 and

m = 0 wavefunctions in equal proportions, whereas the seconiteeixstate remains an

almost puren = +1 state.

The same trend in the evolution of wavefunctions of the thoeest energy states with
changing the flux through the ring can be seen from pertwbdkieory. Forf = 0, the
degeneracy between the first and second excited states avednn the second order

in eE R only. Nevertheless, as a result of the degeneracy, thedunttamn of any weak
perturbation drastically modifies the wavefunctions cgpnding to these states, turning
them from the eigenstates of the angular momentum operatbetsine and cosine func-
tions. With a slight increase of, so thatf > 32, the first and the second excited states,
which are not degenerate anymore fot~ 0, become governed mainly by the diagonal
terms of the Hamiltonian, which do not mix the = —1 andm = +1 functions. When
f=1/2,them = —1 andm = 0 states are degenerate in the absence of the electric field.
This degeneracy is removed in the first ordee l\R. The off-diagonal matrix elements
connectingn = —1 andm = 0 functions remain of the same order of magnitude as the
difference between the diagonal terms of the Hamiltonianssca broad range gfval-

ues nearf = 1/2. This results in strong mixing of the. = —1 andm = 0 components

in the eigenfunctions of the ground and first excited staiesf4 < f < 1/2.
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