QUANTUM RINGS IN ELECTROMAGNETIC FIELDS

Submitted by Arseny M. Alexeev to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Physics.

February, 2013

This thesis is available for library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material is included for which a degree has previously been conferred upon me.
Abstract

This thesis is devoted to optical properties of Aharonov-Bohm quantum rings in external electromagnetic fields. It contains two problems.

The first problem deals with a single-electron Aharonov-Bohm quantum ring pierced by a magnetic flux and subjected to an in-plane (lateral) electric field. We predict magneto-oscillations of the ring electric dipole moment. These oscillations are accompanied by periodic changes in the selection rules for inter-level optical transitions in the ring allowing control of polarization properties of the associated terahertz radiation.

The second problem treats a single-mode microcavity with an embedded Aharonov-Bohm quantum ring, which is pierced by a magnetic flux and subjected to a lateral electric field. We show that external electric and magnetic fields provide additional means of control of the emission spectrum of the system. In particular, when the magnetic flux through the quantum ring is equal to a half-integer number of the magnetic flux quantum, a small change in the lateral electric field allows tuning of the energy levels of the quantum ring into resonance with the microcavity mode, providing an efficient way to control the quantum ring-microcavity coupling strength. Emission spectra of the system are calculated for several combinations of the applied magnetic and electric fields.
To my grandmother,
Valentina,
without whose will to live
I would not be born.
Acknowledgements

First of all, I am extremely grateful and indebted to my supervisor Dr. Mikhail Portnoi for his expertise and inspiration. This thesis would not have been possible without his valuable guidance and encouragement.

I am also thankful to Prof. Ivan Shelykh for his appreciable contribution to Chapter 4 of this thesis.

I also wish to admit my mentor Dr. Euan Hendry for his support and advice during my PhD studies.

My special thanks to the International Institute of Physics-UFRN (Natal/RN-Brazil) for a great time in Brazil and their hospitality. A significant part of the research presented in Chapter 4 was done during my visits to Natal.

I take this opportunity to record my sincere gratitude to FP7 ITN Spin-Optronics project for financial support of my research and to all its members.

I would like to thank Charles Downing for valuable discussions of research results and critical reading of my manuscripts.

For great patience, emotional support and confidence in me I would like to acknowledge my family.
Contents

Abstract 2

Acknowledgements 5

List of Figures 12

Glossary 12

Part I 16

1 Introduction and overview 16
 1.1 Introduction . 17
 1.2 Quantum mechanics in nanoscale Aharonov-Bohm quantum rings . . . 19
 1.3 Quantum electrodynamics in microcavities: light-matter coupling . . . 22

2 Theoretical background 26
 2.1 Introduction . 27
 2.2 Light-matter coupling in microcavities: quantum description 27
 2.2.1 Quantization of the electromagnetic field 27
 2.2.2 Two-level photon emitter . 34
 2.2.3 Field-emitter coupling . 36
 2.2.4 Density matrix operator . 39
 2.2.5 Equation of motion for the density matrix 42
 2.3 Calculating optical transitions: electric dipole approximation 47
Part II

3 Quantum rings in classical electromagnetic fields

3.1 Introduction .. 52
3.2 Energy spectrum of an infinitely-narrow quantum ring 53
 3.2.1 Magneto-oscillations of the quantum ring eigenenergies 53
 3.2.2 Energy spectrum in the presence of a lateral electric field ... 55
3.3 Magneto-oscillations of the quantum ring electric dipole moment ... 58
3.4 Terahertz transitions and optical anisotropy in quantum rings ... 62
3.5 Results and discussion 66

4 Quantum rings in quantized electromagnetic fields 68
4.1 Introduction .. 69
4.2 Quantum rings in high-quality terahertz microcavities 70
 4.2.1 Aharonov-Bohm quantum rings as two-level photon emitters 70
 4.2.2 The Jaynes-Cummings Hamiltonian and the Master Equation ... 74
 4.2.3 Emission spectrum of the system under incoherent pumping ... 77
4.3 Results and discussion 80

Part III

5 Conclusions and outlook 90

A Analytical solutions for small matrices 96
List of Figures

1.1 Capacitance-voltage spectra for three different samples. The two arrows on the plot correspond to single-electron charging of the two spin states of the so-called “s-shell” in the dots. The inset displays an atomic force micrograph of self-assembled quantum rings on the surface of a reference sample. (Reproduced from Ref. [8]) 19

1.2 Sketches of the type-II InP/GaAs QDs: (a) conduction and valence band profiles, indicating the spatial separation of electrons and holes; (b) top view of the quantum dot plane, indicating the holes confined to a ring around the quantum dot due to the Coulomb interaction with the electron trapped in the dot. (Reproduced from Ref. [9]) 20

1.3 SEM image of a pillar microcavity. The top and bottom mirrors are formed by distributed Bragg reflectors. The middle layer contains multiple quantum dots (single-photon emitters). (Reproduced from Ref. [50]) 23

1.4 SEM image of a Noda cavity in a photonic crystal. On the right, calculated electric field, with maximum in dark is shown. The quantum dot placed at the maximum of field intensity with a remarkable accuracy of 25nm is pointed with the red cross. (Reproduce from Ref. [65]) 24

3.1 An Aharonov-Bohm quantum ring pierced by a magnetic flux and subjected to a lateral electric field. 52
3.2 (a) The energy spectrum of an infinitely narrow quantum ring pierced by a magnetic flux Φ. Each parabola corresponds to a particular value of the electron angular momentum m. The electron energies ε are plotted versus the number of flux quanta Φ/Φ_0. (b) Expanded view on a smaller energy scale.

3.3 Relative directions of the external electric field E and the electron position vector \mathbf{R}.

3.4 (a) The energy spectrum of an infinitely narrow quantum rings of radius R pierced by a magnetic flux Φ and subjected to an in-plane electric field $E = 0.2\varepsilon_1(0)/eR$. The electron energies ε are plotted versus the number of flux quanta Φ/Φ_0. (b) Expanded view on a smaller energy scale.

3.5 A polar plot of the electron density distribution in a single-electron quantum ring pierced by the magnetic flux $\Phi = 0$ (top row) and $\Phi = \Phi_0/2$ (bottom row) and subjected to a weak in-plane electric field, $E \ll \varepsilon_1(0)/eR$: (a) and (c) for the electron ground state; (b) and (d) for the first excited state.

3.6 Magneto-oscillations of the dipole moment of a ring at various temperatures for $E = 0.2\varepsilon_1(0)/eR$. Different curves correspond to different temperatures in the range from $T = 0.01\varepsilon_1(0)/k_B$ to $T = 0.41\varepsilon_1(0)/k_B$ with the increment $0.1\varepsilon_1(0)/k_B$. The upper curve corresponds to $T = 0.01\varepsilon_1(0)/k_B$.

3.7 Magneto-oscillations of the dipole moment of a ring at various magnitudes of the in-plane electric field for $T = 0.01\varepsilon_1(0)/k_B$. Different curves correspond to different magnitudes of the electric field in the range from $E = 0.2\varepsilon_1(0)/eR$ to $E = 1.0\varepsilon_1(0)/eR$ with the increment $0.2\varepsilon_1(0)/eR$. The upper curve corresponds to $E = 1.0\varepsilon_1(0)/eR$.

3.8 Relative directions of the external electric field E and the projection e of the THz radiation polarization vector onto the quantum ring’s plane.
3.9 Magneto-oscillations of the degree of polarization for the transitions between the ground state and the first excited state. Here T_{\parallel} and T_{\perp} correspond to the intensities of transitions polarized parallel ($e \parallel E$) and perpendicular ($e \perp E$) to the direction of the in-plane electric field, respectively.

4.1 An Aharonov-Bohm quantum ring embedded into a single-mode THz microcavity.

4.2 The normalized energy spectrum for the electron ground and the first excited states in the quantum ring as a function of dimensionless parameter f for $\beta = 0.1$.

4.3 Schematic diagram of the energy and emission spectra of the coupled QR-MC system in the resonant case $\Delta = \hbar \omega_{MC}$: (a) the “Jaynes-Cummings ladder”; (b) the Mollow triplet; (c) the Rabi doublet.

4.4 Emission spectrum of the quantum ring-microcavity system in the presence of a lateral electric field $E = 2.00 \times 10^4 \text{V/m}$ for $P_{MC}/\mathcal{G} = 0.005$ and $P_{MC}/\mathcal{G} = 0.095$. The microcavity mode is in resonance with the quantum ring transition. The upper row (brown) corresponds to the microcavity emission and the lower row (red) corresponds to the direct quantum ring emission. The magnetic flux piercing the quantum ring is either $\Phi = 0$ or $\Phi = \Phi_0/2$. The emission frequencies are normalized by the quantum ring-microcavity coupling constant \mathcal{G}/\hbar and centred around ω_{MC}.

10
4.5 Anticrossing in the emission spectrum of the quantum ring-microcavity system at various magnitudes of the external lateral electric field E from $1.98 \times 10^4 \text{V/m}$ to $2.02 \times 10^4 \text{V/m}$ with the increment 50V/m: (a) microcavity emission spectrum (brown), (b) direct quantum ring emission spectrum (red). The magnetic flux piercing the quantum ring $\Phi = 0$. The resonance case $\Delta = \hbar \omega_{MC}$ corresponds to $E = 2.00 \times 10^4 \text{V/m}$. The microcavity pumping rate $P_{MC}/G = 0.095$. The emission frequencies are normalized by the quantum ring-microcavity coupling constant G/\hbar and centred around ω_{MC}.

4.6 Anticrossing in the emission spectrum of the quantum ring-microcavity system at various magnitudes of the external lateral electric field E from $1.98 \times 10^4 \text{V/m}$ to $2.02 \times 10^4 \text{V/m}$ with the increment 50V/m: (a) microcavity emission spectrum (brown), (b) direct quantum ring emission spectrum (red). The magnetic flux piercing the quantum ring $\Phi = \Phi_0/2$. The resonance case $\Delta = \hbar \omega_{MC}$ corresponds to $E = 2.00 \times 10^4 \text{V/m}$. The microcavity pumping rate $P_{MC}/G = 0.095$. The emission frequencies are normalized by the quantum ring-microcavity coupling constant G/\hbar and centred around ω_{MC}.

4.7 Anticrossing in the emission spectrum of the quantum ring-microcavity system at various magnitudes of the magnetic flux Φ piercing the quantum ring from 0 to $0.004\Phi_0$ with the increment $5 \times 10^{-4}\Phi_0$ and in the presence of the lateral electric field $E = 2.00 \times 10^4 \text{V/m}$: (a) microcavity emission spectrum (brown), (b) direct quantum ring emission spectrum (red). The resonance case $\Delta = \hbar \omega_{MC}$ corresponds to $\Phi = 0$. The emission frequencies are normalized by the value of the quantum ring-microcavity coupling constant calculated for $\Phi = 0 (G_0)$ and centred around ω_{MC}. The microcavity pumping rate $P_{MC}/G_0 = 0.095$.

11
4.8 Emission spectrum of the quantum ring-microcavity system when the lateral electric field \(E = 2.00 \times 10^4 \text{V/m} \) is rotated. The angle \(\theta \) is counted between \(E \) and the projection of the microcavity mode polarization vector onto the quantum ring plane \(e \). The upper row (brown) corresponds to the microcavity emission and the lower row (red) correspond to the direct quantum ring emission. The system is in resonance, \(\Delta = \hbar \omega_{MC} \). The emission frequencies are normalized by the value of the quantum ring-microcavity coupling constant for \(\theta = \pi/2 \) \((G_{\pi/2}) \) and centred around \(\omega_{MC} \). The microcavity pumping rate \(P_{MC}/G_{\pi/2} = 0.095 \).

5.1 A finite-width ring in a magnetic field for different values of in-plane electric field strength. The ring radius \(r_0 = 100\text{nm} \) and its width is 20nm.

A.1 The normalized energy spectrum as a function of dimensionless parameter \(f \) for \(\beta = 0.1 \). Dashed line - the result of analytical solution of the 3 \(\times \) 3 system. Solid line - the result of numerical diagonalization of the 23 \(\times \) 23 system. A horizontal line is shown to indicate \(\lambda = 0 \) value.

A.2 The normalized energy spectrum as a function of dimensionless parameter \(f \) for \(\beta = 0.1 \). Dashed line - the result of analytical solution of the 2 \(\times \) 2 system. Solid line - the result of numerical diagonalization of the 23 \(\times \) 23 system. A horizontal line is shown to indicate \(\lambda = 0 \) value.

A.3 Magnetic flux dependence of the wavefunction coefficients \(|c_0|^2 \) (solid line), \(|c_{-1}|^2 \) (dotted line), and \(|c_{+1}|^2 \) (dashed line): (a) for the ground state; (b) for the first excited state; (c) for the second excited state.
Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2LE</td>
<td>Two-Level Emitter</td>
</tr>
<tr>
<td>CEF</td>
<td>Classical Electromagnetic Field</td>
</tr>
<tr>
<td>MC</td>
<td>Microcavity</td>
</tr>
<tr>
<td>Q-factor</td>
<td>Quality factor</td>
</tr>
<tr>
<td>QD(s)</td>
<td>Quantum Dot(s)</td>
</tr>
<tr>
<td>QEF</td>
<td>Quantized Electromagnetic Field</td>
</tr>
<tr>
<td>QHO</td>
<td>Quantum Harmonic Oscillator</td>
</tr>
<tr>
<td>QR(s)</td>
<td>Quantum Ring(s)</td>
</tr>
<tr>
<td>SPE</td>
<td>Single-Photon Emitter</td>
</tr>
<tr>
<td>SS</td>
<td>Steady State</td>
</tr>
<tr>
<td>THz</td>
<td>Terahertz</td>
</tr>
</tbody>
</table>
Introductory notes

Please note that throughout this thesis, when it is clear from the context that an operator is used, the operator symbol \sim is omitted for reading ease.

Chapter 4 is based on the paper A.M. Alexeev, I.A. Shelykh, and M. E. Portnoi, ‘Aharonov-Bohm quantum rings in high-Q microcavities’ recently submitted to Phys. Rev. B [3].