Engineering the electrical properties of graphene materials

Submitted by Ivan Khrapach to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Physics
December, 2012

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Ivan Khrapach
December, 2012
Abstract

In this thesis the properties of graphene and its few-layers are engineered to make them highly conductive. Two different approaches were implemented to achieve this goal. One approach was to increase the concentration of charge carriers by intercalation of acceptor FeCl$_3$ molecules between graphene planes. This resulted in a highly conductive yet transparent material which can be useful for applications. Another approach was to increase the mobility of carriers by means of removing surface contamination in the current annealing process. Optimal annealing parameters were found and a reproducible cleaning method was suggested.
Acknowledgements

I wish to express my sincere gratitude to those people who have contributed to this three and a half years long journey into nanotechnology.

This have begun in 2009 when Professor Alex Savchenko interviewed me. I have to thank you Alex for the opportunity that you gave me. It was risky indeed to admit me in the Quantum Systems and Nanomaterials Group after my master degree in rocket science. Nanotechnology and quantum physics were absolutely new fields for me. But you believed in me and I hope it was not in vain. Thank you also for the warm welcome. Rarely you can find a supervisor who would arrange accommodation for his student and meet him at the bus station. I am grateful for your patience at first months of my work in Exeter. And, of course, for entertaining walks in Devon and parties with your family. It was sorrow to loose you. All who worked with you will always remember your devotion to science, organisation skills and humour. I will miss your consistency and honesty as a researcher.

I would like to warmly thank my supervisors Saverio Russo and Monica Craciun for taking me over after sudden Alex’s death. You have your own child. Neverteless you took the responsibility to look after the whole ”kindergarten” with all our problems and demands. It is a wonder that you are still not bothered, stand tall and inspire us. Thank you for all experience and ambitions that you shared with me. Your example of diligence, together with the freedom to work on my own ideas, certainly trained an independent researcher in me.

Special thanks to Dr. Eros Mariani for inspiring and helpful discussions. You always find right words to explain tricky bits of theory to an experimentalist. More important, you do it so that one discovers a story behind formulae, which brings meaning to physics and makes us to enjoy it. Thanks to Professor William Barnes for useful advises which helped me to find my place in our group and for lessons of english politeness and tact.
My sincere appreciation to my colleagues and friends Adam Price, Alexey Kaverzin, Tim Khodkov, Alexey Kozikov, Fred Withers, Fedor Tikhonenko and Sam Hornett. You were my first help and support, you taught me all the techniques and tricks. So do not hesitate to consider all my results as yours as well. Special thanks to Adam for patience and English lessons. And, of course, for tolerance to russian invasion :). I would also like to acknowledge Tom Bointon and Dmitry Polyushkin for fruitful collaboration.

My best friends Alexey Kaverzin, Katie Wood and Margarita Mikelane! You rescued me from the lab for crazy days and nights, explosions, egg fights, singing, piano battles, bike rides, camping, gluttony and unlimited drinking. I think without you the world would get another Dr. evil at the end of my study. Thank you so much! You saved the world! Together with all people from our 7 Elton Road commune, including Alex Markevich, Alice Lagnado, Archil Tsiskaridze, Tatiana Chistova, Arseny and Eugene Alexeev and Julia Dautova.

I am also very thankful to my brothers and sisters from St. Anne’s church. It was not just place of worship or group of people of the same views, but a real home. You made me feel in a family where my soul and body can take a rest for more work every week. It will be hard to leave you.

At the end I want to revere my dear wife Elia for believing in me and inspiring my work. Your faithful waiting for me is the best reminder that all my work is actually important. Thank you for your love, which keeps me alive in inanimate world of physics. I bow before my father for teaching me to be honest with myself and other people and, most important, before my mother for making me and all this long story possible.
Contents

Abstract 2
Acknowledgements 3
Contents 5
List of Figures 8
List of Tables 15
Introduction 16

1 Theoretical background 24
1.1 Electronic structures of mono- and bilayer graphene 24
1.2 Electrical conductivity of mono- and bilayer graphene and scattering mechanisms 30
1.2.1 Semiclassical theory of electrical conduction 31
1.2.2 Scattering mechanisms 32
1.2.3 Typical $R(V_G)$ dependencies 33
1.3 2D electron (hole) gases in weak magnetic field 36
1.3.1 Shubnikov-de Haas oscillations 36
1.3.2 Parallel conduction in weak magnetic fields 39

2 Sample fabrication and analysis techniques 42
2.1 Sample fabrication 42
2.1.1 Supported graphene 42
2.1.2 HF etching 45
2.1.3 Two-zone intercalation metod 45
CONTENTS

2.2 Contrast determination of the number of layers of FLG ... 46
2.3 Raman spectroscopy .. 47
 2.3.1 Raman spectroscopy of graphene .. 48
 2.3.2 Determination of the number of layers of FLG using Raman spectroscopy 52
2.4 Electrical characterisation and current annealing ... 55

3 Structure study of FeCl$_3$-intercalated graphene .. 57
 3.1 Introduction .. 57
 3.2 Raman study .. 57
 3.3 Shubnikov-de Haas oscillations ... 62
 3.3.1 Determining the carrier concentration from the frequency of the oscillations ... 62
 3.3.2 Determining the cyclotron mass from the temperature decay of the oscillations ... 63
 3.3.3 Character of graphene planes coupling from comparison of mass and carrier concentration .. 66

4 Intercalated graphene as a transparent conductor ... 68
 4.1 Introduction .. 68
 4.2 Sheet resistance of the FeCl$_3$-FLG ... 68
 4.3 Optical transmittance spectra of FeCl$_3$-FLG ... 71
 4.3.1 Stability of the material .. 72
 4.4 FeCl$_3$-FLG as perspective material for wearable electronics 73

5 Current annealing of suspended graphene devices ... 76
 5.1 Introduction .. 76
 5.2 Current annealing of carbon-based electronic devices .. 76
 5.3 Models of heat transfer for suspended graphene .. 80
 5.3.1 1D model for the temperature profile of a metallic contact. 80
 5.3.2 2D model for the temperature profile of metallic contact. 83
 5.3.3 Temperature profile in the flake .. 86
 5.4 Experimental results ... 88
 5.5 Discussion ... 94
5.6 Conclusions .. 97

Summary ... 101

A Statistics of the current-broken suspended graphene samples 102

B Characteristic temperature relaxation time 103

Bibliography .. 104
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 a)</td>
<td>Graphene crystal lattice in the real space with the unit vectors and the unit cell (grey romb). b) Reciprocal lattice with the unit vectors and the first Brillouin zone (coloured hexagon). c) Reciprocal lattice with K and K’ valleys (blue and red triangles respectively).</td>
</tr>
<tr>
<td>1.2</td>
<td>Nearest-neighbours tight-binding dispersion relation of MLG (green curve) in comparison with the ab initio results (red curve). Adapted from [60].</td>
</tr>
<tr>
<td>1.3</td>
<td>The dispersion relation of MLG taking account of the next-neighbours interaction. The zoom-in shows a region in the vicinity of one of the Dirac points where the spectrum can be approximated as linear. Adapted from [61].</td>
</tr>
<tr>
<td>1.4</td>
<td>Splitting of the π band in bilayer graphene.</td>
</tr>
<tr>
<td>1.5</td>
<td>Resistivity (blue curve) and conductivity (green curve) of MLG as a function of gate voltage. The red curve on the plot represents the conductivity due to long-range scattering $1/(\rho - \text{const})$, where const is the contribution due to short-range scattering. Adapted from [68].</td>
</tr>
<tr>
<td>1.6</td>
<td>Temperature- and density dependent resistivity of bilayer graphene (a) and trilayer graphene (b).</td>
</tr>
<tr>
<td>2.1</td>
<td>Mechanical exfoliation of graphite. a) Optical microphotograph ($\times 5$ objective) of natural graphite - a starting material with large monocrystals and of high intrinsic quality. b) Exfoliation process involving a sticky tape. c) A tape with the semi-transparent thin graphitic flakes. d) Transfer of graphitic flakes to a substrate.</td>
</tr>
</tbody>
</table>
2.2 The key steps of E-beam lithography. a) A substrate is covered with two layers of PMMA of different molecular mass (the harder PMMA is on top). This is followed by exposure of selected regions of PMMA to the electron beam. b) The exposed regions of PMMA are washed away in a developer. Due to softness of the bottom layer of PMMA the structure has an undercut profile. c) Cr/Au contacts are evaporated. d) The unnecessary PMMA regions are washed away in the lift-off process in acetone. e) If necessary the resulting structure is placed in the buffered oxide etch to remove Si/SiO$_2$ underneath the flake.

2.3 An SEM microphotograph of a typical suspended FLG device.

2.4 A scheme of a furnace for the two-zone method of FeCl$_3$ intercalation into FLG. A glass tube is placed inside the furnace so that the FeCl$_3$ powder has slightly higher temperature than the substrate with FLG. The tube is connected to a diffusion pump.

2.5 a. Optical microphotograph of several FLG flakes on a glass substrate. One can see a clear difference in the visual contrast. b. Optical contrast C of an ensemble of FLG flakes on glass. A step-like character of contrast is apparent for $C < 20\%$. Each step is attributed to an increasing number of layers.

2.6 Diagram for the first order non-resonant (a), single-resonant (b) and double-resonant (c) Raman scattering processes.

2.7 The phonon spectrum of MLG (adapted from [86]). For convenience the phonon energies are expressed in the units of Raman shifts (cm^{-1}). The Raman-active phonons of interest are marked by circles.

2.8 a) The Raman spectra of MLG, BLG, TLG, 10-L graphene and graphite. The plots are shifted vertically for clarity. One can see the increase of the intensity of the G-peak with increase of thickness and trace the evolution of the shape of the 2D-band. b) 2D-band of BLG fitted with four single-peaks. c) 2D-band of TLG fitted with six single-peaks.

2.9 Raman scattering processes in MLG. The black arrows denote electron-hole excitation (up) or recombination (down), the red arrows denote electron-phonon scattering and the blue arrows correspond to the defect scattering.
2.10 Raman scattering processes responsible for the 2D-band of BLG.

2.11 a) A schematic view of a glass substrate on top of a Si/SiO₂ substrate. The face of the glass substrate which has the FLG flakes is down. b) G-peaks of FLGs of different thicknesses (determined from optical contrast). The spectra are shifted horizontally for clarity. Each double line corresponds to two samples. It is apparent that the method is not quite reliable for FLG thicker than 5-layer.

2.12 a) 2D-bands of the Raman spectra of a number of FLG flakes. b) The same spectra after the background is removed. c) All the peaks are normalised to the height equal 1. d) The grouping of the spectra according to the thickness of the flakes becomes apparent after the right half-maxima of all the bands are shifted to the same origin.

2.13 Experimental setup for the low-bias measurements.

2.14 a) Experimental setup for the current annealing experiments for suspended graphene. b) Current step-response of the RC-filter used in the experiments.

3.1 The G and 2D Raman bands of pristine FLG (a) and of FeCl₃-FLG (b) with different thicknesses ranging from 2L to 5L. One can notice the conversion of asymmetric 2D-band into symmetric one under intercalation. The Raman shift of G to G₁ and G₂ stem for a graphene sheet with one or two adjacent FeCl₃ layers as shown by the schematic crystal structure in Fig. 3.2a,b.

3.2 a) A graphene plane with only one adjacent intercalant layer is responsible for the G₁ peak in the Raman spectrum of FeCl₃-FLG. b) A graphene plane with intercalant layers present at each side has higher doping level and is responsible for the G₂ peak. c,d) Structures of FeCl₃-4L and FeCl₃-3L corresponding to simultaneous presence of G₁ and G₂ peaks and absence of G₀ peak, as in the spectra in the Fig. 3.1b. e) Minimal graphite intercalation compound - the structure of FeCl₃-2L corresponding to the G₀ peak only present in the Raman spectrum.
3.3 Raman spectra of non-uniformly intercalated 3L (a), 4L (b) and 5L (c) graphene samples. In each case the spectrum is taken at several points. The data indicate that many FeCl₃-FLG samples have a partially de-intercalated top layer of FeCl₃ as it is shown in Fig. 3.4. 60

3.4 The structure of FeCl₃-FLG with partially de-intercalated top layer of FeCl₃. 60

3.5 Raman spectrum of a chosen FeCl₃-5L with G₀ peak. Spectra taken in 10 different locations coincide pointing to a uniform structure different from the one shown in Fig. 3.2c. 61

3.6 False color optical microscope image of an intercalated Hall bar device. 62

3.7 Hall resistance of FeCl₃-FLG as a function of magnetic field. The inset shows the data for the bilayer sample on a smaller B scale. Panels b) and c) show the carrier density and mobility for FeCl₃-FLG as a function of the number of graphene layers. 63

3.8 a) Longitudinal conductance (Gₓₓ) as a function of magnetic field at different temperatures (curves shifted for clarity). b) Fourier transform of Gₓₓ(1/B) with peaks at frequencies f₁ = 1100T and f₂ = 55T. The inset shows Gₓₓ as a function of inverse magnetic field at different temperatures (curves shifted for clarity). 64

3.9 The low- (a) and high- (b,c) frequency magneto-conductivity oscillations vs 1/B extracted from the measurements in Fig. 3.8a. 65

3.10 a) Temperature decay of the amplitude (A) of ∆ₓₓ oscillations at B = 6.2T. The amplitudes are normalized to their values at T = 0.25K. The continuous lines are fits to A(T)/A(0.25) with the cyclotron mass mₑ as the only fitting parameter. b) Schematic crystal structure of a 5L FeCl₃-FLG in which electrical transport takes place through four parallel conductive planes, one with bilayer character and three with monolayer character. 66

4.1 a) Room temperature square resistance for 4L and 5L FeCl₃-FLG. b) Temperature dependence of the square resistance for 4L and 5L FeCl₃-FLG. c) Raman spectra of 4L and 5L FeCl₃-FLG devices. 69
4.2 a) Temperature dependence of the square resistance for FeCl$_3$-FLG of different thicknesses. b) Square resistance for pristine FLG of different thicknesses as function of temperature. These devices are fabricated on SiO$_2$/Si substrates and the highly-doped Si substrate is used as a gate to adjust the Fermi level to the charge neutrality of the system.

4.3 Panels a) and b) show the transmittance spectra of pristine FLG and FeCl$_3$-FLG, respectively. The horizontal lines in b) are the corresponding transmittances at the wavelength of 550nm reported in the literature [49,50] c) Transmittance at 550nm for pristine FLG as a function of the number of layers. The red line is a linear fit, which gives the extinction coefficient of 2.4 0.1% per layer. d) Transmittance at 550nm for fully intercalated FeCl$_3$-FLG (FI), partially intercalated FeCl$_3$-FLG (PI) and doped FeCl$_3$-FLG (D) as a function of the number of layers. The black line is a linear fit with the extinction coefficient of (2.6 0.1)% per layer.

4.4 Raman spectra of a typical 5L FeCl$_3$-FLG device taken at different locations after fabrication (a), after 3 months (b) and after one year (c).

4.5 Square resistance versus transmittance at 550nm for 4L and 5L FeCl$_3$-FLG (from these experiments), ITO [41] carbon-nanotube films [38] and doped graphene materials [50]. FeCl$_3$-FLG outperform the current limit of transparent conductors, which is indicated by the grey area.

5.1 Effect of current annealing on suspended graphene sample. Before annealing the shape of $R - V_G$ characteristic is irregular (black curve), the neutrality peak is wide. This indicates strong non-uniformity of graphene surface. Current annealing makes the sample uniform (red curve) and increases the mobility.

5.2 Microphotograph of a current-broken device.

5.3 Illustration of the 1D heat transfer model for a metallic contact. The flake on the left side injects heat flux into the contact. The flux diminishes along the contact due to thermal leak into the substrate. Temperature gradient in silicon is negligible.
5.4 a) The characteristic spatial scale L_H of the contact temperature profile is much greater than the dielectric thickness h_{SiO_2}. In this case heat flux lines in the dielectric are perpendicular to the substrate surface. The value of the leakage heat flux at a certain coordinate x depends only on the local temperature of the contact. b) L_H is comparable with h_{SiO_2}. The heat flux lines in the dielectric have significant horizontal components. The value of the leakage heat flux at a certain coordinate x has a complicated dependence on the temperature of the adjacent areas.

5.5 Illustration to the two-dimensional heat transfer model for metallic contact (top view).

5.6 Schematic of the flake temperature profile. The contact temperature is the boundary condition at $x = L/2$ for the heat equation defining flake temperature profile.

5.7 Correlation between breakdown current and breakdown resistance normalised to the contact width $R_1 = R/W$. The line is the best fit to the dependence $I^B \propto R_1^{-1}$. The contact temperature is extracted from the equation (5.4).

5.8 Correlation between breakdown current and breakdown resistance normalised to the flake width according $R_2 = \frac{R}{W} \frac{K_0(W/2L_H)}{K_1(W/2L_H)}$. The line is the best fit to the dependence $I^B \propto R_2^{-1}$. The contact temperature is extracted from the equation (5.8).

5.9 Correlation between breakdown current and sample resistance normalised according to $R_3 = R\kappa_1 N_{sq}/(\kappa N_L)$. The line is the best fit to the dependence $I^B \propto R_3^{-1}$. The maximal flake temperature is extracted from the equation (5.13).

5.10 Two samples with equal absolute temperature in the middle have slightly different flake temperatures relative to the contacts.

5.11 Correlation between breakdown current and R_4 (See (5.14)). The brown line is the best fit to the dependence $I^B \propto R_4^{-1}$. Two red lines define the region where graphene temperature achieves the sublimation limit.

5.12 An example of sample degradation by current annealing. $R - V_G$ curve becomes irregular and the neutrality peak widens. The voltage in the left plot is the voltage difference from the neutrality point.
5.13 Sequences of annealing steps for different samples. Blue points represent annealing with positive or no change of sample quality. Red points correspond to sample degradation which occurs when the flake temperature approaches its critical value (brown line). The degradation is followed by the flake destruction. ... 98

5.14 An example of sample improvement by current annealing. $R-V_G$ curve becomes narrow, resistance decreases and the neutrality peak shifts to zero. ... 99
List of Tables

1.1 The most important scattering mechanisms in MLG and BLG 32
4.1 Relation between the square resistance R_s and the resistivity ρ 69
5.1 Summary of heat transfer models . 88