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Abstract

The aim of this thesis is to contribute to the understanding of cusp forms over number
fields, primarily over imaginary quadratic fields, from both a theoretical and a computa-
tional point of view.

There is already a deep theory of automorphic forms over general global fields & which
arose out of trying to generalise the classical case kK = Q. The sophisticated approach
(Jacquet-Langlands theory) is via the representations of the adele group G, of GL(2);
following instead Weil’s “elementary” book [Wei71], we define cusp forms of weight two
for T'y(n) as certain functions on G5. When k has r real embeddings, s pairs of complex
embeddings and class number h, the upper half-plane of the classical theory must be
replaced by h copies of the product of r upper half-planes and s upper half-spaces; when
k is imaginary quadratic, we obtain an especially concrete description, which we work out
in detail. In the general theory, Hecke operators are usually introduced via double cosets;
in the special case, we can give a “classical” description in terms of lattices.

The main motivation for the work in this thesis comes from the theory of elliptic curves,
in which an analogue of the Taniyama-Weil conjecture predicts that every elliptic curve
of conductor n defined over a number field k£ should (usually) be attached to a newform
at level n. The existing theory in the classical case is especially rich; in particular, there
are good computational techniques for finding newforms and their Hecke eigenvalues, and
for determining the associated (strong Weil) curve [Cre97].

Cremona [Cre81] and his student Whitley [Whi90] began the programme of trying
to extend these techniques to the case of imaginary quadratic fields, treating the case
h = 1. This thesis describes an algorithm for determining the space of cusp forms and
for computing the eigenforms and eigenvalues for the action of the Hecke algebra on this
space in the case h = 2. The approach, using modular symbols, closely follows the work of
Cremona and Whitley, but new features arise from the presence of a non-trivial class group.
The methods presented here suffice for Ao = 2 and probably for an elementary abelian 2-
group; the general case remains open but promising. Results from an implementation of

the algorithm in the case k = Q(v/—5) form part of this thesis.
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Introduction

The aim of this thesis is to contribute to the understanding of cusp forms over number
fields, primarily over imaginary quadratic fields, from both a theoretical and a computa-
tional point of view.

There is already a deep theory of automorphic forms over general global fields & which
arose out of trying to generalise the classical case £k = Q. The sophisticated approach
(Jacquet-Langlands theory) is via the representations of the adele group G of GL(2);
following instead Weil’s “elementary” book [Wei71], we define cusp forms of weight two
for Tp(n) as certain functions on G4. It turns out that if k£ has r real embeddings, s pairs
of complex embeddings and class number h, then the upper half-plane of the classical
theory should be replaced by & copies of the product of r upper half-planes and s upper
half-spaces. When k is an imaginary quadratic field we obtain an especially concrete
description, which we work out in much greater detail than [Cre81]. In the general theory,
Hecke operators are usually introduced via double cosets; in the special case, we can give
a “classical” description in terms of lattices, which is more suited to our purposes.

The main motivation for the work in this thesis comes from the theory of elliptic curves,
in which an analogue of the Taniyama-Weil conjecture predicts that every isogeny class of
elliptic curves of conductor n defined over a number field k£ should (usually) be attached
to a newform at level n.

The existing theory in the classical case k = Q is especially rich and by far the best
understood; in particular, there are good computational techniques. Tingley [TinT75],
Cremona [Cre97] and others have shown how to compute newforms of level N and their
Hecke eigenvalues, and how to compute, given such a form f, a modular elliptic curve of

conductor N whose L-function is the Mellin transform of f; the curve in a given isogeny
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class which arises in this way is known as the strong Weil curve, and it is known, by
celebrated work of Wiles [Wil95], that every (semistable) elliptic curve is isogenous to a
curve arising in this way.

Cremona [Cre81] and his student Whitley [Whi90] began the programme of trying to
extend these computations to the case of imaginary quadratic fields ¥ = Q(v/—d). The
geometrical input into the algorithms goes back to work of Bianchi [Bia92] and Swan
[SwaT71]; it becomes more complicated as the arithmetic of k& becomes more complicated.

The five Euclidean fields, with d € {1,2,3,7,11}, were studied by Cremona [Cre81].
The situation is already much less satisfactory. There are newforms which do not corre-
spond to elliptic curves, but to certain abelian varieties with “extra twist” [Cre92]. Where
an elliptic curve with the right conductor and L-series exists, there is no simple con-
struction of it from the newform, although recent deep work of Richard Taylor on [-adic
representations [HST93, Tay94] makes progress in this direction. Whitley [Whi90] studied
the other fields of class number one, where d € {19,43,67,163}.

This thesis describes an algorithm for determining the space of cusp forms and for
computing the eigenforms and eigenvalues for the action of the Hecke algebra on this
space in the case h = 2. The approach, using modular symbols, closely follows the work
of Cremona and Whitley, but new features arise from the presence of a non-trivial class
group. Using a trick, it is still possible to obtain all the information from just one copy of
upper half-space.

The methods presented here suffice for h = 2 and probably for an elementary abelian
2-group; the general case remains open, but is a promising area for further work. Results

from an implementation of the algorithm in the case k = Q(v/—5) form part of this thesis.

Acknowledgement
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Chapter 1

Algebraic preliminaries

Roughly speaking, this chapter is about Dedekind domains. We summarise a few facts of
module theory that we will need, and go on to discuss congruence subgroups, M-symbols,
“normaliser groups” and cusps over Dedekind domains. The early parts are standard
results of algebra, the later parts less so. We draw attention to our notation for congruence

subgroups, which we find more logical than the many ad hoc conventions in the literature.

1.1 Dedekind domains

Throughout this section, £ is an arbitrary Dedekind domain with field of fractions k. We
begin with two lemmas, which assert the existence of elements with certain properties.
We then recall some facts from the theory of finitely generated modules over Dedekind
domains; these facts may be found in [FT91, CR62, O’M63]. Lastly, we define lattices in k"

and prove some results about towers of lattices; these results will be needed in Chapter 7.

1.1.1 Two lemmas

The first, well-known lemma is recorded here for later reference.

Lemma 1. Let a be a fractional ideal and b an integral ideal of O. Then there is an

integral ideal in the same ideal class as a and coprime to b.

Proof. In other words, there exists an element u € k* such that ua+ b = 9. For a proof,

see [Coh89, Cor.9.6.5]. O

11
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The next lemma, due in this form largely to J. E. Cremona,! will be needed in Chap-

ter 7.
Lemma 2. Let n be an integral ideal of O. For 8 € k, the following are equivalent:
(i) n~l =9+ 90p;
(i) n={zeO |z€0};
(iii) the map © = n /O, 2+ 28 mod O is surjective;
(iv) the map O —n1/O, x + x4 mod O has kernel n;

(v) the map =+ z3 induces an isomorphism O/n — n~1/O.

Moreover, there does exist 8 € k satisfying the conditions; it is unique up to being replaced

by af + v, with a,y € O and « invertible modulo n.

Proof. The equivalence of (i) and (ii) follows from
O+98) ' ={zck|zOD+08)CO}={zcO|zBecD}.

Note that statements (iii), (iv) and (v) implicitly assert that 3 € n~l. It is trivial that
(i) <= (iii) and (ii) <= (iv). Statement (v) is trivially equivalent to (iii) and (iv)
together, and hence also to either separately.

Existence of § € k satisfying (i) follows from the so-called “one-and-a-half generator
theorem” applied to 1 € n~!. Suppose that 8’ also qualifies, so that O + 08 = O + O3'.
Write 8/ = a3+~ and 8 = o/ '+ for some o, a’,v,7' € O. Then (1—ad')f = d'v++' €
0. By (ii), 1 —aa’ € n, so that « is invertible modulo n. Conversely, put 8’ = a8+~ with
a,v € O and « invertible modulo n, say 1 — aad’ € n with o/ € O. Clearly 5’ € O + O8.
By (ii), 8 — Bac’ € O, whence 8 — /(8" — ) € O, showing 3 € O + Of'. O

1.1.2 Torsion modules

Let T be a finitely generated torsion module over . Recall that there are proper integral

ideals a; such that

!personal communication to the author
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If we further assume that a; O a;1, then this decomposition is unique up to isomorphism.

We define

ordp (T) = [ [ s, (1.2)

for any decomposition (1.1); when r = 0 this is of course the empty product, equal to O.

Our definition is slightly different from the one given in [FT91], but equivalent. For
the definition given there, one has ordp(9/a) = a. Together with Proposition 3 below,
this implies (1.2). From our point of view, this argument shows that ordgy is well defined
by (1.2), i.e. independent of the choice of decomposition (1.1). Since O will be fixed we
shall drop the subscript O from the notation, and write simply ord(T’).

Proposition 3. For any ezact sequence 0 — 11 — T — T5 — 0 of finitely generated

torsion O-modules,
ord(T) = ord(T1) ord(75).
Proof. See [FT91, theorem 14]. O

Lemma 4. Let T be a finitely generated torsion module, and let a = ord(T). Then a

annihilates T. For b an integral ideal, T = bT if and only if a and b are coprime.

Proof. We have a decomposition (1.1) with a = []a;, so the first statement is obvious.
Assume that a and b are coprime. Then T' = (a + b)T = bT. Conversely, assume
T = bT and let p be a prime dividing a + b. Then T' = pT. But p divides a1, say, and

p(O/a1) S O/a1, a contradiction. So a and b are coprime. O

1.1.3 Torsion-free modules

Let M be a non-zero finitely generated torsion-free D-module. By standard structure

theory,
M=O""1ab (1.3)

where r is the rank of M, and the ideal class cl(b) of b is uniquely determined, whilst b

may be any ideal in that class. We call cl(b) the Steinitz class of M, and write

cl(M) = cl(b).
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A special case of (1.3), usually used in its proof, is that for any two ideals a and b,
a®b=9O@ab. (1.4)

Theorem 5 (Invariant factor theorem). Let N C M be finitely generated torsion-free
D-modules of the same rank r. Then there exist elements my,...,m, € M, integral ideals

a1,...,0, and fractional ideals by, ..., b, such that a; O a;41 for 1 <i <r and
M=bm @ - ®bm,, N =a1bym1 @ --- ® a,.b,m,.

The ideals a; are uniquely determined by the inclusion N C M and are called the invariant

factors of N in M.

Proof. See [CR62, theorem 22.12] or [O’M63, theorem 81:11]. O

Corollary 6. Let N C M be finitely generated torsion-free O-modules of the same rank
r. Then M/N is a finitely-generated torsion module and

c(N) = cl(M)cl(ord(M/N)).

Proof. By (1.4) and with notation as in Theorem 5, c/(M) = cl(I]b;) and cl(N) =
cl(TT(a;b;)), whilst M/N = [[(D/a;), so ord(M/N) =[] a;. O

The last result in this section is due to Swan [SwaT7l, Proposition 3.10] and will be

used in the proof of Lemma 39.

Proposition 7. Let M be a finitely generated torsion-free O-module of rank r. Let
ai,-..,as and by,...,bs be generating sets for M with s > r. Then there is some (c;j) €

SL(s,O) with a; =) ¢;;b;.

Contrast the case s = r (of course, generating sets with r elements exist if and only if
M is free). In this case, there is a unique matrix (¢;;) € GL(r,O) satisfying a; = > ¢;;b;.

The matrix need not lie in SL(r, O); indeed, every element of GL(r, ) can arise.

Proof. We give an expanded version of Swan’s proof.?2 The (a;),(b;) give maps a,b: O° —
M with respective kernels A and B, say. Consider the short exact sequences
0 —~ A - 0 L M — 0
0 » B y 08 2y M > 0.

2Tt is necessary to choose the various isomorphisms carefully, or diagram (1.8) need not commute.

(1.5)
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We shall exhibit a family of isomorphisms 6,,: O° — O? indexed by u € O and satisfying
(i) a = bo6, and (ii) det 6, = udet 0;. Being an isomorphism, each 6, is given by a matrix
in GL(s,9), and by (ii) we can choose u = (det #;)~! such that detf, = 1. Then the
matrix (c;;) representing 6, lies in SL(s,9), and by (i), satisfies a; = ) ¢;;b;.

Since M is finitely generated and torsion-free, it is projective (see e.g. Prop. 9.6.6 of

[Coh89]), so the sequences (1.5) split, and
O =AM =B M", (1.6)

where M’ and M" are submodules of O such that a| ,: M' — M and |, : M" — M

M
are isomorphisms. By structure theory there is an isomorphism y: M — m @ E, where
E is free (of rank r — 1) and m is a fractional ideal of ©. By (1.4) and (1.6), there are

isomorphisms
a:A— Fda, 8: B— F®a,

where F is free (of rank s —r —1) and a = m~!. The isomorphism 6, : O° — 9° is defined
to be the composite map (ﬁfl o(lp ®u) oa) @ ((b|M,,)71 0a|M,), as shown in (1.7) below,

where u denotes multiplication by the unit u.

A @ M

al luO(a\M,)

Foa P moE

|l | w

Foa @ maE
51| [ @y on?
B @ M
It is now clear that (i) holds, so there is a commutative diagram
0 y A y 05— M s 0
l0u|A lou l1 (1.8)
0 — B — 0" 2 M — 0.
Let a = (x1,z9), say. Since am = O there are y;,y2 € m such that z1ys — zoy; = 1, i.e.

det P =1 where P = (73 73 ). The O-linear map 1: O? — a®m defined by (1,0) — 21Dy,
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(0,1) = z2®ys has inverse Dy — (zy2 —yr2,yr1 —2zy1) and is therefore an isomorphism.
Formally, 1) may be viewed as right-multiplication by the matrix P.

Let © be the matrix representing 6,, with respect to the standard basis of O°. For every
pair of D-bases for the free module F & a ® m @ E, the factorisation of 8, in (1.7) above
leads to a corresponding expression of © as the product of three matrices representing the
composed maps with respect to the bases involved. Thus det © is the product of three
determinants, of which only the middle one depends on u; we show it to be proportional
to u, thereby proving (ii).

Take a basis for '@ a @ m @ F built from a basis for F', the basis x1 ® y1, x2 @ ys for

a @ m and a basis for E. With respect to this basis, the middle map has matrix

137771 0 0
@I = 0 T 0 ’
0 0 1,4

where T represents the map

(1,0) ni> 1 Dy — ury Dy — w_l(uxl Dy1)

(0,1) ni> Ty ® yo — uT9 ® Yo > w_l(ua:g D y2)

and therefore T' = P(g (I))P*I. Thus det ©' = det T' = u, as required. O

1.1.4 Lattices in k"

Again, let M be a non-zero, finitely generated torsion-free O-module. By [FT91, Chap.II
(4.1)], we may view M as contained in a finite-dimensional k-vector space E, with M
containing a basis of E. Moreover, there exist free O-modules F, F’, both spanning E,
with F/ C M C F. Such a module M is called an O-lattice on E; following O’Meara
[0O'M63] we say “on E” rather than “in E” to emphasise that M has full rank.?

For the moment, we regard £ = k" as fixed. By a lattice of rank r, or simply a lattice,
we mean an -lattice A on k", that is, a finitely generated -submodule of ¥” whose rank

is r.

3 A lattice “in E” is a lattice “on” some vector subspace of F; thus R is an R-lattice in C but not on C.
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If A D A’ are lattices, then by Corollary 6,
c(A') = cl(A)el(ord(A/A)). (1.9)

In particular, if A is free then A’ is also free if and only if ord(A/A’) is a principal ideal.

This will be important later.*
Lemma 8. Let A be a lattice of rank r, and a an integral ideal. Then
AJaA = (D/a)".

Proof. By (1.3) we have A = O"~! @ b for some integral ideal b. Since only the ideal
class of b is determined, we may choose b to be prime to a. For any O-module M,

M/aM = M ®gp (9O/a). Therefore
AJaA = (D" 1@ b) @p (O/a) = (D/a)" ' @ b/ab.

But b/ab=10b/(anb) = (a+b)/a=90O/a. O

Corollary 9. ord(A/aA) =a".

Lemma 10 (“Tower Law”). Let A D A' D A" be a tower of lattices. Then

ord(A/A") = ord(A/A") ord(A’/A").
Proof. Apply Proposition 3 to the exact sequence
0— A'/A" = A/A" — A/A — 0.

U

Lemma 11. Let A D A" be lattices with ord(A/A") = ab, where a and b are coprime.
Then there is a unique intermediate lattice A' for which ord(A'/A") = a. It is given by
A = A"+ bA.

Tt accounts for the special réle of the Hecke operators T}, for principal prime ideals p; see §7.5.
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Proof. By (1.1) and the Chinese Remainder Theorem, we can write A/A” = M; & Mo,
where ord(M;) = a and ord(M3) = b. Then

(A" +bA) /A" =b(A/A") 2 b(M; ® My) = bM; = M,
by Lemma 4, so that
ord ((A" +bA)/A") = ord(M;) = a. (1.10)

To show uniqueness, suppose now that A” C A’ C A with ord(A’/A”) = a. By the
tower law, ord(A/A’) = b, whence A’ D A” + bA D A”. Now from (1.10) and the tower
law, we deduce A’ = A" + bA. O

We isolate the following useful fact as a lemma.
Lemma 12. Let A D A" be lattices, and p an ideal with p | ord(A/A"). Then A"+pA G A.

Proof. (A" +pA)/A" = p(A/A") G A/A" by Lemma 4 and the hypothesis on ord(A/A").

The conclusion follows. ]

Our final result in this section applies only to lattices of rank 2. The general case is

more complicated, but we shall not need it.

Lemma 13. Let A D A" be lattices of rank 2 with ord(A/A") = p™, where p is prime and
n > 2. Assume that A" € pA.

Then there is a unique intermediate lattice A" for which ord(A/A') = p. It is given by
A = A"+ pA.

Proof. We have pA G A" +pA G A, where the second inequality follows from Lemma 12.

But ord(A/pA) = p?, by Corollary 9. Using the tower law, we deduce
ord(A/(A" + pA)) = ord((A" 4+ pA)/pA) = p.

So A’ = A" + pA has the required properties. It really is intermediate between A” and A
because n > 2.

Now let A’ be a lattice with the required properties, i.e. A” C A’ C A and ord(A/A’) =
p. Then pA C A’ C A. Comparing towers, we find ord(A’/pA) = ord((A” + pA)/pA). But
A" D A" +pA D pA is a tower. Therefore A’ = A" + pA, proving uniqueness. O
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Remark. The hypothesis on the rank cannot be omitted. Consider the case of rank 3. Let
A=000®D. ThenpA=pDpP®p. Let A" = D@ pDp, so ord(A/A") = p?. Then
there are several lattices A’ with A D A’ D A” and ord(A/A’) = p, for example, O DO D p
and O ©p @ O. In fact, the set of such lattices A’ is in bijection with P}(O/p), as is easily

seen.

1.2 Congruence subgroups

In this section, we introduce notation for a number of groups. We need to distinguish
clearly between subgroups of GL and subgroups of SL, and between a group and its
projectivisation; we achieve this clarity by extending the use of the prefixes S and P to

congruence subgroups.

Warning. The notation varies in the literature. For example, [Cre84] has I and T where

we write I' and SI'; [Cre81] has Ag(n) and Ag(n) where we write SI'g(n) and PSIy(n),
whilst [Fig95] writes I (n) for two different groups, one of which is our PT'; (n). The group

we denote by PST'g(N) is T'g(N) in [Kob84, Swi92] but plain I'y(N) in [Cre97].

1.2.1 Subgroups of GL(2,9D)

Let © be a commutative ring with identity and n an ideal of . We define a number of

groups as follows.

el

€ Lo(n)

€ Fl(l‘l)

cEn p,

d—1len

a—1€En

ben

bl

bl
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Subgroups of I' containing I'(n), for example those above, are called congruence subgroups
of level n; the group I'(n) itself is called the “principal congruence subgroup” of level n. In
general, a congruence subgroup is one containing I'(n) for some n # 0. Clearly I' = T'(D),

and if n C n’, then
T(n) CT(w),  Tim) CTi(), Ti(n) CTi(n),  To(n) CTo(n).

We shall have no cause to consider the groups

Q
S

M) = €Tl |ben y,
c d

1 a b 0

I'(n) = el(n) |la—1en »;
c d

note that they are conjugate to T'o(n) and 'y (n) respectively, since with § = (9 '),
Mm) =85"Ty(m)s, Tln) =857 n)s.

For each of the groups above, we use the prefix S (in roman type) to denote the

subgroup consisting of elements of determinant 1; thus

Congruence subgroups of SI" are subgroups containing ST'(n) for some n # 0. Clearly,
ST'i(n) = STy (n).

The relationships between the various groups introduced above are made clearer by the

following lemma.
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Lemma 14. Let ¢: O* — (O/n)* be the natural map. Then there is a commutative
diagram
1——» ST ——» I 2 ox — 41

T |

1 — STy(n) — To(n) —X Ox — 1

T |

1 —— SIi(n) —— T'1(n) —— O —— 1

| T

1 — STHn) —— Tin) -2 kerg —— 1

det

1 —— SI’'(n) —— I'(h) —— ker¢p —— 1

in which the rows are exact and the vertical arrows denote inclusions.

Proof. The kernel of det on each row is as shown, by definition. To see that det is surjective
on each row, let € € O* and v = (§?). Clearly v € I'i(n); moreover, if € € ker ¢, i.e.

€ =1 (mod n), then 4 € T'(n). This completes the proof. O

Clearly I'(n) is a normal subgroup of T, being the kernel of the natural homomorphism
GL(2,9) — GL(2,9/n) induced by the functor GL(2,—) from the map O — O/n. Like-
wise, ST'(n) is normal in ST. On the other hand, none of ST'}{(n) = ST'1(n), STq(n), T'}(n),
['1(n) and Ty(n) is normal in ST or T' (except when n = 9) since S™!T'S ¢ Ty(n), where

0 -1 11 1
S = € ST, T= € ST’y (n).
1 0 0 1
Although these groups are not normal in I' or ST', lemmas 15-17 show that the vertical
maps in the three lowest tiers of the diagram are inclusions of normal subgroups, with

quotients that are easily described.

Lemma 15. There is a commutative diagram of exact rows

1 —— Di(n) —— Do) —L— (©O/m)F —— 1

T T H

1 — s STy(n) —— STo(n) —L— (O/m)* —— 1.
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Proof. The map f is defined by (‘g g) — dmod n. It is clearly a homomorphism, with

kernels on each row as shown. If ad =1 (mod n), for a,d € O, then

a 1
ad—1 d

€ STy (11)

So f is surjective on each row, which completes the proof. O

Lemma 16. With ¢ as above, there is an exact sequence

1 —— Tln) —— Di(n) —2— im¢ > 1.

Proof. The map g is defined by (¢ %) — a mod n € (O/n)*. It is clearly a homomorphism
with kernel I'}(n), and its image is contained in im ¢. Given € € im ¢, write € = ¢(¢) with

e € O*. Then

€ Pl(l’l),

S0 im g = im ¢. O
Lemma 17. There is a commutative diagram of exact rows

1 —— T(n) —— Ti(n) — O —— 1

1 — ST(n) — ST}(n) —25 O/m —— 1.
Proof. The map h is defined by (‘; g) — bmod n. It is clearly a homomorphism, with
kernels on each row as shown. Surjectivity is clear, since ((1) 51”) € STi(n) for all z € O.

This completes the proof. O

1.2.2 Projective groups

For each of the groups above, it is natural to define a “projectivised” group by factoring
out the subgroup of scalar matrices; in all the cases of interest, this amounts to factoring
out the centre, as Lemma 21 below shows. For each group G, we denote the corresponding
projectivised group by PG (with the prefix P in roman type). Congruence subgroups of
PT" and PST are subgroups containing PT'(n) and PSI'(n) respectively, for some n # 0.
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We will shortly see how various exact sequences of groups induce exact sequences of
the corresponding projectivised groups; the general situation is described by the following

lemma, which might be described as “abstract nonsense”.

Lemma 18. Let G1 be a normal subgroup of a group G and write g: G — G /Gy for the
natural quotient map. Let f: H — G be an injective group homomorphism such that f(H)
is normal in G, and let HH = {h € H | f(h) € G1}. Then there is a commutative diagram
of exact rows and columns:

1 1 1

1 —— H —— H Y66 —— 1

1 — G @ — 6 —s 6/6i —1

1 — G1/f(H)) — G/f(H) —— G/f(H) Gy —— 1

1 1 1.
Proof. The image of gf is clearly f(H)G1/G1, and the kernel of gf is Hi, by definition,
so the first row is exact; exactness of the middle row and of the columns follows by the
usual isomorphism theorems.

The maps in the bottom row are induced in the obvious way: since f(H) is in the
kernel of the composite G — G/G1 — G/f(H)G1, and f(Hi) is in the kernel of the
composite G; — G — G/f(H), these composites factor uniquely through G/f(H) and
G1/f(H) respectively. It only remains to verify exactness of the bottom row. This is a

pure “diagram chase” in the category of groups; compare [ML71, §VIII.4]. O

We give two examples here, and two more in §1.4; their relevance to modular forms

will be seen later.

Lemma 19. Write (9*)? for the subgroup of squares in O*. There is a commutative
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diagram of exact rows and columns:

1 —— STy(n) —— To(n) —X  ox — 51

1 — PSTy(n) — PTo(n) —% 0% /(0%)?2 —— 1

1 1 1.
Proof. The scalars in T'g(n) are given by O*, diagonally embedded; the scalars in ST'y(n)
are clearly {£1}. The result follows by Lemma 18. O

Lemma 20. With ¢ as in Lemma 14 and f as in Lemma 15 there is a commutative

diagram of exact rows and columns:

Proof. Apply Lemma 18. We remark that exactness of the bottom row, in the case when

© is a principal ideal domain, occurs as Lemma 7 of [Fig95]. O

We end this section by verifying that, in all the cases considered, projectivising amounts

to factoring out the centre.
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Lemma 21. Assume that O is an integral domain and that n # 0. Then the centre of
each of the groups T, To(n), T1(n), Ti(n), T(n), ST, STy(n), STi(n) and ST(n) is the

subgroup of scalar matrices.

Proof. Let n € nwithn # 0. A central element (‘; g) must commute with ((1) ’f), implying

a=d and ¢ =0, and with (} 9), implying b = 0. O

For completeness, we briefly discuss the anomalous case n = 0, showing that the
assumption n # 0 in Lemma 21 may not be dropped. Clearly I'(0) = SI'(0) is just the
trivial group. Next, note that I'}(0) = SI'}(0) = SI';(0); this group is isomorphic to the
additive group of O via (§%) — b; in particular, the group is abelian, and the centre
contains non-scalar matrices.

Next, consider the group I'1(0) = { (¢?) ‘ a € O*, be O }. Assume that O is not
trivial, for otherwise I'1(0) = T}(0). If (&%) is central, it must commute with (}1),
implying @ = 1. One now checks that ((1) b ) is central if and only if (a — 1)b = 0 for all
a € 9%; since O is not trivial by assumption, it follows that the centre of I'1 (0) is trivial.

Next, consider the group I'o(0) = { (3%) | a,c€ DX, be O}. Again, assume that
©% is not trivial, for otherwise T'g(0) = I'}(0). A central element of T'y(0) must commute
with (§ 1), so must have the form (& %). It must also commute with (§) for all e € O%,
implying (e — 1)b =0 for all e € O*. Since O is not trivial by assumption, the centre of
Iy(0) consists of scalars.

Lastly, consider ST'y(0). If O* = {£1}, then ST'x(0) = { £ | v € S['1(0) }; this group
is abelian, and contains non-scalar matrices. Assume instead that there is a € 9> with
a® # 1. Since a central element of ST'y(0) must commute with ((1) %) and (a 0 ), it follows

0a-!

that the centre is just {£12}, the subgroup of scalar matrices.

1.3 M-symbols

Throughout this section, £ will be a Dedekind domain and n an ideal of . M-symbols
provide a convenient system of right coset representatives for ST'g(n) in ST'. They were first

introduced by Manin [Man72] in the case © = Z, and were named by Cremona [Cre81]
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who generalised them to principal ideal domains; in this section, we generalise to arbitrary

Dedekind domains, showing that all the main properties continue to hold.

Proposition 22. There is an exact sequence

1 —— SP(n) —— SL(2,0) —— SL©2,0/n) —— 1,

where f is the natural map reducing each matriz entry modulo n.

Proof. Our proof is based on the argument given for O = Z in [Swi92]. Trivially, we may
assume 0 # n # O. Clearly ST'(n) = ker f, so we need only show that f is surjective. Let
a,3,7,0 € O satisfy ad — fy =1 (mod n). We must find a, b, ¢,d € O, congruent modulo
nto a, B, v and § respectively, such that ad — bc = 1.

Consider first the special case in which « is coprime to n, i.e. (@) + n = O. By the
Chinese Remainder Theorem for pairwise comaximal ideals, we may find b € O such that
b= (modn) and b = 1 (mod ), and ¢ € O such that ¢ = 7 (mod n) and ¢ = —1
(mod «). We let a = a, and observe 1 + bc =0 (mod «), i.e. 1+ bc = ad for some d € O.
Then ad =1+ fy = ad (mod n), forcing d = ¢ (mod n), since « is coprime to n.

We reduce to the special case by showing that we can find A such that a+ Ay is coprime

to n. For then the matrix

1 A a f at+ Ay B+ A0
0 1 v 0 y 1)

is congruent modulo n to some M € SL(2,9), so that (‘;‘ g) is congruent modulo n to the
matrix (§ )M € SL(2, D).

Let q = Hpe g b, where S is the set of primes dividing n but not dividing o. Let t be an
integral ideal coprime to « and in the ideal class inverse to the class of g; such an t exists
by Lemma 1. Thus, qt is principal, equal to (\), say. We show that a + Ay is coprime to
n as required.

Let p be prime and suppose p | nand p | (o + Ay), i.e.a+ Ay €p. Ifp|q, thena ¢ p
but A € gr C p, a contradiction. So ptq,ie a€p. But (o) +t=90,s0p1fqr. So X ¢p.
Since p is prime, v € p. But this contradicts ad — fy —1 € n C p. O
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The analogous statement with SL(2) replaced by GL(2) is no longer true. Essentially,

surjectivity fails because it already fails for GL(1), even when O = Z.

Corollary 23. Let ¢: O* — (O/n)* and f: GL(2,9) — GL(2,9/n) be the natural
maps induced by O — O/n. Then im f = S, where

S={v€GL(2,9/n) | dety €im¢}.

Proof. Clearly im f C S. Conversely, let v € S be represented by C € My (D), say. There
is € € O* with detC = ¢ mod n. Put C' = C(g?)_l. Then det C’ =1 mod n, so by
Proposition 22, there is A’ € SL(2,9) such that A’ = C' modn. Put A = A'(§9) €
GL(2,9). Then f(A) = 1. O

The following lemma is really just a corollary of Proposition 22.

Lemma 24. Let \,p € O satisfy (A, u) +n=9O. Then there exist ', ' € O, with X' = A
(mod n) and ' = p (mod n) such that (N, u') = O.

Proof. Write ap — A = 1 (mod n) for some a, 8 € O, and lift (§ ﬁ) to SL(2,9O) using

Proposition 22. U

We record the following refinement: it is possible to take u' as u, provided that u # 0.

This hypothesis is essential, as is shown by the example O =Z, n=(8), A =3, p=0.

Lemma 25. Let A\, pu € O satisfy (A, u) +n=9O. Assume that u # 0. Then there exists
N € O such that A=\ (mod n) and (N, u) = O.

Proof. Let q = Hpe s p where S is the set of primes p with p | x and p 1 A; this step requires
u # 0. By Lemma 1 there is an integral ideal ¢t coprime to A and in the ideal class inverse
to the class of nq. Thus t+ (\) = O and nqr = (8), say. We may take X' = X\ + .

For suppose that p is a prime satisfying p | X and p | pu. If p + A, then p | q (by
definition), so p | 3, whence p | A, a contradiction. On the other hand, if p | A, then p { g
(again by definition), and p t ¢, but p | 8. So p | n, contradicting the hypothesis. Therefore

no such p can exist, and so (N, u) = O, as required. O

The following lemma is based on [Cre97, Lemma 2.2.1].
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Lemma 26. Fori € {1,2}, let \j, u; € O satisfy (\i, u;) + n=9O. Then the following are

equivalent:
(a) Aip2 = Agpr (mod ),
(b) there exists u € O such that
(i) (u) +n=90 and
(ii) A\ = ulg, p1 = upo (mod n),
(c) there exists 4 € (O/n)* such that (A1, 1) = @( e, f12)-

Proof. Each of (a), (b) and (c) depends only on the residue classes of the \; and p; modulo
n, so by Lemma 24, we may assume without loss of generality that (\;, u;) = ©O. Clearly

(b) and (c) are equivalent.

B
Assume (a). There are o, 5; € O such that a;u; — BiA; = 1. Let M; = i b
Ai i
v *
and define u,v € © by MM, ! = . Taking determinants shows that
ALpg — Agpr u
uv =1 (mod n), confirming (b)(i), whilst (b)(ii) follows from the bottom row of
L * *
M1 = (MlMQ_ )M2 = (mod 11).
UNy U2
Conversely, (b) implies Ajpo = udgps = Aopq1 (mod n); so (b) implies (a). O

On the set of ordered pairs A\, € ©? such that (\,u) + n = O, we now define the

relation ~, where

()\1,/,1,1) ~ ()\2,”2) < )\1[1/2 = )\2/,&1 (IIlOd 11).

This is an equivalence relation, as one sees by an easy direct calculation or yet more
simply by using Lemma 26(c), and we can identify the equivalence classes with the elements
of P!(n), the projective line over O/n. The equivalence class of (A, u) will be denoted
(A : u), and by tradition [Cre81, Whi90], such symbols will be called M-symbols modulo

n, or M-symbols of level n. Notice that the components A and p of an M-symbol (A : u)
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are only determined modulo n, and that by Lemma 24 we can always choose them such

that (A, u) = O. There is a map

T - P'(n), L IR
A

it induces a well-defined map

@
PI — P!(n), g 0% = (A :p).
A
By Lemma 24, each of these maps is surjective — indeed, their restrictions ST' — P!(n)

and PST" — P!(n) are surjective.

Proposition 27. Two elements of T, ST, PT' or PST have the same image in P'(n) if
and only if they lie, respectively, in the same right coset of T'o(n) in ', of STy(n) in ST,
of PDy(n) in PT, or of PSTy(n) in PST.

a B
Proof. Consider the case of [g(n). The matrices M; = | A for i € {1,2} lie in the
i i
same right coset of I'y(n) in I if and only if
) * *
MMy~ = € To(n),

Ao — Aot *
which is true if and only if A\; o = Aoy (mod n), that is, if and only if M; and M, map to

the same M-symbol. The same argument applies mutatis mutandis to the other cases. [

Remark. Thus, we may obtain a set of right coset representatives for I'g(n) in T, for ST'y(n)
in ST, for PT'y(n) in PT', and for PSTy(n) in PST by lifting each M-symbol arbitrarily to an
element of SI". This idea is at the heart of computer implementations of modular symbol
calculations of homology spaces (see §6.2.4). Note that the natural action of I on the

right cosets of T'g(n) induces a right action on M-symbols:

a B
(A:p) = (Aa+ py: A8+ pd).
v 6

This formula is used over and over again in modular symbol calculations. Typically, the

matrix (: g) represents an edge of our tessellation (i.e. a 1-chain in homology) which
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forms part of some basic edge or face relation. To compute the homology of T'y(n)\$3,
one needs to include all the translates of the basic relation under I'; for this it suffices to

let (A : p) run through a set of coset representatives of I'g(n) in I'.

1.4 Normaliser groups

Let O be a Dedekind domain with field of fractions k. Fix n € N. Let G = GL(n, k) and
I' = GL(n,O). Let A = Ng(T') be the normaliser of I' in G. In this section, we recall
a result of Cremona [Cre88] on the structure of A and develop some of its consequences.
As motivation for this section we mention that the introduction of A leads to simplified
geometry (see §1.5 and Chapter 3).

Let J be the group of fractional ideals, P the group of principal fractional ideals, and
C = J/P the ideal class group. Let

J(n) =ker(J = J = C)

be the group of ideals whose n'" power is principal, and

C(n) = ker(C = C)
the n-torsion subgroup of C. Following [Cre88], we consider the function

G — J, M — (M),
which assigns to a matrix M the fractional ideal (M) generated by the entries of M.
Proposition 28. Let M € G. Then

MeA << (M)" = (det M).

Proof. This is [Cre88, Theorem 1, part (1)]. O

Corollary 29. The map {: A — J(n) given by M — (M) is a surjective group homo-

morphism, and there is an ezact sequence of groups

1 > T > A <>>J(n)—>1.
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Proof. That ¢ is a homomorphism follows at once from Proposition 28, using uniqueness
of factorisation into ideals;® surjectivity follows from the proof of [Cre88, Theorem 1],
although the assertion loc. cit. is merely that the composite A — J(n) — C(n) is
surjective. Let v € I'. Then © D (y) D (dety) = O, so (y) = O, so v € ker$.
Conversely, let v € ker {. Since (y) = O, certainly v € M, (9). By Proposition 28,
(dety) = (7)™ = O, so dety € O, as required. O

Corollary 30. There is a commutative diagram of exact rows and columns,

1 1 1

1 — 9% —— KX —— P —— 1

and an ezact sequence

1 — k*T — A — C(n) —— 1.

Proof. We may identify k£* with the centre { al,, | a € k* } of G; by definition, A contains
k*, and clearly k* NT = O*. The middle row is exact by Corollary 29, and the rest of the
diagram by Lemma 18. (Exactness of the first row also follows directly from Corollary 29,

being the special case n = 1.) The last part follows trivially from Lemma 18. O

Lemma 31. Let M € A and a = (M). Then there is an O-module isomorphism

OG- @0 ad---®a, v vl

~

v

'
n n

In particular, a is already generated by the entries in any one row or column of M.

5|Cre88] gives a different proof.
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Proof. The map is clearly a homomorphism, and M~ = (det M)~!adj(M) defines the
required inverse map into O @ --® 9, since a” = (det M) and adj(M) has entries in a® L.
Surjectivity implies that a is generated by the entries in any one column of M for rows,

replace M by its transpose. O

We now restrict to the case n = 2, so A is the normaliser of I' = GL(2,0) in G =
GL(2,k). For M € A we define S,(M), the set of “admissible scaling factors” for M at

level n, by
Sn(M) = {a e k” | alM)y+n=9}.
Clearly S,(M) is non-empty, by Lemma 1; in particular, if M € T, then 1 € S,(M).

Lemma 32. If a € S,(M), then a~!det(aM) € S,(M~1). If moreover o € Sy(M'),
then a! € Sy(MM').

Proof. Clearly (a™!det(aM)M™) = (aM)*(a"*M~!) = (aM). The integral ideals

(aM) and (o’ M') are coprime to n, hence so is their product ao/(MM'). O

Consequently, we can define a subgroup of A as follows:

* %
Ag(n) = ¢ M € A | 3a € Sy(M) such that aM = mod n
0 =

The next proposition gives a more intrinsic definition.
Proposition 33. The group T'(n) is normal in A. The normaliser of each of T1(n) and
Fl (I‘L) mn A is Ao(n).

Proof. Let M € A and a € Sy(M); write aM = (2%). Let v = (A48) € T and

c

7' = M~'yM; thus 7/ € T, by definition of A. Explicitly,

M (1.11)

where

ad(A —1) —be(D — 1) — abC + cdB bd(A — D) — b2C + d’B
ac(D — A) + a?C — ¢*B ad(D —1) —bc(A —1) + abC — cdB

M =
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Since (aM) is coprime to n, so is its square (ad — bc). The various congruence conditions
for 7' therefore amount to conditions for the corresponding entries of M’ to lie in n. Tt is
now clear that v € T'(n) implies 7/ € T'(n); thus I'(n) < A.

Now let v = (}1) € I'l(n) and assume 7/ € T'1(n). Then ¢> € n and cd € 7, so
c(c,d)y Cn. But {(¢,d) = (eM), by Lemma 31, so (c,d) is coprime to n, implying ¢ € n.
Conversely, let ¢ € n; if v € Ty (n), then 7/ € I';(n), and if v € Ti(n), then 4/ € T'i(n). O

The normaliser of I'g(n) in A can be strictly larger than Ag(n). For example, let O = Z

and

1 0
M = e ST.

21

Then M normalises I'g(4), even though M ¢ Ay(4). The precise result is as follows.

Corollary 34. Let M € A and o € Sy(M). Write aM = (ﬁ g). Then M normalises
To(n) if and only if both ¢ € n and c(A — D) € n for all (4 B) € Ty(n).

Proof. Take v = (}1); then by (1.11), ¢? € n, whence also ac(A—D) e nforall (4 8) €
To(n). Since n | ¢? and n is coprime to (aM) = {(a,c), we find ¢c(A — D) € n for all

(é S) € Ty(n). The converse is clear. 0

Having given an intrinsic definition of Ag(n), we now prove our main result concerning

this group.

Proposition 35. There is a commutative diagram of exact rows

1—— T ——s A 2570 ——1

T I |

1 —— To(n) —— Ag(n) —2— J(2) —— 1.

Proof. The inclusions are obvious, and the top row is exact by Corollary 30. On the second
row, ker = ' N Ag(n); we claim this equals T'g(n). For let M € Ag(n) with (M) = O.
Then any « € S,(M) is invertible modulo n, and we deduce from oM = (§ i) mod n that
M = (§%) modn, ie. that M € Ty(n). It only remains to show surjectivity of ¢ on the

second row.
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Given a € J(2), choose a € k* such that aa+n = 9O. Choose M € A with (M) = aa;
in particular, the entries of M lie in . We show how to “adjust” M by a matrix A € ST’
such that AM € Ag(n). By Lemma 31, the first column of M = (¢ ?) satisfies (a,c) = aa,
hence (a,c) + n = O, and so (c: —a) is an M-symbol at level n. Using Lemma 24 on M-

symbols, find

with @’ = @ (mod n) and ¢ = ¢ (mod n). Then AM = (} %) € A withy=da—dcen
and (AM) = (A)Y{M) = aa. Put M’ = a~'AM. Then a € S,(M'), showing that
M’ € Ag(n) with (M') = a. 0

Clearly Ay(n) contains the scalar matrices k*, so we may define the corresponding
projectivised group PAg(n). We obtain the following result, a generalisation of Corollary 30

in the case n = 2.

Corollary 36. There is a commutative diagram of exact rows and columns,

1 1 1

1 —— To(n) —— Ag(n) —— J(2) —— 1

1 —— PI'y(n) —— PA¢(n) —— C(2) —— 1

and an ezact sequence
1 —— k*To(n) —— A¢(n) —— C(2) —— L.
Proof. Apply Lemma 18. O

Regard the level n as fixed, and choose ideals p; € J(2) to represent the ideal classes

in C(2); by Lemma 1, we may assume that the p; are prime to n. (Indeed, when O is the
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ring of integers of a number field, we may further assume that the p; are prime, using the
well-known but deep theorem that every ideal class contains infinitely many prime ideals.)
Lift the p; arbitrarily to matrices A; € Ag(n). By Corollary 36, the images A;k* of the
A; in PAg(n) form a system of (right) coset representatives for PT'g(n) in PAg(n), and a
fortiori for PT in PA.

The “adjustment” step in the proof of Proposition 35 shows that A is generated by its
subgroups ST" and Ag(n); consequently, PA is generated by PST and PAy(n).

Corollary 37. If {S;}icr is a set of (right) coset representatives for Ty(n) in T, then it
is also a set of (right) coset representatives for Ag(n) in A. Similarly, if {S;i}icr is a
set of (right) coset representatives for PTy(n) in PT, then it is also a set of (right) coset
representatives for PAg(n) in PA.

Proof. Since T is normal in A,
A= Ag(n) - T =29(m) [ JTom)Si = | 2o(m)Si.
i€l i€l
Moreover, if Ag(n).S; = Ag(n)S;, then ,S’z-Sj_1 € Ap(n)NT' =Ty(n), whence ¢ = j. The same
proof applies mutatis mutandis in the projective case; note that PAg(n) NPT = PTy(n),

as one sees from the bottom rows of the diagrams in Corollaries 30 and 36. O

Thus, in particular, the M-symbols at level n provide a set of right coset representatives

for Ag(n) in A and for PAg(n) in PA.

Aside. Tt is tempting to think of Proposition 35 as a partial analogue of Lemma 14, and
to try to embed I';(n), I'}(n) and T'(n) in suitable groups Aj(n), Ai(n) and A(n). The

naive approach fails, however. Thus we could put

* ok
Ai(n) =¢ M € A | Ja € Sy(M) such that aM = modn
01
1 1 =«
Aj(n)=¢ M € A | Ja € Sy(M) such that aM = modn
01
10
An) =4¢ M € A | Ja € Sy(M) such that aM = ) modn ;,
01
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but in fact Aq(n) = Ag(n). For suppose aM = (} ), where M € Ag(n) and a € Sy(M).
Then (aM) +n = O, whence (det(aM)) +n = O. Since ¢ € n, this implies that d is
invertible modulo n, with inverse 3, say; clearly a8 € Sy(M) and afM = (3 ’1‘) Thus
Aj(n) = Ag(n), as claimed. The question of finding a natural choice of A;(n), i.e. a
subgroup A;(n) of A with ' A;(n) = I'y(n) and im ¢ as large as possible in the exact

sequence

1 —— Ti(n) —— A(n) —2— J(2)

may be left for a rainy day, and will not concern us further.

1.5 Cusps

Let O be a Dedekind domain with field of fractions k. The set P'(k) = k U {0} is
called the set of cusps over k. We usually represent cusps, including the cusp at infinity,
as A/p, with A,u € O not both zero. This expression is not unique, of course, but

the ideal class cl((\, p)) is well-defined, for if A/ = X'/u/, then either p = ' = 0 or
(A 1)) = l({A, p)p') = el (N, @) p) = el (X, ).

Definition. The class of a cusp A\/u, denoted cl(A/u), is the ideal class cl((\, u)). A cusp

is principal if its class is the principal class.

Clearly any principal cusp A/p may be expressed “in lowest terms”, i.e. with (A, u) = O.
The following lemma shows that the general situation is as good as one could hope for:
given fixed ideals { a; | 4 € I }, one in each ideal class, one can write any cusp as A/u with

(A, p) = a; for some i € 1.

Lemma 38. Let a be an integral ideal. Then every cusp with class cl(a) may be written

in the form A/ u with (\, u) = a.

Proof. Let a = X' /u' have class cl(a). Then there exists u € k* with u(N,p') = a. Put
A=u) and p = up'. Then a = A/, where A\, € O and (A, u) = a. O
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The group GL(2, k) acts on the left on the cusps (compare §3.1 below) by the formula

a bl X ar+bu

c d] M cA+dp’

This action is clearly transitive, for if a € k then (‘f *01) - o0 = q; slightly less trivially,

the orbit of co under GL(2, D) is the set of principal cusps:

A
{_ ‘ A’/’I’GD7 <A,,U,>:D}
L
So the action of GL(2, ) is transitive on the cusps if and only if every ideal is principal.

Lemma 39. The orbit of a cusp a under both SL(2,90) and GL(2,90) is the set of cusps
with class cl(a).

Proof. The action of GL(2, ) preserves the class of a cusp, since if (‘CL 3) € GL(2,9), then
(aX + by, A + du) = (A, u). We now show that SL(2,90) acts transitively on each class.
Suppose cl(A/p) = (N /u'), so there is u € k* with (A, u) = u(N, u'). By Proposition 7
there exists M € SL(2,9) such that M(}) = (Z;‘; ). Then M - X/p=X\/u'. O

We now consider the orbits under the group A defined in §1.4; recall that A is the
normaliser of I' = GL(2,O) in GL(2, k).

Lemma 40. Let M € A and let o € kU {oo}. Then cl(M - a) = cl(M)cl(a). More

precisely, let \,u € O. Then M(ﬁ) = (i‘; ), where

N,y = (M)A, ). (1.12)

Proof. The first part follows from the second by writing & = A/ and taking ideal classes.
We now prove the second part. Write M = (¢ %) and let a = (M). Clearly X, p’ € a(X, p).
Also, with § = det M,
dA ) N d —b N
= adj(M) = .

! !

op Iz —c a ) \p

whence 6(\,u) C a(N,u') C a?(\, p). Since (§) = a? (because M € A), equality is forced

throughout, implying (1.12). O
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Corollary 41. For two cusps a,d’, the following are equivalent:
(i) there exists M € A such that o/ = M - «;
(i) there exists an integral ideal a, with o® principal, such that cl(a’) = cl(a)cl(a).

Proof. Assume (i). Then (ii) holds with a = (M), by Lemma 40. Conversely, assume (ii).
By surjectivity of <) in Corollary 29, there exists M’ € A with (M') = a. Put o = M'-«.
By Lemma 40, cl(a") = cl(a)cl(a) = cl(a'), whence by Lemma 39, there exists M" € T
such that o/ = M" - . Then M = M" M’ has the required property. O

In particular, suppose that O has finite class number h. Then there are h orbits of

cusps under I' (and ST"), but only |C/C(2)| orbits under A (in the notation of §1.4).



Chapter 2

The classical case

The purpose of this thesis is to generalise a small part of the classical theory of modular
forms. It is therefore appropriate to record the basic definitions; the reader will recog-
nise many analogous situations later in the thesis. By the “classical” theory, we mean
specifically the case in which the underlying number field is Q. There is, of course, a

well-established theory over general global fields.

2.1 Classical modular forms

2.1.1 Definitions

Let $2 denote the complex upper half plane {z +iy | z,y € R, y > 0}, and $5 the ez-
tended half plane

95 =9H2UQU {oo},
obtained by adjoining the cusps. The group
GL*(2,R) = {y € GL(2,R) | dety >0}

acts on $);5 by fractional linear transformations; explicitly, for v = (‘; Z) € GL*(2,R) and
z € 3,

az+b

V2= cz+d (2.1)

39
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with the obvious conventions regarding infinity. Now define

1/2
u@wr=(%vwa) — (dety)2(cz + d) .

For ¢t € N, define an action of GL™(2,R) on meromorphic functions f: 7 — C via

(fI(z) = f(v-2)ulr,2)' (v € GLY(2,R), z € H). (2.2)

Let N € N and let I” be a congruence subgroup of SL(2,7Z) of level N, i.e. a subgroup
containing SI'(N) in the notation of §1.2.1. A meromorphic function f: 5 — C is said

to be weakly modular of weight t for T if

f|t’y =f Vy el (2.3)

Since ((1) ol ) € I'", weakly modular forms are invariant under z — 2z + N, and so have a
Fourier expansion
flz)= Z an exp(2mwinz/N).
neZ

If f is weakly modular for I, and v € SL(2,Z), then f‘t'y is weakly modular for v~ 1T,
which is again a congruence subgroup since ST'(N) is normal in SL(2,Z). If f is holomor-
phic and the Fourier expansions of all the the functions f | ;Y for v € SL(2,Z) have a, = 0
for n < 0 we say that f is a modular form; if moreover each ag = 0, we say that f is a
cuspform. More generally, for a Dirichlet character Y mod N, one also has the notion of

a modular form with character or nebentypus x, for which (2.3) is replaced by

fly=x@f vy=(sf) el

The complex vector space of cuspforms of weight ¢ for I is denoted Sy(I"). It carries

an Hermitian inner product, the Petersson inner product, defined by
(o) = [ F)aG? do (24)
I"\93

The quotient space I'\$5 carries the structure of a compact Riemann surface. By
applying the Riemann-Roch theorem, one can deduce a formula for the dimension of
S¢(T"). From our point of view, the interesting case is when ¢ = 2; in this case, equations
(2.2) and (2.3), together with the cusp condition, amount to saying that f(z)dz is a

holomorphic differential 1-form on I\ §33.
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2.1.2 Modular points

Let f be a modular form of weight ¢ for SL(2,Z). Then one can define

F(wi,ws) = wQ_tf(wl/wg) (2.5)

for all pairs (w1, ws) with wy/we € $H2; by construction, F is homogeneous of weight —t.
The automorphy condition for f translates into the fact that F' depends only on the Z-
lattice spanned by wi,ws; therefore, F corresponds in turn to a function F defined on

Z-lattices and having “weight” ¢ in the sense that
F(CA) =C'F(A) V¢ eCX.

Conversely, given such a lattice function, one can construct a modular form of weight ¢;
indeed, the most basic of all constructions of modular forms, that of the Eisenstein series

G, proceeds in this way:

ét(whwz) = Z (mwy + nws) 7t
m,neZ
(m,n)#(0,0)
For details, the reader may consult any introduction to modular forms, for example [Swi92,
Ser73, Kob84, Lan76).

Thus, classical modular forms for SL(2,Z) correspond to certain functions on Z-lattices
in C. The idea generalises to forms for the main congruence subgroups of SL(2,Z); such
forms correspond in a similar way to functions on “modular points”, which are lattices
equipped with extra structure [Kob84, Lan76]. Modular points provide one approach to
the introduction of the Hecke operators, which are tremendously important in the theory.
Roughly speaking, modular forms give rise to Dirichlet series with functional equation (for

details, including Weil’s converse result, see [Wei67b]), and simultaneous Hecke eigenforms

to Dirichlet series with functional equation and an Euler product expansion.
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2.1.3 Hecke operators and newforms

For concreteness, we now take ¢ = 2 and IV = T'x(NN), and write S3(NN) for the space

S2(To(N)). Since (§1) € [o(V), an element of S2(IN) has a Fourier expansion

flz)= i ane>™nz, (2.6)
n=1

For each prime p there is a linear operator T, on S2(IV), called a Hecke operator; when
p | N, the operator T, is sometimes denoted U,, and there is a related involution oper-
ator W, which yields slightly more information. All these operators commute pairwise.
Moreover, the T, for p t N are self-adjoint with respect to (2.4). Therefore, by an ele-
mentary theorem of algebra, So(IN) has a basis consisting of eigenforms, i.e. simultaneous
eigenvectors for all the T, with p { N; moreover, the eigenspaces are preserved by the U,.

However, the operators U, are not in general self-adjoint, so S3(IV) does not in general
have a basis consisting of eigenforms for all the T},. To make progress, one introduces the
concepts of “oldforms” and “newforms” following Atkin and Lehner [AL70]. If M | N and
f € So(M), then both f itself and the function z — f(Nz/M) lie in S3(N). The subspace
of S5(N) spanned by all such forms as M ranges over the proper divisors of N is called
the oldspace at level N; its orthogonal complement with respect to the Petersson inner
product is called the newspace.

When the operators T, with p { N are restricted to the newspace at level N, the
simultaneous eigenspaces turn out to be one-dimensional. Since they are preserved by
the Up, they are automatically eigenspaces for those operators too. Hence the newspace
at level IV has a basis consisting of simultaneous eigenforms of the T}, for all primes p;
such forms are called newforms at level N. (The language might cause confusion, so we
emphasise that, in general, not every element of the newspace is a newform.)

A cuspform (2.6) gives rise, via Mellin transform, to a Dirichlet L-series ) a,n~* which
has a functional equation and analytic continuation to s € C. If f is a newform, then
a1 # 0, and one always chooses to normalise f so that a; = 1. In that case, by [AL70,

Theorem 3], one has T),f = a,f for all primes p; furthermore, if p | N then W,f = ¢, f
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with €, € {1} and

—¢p, ifp| N but p?{ N,
ap=14 (2.7)
0 ifp?|N.
If f is a normalised newform for I'g(N) with character x, then it follows from relations

among the Hecke operators that its L-series has the Euler product expansion
- 1 1
Z apn 5 = H(l — app_s) H(l —app° + X(p)pl_Qs) . (2.8)
n=1 pIN PIN
Various authors [Cre97, FM98] have made extensive computations of newforms for

Iy(N). The examples below are taken from Table 3 of [Cre97] and the extended version

available electronically.!

2 35 7111317 19 23 29 3137 41 43 47 53 59 61 67 71 73 79 83 89
20AI--24+ 2 0 2-6—-4 6 6—4 2 6-10-6—-6 12 2 2-12 2 8 6—6
40Al+ 0——4 4-2 2 4 4-2-86-6 -8 4 6 —4-2 8 0-6 0-16—6
80A+ 0— 4-4-2 2-4-4-2 86-6 8—-4 6 4-2-8 0-6 0 16—6

80B|— 24+-2 0 2—-6 4-6 6 4 2 6 10 6-6-—-12 2—-2 12 2-8 —6—6

Each row represents a newform. The first column gives the label of the newform, consisting
of the level N at which the form arises and a code letter to distinguish the newforms at
that level. The other columns give, for p { N the eigenvalue of T, and for p | N the sign
of the involution W,
Notice that the eigenvalues a(p) of 20A and b(p) of 80B are the same up to sign; more
precisely, b(p) = x(p)a(p), where x is the quadratic character
1 ifp=1 (mod4)

—1
p ([ — ) = (=)D = (2.9)
( p ) -1 ifp=-1 (mod 4).

!The file ftp://euclid.ex.ac.uk/pub/cremona/data/aplist.1-5300 lists all newforms for N < 5300.
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2.1.4 Twists: new forms from old

Let f € So(N) be given by (2.6), and let x be a quadratic Dirichlet character of conductor

m, where m? | N. Then there is another cuspform f ‘Rx in S3(N) given by
FIR(2) =) anx(n)e*™=.
n=1

Even if f is a newform, f ‘Rx need not be, but there is always an associated newform at
some possibly different level N’ with the same eigenvalues for all primes p { m. We denote
this newform by f * x and call it the twist of f by x. Of course, any quadratic character
is built up from the basic characters x_4 given by (2.9), xs given by p — (2/p), and x4
given by p — (p/q) for odd primes g, and we also write f* —4, f x5, f*—20 = f*x—4x5,
and so on. Thus, in §2.1.3 above, 80B = 20A x —4, and 80A = 40A x —4.

For details of how the level changes under twisting, see Theorems 6 and 7 of [AL70].
For example, if f is a newform at level N, and f * 5 is a newform at level N’, then

N'=5%N, where

2 if5¢N,
1 if 5| N but 524 N,

0, —1or —2 if 52| N but 53 { N, and

0 if 53 | NV.
2.2 Towards a general theory

It is natural to search for an analogous theory when Z in SL(2, Z) is replaced by the ring of
integers © of a number field k. To make the right definitions, one must address a number
of questions.

What should replace $)o as the domain of definition of our forms? Should they still
take values in the space C? What should replace the weight ¢ and the automorphy factor
u(7, 2)? Finally, what analytic conditions should our forms satisfy? The requirement of
holomorphy may have to be weakened or modified, necessarily so if the domain of definition

does not have a complex structure.
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Some of the first successes in this direction were achieved by Hilbert. For Hilbert
modular forms, one retains the requirement of holomorphy; consequently, one has to re-
strict attention to totally real number fields, since otherwise the appropriate domain for
the forms has no (obvious) complex structure. Even in this case, it was soon found that
serious technical difficulties arose, due to the class group and the unit group. These diffi-
culties largely disappeared with the adoption of the adelic viewpoint which had proved so
successful in class field theory.

From the adele point of view, the theory of automorphic forms on GL(2) over k is the
theory of various types of functions on the adele group G4 which are left-invariant under
G. Our main source for this theory is the book of Weil [Wei71]. We mention briefly that
there is a yet more general point of view; once we have agreed to study spaces of functions

on Gi\Ga, we may consider the (right) regular representation of G on such a space:

(p(9)(f)) () = f(hg);

thus, the finite-dimensional spaces of various types of automorphic form may be regarded
as various finite-dimensional representations of Gx\Ga. This is the viewpoint of Jacquet-
Langlands theory, but we will be content with the “elementary” approach of Weil.

In the case of an imaginary quadratic field, we shall develop a theory of modular points
entirely analogous to the classical one, allowing us to define Hecke operators and, in certain

cases, to compute their action on the space of cuspforms.
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Geometry of upper half space

The upper half-space is the set
N3 =C xRy :{(Z,t) | z € C, tE]R>0}.

The space carries a hyperbolic metric, and the group GL(2,C) acts on $)3 by isometries.
There are two quite natural ways of introducing this action: (i) by expressing $)3 as the
coset space GL(2,C)/C* - SU(2) and acting on cosets (see §3.1); (ii) by identifying points
of $3 with Hermitian forms and acting by change of variable (see §3.2). Of these points
of view, (i) is the more natural for the study of modular forms (see Chapters 4 and 6); we
also give (ii) since it led to the geometrical methods that we use in this chapter.

Let k be an imaginary quadratic field with ring of integers O and class number h. One
of the main goals of this chapter is to obtain a tessellation of the extended half space $3 by
hyperbolic polyhedra, a tessellation on which the group I' = GL(2, O) acts. Our approach
closely follows the work of Cremona and Whitley [Cre81, Whi90] for the nine fields with
h =1, the main innovation in this thesis being the introduction of the normaliser A of T in
GL(2, k), which simplifies the geometry when A = 2 (and more generally, when C' = C(2)
in the notation of §1.4), enabling such fields to be dealt with almost as easily as those
with A = 1. We develop the theory for general k, and give all the geometrical details for
k = Q(v/=5), which has h = 2. There are two stages.

First, we find fundamental regions D for the action of I' and A on $3. This involves

studying the geometry of hemispheres, and leads to certain algorithms, akin to the Fu-

46
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clidean algorithm, which will be important for our computations later in this thesis.

Then, we glue together copies of D (translates of D under the stabilisers of its vertices)
to form hyperbolic polyhedra, with vertices at the cusps, which tessellate $3. We choose
a “basic edge” e; in each I'-orbit of edges. Each edge of our tessellation has the form ~ye;
for some i and some vy € I'; thus the homology of I'g(n)\$3 is generated by the (c : d)e;,
where (c : d) runs through a set of coset representatives of I'y(n) in I, as in §1.3. There is
some redundancy: the stabiliser of the (unordered) edge e;, when non-trivial, gives rise to
some “edge relations”. From our polyhedra, we obtain one “face relation” for each orbit
of faces. Note that a polyhedron with F' faces gives rise to at most F'—1 independent face
relations.

The relations we obtain encode all the necessary geometric information about k in the
form of algebraic symbols that are readily stored on a computer; the calculations in later

chapters reduce to algebraic manipulations and linear algebra.

3.1 Action of GL(2,C) on half-space

Let H be the ring of quaternions. It is 4-dimensional algebra over R, with the usual basis
1,4, 7, k. It may also be regarded as a left vector space over C, with basis 1, j; accordingly,

we sometimes identify H with C?. Define an equivalence relation ~ on H? \ {(0,0)} by
(g,7) ~ (¢',7") < 3\ € H* such that (g\, 7)) = (¢, 7).

The equivalence class of (g,r) is { (gA\,7A) | A € H* }, and will be denoted by [g : r]. The
set P!(H) of these classes is the quaternionic projective line. A set of representatives of
PL(H) is { (g,1) | g € H} U {(1,0)}. We may identify P*(H) with HU {oo} and C? U {o0}
via
[g:1] «— g=z+t] +— (2,1 (3.1)
[1:0] «— 00 —>  oo.
It is convenient to identify C x {0} with C and write (0,1) as j; this is consistent with
(3.1).
Regard H? \ {(0,0)} as a set of column vectors. The group G = GL(2,C) acts on

the left by matrix multiplication; since this action preserves equivalence classes, there is a
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well-defined left action of G on P!(H), given by

a b
c d

-lg:7] = [ag + br : cq + dr]. (3.2)

Notice that real scalar matrices act trivially, because R* is contained in the centre of H*,
but that ¢-[j: 1] = [ij : 4] = [—ji: 4] = [—j : 1] # [j : 1]. Hence there is an induced action
of G/R* but not of PGL(2,C). More generally,

e [z 4tj: 1] =[z 4 €Pt5: 1]. (3.3)

It follows immediately from (3.2) and the identification (3.1) that there is an action of
G on HU {oo}, given for g = (24) € G by

'S} ifc=0,
g-o0=
a/c otherwise,
(3.4)
00 if g = —d/c,
9-9=
(aq +b)(cqg +d)™! otherwise,
and hence an action of G on C? U {00} given by
o0 ifc=0,
g-oo=
(a/c,0) otherwise,
(3.5)
00 if z=—d/cand t =0,
g- (Z,t) =
(',t')  otherwise,
where
S (az + b)(cz + d) + (at)(ct) , (ad—=be)t (3.6)
B lcz + d|? + |ct|? ’ ez +d|? 4 et '

For convenience we record the following special case of (3.5):

(t Z)-j—z—l—tj. (3.7)
0 1
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Lemma 42. The action (3.5) has two orbits: CU{oo} and its complement C x C*. The

stabiliser of j is the group

]RX-SU(2){ (d _C> c,d€C, (c,d);é(0,0)}.
c d

Proof. Clearly (3.5) restricted to CU {oo} is just the usual action by Mdbius transforma-
tions on the Riemann sphere; in particular, it is transitive. The action on Cx C* is transi-
tive by (3.7). If g = (2 }) € G fixes j, then aj+b = j(cj+d), whence b+¢ = (d—a)j = 0,
so g is as stated; conversely, R* - SU(2) fixes j. O

Corollary 43. There is a decomposition G = ZBK, where

10
Z—{( (eCX}
01

u,v € C, uu+vv =1
Ezxplicitly, for g = ( G,
=¢ , (3.8)

where

2= (ac+bd)/(lel* +1d]*),
t = lad —be| / (|c* + |dI?),
¢=e(ef? +1d2) ",
u=c(",

v= dC_la

and € is given by

€= ((ad —bc) / |ad — bel )1/2.
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Moreover, in the decomposition (3.8), t and z are uniquely determined, and (, u and v

are unique up to choice of the sign of e.

Proof. By (3.6), g+j = z+ €*tj, where z, t and ¢ are as stated. Hence by (3.3), ¢ lg-j =
z+tj. By (3.7) and Lemma 42,

-1
t =z

01

e g e R*-SU(2),

giving an equation of the form (3.8), for some (, u and v; taking determinants in (3.8)
shows that ( is as stated, and multiplying out the bottom row that u and v are as stated.

The uniqueness follows from BN ZK = {13} and Z N K = {£15}. O

There is an obvious bijection B — $)3 given by

t =z

01

(2, 1). (3.9)

Since BN ZK = {12}, the group B may also be identified with the coset space G/ZK.
Write 7: G — $3 for the map G — G/ZK — B — $3; thus 7|, is the map (3.9). The

coset action of G on G/ZK induces a left action of G on §)3 by

t z
g-(z,t)=7|g . (3.10)
01
Explicitly, for g = (‘c‘ 3) eaqG,
g- (Z,t) = (zlatl)a (311)
where
- o B
o (az + b)(cz + d) + act ’ ' |ad — belt . (3.12)
lcz + d|? + |ct]? lcz + d|? + |ct|?

Notice that (3.6) and (3.12) are not quite the same: the ¢’ of (3.6) has been replaced by
its modulus.

The space $H3 may be equipped with the Riemannian metric

dz dz + dt?
2
dS == T’
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and G acts by isometries. The induced topology is just the Euclidean topology, but
the geometry is hyperbolic: the geodesic lines are vertical half-lines and vertical semi-
circles with centre in the plane ¢ = 0; the geodesic surfaces are vertical half-planes and
hemispheres with centre in the plane ¢ = 0. We prove below (see Proposition 44) that G

acts transitively on these geodesic surfaces.

Definition. A fundamental domain or fundamental region for the action of a group G on
a topological space X is an open set U such that each orbit of G meets U at most once

and meets the closure U of U at least once.

This definition is rather too general to be of much use, since it does not ensure that U
is at all well-behaved — for example, condition (iii) below may fail — so in practice one
looks for “good” fundamental domains. For a detailed discussion in the case of Fuchsian
groups acting on the hyperbolic plane, see [Bea83, Chapter 9]. We are concerned with
the case of certain groups acting on the spaces X = C (with the Euclidean metric) and
X = 93 (with the hyperbolic metric). We shall avoid dwelling on the topological niceties,

but the fundamental regions we construct do have the following, desirable properties:
(i) U is convex (i.e. U contains the geodesic line segment joining any two points of U);

(ii) U is “locally finite” (i.e. each compact subset of X meets gU for only finitely many
g €@);

(iii) the map G\U — G\X induced by the inclusion U — X is a homeomorphism;

(iv) the boundary of U is the union of finitely many geodesic line segments (and, in the

case X = §3, polygons).

3.2 Hermitian forms

It is well-known that the reduction theory for positive-definite binary quadratic forms over
Z (due to C. F. Gauf) may be interpreted geometrically: a form corresponds to a point in
the upper half plane $)o, the actions of SL(2,7Z) on forms (by change of variable) and on

$2 (by formula (2.1)) are compatible, and “reduced” forms correspond to points in (the
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closure of) the usual fundamental domain for the action of SL(2,Z), namely

{2657)2

There is a similar reduction theory, due to Bianchi [Bia92] and Humbert [Hum15], for

1
[R2] < 3, |22 > 1 } (3.13)

positive-definite binary Hermitian forms under the action of SL(2, O), where O is the ring
of integers of an imaginary quadratic field k. Building on their work, Swan [Swa71| gave
a method (which we shall use) for finding fundamental domains analogous to (3.13).

Let F(u,v) be a binary Hermitian form; thus, writing % for the Hermitian conjugate
(i.e. the conjugate transpose), F(u,v) = xMx*, where x = (u v) and M = M* = (3).
Then F is positive-definite if and only if a > 0, d > 0 and ad — ww > 0 (see, for example,
[Coh82, §8.3, Thm 6]). Replacing F by d 'F, we may write the matrix as

|22+ 82 2
z 1
for (z,t) € $3, corresponding to the form F(u,v) = |uz + v|?> + |ut|?>. Thus, each point
of $)3 represents an equivalence class of positive-definite binary Hermitian forms modulo
scaling by positive real numbers.
The group GL(2,C) acts on the left on forms by (gF)x = F(xg). Suppose the
form Fx = xMx"* corresponds to (z,t) and let ¢ = (2%) € GL(2,C). Then (¢F)x =
(xg) M (xg)* = xM'x*, where

QI

M — My — a b\ [|z*+ =z ¢\ _ fla,b) w
d w f(c,d)

c d z 1

k=l

with w = (az + b)(cz + d) + act®. Thus gF corresponds to (2/,t'), where 2z’ = w/f(c,d)
and (t')2 = det M'/f(c,d)?. Since det M’ = |ad — bc|?t2, one obtains (3.12). We remark
that Swan’s formula is slightly different (with both b and ¢ negated) since he starts from

the right-action (gF)x = F(g~'x), where x is now a column vector.

Proposition 44. Let A be the set consisting of all vertical (half) planes in $H3 and all
hemispheres in 93 with centre in the plane t = 0. Then GL(2,C) acts transitively on A.
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Proof. This is a strengthened version of Lemma 3.4(1) of [Swa71], which did not mention

transitivity. Write G = GL(2,C). For g = (‘c‘ g) € (G, define
H(g) = {F € 93 | F(aab) :F(C,d)}

Let A’ ={H(g) | g€ G}. For g,h € G, a trivial calculation gives h - H(g) = H(gh™!).
Hence G acts transitively on A’. We show that A’ = A. First, note that

H(g) = {(z,1) : |az + b]* + *|a|* = |cz + d|> + t*|c|*}
= {(z,1) : (la’— |c]*)(|2I*+ t*) + (ab — cd)z + (ab — cd)z = |d|*— [b]*} .
If |a| = |c| then ¢ is arbitrary and wz + Wz is constant, where w = ab— cd; since w # 0

(else (ad — bc)c = 0, implying ad — bec = 0, a contradiction), z lies on a straight line as

required. If |a| # |c|, then completing the square and using

(1d” = [b1*)(al* — |e*) + (ab — cd)(ab — cd) _ ( |ad — bl )2
(laf? = lef?)? la]? = cf?

gives

H(g) = {(z,t) ;2 4 ‘z + 7&2 — |Ccd|)2

2 [ lad —be|
~\laP2 =) |7

a hemisphere as required. Thus A’ C A. Conversely, A’ certainly contains the unit

hemisphere centred at (0,0), and the vertical plane above the imaginary axis, since
1-1/2 _
H(((l)(l))) = {(z,t) ‘ |22 + 2 = 1}, H((1 1;2)) ={(z,t)|t>0, 2+2=0}.

Since A’ is closed under translations (given by (% Tf) for w € C), rotations about the axis
z = 0 through an angle 6 (given by (% 9) where w = exp(i6)) and enlargements (given by

(&9) for a € Ryp), it contains all planes and hemispheres, i.e. A’ D A. Hence A’ = A. O

3.3 Some geometry of Q(v/—d)

Notation. In the rest of this chapter, we let k be an imaginary quadratic field with ring
of integers O, and write k = Q(v/—d), where d € N is square-free. We let I' = GL(2, D),
and let A be the normaliser of I' in GL(2, k), as in §1.4. We call P!(k) = kU {oco} the set
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of cusps (as in §1.5). We identify k with k x {0} C C x R, and define the eztended upper
half-space $5 by

$5=9H3 Uk U {oc}.

We single out certain elements of I' of special importance. Let € be a generator of the

unit group O%; it is natural to choose € = €>™/™ where n is the order of O* i.e.
v—1 ifd=1
e=9(1+v/=3)/2 ifd=3

-1 otherwise.
We define
11 e O
T == ) U =
01 01

Clearly T" = (| ) for n € Z. More generally, for a € O, we define
01

1l a
01

T =

The map a +— T° is an isomorphism of the additive group of O onto the subgroup I'}(0)
of I'. We refer to T* as “a power of T”. The action of T* and U on C and $)3 is as follows;

clearly T* acts by translation and U by rotation.
T -z=2z2+a, U-z=ez,
T (2,t) = (z + a,t), U-(z1) = (ez,1).
A natural choice of fundamental region for C with respect to translations is the set
Fr={z€C||z| <|z—a| for all non-zero a € O }, (3.14)

called the Poincaré polygon with centre 0 for the group of translations acting on C. The
translates of Fr tessellate C, as shown in Figure 3.1; the region Fr is either a rectangle or
a hexagon, according to the shape of the lattice of integers: recall that an integral basis
for O is {1,w}, where

V—d ifd=1,2 (mod 4),

(1++v—=d)/2 ifd=3 (mod 4).
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[} [} [ ]
—14+w w 14w
Fr
[ ] [ ] [ ]
-1 0 1
® [} [ ]
-1-w —w 14w

Figure 3.1: Fundamental regions Fr for translations for d = 1,2 and d = 3 (mod 4)

Lemma 45. The stabiliser of oo under the action of T is O*T'1(0) and under the action
of A is k*T'1(0), where
a b
ry(0) = aeN*, ben
01
Proof. Let M = (2¢%) € A stabilise co. Then ¢ =0, so (M) = (a) = (d). Thus a/d € O*
and d~1M € T4(0). O

Clearly T'1(0) is generated by U and the powers of T. To obtain a fundamental region
F for T';(0), we need to take account of the symmetries of Fir which lie in I'1(0), i.e. of
the rotations given by the powers of U. If d ¢ {1,3}, there is just two-fold symmetry,
but if d = 1, the rectangle Fr is actually a square, with four-fold symmetry, and if d = 3
the hexagon Fr is regular and has six-fold symmetry. Thus F' is obtained by cutting Fr
into 2, 4 or 6 pieces. When d # 3, we can always obtain a rectangle (in the case d = 3

this requires us to replace parts of the region { z € Fr | 2 > 0} by equivalent parts). We
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obtain, for example

F:{x+y\/—_d‘0<m<1/2, ~1/2<y<1/2} ifd#1butd=1,2 (mod4),
F:{a:+y\/—_d‘0<x<1/2, —1/4<y<1/4} ifd#3butd=3 (mod 4),
F:{m+y\/——d‘0<x<1/2,0<y<1/2} ifd=1,
F={zeC|0<Rz<1/2, |argz| < 7/6} ifd=3.

Later, we will make use of the symmetry z — Z; this is not in I', but allows us to

obtain all the geometry from just half of the region F'.

3.4 Theory of hemispheres

Recall that © is called norm-FEuclidean if and only if for every § € k there exists a € O
with |8 —a] < 1, i.e. if and only if the norm function p — N(u) is a Euclidean function
for O (engendering a Euclidean algorithm). It is clear from Figure 3.1 that this is so if
and only if d € {1,2,3,7,11}, and it is well-known that © is a Euclidean domain for no
other values of d [ST87, §4.7]. The Euclidean algorithm for A, u € O may be interpreted

geometrically as follows:

(1) Translation step: if g = 0 then stop, otherwise choose a € O such that \% —a| <1,

and apply 7% to (l))), i.e. replace A by A — ay;

(2) Inversion step: apply the matrix § = (') to (l);), i.e. replace A\/p by —p/A, and
go to (1).

The two steps reduce |u|, the size of the denominator. Since |u|? € Ny, this can happen

only finitely many times before y becomes zero. Multiplying together the matrices that

arise yields a matrix M = (’é g) € SL(2,9) such that M(f“) = (g); here f = a) + by is

a greatest common divisor of A and p. (Notice that if A\, 4 € Z, then one may take a € Z

in step (1), and obtains M € SL(2,Z); thus the algorithm as stated above subsumes the
Euclidean algorithm for Z.)

Let M' € T. Applying the algorithm to M’ - oo yields a matrix M € ST, expressed as

a word in the matrices T, T% and S (and their inverses), such that MM’ . co = oo, i.e.

MM’ € O*T1(0).
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Corollary 46. For d € {1,2,3,7,11}, the group T' is generated by T, T, S, U and €l,

and a similar result holds for ST .

The algorithm depends critically on the geometrical fact that (for these fields k) every
B € k lies within one of the circles (or hemispheres) of radius 1 centred on the integers
a € O (in fact, every z € C does, but this fact is not needed). We say that these circles
“cover the floor” of §3.

Swan’s paper [Swa71] generalises Corollary 46 to other values of d, by developing ge-
ometrical ideas of Bianchi [Bia92] and Humbert [Hum15]. The basic idea is to associate
hemispheres to all principal cusps A/u, where the radii diminish as the size of the de-
nominator y grows. This wider class of hemispheres covers the floor if and only if O is
a principal ideal domain, i.e. precisely for the further values d € {19,43,67,163}. These
were the fields studied by Whitley [Whi90], who describes an algorithm (for which she
coins the phrase “pseudo-Euclidean”) similar to the one above. For other values of d,
there exist non-principal ideals in £; this is equivalent to the geometrical fact that there
exist “singular points” which are still not covered by a hemisphere.

Below, we describe the relevant theory, with particular attention to pseudo-Euclidean
algorithms. At the same time, we show that there is a theory for the group A, entirely
parallel to Swan’s, that makes use of a yet wider class of hemispheres (we term these
“semi-principal”). The advantage of working with A is that it simplifies the geometry:
in particular, it can reduce the number of singular points, even eliminating them when

C = C(2) in the notation of §1.4, such as when k has class number 2.

Definition. The pseudo-Euclidean function for k is the function +: P! (k) — Ny given by

A N

— .
po N, p)

This is well-defined for much the same reason as cl(A/u); see §1.5. Clearly ¢(a) = 0

if and only if @ = oo (since N(0) = 0, by definition), whilst k£ is mapped into N, since
(A, ) | (¢) when p # 0. Note that ¢(a) = 1 ifand only if & € O. If @« = A/ is a principal
cusp written in lowest terms, then 1(a) = N(u) = |p|?. Thus 1 generalises the notion of

“size of the denominator”.
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Definition. For a € k, the hemisphere attached to o, denoted S, is the set

z—al? ZZL}
| |“+1¢ @ |

In hyperbolic space, this is a geodesic surface; in Euclidean space, it is a hemisphere.

So = {(z,t) € 93

Its complement has two components, the inside (where ¢ is bounded) and the outside
(where ¢ is unbounded). Thus, we say that a point (z,t) € 93 lies under Sy, or that S,
covers (z,t), if (and only if)
1
|z —a +1* < ——.
P(a)

Definition. For a € k, the circle attached to o, denoted C,, is the set

Clearly, C,, is a circle in C; in particular, it is a closed curve, whose complement has

Ca:{ze(c

“inside” (which contains «) and the “outside” (which contains co).

two components, the
Moreover, C,, is the boundary of S, regarded as a subset of $3 UP!(C), and C, Nk is the
boundary of S, regarded as a subset of §3.

It is convenient to define So, = $3 and Co, = P}(C). (As motivation for this conven-

tion, we mention that our set S, is the set of points equidistant from co and « as measured

by Siegel’s distance function, i.e. the set denoted S(o0, ) in [Vog85, p402].)
Lemma 47. Let (z,t) € $3. Then the set of cusps a such that S, covers (z,t) is finite.

Proof. By Lemma 38 and the remark preceding it, there exists a bound B such that every
cusp may be written in the form \/u with N(\, u) < B. Suppose that S, covers (z,t)
and write &« = A\/p in this way. Then

Np)

7 <¥l) < %2

So only finitely many values of u can occur, and for each, since |uz — A|? + |ut|> < B, only

finitely many values of \ are possible. O

In practice, since k is imaginary quadratic, we may take for B the Minkowski bound

2.,/18], or Kneser’s stronger bound +/[6]/3, where § is the discriminant of k [Swa71, §7].
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Definition. Let o € P!(k) be a cusp; we say that a is semi-principal if cl(a)? is trivial,
i.e. if cl(a) € C(2) in the notation of §1.4. A hemisphere S, or a circle Cy, is principal if

« is principal, and semi-principal if « is semi-principal.
Lemma 48. A cusp « is semi-principal if and only if M - a = oo for some M € A.

Proof. Since oo is principal, this follows easily from Corollary 41: if M exists, then by
(i) = (ii), there exists a with both a? and cl(a)cl(c) principal, whence « is semi-principal;

conversely, if « is semi-principal, then any a with cl(a) = cl(«) satisfies (ii). O

By attaching a hemisphere to every cusp, we introduced more hemispheres than we

actually need: only semi-principal hemispheres occur in the sequel.

Lemma 49. Let M = (¢%) € A, let o = —d/c, let (z,t) € 93, and let (2, ') = M -(z,1).
Then

1 if @ = oo,
Y(a)(|z — | + %) otherwise.

Hence t' >t if and only if (2,t) lies under the hemisphere S,. Similarly, t' =t if and only
if (z,t) € So, and t' < t if and only if (2,t) lies outside S,,.

Proof. Write a = (M). Since (c,d) = a (by Lemma 31) and a?> = (det M), we have
|det M| = N(a) = N{c,d). By (3.12), if ¢ # 0 then

t  |ez+d?+|ct]? N 4o o .
v = " +t) = - £2).
P etdt] N Pl ) =w(e)(l—al 1)

If ¢ = 0, then (M) = (a) = (d) by Lemma 31, so d = ea for some € € O*, whence

t/t' = |d/a] = |¢|] = 1 (the last step needs k to be imaginary quadratic). The rest follows

at once. n

In other words, if S, covers (z,t), then applying M raises the “height” of (z,t) (but only
finitely many greater heights can be attained, by Lemma 47). The points which cannot

be raised, because they lie under no suitable hemisphere, are of special importance.

Definition. Let Br (respectively, Ba) be the set of (z,t) € $3 that lie above all hemi-
spheres S, with « € k principal (or semi-principal). The boundary of Br (or Ba) will be

called the Bianchi diagram for T’ (or A); see Figure 3.2 for an example.
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Figure 3.2: Bianchi diagram for A when k = Q(v/—5)

The next result does for cusps what Lemma 49 did for interior points.

Lemma 50. Let M = (2%) € A, let a = —d/c, and let 8 € kU {oo}. Then

¥(B) if @ =00,
P(M - B) = { ¥(a) if 8= oo, (3.15)

Y(a)h(B)|8 —al?  otherwise.
Consequently, (M - 3) < (B) if and only if B lies inside Cy, i.e. |3 — al? < 1/y(a).
Similarly, (M - 8) = ¥(B) if and only if B € Cy, and Y(M - 8) > (8) if and only if 3
lies outside Cl,.
Proof. Write 3 = X/, let X' = aX + by and p' = e\ + du, so that M - 3 = X' /u'. By
Lemma 40, (X, u') = (¢, d){(\, p). Thus,

N(') e +dpf

(M -B) = N, 1) - N{c,d) N(\, p)

If ¢ = 0, the right-hand side simplifies to ¥(3), and if u = 0, to ¥(«). Hence (3.15)
follows. When a = oo, the corollary holds vacuously (since Co has neither an inside nor

an outside), and otherwise, it follows from (3.15). O



CHAPTER 3. GEOMETRY OF UPPER HALF SPACE 61

In other words, if 3 lies inside C,, then applying M reduces the “size” of 3 as measured

by 1. In view of this, the points (if any) that lie inside no C,, are of special importance.

Definition. A cusp 3 € P!(k) is singular with respect to T, or T-singular, if it lies inside
no principal C. Similarly, 8 is singular with respect to A, or A-singular, if it lies inside

no semi-principal C,.
Clearly oo is singular, and if 8 is A-singular, then it is [-singular.

Corollary 51. Let 8 € PY(k). Then 3 is T-singular if and only if ¥(B) is minimal for
points in the T-orbit of 3. Similarly, (B is A-singular if and only if ¥(8) is minimal for
points in the A-orbit of (.

Proof. Assume that [ lies inside some principal (respectively, semi-principal) C,. By
Lemma 48, there exists M = (‘é 3) € I (respectively, M € A) such that a = —d/c;
hence by Lemma 50, ¥(M - 8) < ¥(f3), so () is not minimal. Conversely, if 1)(3) is not

minimal, then by Lemma 50, § lies inside some suitable Cl,. U

It follows at once from Lemma 39 that oo is the unique singular point if and only if
h = 1, where h is the class number of k. A detailed discussion of singular points may
be found in Swan’s paper [SwaT7l]. In fact, he considers points z € C, defining z to be
singular if and only if (in our notation) z lies inside no principal C,, but goes on to
show, by Diophantine approximation, that singular points necessarily lie in k. Thus our
I’-singular points are precisely Swan’s singular points together with co.

Swan proves that there are only finitely many singular points modulo translations by
elements of ; moreover, he gives an explicit construction for determining representative
singular points s1,..., S, € k such that for each singular point s # oc there exists ¢ with
s — 8; € 9. Tt is clear that that there is at least one s; in each T'-orbit of non-principal
cusps, i.e. for each non-principal ideal class. In general, there may be more than one:
two singular points lying in a fundamental region F' (as in §3.3) may be I'-equivalent (but
obviously not I';(0)-equivalent). This phenomenon does not arise for k = Q(v/—5), when

n = 1, so it will not concern us further.
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3.5 Fundamental regions for the action of I' and A on $3

Let F be a fundamental region for C with respect to I'; (0), such as the one constructed

above (any reasonable choice of F' will do). Define
Dr={(zt)eBr|ze€F}, Da={(2,t)€eBa | z€ F}.

Theorem 52. The set Dr (respectively D) is a fundamental region for the action of T
(respectively A) on $s.

Proof. We prove the result for A (the proof for T is similar, with A replaced throughout
by I' and “semi-principal” by “principal”). Let (z,t) € $3. If there is at least one semi-
principal cusp « such that S, covers (z,t), we may choose, from among the finitely many
such cusps, one that minimises the quantity ¥ (a)(|]z — a|?> + #2); otherwise, put a = oo.
Let M € A be such that M - @ = oo, and put (2',¢') = M - (2,t). Multiplying M on
the left by an element of I'; (0) if necessary, we may assume that 2’ € F. By Lemma 49,
t' is maximal among t-coordinates of points in the A-orbit of (z,t), so no semi-principal
hemisphere covers (2',t'). Consequently M - (z,t) € Da.

Now let (2,t), (2',t') € Da, and suppose M - (z,t) = (/,t') for some M = (2%) € A.
Then t > t', since S_y/. does not cover (z,t); by symmetry, ¢ = ¢'. Hence (2,t) lies on

S_gc, forcing ¢ = 0, so (up to scalars) M € I'1(0). Since 2,2’ € F, we deduce z = 2. [0

Theorem 53. The boundary ODr (respectively ODa) is defined by finitely many hemi-

spheres S,, with o; principal (respectively, semi-principal).
Proof. For T, this was proved by Swan [Swa71]. The case of A is similar. O

Swan also gives an algorithm for finding the hemispheres on the boundary of Dr;
for certain small values of d, the results are already in [Bia92]. The method is further
discussed in [Whi90], and it is not necessary to give details here; however, we give several
figures to help the reader to visualise the situation for £ = Q(y/—5). Figure 3.6 shows that
part of Ba lying above the region {z +yw | -1 <z <1, —1 <y < 1}, which consists of
four copies of Fr; it is made up of 2-cells that are hyperbolic polygons. Figure 3.5 shows
its 1-skeleton, and Figure 3.4 the projection into C, which consists of Euclidean polygons.

The correctness of these figures follows from the correctness of Figure 3.3, discussed below.
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To find Ba for general k, one would need to modify Swan’s algorithm suitably. But
when C' = C(2) (so F contains no A-singular points) we can determine 0D from dDp
with very little work. By adding the (semi-principal) hemispheres at the I'-singular points,
we obtain a “covering of the floor” whose lowest point is at (z,t), say, with ¢ > 0. The only
hemispheres which might improve this covering have 1(a) < ¢ 2, so only finitely many
hemispheres come into consideration, and a finite refinement process yields 9D .

For example, let k = Q(v/—5), so that O = Z + Zw where w = /—5. Let F be
a fundamental region for C with respect to I'1(0), as in §3.3 above. Making use of the

symmetry
(2,1) —~ (2,1) (3.16)

we need only consider half of this region, say the region

QZ{LE—I—yw 5 5

1 1
ol<zr<-, 0<y<—}.

There is one singular point in @), namely (1 4+ w)/2. The projection of dDr and dDa
into the plane C consists of polygonal cells as shown in Figure 3.3 below. In the figure,
(x,y) denotes the point =+ yw, centres of covering hemispheres are denoted by small discs
(i.e. *), thick lines indicate “true” edges formed where covering hemispheres intersect,
and thin lines “spurious” edges (the terminology is from [Swa71]) which disappear when
the symmetry (3.16) and elements of 'y (0) are applied.

The left-hand diagram, for Dr, is taken from [Swa71]. Three hemispheres are required:
(I) So1, of radius 1, (IT) S,, 5, of radius 1/2, and (IIT) S, for a = (w—4)/2w = (5+4w)/10,
of radius \/5/10.

The corresponding diagram for D is simpler, requiring just two hemispheres: (I) Sy/1,
of radius 1, and (IT) S(1,,)/2, of radius v/2/2. Tt is easy to verify that this figure gives the
best covering: its lowest point is at the vertex 2w/5, where t> = 1/5, so only hemispheres

with ¥ (a) < 5 might improve the covering, and in practice, they do not.
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0, 3) (3:3) 0,3) (3:3)
2 /(%’%) 2
0 ——A 0,2)
ey T \
(3 15)
(0,0) (3,0) (0,0) (3,0)

Figure 3.3: Cell decomposition of Q for ' (left) and A (right) for Q(+v/—5)

2
1
/\
T o5 9 05 1

Figure 3.4: Projection of Figure 3.5 into C
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3.6 Pseudo-Euclidean algorithms

Let G =T or G = A. Having determined the Bianchi diagram for G, we can give explicit

“pseudo-Euclidean” algorithms. More precisely, we need to know:
(i) a fundamental domain F' for C with respect to I'; (0);

(ii) a sub-algorithm that returns, given z € C, a matrix M € I'1(0), expressed as a word

in powers of 7" and U, such that M - z € F;
(iii) a list s1,..., s, of the G-singular points (if any) lying in F, together with sy = oc;

(iv) the decomposition of F' into polygonal 2-cells, P,..., Py, obtained by projecting
0D¢ into C;

(v) for each i € {1,...,m}, the cusp «; such that P; is the projection into C of the
hyperbolic polygon S,, N 0Dg;

(vi) for each i € {1,...,m}, an “inversion matrix” S; € G such that S; - a; = oo.

The sub-algorithm in (ii) is easiest if we take Fp given by (3.14) and obtain F' by
cutting Fr into pieces congruent under U. The “inversion matrices” in (vi) are constructed
explicitly as follows. Write a; = A/pu. Put a = (\,u). Then a? = (§), say, since q; is
semi-principal. Hence § = —AN — pu’ for some X, ' € a. Put

Aoy

M = € GL(2,k).

[T
Clearly M - a; = co. Moreover, (M) = (u,—\, X, u') = a, so by Proposition 28, M € A.
When «; is principal, one naturally chooses A,y so that a = ©; in this case, M € T.
Of course, the matrix M constructed above is not unique: it may be replaced by AM
for any A fixing oo; there is no further freedom, since if M - o = M' - a = oo, then
M=1.00 = (M')7! .00, so M~IM' fixes co. We always choose A € T'1(0) such that
AM -a; € F, and we let S; = AM. For example, when k = Q(/—=5) and G = A, we take

0 -1 14w 1—-w

501: ) Sl+w 2 =
/ 1 0 ( / 2 —-1—-w
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Both matrices satisfy not only M - a = oo, but also M - o0 = a. We should point out
that for general k, it is not always possible to satisfy the last condition — see [Whi90] for

examples. Also, there are examples when «; does not lie in P;.

3.6.1 Algorithm for interior points

Given (z,t) € $3, this algorithm returns a matrix M, expressed as a word in powers of T,

U and the matrices S;, such that M - (2,t) € Dg.

(1) Apply a matrix in I'; (0), found using the sub-algorithm under (ii) above, such that

z€F.

(2) Find i such that z € P,. If S, covers (z,t), then apply the inversion matrix S; and

go to (1), otherwise stop.

This algorithm terminates because each inversion step increases ¢ (by Lemma 49), which
can happen only finitely many times (by Lemma 47); when it does so, clearly (z,t) € Dg.

Multiplying together the matrices that arise gives the required M.

3.6.2 Algorithm for cusps

This algorithm maps any cusp to a G-singular point. More precisely, given 3 € P!(k), this
algorithm returns a matrix M, expressed as a word in powers of 7', U and the matrices

Si, such that M - § = s; for some j € {0,...,n}.

(1) If 8 = oo, then stop; otherwise, apply a matrix in I'1(0), found using the sub-
algorithm under (ii) above, such that 8 € F.

(2) If B is a singular point, then stop; otherwise, choose i such that 5 lies inside C,,;,

apply the inversion matrix S;, and go to (1).

This algorithm terminates because each inversion step reduces the natural number ()
(by Lemma 50), which can happen only finitely many times; when it does so, 3 is clearly
one of the singular points s;. Multiplying together the matrices that arise gives the

required M.
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An immediate corollary is that G is finitely generated, namely by the matrices T', T%,
U and the appropriate S;; compare Corollary 46. Using these methods, one can also find
the relations among these generators in order to give a presentation of G as an abstract

group; for G =T, this was carried out by [Swa71l].

Remark. These algorithms generalise those of Cremona [Cre81] and Whitley [Whi90].
Cremona considered the case when O is Euclidean (so G =T' = A and n = 0) and gave
algorithm 3.6.1 for this case; there was no need to treat 3.6.2 explicitly, since it reduces to
the ordinary Euclidean algorithm for O, as discussed in §3.4 above. Whitley considered
the more general case h = 1 (so again G =T = A and n = 0); both algorithms are present
in spirit, but the discussion blurs them together: in particular, the argument given to
justify that 3.6.2 terminates was invalid (applying instead to 3.6.1) and the function 1,

which plays the vital réle for us, had not been introduced.

3.7 Tessellations of $;

In the following, we let G = T’ or A; hemispheres will be understood to be principal or
semi-principal accordingly. We write B = Bg.

We are interested in the vertices of the Bianchi diagram, i.e. the 0-cells of the cell
decomposition of @B. They are the points above the “true vertices” (points where three
or more “true edges” meet) of a figure such as Figure 3.3. They are clearly the points
where the height of the covering of the floor has a local minimum (“where lakes form when
it rains” [Sch92]), i.e. points (z,t) € OB for which there exists € > 0 such that |2’ — z| < €
implies (2, ) ¢ B.

We consider the tessellation of C dual to the one shown in Figure 3.4, i.e. with vertices
at the centres of the hemispheres making up the 2-cells of 0B, and with two vertices joined
by an edge if and only if the corresponding hemispheres meet at a 1-cell of 0B. We assume

that each vertex of B lies above the polygon associated to it.

Warning. This assumption is valid for d € {1,2,3,7,11,19,43,67,5} but not for d = 163
[Whi90]. Indeed, this author is not convinced that Whitley’s polyhedra are correct when

d = 163, since her methods rely on “a simple geometrical argument” which she omits [p.93
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op.cit.] and it is not clear what happens to that argument when the assumption fails. We
should point out that for d = 163, Whitley gives 0D, and claims to have 25 polyhedra,
but does not actually list the polyhedra, and did not succeed in finding any newforms,
although this may simply have been due to the relatively low bound on the level n forced
by the implementation [CW94]. It is a pity that Whitley did not tabulate “minusforms”
(see §9.2), for one could have compared her result at level n = © with that of Scheutzow,
who gives dimV (n) = 6 and dimV*(n) = 0 [Sch92]. It seems clear that more work is

required on the case d = 163.

We choose our fundamental domain F' to consist of some of these polygons, and define
D = Dg relative to this choice of F. Thus D is partitioned into a number of “spiky
chimneys”, one above each vertex. We shall obtain polyhedra which tessellate 3 by
gluing together copies of these chimneys. Note that the vertices of 0D lie above interior

points of F', so no two are I';(0)-equivalent.

Ezample. Let k = Q(v/—5) and G = A. We take for F' the quadrilateral with vertices
at 0, 1, (1 +w)/2 and (—1 4 w)/2, consisting of two triangles, one on each side of the

line from 0 to (1 + w)/2. The vertices above F (their co-ordinates may be read off from

(w1 (5430 [3
=\5'5) "\ 10 Vi)

Let v be a vertex above F. Our next task is to determine its stabiliser G, in G, i.e.

the set Gy = {M e€G|M-v=v}. If M =(2%) € G fixes the vertex v, then so does

Figure 3.3) are at

M~!; in particular, the height is unchanged by M and M !, so by Lemma 49, v € S_, /e
and v € S,/.; note that these two hemispheres (they need not be distinct, of course) have
the same radius, since (—d,c) = (M) = (a,c). Thus, G, is finite, and one could determine
it as follows: write down the finite list of pairs A, g, with (A, u) one of a fixed set of ideal
class representatives, such that v € S)/,; hence make a finite list of candidate matrices
(‘g g) € (G; test which of these fix v. But we can do better, since there is a converse result,
as follows.

Given a vertex v and a hemisphere S, through v, we can write down a unique inversion

matrix M, € G (with M, - @ = oo) adjusted to that M, -v € F. By Proposition 44, it
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maps hemispheres (and half-planes) through « to half-planes, and other hemispheres (and
half-planes) to hemispheres; thus it maps S, to another hemisphere.

In particular, suppose that S, N 0B is a polygonal 2-cell with a vertex at v. Then
applying M, maps each point of this 2-cell to another point at the same height; these
image points lie on a hemisphere, but cannot lie under any other hemisphere (since they
cannot be raised) hence form part of dB; in particular, v, being a local minimum, is
mapped to a vertex, and this vertex lies above F.

Suppose for simplicity that v is the unique vertex above F of its height (this holds, for
example, when d = 19, and when d = 5 and G = A; it does not hold for d € {43,67,163}
[Whi90], and in such cases one must consider several v together). Then M, € G,, and
the above construction shows that each 2-cell having a vertex at v gives rise to a unique

element of G,.

Proposition 54. The elements of G, so constructed generate G,, and the transforms of

the (closed) “chimney” above v fill out a neighbourhood of v.

Proof. Let p be close to v but below dB. Then p is below one of the hemispheres S,
making up the 2-cells meeting at v; inverting in the corresponding M, gives a higher
point which is still close to v. After finitely many such steps, p has been moved into B.
This shows that the transforms fill out a neighbourhood of v, as claimed. Given M € G,
take p' lying just above v and put p = M - p'; applying the above process to p maps it
to a point close to v lying in B, hence back to p', and this expresses M in terms of the

generators claimed (compare algorithm 3.6.1). O

Corollary 55. Let k = Q(/—=5), let G = A, and let ¢ and r be as above. Then the

stabiliser of q (modulo scalars) is given by the matrices

10 0 -1 9 w2 9 -2 w
I: s S: s B — ) BS_ 5
01 1 0 2 —w w 2
1+w 2 -2 1+w
B = y BS: )
2 1—w 14w 2
14w 2 -2 —-14w
B3: , B3S_ bl
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and the stabiliser of r (modulo scalars) is given by the matrices

1 -1 0 -1 14w l1-w
TS = , (T8 = , R= :
1 0 1 -1 2 —l-w
1 0 2 —l-w 14w 2
I= , RTS = , R(TS)? =
01 1—w -2 14w 1—-w

It is now straightforward to glue together copies of the “spiky chimneys” above ¢ and
r. Note for example that S, which stabilises ¢, interchanges 0 and oco; thus the geodesic
half-line from oo to (0, 1), which forms part of the boundary of the “chimney” above g, is
joined with the half-line from 0 to (0,1) to form the complete geodesic from 0 to co. A
similar thing happens for the other edges, and the result is a so-called “ideal” polyhedron,
i.e. a polyhedron with vertices at the cusps.

First consider the polyhedron P, around ¢. It has one vertex at oo, with edges leading
t0 0, (w—1)/2 and (1 + w)/2, as depicted in Figure 3.7; in all our figures, principal cusps
are depicted as circles, and non-principal cusps as squares. Applying each matrix in G|
in turn to this figure allows us to deduce the shape of the full polyhedron. It is a square
prism, as depicted in Figure 3.8, and G| is its symmetry group in A. Note that B acts by
rotation of the square faces through a quarter turn.

Similarly, we find that the polyhedron P, around r is a triangular prism, as depicted

in Figure 3.9, and that T'S acts by rotation of the triangles.

14w

w—1

Figure 3.7: The infinite vertex of P,
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0 (TS)*er 1+w
3
€0 €2
€1 1+w
o
) 2
Sey | T_161 /B; ) B2T_1€1 B2561
w1 (v
2 B2€1 2
B2€2 3260
w—1 2w
3 B2(TS)2%e, 5

Figure 3.8: Polyhedron around ¢
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(TS)2€0
0 ~ 1
)
co (T'S)eo
o0
(TS)?e1 | €1 L (T'S)ey
14w
2
€2 (TS)62
1+w 24w
3 (TS)2€2 3

Figure 3.9: Polyhedron around r
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3.8 Generators and relations for homology

It is clear that translates under A of our two “basic polyhedra” tessellate $)3, and that
A acts on this tessellation. Exactly as in the work of Cremona and Whitley [Cre81,
Whi90], we can read off generators and relations for computing the rational 1-homology
of PTy(n)\$H3. There is a new feature, though: we can also work with PAy(n)\$3. Recall
from the remark at the end of §1.3, and from Corollary 37, that the M-symbols at level n

provide a set of right coset representatives for PI'g(n) in PI" and for PAg(n) in PA.

3.8.1 Generators

The edges of our tessellation come in three “types”: the number of end-points at non-
principal vertices can be 0, 1 or 2, as for the edges eg, e1 and ey of Figure 3.8, respectively.
Let v € I'. Since v preserves the class of each cusp, it preserves the “type” of an edge.
Hence there are at least three I'-orbits of edges; in fact, there are exactly three, represented
by the edges ey, e; and e,. However, es = B - eg, so there are just two A-orbits of edges.

With a view to the rdle of edges as modular symbols (c.f. §6.2.4), let us denote the
directed edge from « to § by the symbol {«, 5}. Thus

€0 = {0,00}, €1 = {HTwaoo}a €2 = {H—Twa H_Tw}
Also, let us write, for each v € A,
() =7-e0o={y-0,7-00}, [l=v-e1={y 2~ o0}

Thus ey = (I), e1 = [I] and ez = (B). Each edge of our tessellation has the form - - e;
for some i € {0,1,2} and some y € I'; thus the homology of PT'y(n)\93 is generated by
the (c : d)e;, where i € {0,1,2} and (c : d) runs through the set of M-symbols at level n.
Similarly, the homology of PAy(n)\$3 is generated by the (c : d)e;, where i € {0,1} and
(¢ : d) runs through the set of M-symbols at level n.

3.8.2 “Edge relations”

There is some redundancy in our labelling of the generators: the stabiliser of the (un-

ordered) edge e;, when non-trivial, gives rise to “edge relations”, which measure this
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redundancy. The stabiliser in A of the (undirected) edge e is generated by U and S;
note that U preserves the orientation, whilst S reverses it. Similarly, the stabiliser of the
(undirected) edge e; is gp(A, R), where A = (' 11%); here A preserves and R reverses

the orientation. Thus, we obtain
(I) =(U)==(5), [I=I[A]l=—[R].
Working in I'; we find that the stabilisers of ey, e; and ey are, respectively,
gp(U,S),  Tngp(4,R) =gp(4), gp(BUB™!,BSB™Y).
We obtain:
eg = Uey = —Sey, e1 = Aeq, ey = BUB tes = —B?%Se,.

Of course, these (and all subsequent) relations are really “relation schemes”; we need to

use all their translates under the elements (c : d).

3.8.3 “Face relations”

Recall that 1-homology is given by 1-cycles modulo 1-boundaries (see §4.1.2). Thus, we
need to factor out by relations coming from the edges around each face of our tessellation.
From Figures 3.8 and 3.9 we read off one “face relation” for each orbit of faces. Over A

we obtain two orbits of quadrilaterals, from FP,, and one orbit of triangles, from P, giving
(D) +(@S) + ((T5)?) =0,
(11 + [B] + [B*] + [B*] = 0,
(I) = [I] + (BS) — [BS] =0.

Over I these become

eo + T'Seq + (T'S)%ey =0, (3.17)
ez + TSey + (TS)%ey =0, (3.18)
e1 — T te; + B%e; — B*T1e; =0, (3.19)
eg —e1 — ea + (T'S)%e; = 0. (3.20)

Of these, (3.18) is redundant: for if P is a polyhedron with F faces, say, then the relations

from any F' — 1 of its faces imply the relation from the last face.
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3.8.4 Homology

Let G =T or A, and let G' = Ty(n) or Ag(n) accordingly. The boundary homomorphism
for G' is the map {a, 8} — [8] — [a], where [a] denotes the G'-orbit of the cusp a. We

summarise the results of this section in the following theorem; compare [Cre81].

Theorem 56. Form the Q-vector space with basis the symbols () and [y], for v in a

complete set of right coset representatives of PAg(n) in PA, modulo all relations of the

form

(v) = (WU) = =(v95),
[v] = WAl = —[yR],
() + (/TS) + (v(T'9)?) = 0,
[+ [vB] + [yB* + [vB®] = 0,
(v) =1+ (vBS) — [vBS] = 0,

and let Ha be its kernel under the boundary homomorphism. Then there is an isomorphism

Ha — Hi(PAo(n)\$3,Q) given by
(v) = veo,  [v] > ver.

Similarly, form the Q-vector space with basis the symbols ()i, for i € {0,1,2} and v in

a complete set of right coset representatives of PTy(n) in PT, modulo all relations of the

form
Mo="U)o=~5)0, (M1 =0OA1,  (7)2=(yBUB™ )2 = —(vB%S)s,
(7)o + (YTS)o + (V(T5)?)o =0,
(1= T+ (vB*)1 — (WB*T )1 =0,
(7)o — (M1 — (P2 + (V(TS)*)1 =0.

and let Hr be its kernel under the boundary homomorphism. Then there is an isomorphism

Hr — H(PTy(n)\93,Q) given by

()i = vei.



Chapter 4

Harmonic differential forms

The purpose of this chapter is threefold. In §4.1, we describe the background from dif-
ferential geometry that is necessary for an understanding of the definition of harmonic
differential forms and an appreciation of their significance. Roughly speaking, harmonic
forms are important firstly because they are closed, so that they may be integrated in
a path-independent manner, and secondly because each de Rham cohomology class is
represented by a unique harmonic form.

In §4.2, we describe the harmonic forms that arise in this thesis. The results presented
are not new,! and may all be found, at least implicitly, in [Wei71]. However, Weil’s treat-
ment is rather concise, and subsequent writers (such as [Cre81, Fig95]) have introduced
some slight inaccuracies. We hope that a more leisurely account will be useful.

Let k be either R or C, and let G = GL(2, k); much of the theory can be developed in
parallel for the two cases. The real case is relevant for the real embeddings of a number
field; in particular, it is the only case which arises in the study of classical modular forms
over (. The complex case is relevant for the complex embeddings; it is thus the only
case which is needed for the study of modular forms over an imaginary quadratic field.
Ultimately, then, the latter case is the important one for this thesis.

The group G has centre Z and a maximal compact subgroup K, either O(2) or U(2).
We are interested in differential forms on the coset space G/ZK and their inverse images

on GG. We choose suitable bases for the spaces of differential forms, so that forms on G

lexcept equation (4.30), perhaps

7
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and G/ZK now correspond to functions on those spaces; these functions are related by
means of a representation of Z K, which we compute explicitly. Harmonicity now imposes
some partial differential equations, which reduce to the Cauchy-Riemann equations in the
real case; thus harmonicity generalises holomorphy. By separation of variables, we find
certain solutions of these partial differential equations which will be important later.
Finally, in §4.3, we develop detailed formulae for the complex case, going further than
[Cre81]. The formalism is independent of the interpretation of the functions as differential

forms and the action of G as defining the pullback of those differentials.

4.1 Background from differential geometry

We assume that the reader has some familiarity with the notions of differentiable manifold
and differential form. An elementary introduction to differential forms is given in [Woo086],
and a fuller treatment in [Car71]. For full definitions and proofs, see [Spi79, vols. I and
IV], which was our principal source, or the standard reference [dR55]. Section §4.1.2 is

based on the discussion in [Sha90, §21].

4.1.1 Basic concepts

Let V be a differentiable manifold of dimension m. To each point p € V one associates
the tangent space at p, denoted V; it is an m-dimensional real vector space. Let T'V be
the tangent bundle of the manifold V7 it is a vector bundle over the base space V', the
fibre over p being V}, and it inherits a natural structure as a manifold of dimension 2m.
A vector field is a (smooth) section of the tangent bundle, that is, a (smoothly varying)
choice of vectors v, € Vj,.

Differential forms are defined in a manner dual to vector fields. Thus, let Q"(V},) be
the space of alternating r-linear forms on V,; by convention, Q°(V,) = R. Let Q7(TV) be
the vector bundle over V' with fibres Q" (V}), equipped with its natural manifold structure;
in the case r = 1, it is called the cotangent bundle of V. A differential r-form is then a
(smooth) section of the bundle Q"(T'V), that is, a compatible choice of elements w(p) €

Q" (Vp). A 0-form is just a (smooth) real-valued function on V.
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We denote the space of differential r-forms on V' by Q" (V). Observe that it is not just

a real vector space: it carries the structure of a module over the ring of 0-forms.

4.1.2 Duality

As above, let V' be an m-manifold. Then on the one hand, if V' is compact, it admits
a triangulation, giving rise to a chain complex {Cy, 0y }n>0. Here Cj, the group of n-
chains, is the free abelian group generated by the n-simplices in the triangulation, and
Op: C,, = Cp_1 is the boundary map, satisfying 8> = 0. Elements z,, € ker §,, are called
n-cycles, and y,, € imd,,11 n-boundaries. The quotient group H, (V) of n-cycles modulo
n-boundaries is called the n-th homology group of V. Although it is not at all obvious
from this definition, the H, (V) are independent of the choice of triangulation and have
nice functorial properties.

On the other hand, V is a differentiable manifold. For brevity, write Q" for Q" (V).
The usual differentiation operators d,.: Q" — Q"*! satisfy d> = 0. Therefore, {Q7,d;}r>0
is a cochain complex. Its cohomology is called the de Rham cohomology of V and denoted
Hp (V).

The connection between these two constructions is given by the operation of integrating
a differential form along a chain, and one has the following far-reaching generalisation of

the fundamental theorem of calculus.

Generalised Stokes’ Theorem. For a form ¢ € Q"1 and a chain ¢ € C,,

o[

Introducing the notation (c,¢) = [, ¢ for ¢ € C; and ¢ € Q", and extending the pairing
(c,9) to ¢ € C, @ R turns Stokes’ theorem into the assertion that the two operators @ on
®(C, ® R) and d on ®Q" are dual maps. Suppose now that dc = 0, so that ¢ represents a
homology class in H,(V,R), and that d¢ = 0, so that ¢ represents a cohomology class in
HT,n(V). Then for arbitrary ¢ € C,4; and ¢/ € Q"1

(c+0c,¢+dd) = (c,¢) + (c,dd) + (0, ¢ + d¢)
= (¢,9) + (9c,¢) + (¢, dgp + d°¢)
= (¢, 9)



CHAPTER 4. HARMONIC DIFFERENTIAL FORMS 80

by Stokes’ theorem, showing that (c, ¢) induces a pairing between H,(V,R) and H},,(V).

de Rham’s Theorem. The pairing thus constructed is a duality between H,.(V,R) and
Hpp(V).

Sometimes this theorem is used to provide an analytic method of computing the ho-
mology of a manifold. From our point of view, it will provide a combinatorial way of

computing differential forms.

4.1.3 The Hodge star operator

A basic theme of differential geometry is that any construction on vector spaces can be
extended to a construction on vector bundles, in particular, on the tangent bundle. For
example, an orientation on a finite-dimensional real vector space is an equivalence class of
ordered bases of the space, two bases being related if and only if the change of basis matrix
has positive determinant. An orientation on V is then a compatible choice of orientations
on the V}, and V is orientable if it has an orientation.

Similarly, a Riemannian metric on V' is a (smoothly varying) choice of inner products
on the spaces V). It is a theorem that every m-manifold V' can be equipped with a
Riemannian metric; when this is done, we speak of a Riemannian manifold.

Now let V' be an orientable Riemannian m-manifold. Then one can define an operator
x: QT(V) — Q™ "(V), called the (Hodge) star operator. We first recall the coordinate-
free definition [Spi79, addendum IV.7.2]; as usual, the construction is given on each fibre.
Recall that an r-form w € Q"(V) is really a collection of elements w(p) € Q"(V,). We

always have the “wedge” map of alternating multilinear forms:
O (V) x Q™ (V) L5 Q™(V,).

The orientation and inner product on V give us an orientation and inner product on each

Vp, hence give isomorphisms Q™(V,,) = R. So we have bilinear maps
A'p: Q"(Vp) xQ""(Vp) = R
which induce maps A,: Q"(V,) = (2™"(V,))" in the usual way:

Ap)(n) = Ap(w,m)  (weQ(Vp), n € Q""(V)).



CHAPTER 4. HARMONIC DIFFERENTIAL FORMS 81

On the other hand, the inner product on each V}, induces an isomorphism ¢,: V, = (V})*,

v = (w = (w,v)), (4.1)
which in turn induces an isomorphism B,: (Q2™77(V,))" — Q™ 7(V,) via
(Bpf)(i, . s vm—r) = fLpv1 A+ A tpUm—p).

The Hodge * operator is now defined on each fibre as the composition

W (V) 2 (@) (),
i.e. we define xw € Q™" (V), for each w € Q" (V), by

(+w)(p) = BpAp(w(p))-

It is clear from the fibre-wise definition that

*la+f) =*a+x8,  *(fa) = [(xa),

for all r-forms «, 8 and all 0-forms f. In other words, the star operator is not merely
R-linear; it is a morphism of modules over the ring of (smooth) real-valued functions.
In coordinates, the operator is easiest to express with respect to an orthonormal basis;

if ds? = >"n?, and n1,...,Mm is positively oriented, then

*(iy Ao A, ) = €njy A A (4.2)

where (i1,...,%, 71, Jm—r) = (6(1),...,0(m)) for some permutation o of {1,...,m},
and € = signo.

If @ and B are r-forms, then
(i) x*a= (—1)’(m_’")a;
(il) a A*8 = [ A *a;

(iil) a A*a = f(*1) = fn1 A+ A nm, where f > 0 and f is zero at exactly the points of

V where « is zero (i.e. f has the same support as «).
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Therefore, if V' is compact, there is an inner product on Q" (V') given by

(a,8) = /V oA (4.3)

(Actually, compactness is a stronger condition than we really need; we could equally
consider forms with compact support or subject to a suitable growth condition. We shall

not keep pointing this out in the sequel.)

4.1.4 The star operator for complex differentials

For our application, we need to extend the definition of * to the complexifications Q" (V) Qg
C. Recall that * is linear over real-valued functions. The extension of * turns out to be

C-antilinear:

s(a+pB) =+a+x8,  *(fa)=[(a), (4.4)

for all complex-valued r-forms a, 3 and all complex-valued O-forms f. To see why, we
go back to the coordinate-free definition. We use the same sequence of maps as in the
real case. The Riemannian inner product extends to an Hermitian inner product. The
wedge product of forms is C-linear, hence so are the maps Ay, but the map (4.1) is C
antilinear; consequently, so are the maps B, and #, proving (4.4). We now have, for

a,B€Q(V)erC,
(i) **xa = (—1)’"(’”*’")05;
(il) a A*8 = [ A *a.

(iii) a A *a = f(*1), where f is real-valued, non-negative, and has the same support as

Q.

The first two follow easily from the corresponding facts for real differentials. To prove (iii)

in both cases, we simply write & = ) f;w;, where i ranges over r-tuples with i; < --- <4,
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and w; = n;; A--- An;,, and compute

al*a = (Z fiwi> A (Zf] *wj>

=Y fifj(wi A ww;)
2

=Y [ fil*(wi A %wi)
i

= |filPm A Anp.
i

Hence, if V' is compact, there is an Hermitian inner product on Q" (V) ®g C given by

(o, B) = /Va/\ 3. (4.5)

4.1.5 Harmonicity

Since we have the map d, which raises the degree of a form, we can define a map

§: Q" (V) — Q" 1(V), which lowers the degree of a form, by
§= (1) g«
We clearly have 62 = 0, and § = 0 on functions (0-forms). On r-forms,
x§ = (—1)"dx,
so that for w € Q" 1(V) and n € Q"(V),

d(w A *n) = dw A *n + (=1)" 1w Adxn

=dw A *n — w A *07.
Since V' has no boundary, Stokes’ theorem now gives
(dw,n) = (w, dn). (4.6)

Thus, ¢ is the (Hermitian) adjoint of d for the inner products (4.3), (4.5). Now define

the “Laplacian”, an operator preserving the degree of a form, by

A = dd + dé.



CHAPTER 4. HARMONIC DIFFERENTIAL FORMS 84

Using (4.6) we see that A is self-adjoint:
(Aw,n) = (w, An). (4.7)

An r-form w is called closed if dw = 0, co-closed if dw = 0 (or equivalently, if xw is closed),

and harmonic if Aw = 0. Using (4.6) we have
(Aw,w) = (dw, dw) + (dw, dw),
showing that w is harmonic if and only if it is both closed and co-closed:
Aw =0 <= (dw =0 and dw = 0). (4.8)
If w and 7 are r-forms, and Aw = 0, then (4.7) gives
(An,w) = (1, Aw) =0,

so the vector space of all harmonic forms (the kernel of A) is orthogonal to the image of

A. The fundamental result on harmonic forms is as follows.

Hodge Decomposition Theorem. IfV is a compact oriented Riemannian m-manifold,
then for each r with 0 < r < m, the vector space H" (V') of harmonic r-forms is finite-

dimensional, and there is an orthogonal direct sum decomposition
Q(V)=AQ(V)) e H" (V).

Write H": Q"(V) — H" (V) for the projection map onto the subspace of harmonic r-
forms. For any a € Q7(V), the form a— H" (e) is equal to Aw for a unique w € A(Q"(V)).
Denote this w by G(a). Thus

G = (Alar(vy) o (id—H").

It is now straightforward to check that if T: Q" (V) — Q*(V) is any linear map with
AT =TA, then GT = TG. In particular, Gd = dG. Let a be any r-form. Then

a=AGa+ H (o)
=déGa+ 6dGa+ H" (a)
=déGa + 6Gda + H" (),
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so if da = 0, then
a=déGa+ H' (a).

Thus H" () is a harmonic r-form in the same de Rham cohomology class as a. On the
other hand, suppose a1 and as are two harmonic r-forms in the same de Rham cohomology

class, so that a1 — ag = df for some 8. Then

(dB,dp) = (dB, a1 — ag) = (8,001 — da) by (4.6)
—0 by (4.8).

So dB = 0, that is, &3 = ag. Thus there is indeed a unigque harmonic form in each de

Rham cohomology class, as asserted in the introduction to this chapter.

4.1.6 Pullbacks and left-invariance of differential forms

The construction of the tangent bundle TV of the manifold V is functorial; if f: V — W
is a (smooth) map of manifolds, then there is an induced bundle map f,: TV — TW,
consisting of linear maps (f)p: V, — Wy, for each p € V. Essentially, (f.), is the
derivative of f at the point p.

Our only use for the map f, is in the definition of another induced map f*: Q"(W) —
Q7 (V), which associates to a differential r-form w on W an r-form f*w on V, called its

inverse image on V or its pullback along f to V. It is defined for each p € V' by

(fr @) (@) (X1)p, - -, (Xr)p) = w (£ () (F)p(X1)ps - - (f)p(Xr)p)
for all vector fields Xi,...,X, on V.
Now let G be a Lie group, that is, a group with a compatible structure as a differentiable
manifold. For fixed a € G, we have two diffeomorphisms G — G-
Ly: g ag left translation,
Ry,: g+ ga right translation.

A differential r-form w on G is called left-invariant under a if it is invariant under pullback

along L, that is, if L7w = w. What this really means is

w(ag) ((La):) (X)), -- -5 ((La)s) (Xr)g)) = w(g) (X1)g,- -, (Xr)g)
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for all vector fields Xi,..., X, on G and for all g € GG, but we shall abuse notation and
write simply w(ag) = w(g). If w is left invariant under all a € G, it is called left-invariant
under G, or simply left-invariant. Right-invariance is defined similarly.

Let (1, ..., Bm be left-invariant real-valued differential 1-forms on G whose values j;(e)
at the identity e € G span the fibre (G)* of the cotangent bundle of G at the identity. Let
w be any left-invariant 1-form. Then w(e) = ) a;0;(e) for some a; € R. By left-invariance,
it follows that w = )_ a;0;, and the essential point here is that the a; are constants. We
call the (; a basis (over R) for the left-invariant 1-forms on G. For details, see [Spi79,
1.10]. Similarly, we have the notion of a basis (over C) of the left-invariant complex-valued

differentials.

4.2 Harmonic differential forms

4.2.1 Notation

Let k be R or C, and let G = GL(2, k). Then G is a Lie group, and the notation of §4.1.6

applies to G and its Lie subgroups. Recall that there is a decomposition
G =BZK
in which K is a compact subgroup of G, usually? given by

O(2) when k=R,
K=

U(2) when k =C,

Z is the centre of G, and B is the subgroup of G given by

t u
B = t>0, uek
01

Since BN ZK = {12}, B provides a complete set of right coset representatives for ZK in
G. So B may be identified with the coset space G/ZK. It may also be identified in the

*With this, the usual choice, K is a maximal compact subgroup of G, but maximality is not essential

in the sequel and one can replace U(2) by SU(2); see §4.2.4.
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obvious manner with the space
H={(u,t)} =k x Rop;

this is the complex upper half plane if £ = R and “upper half space” if k = C. Write
m: G — § for the canonical mapping (the “projection”) of G onto $); the restriction of 7
to B is the bijection identifying B with £).

The group G acts on § on the left; this is just the coset action. Write Ly: § — ) for

the map (u,t) — ¢ - (u,t). Thus, Ly o™ = 7o Ly. Explicitly,

t u
g-(ut)=mlg : (4.9)
0 1

The space § is a differentiable manifold of dimension m, where m = 2 if ¥ = R and

m = 3 if k = C. It has a Riemannian metric, invariant under the action of G, given by

_di* 4+ dudu

2
ds 2

Remark. We should point out that [Wei71] actually works with the group

t u
By ={ t71/? t>0,uck y,
0 1
in place of B. There is a bijection B — B; given by g — (det g)~'/2g. Both subgroups
appear to serve equally well; from our point of view, there does not appear to be a preferred

choice.

4.2.2 Forms on $ and their pullbacks to G

We are interested in differential 1-forms on § and their pullbacks to G. In this section,
we describe the theory common to the cases kK = R and k = C; explicit formulae will be
given in §4.2.3 and §4.2.4 respectively.

We start by choosing a basis (1, ..., 8, (over C) for the left-invariant differential 1-
forms on B; as we remarked in §4.1.6, it suffices to choose left-invariant 1-forms whose
values f;(e) at the identity span the fibre (B.)* of the cotangent bundle of B at the

identity.
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We observe that the pullbacks 7*3; are right-invariant under all ¢ € ZK. For, obvi-
ously, 7 = mo Ry as maps G — §), and applying what Cartan [Car71] calls the transitivity

of the change of variable gives
" = (moRy)" = Rjon".

So the 7*3; really are right-invariant under Z K. But they need not be left-invariant under
G. For each i, let w; be the left-invariant differential 1-form on G which agrees with 7*3;
at the identity. This defines w; uniquely, of course; the values at the non-identity fibres
are determined by left-translation. We shall determine the w; in terms of the §;. Write w

(respectively 3, 7*(3) for the column vector of the w; (resp. G3;, 7*3;.) We claim that

w(g) = p(r(9) Lg) " (=*B)(g) (4.10)

for a certain m-dimensional representation p of ZK. To derive (4.10), and show how p
should be defined, we proceed as follows.
First, as in [Cre81], we let J(g; z) be the Jacobian matrix, with respect to the basis 3,

of the transformation Ly: $ — §) given by z +— g - z; thus

Blg-2)=J(g;2)B(z) (9€G, z€9). (4.11)

Note that the matrix J(g; z) is invertible, because L, is a diffeomorphism. The chain rule

(really, transitivity again) implies the cocycle identity
J(9192;2) = J(g1592 - 2) T (9232) (91,92 € G, z € H). (4.12)
By assumption, the §; are left-invariant under B. This just means
J(b;z) =1 (be B, z€H).
Together with (4.12), this implies, more generally,
J(bg; z) = J(g; 2) (beB, geq, z€9).

In particular, since we are identifying w(g) € $ with the corresponding element of the

group B, so that 7(g)"'g € ZK for all g € G, we have

J(g:2) =J(m(9) 'g:2)  (9g€G, z€9H). (4.13)
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We also have the equation

(7" B)(ag) = J(a;7(9)) (7" B)(9)  (a,9 € G), (4.14)
which we obtain by pulling back 3 in two directions around the commutative square

G L, g

di |7

H——"H

a

and using transitivity again to give

Ljon* = (moLy)* =(Legom)*=7n"0L,.

The factor J(a;7(g)) in (4.14) measures the extent to which the pullbacks 7*g; fail to be

left-invariant. Since w(g) = g - w(1), we have, by (4.12),

J(a;7(g)) = J (ag; (1)) - T (g;7(1))

Substituting from (4.13) gives

J(a;m(g)) = J(n(ag) " ag;m(1)) - J(n(g) " gsm(1)) ", (4.15)

where the right hand side depends only on the values of J (—; 7r(1)) on ZK. Of course, by
definition of §), every z € §) has the form z = 7(g) for some g € G. So J is determined by
the values of J (—; (1)) on ZK. This motivates us to define a function p: ZK — GL(m,C)
by

plg) = J(g;m(1)) (9 € ZK). (4.16)
Using (4.12) and the fact that ZK stablilises (1), we see at once that

p(g192) = p(g1)p(g2) (9 € ZK),

showing that p is an m-dimensional representation of ZK. In fact, p is trivial on Z,
because the 7*(; are right-invariant under ZK and hence also left-invariant under the

centre Z.
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In this notation, (4.15) becomes

J(a;7(g)) = p(n(ag) " ag) - p(n(g)"Lg)

so that (4.14) may be written

p(m(ag)tag) "' (n*B)(ag) = p(n(g) ') (=" B)(9)-

Observe that the left hand side of this equation is the result of applying L) to the right
hand side. So the right hand side is left-invariant and agrees with 7*(3 at the identity
1 € G. This proves (4.10). Consequently,

w(gr¢) = p(m(gre) Lgr¢) (7 B) (grC)
p(k¢) "' p(n(g) " g) " (x*B)(g)
= p(r¢) " tw(g),

as claimed by Weil [Wei71, p.106].
The following lemma summarises the relationship between differential 1-forms on £

and G. Of course, C™ is to be regarded as a space of row vectors.

Lemma 57. (i) For each i, the differential w; on G induces B; on 9, by restriction to
the subgroup B (identified with $)). More generally, for ¢: G — C™, the form ¢ - w
induces f - 3, where f: § — C™ is given by

f(u,t)qﬁ((t u)) (4.17)
0 1

(ii) The pullback to G of a differential form f -3 on $ is ¢ - w, where
¢(9) = f(n(9)p(n(9)™9) (g€ Q). (4.18)

(iii) A differential form on G is the pullback of one on $ if and only if it can be written
as ¢ - w, where ¢: G — C™ satisfies

p(gr() = pl9)p(sC) (9 € G, w¢ € ZK). (4.19)
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(iv) The constructions of (i) and (ii) define mutually inverse bijections between differ-

ential forms on G and §).

(v) Correspondingly, (4.17) and (4.18) define mutually inverse bijections between the set
of functions ¢: G — C™ that satisfy (4.19), and the set of functions f: § — C™.

Proof. Part (i) is clear. For (ii), we pull back f - and use (4.10) to give

™(f - B)g) = f(n(9)) - (x*B)(9) = f(x(9))p(m(9) ' g) - w(g)-

We now prove (iii). By (ii), the pullback of a form on $) may be written ¢ - w, where ¢ is
given by (4.18); using 7(gk() = 7(g), it is easy to see that ¢ satisfies (4.19). Conversely,
suppose that ¢ satisfies (4.19). Pulling back the differential form ¢|p - 8 on B gives

™ (¢l - B)(9) = ¢(x(9))p(n(9)""g) - w(g) by (i)
= ¢(g) - w(g) by (4.19).

So ¢-w is the pullback of a differential form on B (namely, of ¢|p - 3), as required for (iii).
Part (iv) follows at once, and (v) is a purely formal consequence. Aliter, part (v) can

be proved by direct calculation, as in Lemma 64 below. O

Remark. This lemma, although straightforward, is actually quite important. In relating
differential forms on $) to functions on G that transform in a certain way, it prepares the
way for the general definition of modular forms in Chapter 6 as functions on GL(2) with

certain transformation properties.

So far, we have not really used the fact that the w; are left-invariant; indeed, Lemma 57
holds mutatis mutandis if w is replaced by 7*3. Weil [Wei71] provides little motivation
for working with w, and the distinction between 7*3 and w has been partly or wholly
overlooked in [Cre81, Fig95]. The advantage of working with w and not merely 7*3 be-
comes apparent when we consider the action of G on differentials and on the corresponding
functions.

The mapping a — L] defines an action of the group G on the set of differentials on

G; explicitly, the action of a € G is n — L;(n). This is a right-action, for Ly o L} = (Lo
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Ly)* = (Lpg)*. Correspondingly, there is an induced right-action on functions ¢: G — C™,
written ¢ — gf)‘a and defined by

(¢la) w=Lg(¢- w);

since w is left-invariant, this action takes the especially simple form ¢|a = ¢o L,. Clearly,
this action preserves the set of those ¢ satisfying (4.19).
Similarly, G acts on the set of differentials on §) and correspondingly on the set of

functions f on §. Explicitly, (f|a) -B=L}J(f-B), so that f‘a = (foLg)J(a;—).

4.2.3 The real case

Consider the case k = R Out of tradition, we write (x,y) for (u,t). We have G = ZBK,

where

G =GL(2,R

Z={<(} |geRX}

( r€eER, yeRyy »,

=02)={g9€CG|g'=g"}.

Thus K is the orthogonal group O(2); it is generated by the matrices r(#) and s, defined
by

cosf@ sinf -1 0
r(0) = , s =
—sinf cos@ 0 1

With z = z + iy, we choose the basis 3 as follows:

d dz
B = _Za Bo = — (4.20)
) Yy

Lemma 58. With this choice of 3, the representation p is given by

p(r(0)) = e . (4.21)
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Proof. Write P = diag(1,—1), so that

Let g = (%) € G. By (4.16), we must calculate p(g) = J(g;7(1)) = J(g;4), where J(g; 2)
is defined by (4.11). First suppose that A > 0, where A = det g. Then (4.9) becomes

+b
= iy = 2 4.22
z Z =z +1y ot d (4.22)

In particular,

y ez + d)?

=" (4.23)

Computing the Jacobian of (4.22) with respect to the variables (z, Z) gives

a(#, 2" A. (cz+d)2 0

0(z,%) 0 (cz +d)~2
Using PJP~! = J, we deduce

-9 =2p [P ) = Lps [*) = Lpipipe) = Lise.
Yy dz' Y dz Y Y
From (4.23) we obtain
J(g;2) = ,
0 €2
where € = (cz + d)/|cz + d|. Putting g = r(6) and z = i gives the first half of (4.21).
For A < 0, equation (4.22) would have to be modified; indeed, it is clear from (4.23)

that (4.22) no longer defines an action on the upper half plane. To determine p it suffices,

of course, to take g = s. Since

-1 0 Yy oz Yy —x -1 0

Evaluating at z = ¢ gives the second half of (4.21); in fact, J(s; z) is actually independent
of z. 0
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4.2.4 The complex case

Now consider the case £k = C. Out of tradition, we write (z,t) for (u,t). We have

G = ZBK, where

G = GL(2,C
Z={¢(s? ICECX}

( ) z€C, teRy 7,
v
K =SU(2) = u,v €C, uu+vo=1 .
—U U

Remark. The analogy with the real case would suggest taking for K the full unitary group
U(2)={geG|g =g '} However, Z-SU(2) = Z-U(2), since Z = C* = R*-S', where
St ={e? | € R}, and U(2) = S' - SU(2). Thus the choice of K makes no difference
here; in §4.3, however, K = SU(2) is a convenient choice.

The coset action (4.9) of G on $3 = B = G/ZK is given explicitly by (3.11) and
(3.12); as before, we write Ly: $3 — $3 for the map (z,t) — g-(z,t). We choose the basis

B of left-invariant differentials on )3 as follows:
fo=—— pr=— P2 = —- (4.24)

Let J(g; (z,t)) be the Jacobian matrix of Ly: 3 — $3 in terms of our chosen basis [;
thus

/B(g . (Zat)) = J(g; (Zat))ﬁ((zat))
Lemma 59. Let g = (‘C‘ g) €G. Write A=ad—bc, r=cz+d, and s = ct. Then

A 0 0 2 —2rs s
Al 0 s rT—s8 —Ts|- (4.25)
0 0 AJ\s* 2rs 72

1

T = B
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Proof. Calculating the Jacobian J of Ly in terms of the variables (z,t, Z), using (3.11) and
(3.12), gives

—_ A 0 O 7'2 27-3 _32
g o, t',2") 1 A T
T stz (r2+]s2)? 0 |A 0| ]|—-rs rf—ss —7s
0 0 AJ\-35 275 72
Since
dz
1
ﬁ((zat)) = ?P dt
dz

where P = diag(—1,1,1), we have

B(g- (z1t) = %PJP‘lﬁ((z,t)).

Substituting for ¢/¢' from (3.12), we obtain (4.25). Note that conjugation with P changes

some of the signs in the matrix. O

We know that J(g; (0, 1)) restricted to ¢ € ZK affords a representation p: ZK —
GL(3,C); in fact

p: ZK — SL(3,C). (4.26)

Explicitly, we know that p is trivial on Z (of course, one can verify this directly from

u v
(4.25)); for € K we find

—v u

u? 2uv v?
u v
p =|-uv wu—vo w]|- (4.27)
—U U
72 205 u?

Note that the restriction of p to SU(2) is precisely the well-known three-dimensional poly-
nomial representation of SU(2); this would not have been so if the basis 8 had not been
chosen suitably. Another choice would, however, yield an equivalent representation, since

p is the unique irreducible representation of degree 3 up to equivalence, as is well known.
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There is a more elegant way of writing (4.25). It is convenient to define a function
p: C\ {(0,0)} = SL(3,C) by

2

U 2uv v?

p(u,v) = —= 1 — | —uv wuwu—vv uv
uy + Vv

02 —2uv  w?

Thus the restriction of (4.26) to R* K is given by

u v
p = p(u,v).

—-Uv u
As usual, let H* denote the multiplicative group of non-zero quaternions. There is an
isomorphism o: H* — R* K given by

o(u+vj) = v (u,v € C, (u,v) #(0,0)); (4.28)

this choice of o, not quite the traditional one, is made to ensure that

e |
(u+wvj) = = o(u + vj)
1 U+ vj 1
With this notation, (4.25) becomes
1 . _
J((45): (=) = Al diag(A, |A}, A) - p(r, —s) (4.29)
1 _
N diag(A, |A],A) - po(cq + d), (4.30)

where ¢ = z + tj.

4.2.5 Harmonicity

We now express harmonicity in terms of partial differential equations. Recall that if

z =z + 1y, then 0/0z and 0/0z are defined by

o _1(o oy o _1(d .0y
0z 2\0x 0Oy)’ 0z 2\ozx 0Oy)’

one sees immediately that if h = u + v for real-valued functions u and v, then 0h/0Z = 0

if and only if u and v satisfy the Cauchy-Riemann equations.
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Lemma 60. Let k = R. In terms of the basis (4.20) chosen above, the Hodge star operator

s given by

(181 + faf2) = —i(f182 — f2B).- (4.31)

Consequently, the form f11 + fofB2 is harmonic if and only if f1/y and fo/y are holomor-
phic functions of z.

Proof. We have ds? = n? + n3, where n, = dx/y and 7o = dy/y. By (4.2), 71 = 12 and
*n9 = —np. Using (4.4), we obtain %8, = —ifly and 3> = if3;. By (4.4) again, (4.31)
follows. Taking the complex conjugate, we see that x(f151 + fo32) is closed if and only if
f101 — fof2 is closed. So f181 + fo(32 is harmonic if and only if f16; and fo032 are closed,
which is if and only if fiy~'dz and foy 'dz are closed. But h(z)dz is closed if and
only if 0h/0z = 0, which is if and only if h(z) is holomorphic, by the Cauchy-Riemann

equations. O

Lemma 61. Let k = C. In terms of the basis (4.24) chosen above, the Hodge star operator

is given by
(foBo + f161 + faB2) = ifoBr A B2 + %fl@ A Bo +if2f0 A Br. (4.32)
Consequently, the form foBo + f181 + f2B2 is harmonic if and only if
Ofo  Ofs
2 S, (4.33a)
oft | O0fo , 1, _
N O =0, (4.33b)
oftr 0fy | 1, _
- SEetT=0, (4.33c)
tof1 0fo
LN g%y, (4.334)
Proof. We have ds® = 77% + 77% + 77%, where
d 1 d ] dt
U1=T$=§(ﬂ2—ﬁo)a UzZTyZ%(@Jrﬂo), 77327251-

Hence
*11 =12 A3 = %(52 A B+ Bo A B),
*1)p =g A = %(51 A Ba = B A Bo),
*n3 =M A2 = %ﬁQ A Bo-
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Using (4.4), we obtain

*ﬂO = *(—7]1 — 'i772) = —*1 +i*’l]2 = iﬂl A ﬂ2a
1

*ﬁl = 552 A ﬂ()a

*0y = *(n1 — ing) = *n1 + i*xn2 = ify A [

By (4.4) again, (4.32) follows. Since dfy = By A B1, dB1 = 0, and dfs = (2 A (1, we find
that ) f;8; is closed if and only if (4.33a)—(4.33c) hold, the three equations coming from
the coefficients of 8y A By, Bo A (1 and By A By respectively. From (4.32), we find that
*(D~ fj3;) is closed if and only if one further equation holds, coming from the coefficient

of By A B1 A B2; this equation is

tofi - 0fo  ,0fr
s 1Tty Tl =0

Taking the complex conjugate and using (4.33a), we obtain (4.33d). O

4.2.6 Standard functions

Let ¢ and f be related as in Lemma 57. Write f = (f1, f2) when k = R and f = (fo, f1, f2)
when k£ = C.

Definition. We say that f is B-moderate if (and only if) there is N > 0 such that, for

every compact subset S of k,
£ (u, )| = O™ + ),

uniformly over u € S, where || || is any norm on C™; in other words such that, for every

such S, there exists C > 0, depending on S, such that for each 1,
|fiu, )] < Csup(tV,t™M). (4.34)

Remark. Roughly speaking, the presence of the term ¢/ on the right hand side ensures
that f is of moderate growth as its argument approaches the “cusp at infinity”. Similarly,
the term ¢t~ ensures that f is of moderate growth as its argument approaches the “floor”
t = 0 of §, where there can also be cusps, even in level 1 when the class number is greater

than 1.
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Definition. We say that ¢ is B-moderate if (and only if) f is B-moderate.

Definition. The function ¢ is admissible of type Hj if it is B-moderate and f - 3 is

harmonic.
Now choose a “standard” character of the additive group k™ as follows:

g 2miu if k =R,
(u) = (4.35)
6727ri(u+a) ifk =C.

Definition. The function ¢ is standard of type Hy if it is admissible of that type and
satisfies

¢ ;j o| =vwele) (wek geq). (4.36)

An easy calculation shows that for ¢ satisfying (4.19), condition (4.36) is equivalent to

filu,t) = ¥(u) fi(0,t) (u €k, t € Ryp). (4.37)

Standard functions will play a special role in the Fourier analysis of Chapter 6. In
this section, we find a standard function for each k£ and prove its uniqueness up to scalar

multiples.

Lemma 62. Let k = R and let ¢ and f be related as in Lemma 57. Then ¢ is standard
of type Hr if and only if there exists C € C such that

f(z,y) = Ce™>™%(0,y).

Proof. Assume that ¢ is standard. This means that f; and f; satisfy (4.37) and (4.34), and
by Lemma, 60, that f;/y and f/y are holomorphic functions of z. Put g(y) = vy~ f1(0,v)
and h(y) =y ' f2(0,y). Then f,/y and f,/y are holomorphic if and only if

0 0
5z 5z
which is if and only if dg/dy = 27g and dh/dy = —27h, which is if and only if fi(z,y) =
Crye=2™ and fo(z,y) = Coye 2™ for some C;,Cy € C. The growth condition (4.34)

e—27rimg(y)) — 0’ eZm'mh(y)) — 0’

forces C1 = 0. So f is as stated. Conversely, the stated f certainly corresponds to a

standard ¢. O
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Thus our standard differential form is f - 8 = e 2™?dz. This is not quite what the
classical theory of modular forms leads us to expect. The discrepancy is due to Weil’s

choice of standard character (4.35). Suppose we make a different choice:

’(/)(:L') — e27ri:v'

The same calculation as above now gives f; = Clye”iz and fo = nge2”i2 . Now Cy =0
and we obtain f -8 = e€2™#dz. In this way, then, we could recover classical g-series
expansions in terms of g = >,

We now turn to the complex case. In the course of the proof, we encounter the

“modified Bessel equation of order 0”:
sK"(s) + K'(s) — sK(s) = 0; (4.38)

it is known [Wat52] that the only solution which does not increase exponentially as s —
+o00 is Basset’s function K. Another of Basset’s functions is Ki(s) = —K/(s). Bessel’s
equation has been extensively studied, and the solutions K, carry many different names in
the literature, such as Macdonald functions, Hankel functions, modified Bessel functions
of the third kind, and so on; according to Watson [Wat52], however, they appear to have

been introduced by Basset.

Lemma 63. Let k = C and let ¢ and f be related as in Lemma 57. Then ¢ is standard
of type Hc if and only if

f(Z, t) — C€f2m'(z+2)H(t),
where C € C,
H(t) = (—%mﬁ (4nt), t? Ko (4rt), %t2Kl(4wt)) : (4.39)
and Ky, K1 are Basset’s functions.

Proof. Assume that ¢ is standard. This means that fy, f1 and f, satisfy (4.37), (4.34),
and (4.33). Put g;(¢) = f;(0,t). Now (4.33a) is equivalent to

92 = —9o- (4.40)



CHAPTER 4. HARMONIC DIFFERENTIAL FORMS 101

Given (4.40), each of (4.33b) and (4.33c) is equivalent to

% (t'go) = 2mit ' gy. (4.41)

Finally, equation (4.33d) is equivalent to

d
7 (t%g1) = —8mitgp. (4.42)

It just remains to solve (4.40), (4.41) and (4.42), as in [Wei71]. Let s = 47t and K(s) =

—27ri(z+2)gl (t) is to

t=2g1(t). One obtains precisely equation (4.38). Since fi(z,t) = e
satisfy (4.34), we must have g;(t) = t2Ko(47t) up to some constant factor. By (4.40) and

(4.42) we now have, up to the same constant factor,

_ipd gy = _ip
= 2t dSK()(S) = 2t K1(4Trt).

9o(t) = —g2(t)
So f is as stated. Conversely, our calculations show that f as stated certainly corresponds

to a standard ¢. This completes the proof. O

4.3 The complex case (revisited)

Let G = GL(2,C), and let Z, B, K, S' and $3 be as in §4.2.4. So far, we have followed
Weil [Wei71], and expressed the theory in terms of differential forms on G and $3 and
the corresponding functions on those spaces. This is sufficient for many purposes, but
sometimes another formulation is more convenient. For example, Cremona [Cre81] noticed,
when working with functions f on $3 = C x Ry, that “it is often convenient to allow

arbitrary complex numbers as the second argument of functions.” Thus, one can define
f(z,€%) = f(z,1) diag(em, 1, e_m). (4.43)

This idea arises almost by abuse of notation in [Cre81], but it actually rests on a perfectly
sound foundation: as we explain below, it amounts to pulling our differentials on $3 back,
not all the way to G, but to the intermediate space G/(R* K).

There is a related formulation involving quaternions, based on the isomorphism be-
tween R* K and H*. The parallel with the real case is often most striking in this setting,

and the formulae most elegant: two such formulae are (4.30) above and (4.55) below.
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The aim of this section is to clarify the relationship between the different points of
view. We attempt to place (4.43) in its natural setting. We describe the quaternionic
formulation, for its elegance if not for its utility. We also describe a related formulation,
analogous to that given in §2.1.2 for the real case; it will form the basis for the theory of
“modular points” in Chapter 7.

We begin by describing various spaces related to G and $)3. Then we consider the
functions on those spaces corresponding to the functions ¢ on G and f on $3. Finally, we
consider the action of G on those functions that is induced by pullback of the corresponding

differential forms.

4.3.1 Spaces related to G and $)3

The ring H of quaternions may be regarded as a left-vector space over C, with basis 1, j.
There is an obvious bijection My(C) \ {0} — HZ \ {0} given by
a b a b j aj +b
—

= ; (4.44)
c d c d 1 cj+d

composing with the natural quotient map onto the projective line (obtained by factoring

out on the right, as in §3.1) we obtain a map 71: My(C) \ {0} — P!(H),

a b
c d

— [aj +b:cj+d.
Let o: H* — R* K be the isomorphism (4.28); it satisfies

A= [’ (A € BX).
1 1

For M, M" € M3(C)\{0}, we readily deduce that 71 (M) = 71 (M") if and only if M = M'P

for some P € R* K. We thus obtain an induced bijection

(M2(0) \ {0}) / (R*K) — P'(H). (4.45)
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Using (3.1), we obtain the following commutative diagram, in which horizontal arrows are

bijections and vertical arrows are quotient maps:

(4.44

My(C) \ {0} BB, w2\ {0

l !

(Ma(©)\ {0}) / ®R*E) 2% pray 22 By oo} - 2 U {oo}.
Recall that G acts on the left on each of our spaces; explicit formulae are given in §3.1.
In particular, real scalars act trivially on the second row, and the action of S on P!(H)

is given by (3.3), whence
e - (24 tj) = 2 + ¥y, e . (2,t) = (2, e¥%%).

We can now do two things. Firstly, we can add a third row to the diagram, by factoring
out on the left under the action of Z. Secondly, we can replace the set My(C) \ {0} of
non-zero matrices by its subset G of invertible matrices. The bijection (4.44) restricts to
G — HZ? \ C, where C is the set of (g;) such that ¢1, g2 are linearly dependent (on the

left) over C, in other words,

1
C= 1 q2:Oorq1q2_1€(C
q
Thus C consists of the zero vector and the pre-image under the quotient map H? \ {0} —
P!(H) of P!(C) (regarded as a subset of P!(H) in the obvious way). Combining these

ideas, we arrive at the commutative diagram

o (4.44) B\ C
/(R K) &2 pym\p(c) Y H\ C BD, x>

! ! !

t z
G/ZK —— t>0p —— {z+1tj|t>0} —— C x Ryp;

01

as before, the horizontal arrows are bijections and the vertical arrows (where present) are
quotient maps. Hitherto, we have usually identified all the sets on the bottom row with

$H3; strictly speaking, the second from the left is B, and the fourth $)3.
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4.3.2 Functions on upper half space and related spaces

In Lemma 57, we considered functions ¢ on G and f on $)3 related by means of a certain
representation p of ZK, trivial on Z; this p was chosen so that ¢ - w was the pullback
of the differential f - 8. We now generalise this set-up, taking an arbitrary p; there will
no longer be an obvious interpretation in terms of differential forms. We also discuss the
corresponding functions on H? \ C and H \ C.

Let V be a finite-dimensional vector space over C, and let p: ZK — GL(V) be a
representation, not necessarily trivial on Z. We refer to p as the weight, for reasons which

will become apparent. Consider the following two sets of functions:

Slz{ftf)g—)V}
Sp={¢: GV | d(Cgr) = d(9)p(Ck) V(€ Z, geG, kEK}.

There is an obvious map {: So — 81, given essentially by restriction to B; explicitly,
o' (n(b)) = 4(b) (b€ B). (4.46)
In the other direction, given f € &1, define f*: G — V by
f*(¢br) = f(n(b))p(¢k)  (C€Z, beB, keK). (4.47)
Lemma 64. The map t: So — 81 is a bijection, with inverse *: 8§ — So.

Proof. This is essentially part (v) of Lemma 57; (4.46), (4.47) and the condition for ¢ to
lie in So generalise (4.17), (4.18) and (4.19) respectively. The function f* is well-defined
by (4.47), since G = ZBK and BN ZK = {1}. It is easy to verify that f* € Ss, that
f*t = f, and that ¢™ = ¢. O

Next, we pass from functions on G to functions on pairs of quaternions. The bijection
between G and HZ \ C given by (4.44) induces a bijection between V-valued functions on
those two spaces in the obvious way, i.e. by means of the contravariant functor Hom(—, V)

in the category of sets; explicitly, given ¢: G — V, we define ¢*: H2 \ C — V by

" (9(1)) =¢(9) (9€0q), (4.48)
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whilst given F': H2 \ C — V, we define Ff: G — V by
Flg)=F(s(]) (9€G). (4.49)
Our next lemma states that, under these bijections, Sy corresponds to the set
Sy ={F:H\C— V| F(C(%)N) = F((%))p(<po(N)
V(3) e\ C, ¢ eCX, )\GHX}.

Lemma 65. The maps given by (4.48) and (4.49) restrict to mutually inverse bijections
x: 8o — S3 and J[: S3 — 8.

Proof. Let ¢ € So. Then for all ( € Z, g € G and X € H*,
9" (Ca()A) = ¢(Cgo(N) = ¢ (9) p(C)pa(X) = ¢* (9(])) p(O)pa(N),

proving that ¢* € S3. Conversely, let F € S;. Given x € K, write k = o()\) for some
A € H*. Then for all { € Z and g € G,

Fi(¢gr) = F(CgeN) () = F(¢g(9)A) = F(9(?))p(C)pa(N) = Fl(g)p(¢rk),

proving that Ft € S5. The constructions (4.48) and (4.49) are obviously mutually inverse.
U

We now pass from functions on H? \ C to functions on H \ C, and show that Ss

corresponds to
Si={fH\C—=V | f(¢e™") = Ff@p)po(¢”") VgeH\C, ¢(eC*}.
Lemma 66. Let 7: H* — GL(V) be any representation. Consider the sets

Sé:{F:HZ\C—’V | F((2)N) =F((2))r(\) v(2)eH\c, )\GHX}

Si={f:H\C>V}.
Given F € S84, define F* € S} by

F*(q)=F((%)). (4.50)



CHAPTER 4. HARMONIC DIFFERENTIAL FORMS 106
Conversely, given f € S}, define fi: HZ\C =V by

F(8)) = flagg ") (g2)- (4.51)

Then the maps *: 8§ — S} and t: Sy — S given by (4.50) and (4.51) are mutually inverse

bijections.

Proof. Given f € S}, we have

FIEIN) = F(@N (@) ) 7(@X) = Flag Tla)T(N) = F1((4)) (),

proving f1 € 8. Moreover,
Mg = r1((1)) = Fl@7(1) = f(a),
ie. fi* = f, and
FH(($)) = F*(ag; (@) = F((14"))(@) = F(($)),
showing F*f = F. O

Corollary 67. The maps given by (4.50) and (4.51) restrict to mutually inverse bijections
x: 83 = S4 and 1’: Sy — Ss3.

Proof. Let 7 = po in Lemma 66 and note that S3 C S} and S4 C S). Given F € 8;, we
certainly have F* € S}; moreover,

F ¢ =F(C(1)¢™) =F((1))p(Qpa(¢™h) = F*(g)p(C)pa(¢H),

so that (4.50) maps S3 into Sy. Conversely, given f € Sy, we have fT € S by Lemma 66;

moreover,

F1¢(B)) = £((Ca)(Caz) V) po(Can) = f(Caray "¢ Hpo(Can)
= flaras ")p(Q)po (¢ po(Caz) = flaras Dpola)p(C) = FH((%))p(0),

where we have used that p(¢) lies in the centre of imp. Thus fT € S3, which completes
the proof. O
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Now let us return to the case of greatest interest, when V = C? and p is trivial on Z and
given by (4.27) on K, as in §4.2.4. In the definition of Sy, we need only consider ¢ € S'. Let
¢ = €/ for some 6 € R. Then ((z + tj)¢! = z + €tj and po(¢~') = diag(e',1,e~%).
It follows that Sy is the set of functions f: H\ C — V satisfying

flz+€Ptj) = f(z +tj) diag(e”, 1,e7). (4.52)

We see, therefore, that the justification for extending functions f on $3 to functions on
C x C* by means of (4.43), as in [Cre81], is that this corresponds to pulling back the
differentials f - 8 to G/(R* K) rather than all the way to G.

Finally, it is instructive to compare (4.51) with the exactly analogous formula (2.5) in
the classical case; the representation 7 = po of H* replaces the representation wy — wy ¢
of C*. This justifies the terminology of “weight” for the representation p.

4.3.3 Action of G

We saw at the end of §4.2.2 that it is natural to consider the right-action of G on the set
{¢: G — V} given by ¢ — d)‘fy, where

(@[)(@8) =d(8) (7,6 € G). (4.53)

It is clear that this action preserves the set Sg; thus (4.53) defines a right-action of G
on Sy. Using the bijections of Lemma 64, Lemma 65 and Corollary 67, we transfer this
action to the sets S1, 83 and S;. Thus, for f € §; and v € G, we define f|'y = ((f*)‘fy)t

Explicitly,
(fV(®) = f(v-7®)p(r(v0)"'4b) (b€ B);
in the special case when p is given by (4.27), this simplifies to

(fIN@) =f(r-pJ(vip)  (p€H), (4.54)

which we already obtained at the end of §4.2.2 by pulling back differentials. Similarly, for
F € S3, we define F‘fy = ((FT) "y)* Explicitly,

(FN((&)) =F((3))-
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Finally, for f € S, we define f|y = ((f)|y)". Explicitly,

(F1(2%))(a) = f((ag+ b)(cq + d) ") po(cq + d), (4.55)

or more briefly, recalling (3.4),

(f]V)(@) = f(v- q)po(cq + d). (4.56)

Notice the similarity to (2.2), the corresponding formula in the theory of classical modular

forms!

Remark. We can recover (4.30) from a comparison of (4.54) and (4.56), by applying (4.52)
with e? equal to A/|A|, the factor which expresses the difference between the actions (3.12)
on $H3 and (3.6) on H\ C.

It will be useful later to have an explicit formula for the special case of (4.54) when

v = (83). We find

(FNE1) = F(v- (20))I (7 (2,1)) by (4.54)
_ az+b |alt . ad ad
=f ( pi ’W) - diag (m, 1, W) by (3.12) and (4.25).

By (4.43), we may therefore write

(f[(85) =ty =1 (GZTM%> : (4.57)



Chapter 5

Adeles and algebraic groups

The purpose of this chapter! is to develop the basic theory of adeles, in order to provide
the necessary background for the definition of automorphic forms in Chapter 6.
We begin the chapter by recalling the definitions of the adele ring ka and idele group
K of an algebraic number field k. Next we discuss quasicharacters of the idele class group,
which occur again in Chapter 6. Their relation to Dirichlet characters is best understood
using class field theory.

The passage from k to ks and k; provides the two simplest examples of the process of
adelisation of an algebraic group over k, in this case, of the “additive group” G, and the
“multiplicative group” G,,. In §5.2, we discuss the adelised group G of GL(2) in some
detail. We use its action on lattices in k2 to derive some results on the structure of G,.
Our treatment is self-contained; in particular, we prove all the “strong approximation”
results that we need. Finally, we use our results on the structure of G, to discuss functions
on (G5 that have certain transformation properties. §5.2.7 will be needed in in Chapter 6,

where automorphic forms will be introduced as functions on G4 with similar properties.

Notation. Throughout this chapter, we let k be an algebraic number field and 9 its ring of
integers; we write v for a place of k, that is, an equivalence class of non-trivial valuations,
and k, for the completion of k with respect to v. We say that v is real if k, =2 R, complex
if k, =2 C, infinite if it is real or complex and finite if it is not infinite; we write v | co

or v { oo accordingly. If v is finite, that is, non-Archimedean, we write O, for the ring of

IThe title is a conscious echo of a book title of Weil.
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valuation integers in k,, P, for the maximal ideal of O,, 7, for a prime element, and p,
for the prime ideal P, NO of O corresponding to the place v. For each v, finite or infinite,
we write | |, for the normalised valuation at v, so that [[, |z|, = 1 for all z € £*. Finally,
we write h for the class number of k, that is, for the order of its ideal class group.

By a homomorphism of topological groups we mean a continuous map that is alge-
braically a homomorphism; following modern usage, we do not require the map to be open,

so in particular, the first isomorphism theorem need not hold.

5.1 GL(1)

The main sources for this section were [Neu86, Chap.IV], [Wei67a], and the articles by
Cassels, Tate and Heilbronn in [CF67].

5.1.1 The adele ring

An adele of k is a family z = (z,) of elements z, € k,, where v runs over all the places of
k, and for which z, is integral in k, for almost all®> v. The adeles form a topological ring,

denoted by kj; addition and multiplication are defined component-wise. Thus
ka = {(zy) | xy € ky for all v; x, € O, for almost all v } .

The topology on kj may be described as the coarsest one for which, whenever S is a
finite set of places of k containing the infinite places, the ring

A5:HkvaDv

veS vgS

is an open subring of ka, where Af carries the product topology. More precisely, ky is the
inductive limit of the rings Af as S ranges over the direct system of finite sets of places

of k containing the infinite places.

2The phrase “for almost all” means “for all but finitely many”. In a context like this one, a purist
might prefer to say “for almost all finite v”, but there is never any ambiguity, since almost all places are

finite.
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5.1.2 The idele group

The idele group kj of k is the group of units of the adele ring ky; explicitly,
ki ={(zy) €ka | zy € k) for all v; z, € O for almost all v } .

The idele group is a topological group in a natural way. The topology is finer than
the subspace topology induced by the inclusion ki — kg, for which the inversion map
x +— ! need not be continuous; rather, it is the subspace topology coming from the map

kX — k2, x> (z,27 '), where k% carries the product topology.

Remark. This is the natural way to topologise ki = GL(1,k,); the construction gener-
alises at once to the case of GL(n, k) regarded as the set of (z;5,y) € kgzﬂ defined by

the equation det(z;;) -y = 1.

A basis for the open neighbourhoods of 1 € kj is given by the subgroups

H W, x H O,

veS v¢S
where S runs over the finite sets of places of k containing the infinite places, and W,, C k.
runs over a basis of open neighbourhoods of 1 € k). In other words, k; is the restricted
topological product of the k) with respect to the O, that is, the inductive limit of the
open subgroups

;=1 =< [T o5,
veS v¢S

each carrying the product topology, as S ranges over the direct system of finite sets of
places of k containing the infinite places. The group I, ;f is called the group of S-ideles of

k. Let So be the set of infinite places and put k5 =[], k., so that

v|oo
P> = k% x H 0.
vfoo
Given z = (z,) € kj, define a fractional ideal il(z) of k by il(z), = z,9O, for all finite
places v. Explicitly,

il(z) = J[ por-t).

vfoo
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Lemma 68. Let r1,...,75 € k5 be chosen such that the il(r;) represent the h distinct

ideal classes of k. Then there is a disjoint union
h
ki=Jmi kI
=1
Proof. Let & € kj. There is a unique ¢ such that the fractional ideal ¢l (r;" %) is principal;
write ' = r; 'z, so that il(z') = (c) for some ¢ € k*. Then 2" = ¢!z’ satisfies 21 € O

for all finite v. Hence z" € I,f‘”. O

In other words, if Jp and P, denote the groups of fractional ideals and of principal
fractional ideals, then il: k; — Jj is a surjective homomorphism with kernel I ,‘f“’, and

the composite kg — Jx — Ji /Py is surjective with kernel k> - I;f“‘.

Remark. It is tempting here, and later also for GL(2, ky ), to refer to the image of an idele
in Jy /Py as its class, and to those ideles with principal class as “principal”; we shall not
do this, however, since it would conflict with the established usage of “principal” to mean

“coming from a global object via the diagonal embedding k — k4”.

There is a continuous (and clearly surjective) homomorphism
|a: kX =2 RY, 2= (o) = [[lolo,
v

with kernel k}, say. Since |z|y =1 for a principal idele z € k%, there is an induced exact

sequence
1= kj/k* = kS [ - R — 1.

Moreover, this sequence splits; to see this, fix an infinite place v and map R — kf /k*
by mapping ¢t € R:E to the class of the idele that has ¢ in the v-component and 1 in every

other component. Therefore,
kY kX 2k /k* x RY.

The group kj /k* is called the idele class group; its study forms part of class field theory.
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5.1.3 Class field theory

A modulus of k is a formal product m = ], p7* of prime powers, with n, > 0 for all places

v, with n, = 0 for almost all v, and with n, € {0,1} for the infinite places v. We set

(

O if v { oo and n, =0,
1+ P ifvtooandn, >0,
Uy = {RX = kX ifvisreal and n, =0,

R C k) ifvisreal and n, =1,

C* =k ifvis complex.

For a, € k), we set
a, =1 (mod pyv) <= a, €U,".
For every idele a = (ay) € k;, we set
a=1(mod m) <= a,=1 (mod py’) for all v,
and consider the groups
P={ack; |aEl (mod m) }.

Let Cj denote the idele class group kj /k*. The subgroup Cf* = I}* - k* /k* is called the
congruence subgroup mod m of Cj. The factor group C}/C}" is called the ray class group
mod m. When m = 1, we have

P=I1w =10 =15,

v]oo vtoo
where Sy, is the set of infinite places, so by the remarks after Lemma 68, we have C,/C} =
ky/I ,f"" -k* = Ji/Pg. So the ray class group mod 1 is canonically isomorphic to the ideal
class group.

There is also an ideal-theoretic description of the ray class group mod m for general m.
Let J;* be the group of all fractional ideals prime to m, and P;" the group of all principal

fractional ideals (a) with a =1 (mod pJ*) for all p | m. Using the strong approximation
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theorem, it is easy to show [Neu86, Ch.IV (8.1)] that the homomorphism il: k5 — J

induces an isomorphism
Cy/CF = Jg Py (5.1)

The “existence theorem” of (abelian) global class field theory [Neu86, Ch.IV (7.1)]
establishes a bijection between the finite abelian extensions L|k and the closed subgroups
of finite index in Cy; if L|k is associated to the group N7, then L is called the class field
of N7, and N7, is called the norm group of L. The correspondence is order-reversing:
L' DL <= Np CN.. By “Artin’s global reciprocity law”, the Galois group of L|k is

canonically isomorphic to the quotient of Cj modulo the norm group Ny:
Gal(L\k) = Ck/NL.

The class field k™ of the congruence subgroup C}' is called the ray class field modulo

m. In particular, then, the Galois group of £™|k is canonically isomorphic to the ray class

group:
Gal(k™|k) = C,/C™ (5.2)

It is not hard to show that every norm group N7 contains a congruence subgroup C};
thus every finite abelian extension of L|k lies in some ray class field k™|k. The least m
for which this is possible (i.e. the g.c.d. of all such m) is called the conductor of L|k and
denoted f(L|k). A prime p of k ramifies in L if and only if it divides the conductor.?

The ray class field mod 1 is called the Hilbert class field of k, and k'|k is the maximal
unramified abelian extension of k; its Galois group is isomorphic to the ideal class group,

so in particular, the degree [k! : k] is equal to the class number h of k.

Ezample. Let kK = Q and m = m - poo, where m € N. Canonically,

JB /PR = (Z/mZ)*. (5.3)

31t is worth commenting on the interpretation of ramification at an infinite prime p. Recall that p is
really an embedding o: k& — C that fixes Q. If L|k is Galois and 7: L — C extends o, we say that p
ramifies in L if and only if ok C R but 7L g R; this is clearly independent of the choice of 7, because any
other choice differs from 7 by an element of Gal(L|k). See [Gar81, p.211].
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Namely, each ideal (a) in Jgy has two generators, a and —a. Mapping the positive generator
to its residue class modulo m (defined in the obvious way for a € () we obtain a surjective
homomorphism J§ — (Z/mZ)*, the kernel of which consists of all ideals (a1/az), with
coprime a; € N, such that a; = as (mod m), and these are precisely the ideals P(‘f.

Trivially,

(Z/mZ)* = Gal(Qn|Q),

where Q,,, denotes the cyclotomic field obtained by adjoining the m-th roots of unity to
Q. This is no coincidence, of course, for @, is the ray class field mod m. The classical
Kronecker-Weber theorem states that every finite abelian extension of QQ is contained in

a cyclotomic field, and this result is generalised by class field theory.

5.1.4 Quasicharacters

The group kj /k* is compact [Neu86, Ch.IV (2.8)], so kx /k* is what Weil [Wei67a] calls
quasicompact, that is, the product of a compact group and one isomorphic to either R
or Z. Other, more elementary examples are the multiplicative groups of local fields, in
particular, the groups k. A quasicharacter of a quasicompact group is, by definition, a

homomorphism into C*. By a character of any group we mean a homomorphism into

{z€C*:|z|=1}.

Lemma 69. A character of a group G is trivial if its image is contained in the right-hand

half-plane {z € C | Rz > 0}.
Proof. Clear. A 4-line proof may be found in [Wei67a, VII-3, Lemma 2]. O

We shall shortly define the conductor of a quasicharacter of the idele class group. Since
our treatment follows [Wei67a, Chap.VII, §§3—4], we first give a result about topological

groups, part of which is implicitly assumed loc.cit..

Proposition 70. Let G be a locally compact group with identity e. Then the following

are equivalent:

(i) G is totally disconnected, i.e. the connected component of e is {e};
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(ii) G is Hausdorff and has a basis of open neighbourhoods of e consisting of compact

open subgroups;

(iii) G is Hausdorff and has a basis of open neighbourhoods of e consisting of open sub-

groups.

Proof. The implication (ii) = (iii) is trivial, and (iii) = (i) is clear. The content of the

lemma is (i) = (ii), which is theorem 7.7 in [HR63]. O

For example, k5 has the compact, totally disconnected subgroup
H=]]o
vfoo

Let 1 be a quasicharacter of k; /k™; we may regard it as a homomorphism of k; into C*,
trivial on k*. The map g — |¢(g)| maps H onto a compact subgroup of R}, i.e. onto {1},
so 9|g is a character of H. The pre-image under 9|y of {z € C | Rz > 0} is open, hence
by Proposition 70 contains an open subgroup H' of H. By Lemma 69, H' C ker |y, so
that ker |y is an open subgroup of H. This means that ker |y contains a subgroup of
the form

H Us(v)

vfoo
for non-negative integers e(v) almost all of which are zero. For each finite place v, we may
therefore define f(v) to be the smallest non-negative integer such that v, is trivial on the

subgroup UJ(”) of O. By the above, f(v) = 0 for almost all v, so that the ideal
fp = ][ oI
vfoo
exists; fy, is called the conductor of .

Remark. Of course, we could have applied property (iii) without calling it total discon-
nectedness; that approach is taken in Tate’s thesis [Tat67, lemma 3.2.1]. So Proposition 70

was not essential in the above.

For every place v of k, we write 1, for the local component of ¥ at v, i.e. for the

quasicharacter of k) induced by 4. For every finite place v, the extended ideal {49, is
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called the conductor of v,. The existence of f, implies that 1 is the product of its local

components: more precisely, for each = = (z,) € k;, we can write

(@) =[] to(0), (5:4)

because almost all the factors in the product are equal to 1. This equation may be

abbreviated as 1 = [], ¢,. For later reference, we record the following lemma.

Lemma 71. Let n be an ideal of O and let 1 be a quasicharacter of kj /k™ whose con-

ductor divides n. Then v induces a character x of (O/n)*, given by

x(z) =[] o). (5.5)

vn

If 1, is trivial for the infinite places v, then x is trivial on O*.

Proof. Let M be the multiplicative monoid { z € O | (z) + n = O }; certainly (5.5) defines
a homomorphism M — C*. For z,y € M with zy = 1 (mod n), the assumption on the
conductor of ¢ implies that ¢, (zy) = 1 for all v | n, so that x(zy) = 1. Thus x maps M
into the unit circle. Let z,z’ € M satisfy z = 2’ (mod n). Let y € M be an inverse of
(mod n). Then x(zy) = 1 = x(¢'y), whence x(z) = x(z'). Thus (5.5) induces a character
of (O/n)*. Finally, assume that 1, is trivial for the infinite places v and let ¢ € O*.
Certainly 1(e) = 1, since € € k*. By the assumption on the conductor, ¥,(e) = 1 for all

finite places v not dividing n, so applying (5.4) gives x(e) = 1, as claimed. O

5.1.5 Dirichlet characters

Now let 9 be a character of the idele class group. We say that 1) has discrete infinite
components if the image of v, for each infinite place v is a discrete subgroup of the unit
circle. If v is complex, this means that 1, is trivial, and if v is real, that 1, is either trivial
or of the form z, + sign(z,). Thus if ¢ has discrete infinite components, then it is trivial

on I, where

m=fy [] po- (5.6)
v|oo
Pu#l



CHAPTER 5. ADELES AND ALGEBRAIC GROUPS 118

Definition. A Dirichlet character is a character 1 of the idele class group having discrete
infinite components. The defining modulus of 1) is the modulus m defined by (5.6). If v is

a place dividing m, we say that v is ramified at v.

Definition. Let m be a modulus of k. A Dirichlet character mod m is one whose defining

modulus divides m.

Clearly, the Dirichlet characters mod m form a group under multiplication. Let v be a
Dirichlet character mod m. Then 1) is a character of C, which is trivial on Cf = Ik [k,
and may be viewed as a character of the ray class group Cj/C}*; by (5.1), this is also the
same as a character of J;'/P{*. Conversely, a character of Ji/P;* and Cy/C}* gives rise to
a Dirichlet character mod m, because the image of a finite group is automatically discrete.
Of course, the definition closest to Dirichlet’s is as a character of Ji*/P".

The Dirichlet L-series of v is defined by

where we have set ¢(a) = 0 if (a,m) # 1.

Ezample. For k = Q and m = m oo, we see from (5.3) that 1) is a character of (Z/mZ)*.

We obtain the classical Dirichlet L-series

L(S,l/)) = Z QPT(::) :

n=1

5.1.6 Galois characters

Let L|k be a Galois extension, and let w be a place of L lying above some place v of k.

Attached to w is the inertia group of w, defined by
{v € Gal(L|k) : |a” —a|y <1lforalla € Oy},

where Oy, is the ring of integers of L and | |,, is any absolute value associated with w. The
inertia group of w need not be normal in Gal(L|k); rather, its conjugates are the inertia
groups of all the places of L lying above v. When L|k is abelian, these groups coincide,
and we speak of the inertia group of v in L|k, denoted by G (v). Let k¥ be the fixed field

of Gr(v); it is the maximal subextension of L|k which is unramified at v.



CHAPTER 5. ADELES AND ALGEBRAIC GROUPS 119

A Galois character of an abelian extension L|k is a character y of Gal(L|k). We say
that x is unramified at a place v if ker y contains G (v) [FT91, p.218]. Since x is trivial
on Gal(L|k"), it is determined by the character it induces on Gal(k”|k).

We say that x is unramified if it is unramified at all v. This means that ker y contains
the subgroup generated by all the inertia groups; its fixed field k¥°|k is the maximal unram-
ified subextension of L|k. Thus x is determined by the character it induces on Gal(k°|k),
which in turn may always be extended to Gal(k'|k), since k°|k is a subextension of the
Hilbert class field extension k!'|k. Thus unramified Galois characters are really Galois
characters of k!|k.

Let m be a modulus of k, and let ¢ be a Dirichlet character mod m. By (5.2), we
may also regard v as a Galois character x of k™|k. Conversely, a Galois character of k™ |k
corresponds to a Dirichlet character mod m. The two notions of ramification are obviously
compatible; in particular, ¥ is unramified if and only if x is unramified.

A character y is quadratic if x> = 1. Our interest in unramified quadratic characters
stems from their use in defining certain “twists” of modular forms; see [Cre81] for a full

discussion in the case when k is an imaginary quadratic field of class number 1.

Ezample. Let k = Q(v/di) be the imaginary quadratic field of discriminant dj, < 0. Write
dy, uniquely as a product of “prime discriminants” [FT91, Ch.III (3.7)], say dx = q1 - - - q1,
where ¢ is the number of primes which ramify in k|Q. Put L = k(,/q1,...,+/q;). Clearly
[L: Q] = 2% Moreover, [Cy : (Ck)?] = 2t=1 = [L : k], by “genus theory” [FT91, Ch.VII
(2.27)]. On the other hand, L|Q is abelian [F'T91, Ch.III, (3.6)], hence so is L|k. Moreover,
L|k is unramified [F'T91, Ch.III, (3.8)], so by class field theory, there is a tower of fields
k' D L D k. By (5.2), we have Cy = Gal(k'|k), and the subgroup (Cj)? of squares in Cj
clearly fixes L. Comparing degrees, we see that L is the fixed field of (Cj)?; it is called
the genus field of k, and its Galois group Cy/(Cy)? the genus group.

If x is a quadratic character of Gal(k!|k), then it is certainly trivial on (Cy)2. Moreover,
if y is non-trivial, its image is precisely {1}, and its kernel has index 2 in Gal(k!|k), so

X corresponds to a quadratic subfield of L|k.



CHAPTER 5. ADELES AND ALGEBRAIC GROUPS 120

5.2 GL(2)

The passage from k to kx and k; provides two examples of the process of adelisation of an
algebraic group, in this case, of the “additive group” G, and the “multiplicative group”
G- In §5.2.1, we briefly discuss a general algebraic group G. Thereafter, we always
take G = GL(2). We discuss the adele group G4 in some detail, showing how it acts on
lattices in k2, and deducing some results on the structure of G. Our treatment is largely
self-contained; in particular, we prove all the “strong approximation” results that we need.

Finally, we use our results on the structure of G to discuss certain functions on Gj.

5.2.1 Algebraic groups and strong approximation

A linear algebraic group defined over k is an affine variety G defined over k£ and equipped
with group operations which are morphisms of the variety. The basic example is GL(n, k),

which can be represented as the set of points (z;;,y) in k™1 that satisfy the equation
det(mij) -y =1.

According to [Kne67], one can show that the linear algebraic groups are precisely the
closed subgroups of GL(n, k) as n varies.

Let G be a linear algebraic group defined over k. We fix a coordinate system for
G; the coordinates of products and inverses are then given by certain polynomials in
the coordinates of the operands. If R is a ring containing all the coefficients of these
polynomials, we define Gg to be the group of elements of G with coordinates in R. In
particular, G denotes the adele group of G, and Gy the group of k-rational elements of
G, identified with the principal adeles of G4 by means of the embedding of k in ky. For
any finite set S of places of k, we put

Gs =[] G,
veS

and identify the elements of this group with those adeles of G, whose v-components are
1forvé¢sS.

If GxGg is dense in G, we say that G admits strong approximation with respect to S.

For this to happen, it is necessary that G'g not be compact [Kne65]. If this condition on S
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is also sufficient, we say that the strong approximation theorem holds for G. It is known
to hold for many groups G (see [Kne65]), but we shall only need one result of this type, the
case when G = SL(2) and S is the set of infinite places. This is our Proposition 78 below,
for which we give an elementary proof. Our proposition is stated in a slightly different

form; the following lemma relates the two formulations.

Lemma 72. If Gy Gg is dense in Gp, then Gp = Gy -U for every open subgroup U of G

containing Gg. If S contains the infinite places, then the converse is also true.

Proof. Assume that GGy is dense, and let U be an open subgroup containing Gg. Let
¢ € Gp. Then G1Gg meets the open set cU, so cu = yu' for some u € U, v € G and
u' € Gg CU. Therefore c € Gy, - U.

Conversely, we first note that Gg is a “quasifactor” of Ga, that is, Ga = Gg x G1,
where G is an inductive limit over finite sets S’ of places disjoint from S. Moreover, if we
assume that S contains the infinite places, then G is totally disconnected. Let ¢ € Gy;
we must show that GG g meets every open neighbourhood U of ¢. Writing ¢ = ¢yc; with
cg € Gg and ¢; € GG1, we can find an open neighbourhood Uy of 1 in Gg and an open
subgroup Uy in G with coUy x c1U; C U. Now G gU; is an open subgroup of G containing
G, so by assumption, we can write ¢ = ydu with v € G, § € Gg and u € U;. Therefore
v6 =co-cru ! € GpGs N (coUy x c1U) € GxGs N U. O

5.2.2 The adeles G, of GL(2)

Let G = GL(2) be the general linear group in 2 variables considered as an algebraic group
defined over k. For each place v of k, write G, for GL(2,k,). Let G be the adelisation
of G; as we remarked in §5.1.2, we may regard G, as GL(2, k), topologised as a subset
of k3. Equivalently, we may regard it as the inductive limit of the open subgroups
I1G. < I 6L2,9.)
veS vgS
where S ranges, as usual, over the finite sets of places of k£ containing the infinite places.

Explicitly,

Ga = {(zy) | zy € Gy, for all v; z,, € GL(2,90,) for almost all v } .



CHAPTER 5. ADELES AND ALGEBRAIC GROUPS 122

For finite v, the groups G, and GL(2,9O,) are totally disconnected (see Proposition 70), a
basis of open neighbourhoods of 1 being given by

{zy € GL(2,9,) | z, = 12 (mod 7)) }, (n=0,1,2,...),

where 15 is the 2 x 2 identity matrix; of course, a congruence of matrices is to be understood

element-wise. Also put
Goo =[] Go.
v|oo

Let G, be the connected component of 1 in G, in other words, the subgroup determined

by det(z,) > 0 for all real places v.

5.2.3 Action of G4 on lattices

Let v be a finite place of k, and F, a finite-dimensional k,-vector space. A lattice L, in
E, is a compact and open ,-submodule ([Wei67a, I1-2, defn. 2]). Equivalently ([prop. 5
loc.cit.]) it is a finitely generated O,-submodule of E, whose k,-span is all of E,. Since
1), is a principal ideal domain, L, is a free ,-module and any $,-basis of L, is also a
k,-basis of E,,.

Let E be a finite-dimensional k-vector space. Recall from §1.1.4 that a lattice L in E
is a finitely generated D-submodule of F whose k-span is E. Write E, = F ®; k, and
take E to be “naturally” embedded in E, by the injection e — e ® 1;,. Let L, be the
$J,-submodule generated by L in E,, in other words, L, = L Q¢ O,. Then L, is a lattice
in E,, and in fact L, is the closure of L in E,.

It is now natural to ask, firstly, whether L is uniquely determined by the L,, and
secondly, under what conditions a given set of L, does come from a global lattice L. The

answer is given by the following theorem.

Theorem 73. Let M be a k-lattice in E. For each finite place v of k, let M, be the
closure of M in E, and L, any k,-lattice in E,. Then there is a k-lattice L in E whose
closure in E, is Ly for every v if and only if L, = M, for almost all v; when that is so,

there is only one such k-lattice, and it is given by L = Ny (E N Ly).
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Proof. [Wei67a, V-3, theorem 2]. O

Using this theorem, one can define an action of the adelisation of GL(n) on the set of
lattices in the n-dimensional space E. We shall only need the case n = 2. After choosing
a basis, we may identify E with k2 (regarded as a space of column vectors) and choose for
M the standard lattice O?.

For ¢ = (c,) € G and a lattice L, we define cL to be the unique lattice in k? satisfying
(cL), = ¢y, L, for all finite places v. This works because L, = 92 for almost all v (by the
theorem) and ¢, € GL(2,9,) for almost all v (by definition) so that ¢, L, = D2 for almost
all v.

Notice that when ¢ € G, this definition agrees with the usual action of a matrix on
a set of column vectors. So the action of G extends the action of G, and there is no

confusion when we write cL with ¢ € G,.

Remark. Because we regarded E as a space of column vectors, we have described a left-
action of G4 on “column lattices”. Similarly, of course, one obtains a right-action on “row

lattices”; the two actions are related by transposition: Le = (c!L)t.

Lemma 74. Let L and L' be lattices in k? which are isomorphic as O-modules. Then

there exists v € Gy, such that yL = L'.

Proof. Let f: L — L' be an D-module isomorphism. Localising with respect to the prime
ideal p = (0) of O (equivalently, tensoring up with k) we obtain a k-module isomorphism
fp of the vector space k? with itself; thus fp is given by some matrix v € Gy, and by

restriction, the map f is also given by . Thus, yL = L'. O

In §1.1.3, we defined the Steinitz class cl(M) of a non-zero finitely generated torsion-
free O-module M. Recall that two such modules are isomorphic if and only if they have
the same rank and the same Steinitz class. In particular, this theory applies to lattices in
k2; moreover, since these all have the same rank, two such lattices are isomorphic as O-
modules if and only if they have the same Steinitz class. This fact will be used repeatedly

below.
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It is natural to consider the following open subgroup of Gx:

1 = Goo x [ GL(2,0,). (5.7)

vfoo

Observe that Q; is the stabiliser of 92 under the action of G:
O = {CEGA | CDQZDQ}.

Proposition 75. Let L be a lattice in k? and let ¢ € Gy. Then
cl(cL) = cl(il(det ¢)) - cl(L).

Proof. Choose ideals ay, ..., a; representing the h ideal classes of k. For each 3, let r; € k;
be such that il(r;) = a;, and let a; = (§ o ) € Ga. Clearly a,0? = O @ ;.

By the structure theory of O-modules, L = O @ a; for some unique 7 and cL = O @ q;
for some unique j. By the lemma, it follows that 7L = a;9? for some v € G} and

v'cL = a;jD?* for some v' € G. Therefore,
aj_lq/'cy_laiDQ = 0?,
whence a]-_ly'c'yflai € Oy and so il(det(aj_l'y'cyflai)) = (1). Hence
il(detc) - il(det a;) = il(det a;),
as required. O

With just these tools at our disposal, we can derive the following coset decompositions

of Gp. The result will be refined in propositions 81 and 83.

Lemma 76. Let ay,...,ap € Gp be chosen such that the ideals il(det a;) represent the h
ideal classes of k. Let L be a lattice in k* and U the subgroup of Ga stabilising L. Then
G decomposes as a disjoint union in the following two ways:

h h
Gu=Jai-Gy-U and Go=JGk-a; U
i=1 i=1
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Proof. Let ¢ € Gy and choose i such that il(det ¢) = il(det a;). Then by Proposition 75,
a;ch = [, so by Lemma 74, 'ya;ICL = L for some v € Gy, whence ’yai*IC € U and so
c€a;-G-U.

On the other hand, cL = a;L, so v'cL = a;L for some v € Gy, whence a;'y'c € U

and so ¢ € G - a; - U, as required. O

For any linear algebraic group G, the orbit of a lattice L under G is called the genus of
L, and the orbit under Gy is called the class of L. In other words, the genus of L consists
of all lattices that are locally isomorphic to L at all finite primes, and the class of L of
all lattices that are globally isomorphic to L. We refer to [Kne67] for more information.
For G = GL(2), it is clear from the proof of Proposition 75 that G, acts transitively on

lattices. Thus in our case, there is one genus of h classes.

5.2.4 The group (n) and the subgroups K,

Recall that €; is the stabiliser of 92 under the action of G. More generally, for each

integral ideal n, we consider the stabiliser of O @ n:
Qu={ceGp|c(OBn)=OPn}.

Since G5 acts transitively on lattices, the groups €2, are all conjugate. Explicitly, if n
is an idele with il(n) = n, then by the proof of Proposition 75,

-1

From our point of view, the interesting group is
Qo(l‘l) =01 NQy,

which turns out to be an adelic analogue of the congruence subgroup I'g(n), in a manner
to be explained below. Indeed, part of our motivation for studying the action of G on
lattices is to prove Proposition 83 below concerning the group Qg(n).

Let n be an integral ideal, which we shall call the level. Choose an idele n = (n,) € ky

with él(n) = n. For each finite place v of k, define a compact open subgroup K, of
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GL(2, ky) by

a b
K, = a,b,c,d € Oy, ad—nvbceD;f}.

nyc d

Clearly K, depends only on the ideal n; it is a maximal compact subgroup of GL(2, k,) if
(and only if) |n|, = 1, i.e. if the place v does not occur in n; when that is so, of course,

K, = GL(2,9,). By (5.7) and (5.8),

Qn = G X H K,
vfoo

where

-1
a n, b

K| = a,b,c,d € Oy, ad —bc € O

nyc d

Taking the intersection Qy(n) = Q; N Q, now gives

Qo(n) = Goo x [ Ko (5.9)

vfoo

It is clear from (5.9) that
a b
G N Q(n) = ( ) a,bde€ O, cen, ad—bce O 3,
c d

so that the group of “principal” adeles in 2y(n) is nothing other than the usual congruence
subgroup I'y(n) of GL(2,9O).
5.2.5 Strong approximation for SL(2)

In addition to €21, we consider the following open subgroups of G 4:

Qf =G x [] GL(2,9,),

vtoo

and for any integral ideal n,

Upo={z=(z,) € Q| z, =12 (modn®O,) for all finite v },

Ut =U,nQf.
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Lemma 77. Every open subgroup of G contains U for somen, and every open subgroup

of Gp containing G contains Uy, for some n.
Proof. Clear from the definition of the topology on G 4. O

As we remarked just before Lemma 72, the next result is a special case of strong

approximation for SL(2).

Proposition 78. Let U be an open subgroup of G containing Go. Then
SL(2,ka) = SL(2,k) - (UNSL(2,ka)) = (U NSL(2,ka)) - SL(2, k).

Proof. Our proof is based on [Shi71, lemma 6.15], which deals with the case k = Q. The
first equality will imply the second, since we can take transposes and note that U? is open
and contains G .

Let L = O? and let ¢ € SL(2, k). Then il(det c) = (1), so by Proposition 75, cL = L
as O-modules. By Lemma 74, ycL = L for some v € G. That is, y¢ € Q1 for some
v € G- .

dety O
Therefore dety € det(Q1) Nk* = O*. Let e = 7 € Gk. Then det(ey) =1

0 1
and vcL = L = ¢ 'L, whence (ey)c € 21 NSL(2, ky). This proves

SL(2,ka) = SL(2, k) - (€1 NSL(2, ka))- (5.10)

In view of Lemma 77, it is sufficient to prove the proposition in the case U = U,. By

virtue of (5.10), the question is reduced to showing that
Q1 NSL(2,ka) C SL(2,9) - (Uy NSL(2,kp)). (5.11)

Let u = (u,) € Q1 NSL(2,ka). By the Chinese Remainder Theorem for O applied to each
matrix entry, there exists 3 € My(9) such that

f=uy' modno, (5.12)

for each finite v. (Notice that for almost all v, namely unless v | n, condition (5.12)

just says that the entries of # must lie in £,; as this holds automatically for elements
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of £, it is indeed enough to use the Chinese Remainder Theorem for £, rather than
the strong approximation theorem for k.) Then det 3 = 1 (mod n). By surjectivity of
SL(2,9) — SL(2,9/n) in Proposition 22, there exists an element « of SL(2,O) such that
a = (mod n). Then au € U, N SL(2, k), proving (5.11). O

5.2.6 Decomposition of Gy

Let v be a finite place of k and let 7 = m,. Let L, be a sublattice of D2. Since 9, is a

principal ideal domain, L, is free, and we may write the elements of a basis as the columns

of a matrix M, so that L, = M?2. We shall say that L, is spanned by M. Write M ~ M’

if M and M’ span the same lattice, that is, if they are right-associate by an element of

GL(2,9,). The index of L, in O? is just the ideal (det M). Every L, of index (™) is
0

spanned by some M of the form L This is just the Hermite normal form,
x T

which exists over any principal ideal domain, so a fortiori over the discrete valuation ring

Oy

Lemma 79. Let L, be a lattice in O? of index (7). Let uy,u!, € GL(2,9,) satisfy

uy = ul, (mod 7). Then uyL, = ul L,.

l
T 0
Proof. We may write L, = MO? with M = L We must show that u,M ~
z
u!, M, in other words, that N € GL(2,9,), where N = M 1y, 'u! M. Clearly det N =1,

so we need only show that the entries of

1

are divisible by det M = 7. But working modulo 7™ we have u; 'u] = 19, so the result is

obvious. O

Proposition 80. With notation as above,

Q) = SL(2,9) - Qo(n).
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Proof. Recalling that Qp(n) = Q1 N Q,, we see that one inclusion is trivial, since
contains SL(2,9). Conversely, let u = (u,) € ©Q; be given and let L = O & n. For each

finite v, let 7 = 7, and define n (depending on v) by nO, = 7"9O,. Thus L, is spanned

1 0 ) ] ) detu,? 0
by and has index (7") in O7. For v | n, put u), = u,
0 =" 0 1

detu! = 1, and since

. Then

detu,! 0\ (1 O 1 0
0 1 0 0 "

it follows that ul,L, = uyL,.

By the Chinese Remainder Theorem, there is 4" € My () such that v' = u), (mod #")
for each finite v. Then dety’ = detu, =1 (mod 7"), whence by the Chinese Remainder
Theorem again, det7y = 1 (mod n). Now by surjectivity of SL(2,90) — SL(2,9/n) in
Proposition 22, there is v € SL(2,0) satisfying v =+ (mod n).

Clearly vO? = 92, so v € Q; and therefore v~ 'u € Q. We claim that v 'u € Q, also,

which will complete the proof. For finite v { n, L, = 92 and so
Ly =v9} = O} = uyO) = uyLy.
For v | n, using Lemma 79,
vLy = u;)LU = UyLy.

Thus (yL), = vLy = uyL, = (uL), for all finite v, whence by Theorem 73, yL = uL.

1

Therefore v~ u € €2y, as required. O

Note the resemblance of this proof to that of Proposition 78. The next result is an

easy corollary.

Proposition 81. Let ay,...,ap € Ga be such that the ideals il(det a;) represent the h

ideal classes of k. Then Gy decomposes as a disjoint union

h
Ga=Jai Gr Q).
=1
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Proof. Let ¢ € Gy. By Lemma 76 with U = 1, there is a unique % such that ’yai_lc e
for some y € Gi. By Proposition 80 there exists 7/ € SL(2,9D) such that va; 'c € 7/Qp(n).
Therefore ¢ € a; - Gi - Qp(n). O

The advantage of this proof is that it works directly with the characterisation of
Qo(n) = Q1 N Q, in terms of the action of G, on lattices. Using Proposition 78, we
can give another, somewhat less direct proof, along the lines of the one in [Wei71, §3| for
the case k = ; see also the notes at the end of §3 of [Gel75]. This allows us to replace
Qp(n) by a somewhat more general subgroup U. We give this result here, although we

shall not need to use it.

Proposition 82. Let ai,...,a, € G4 be such that the ideals il(det a;) represent the h
ideal classes of k, and let U be an open subgroup of G containing G and all (g (1’) for
u € I;j“’. Then G decomposes as a disjoint union
h
Go=Jai- Gy U.
i=1

Proof. The map g +— det(g) is a morphism of G onto k;, and by Lemma 68,
ki =ri kI,

where r; = det(a;). For any g € Gy, write det(g) = r;-r-u withr € k* and u € I,f“’. Put

Then det g’ = 1, i.e. ¢’ € SL(2,ky). By Proposition 78, we can find v; € SL(2,k) such

r 0
that 77 g’ € UNSL(2, k). Put v = 71. Then v € G}, and
0 1

1

v lastg =7l

1

The right hand side is in U, by assumption, so v~ ai_lg e U, proving g €a;-G,-U. O

The next result is similar to Proposition 81, but the factors occur in a different order,
necessitating an extra step in the proof. It is this result which will be of central importance

for us in §5.2.7.
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Proposition 83. Let ai,...,a, € G be such that the ideals il(det a;) represent the h

ideal classes of k. Then G decomposes as a disjoint union

h
Ga=JGrai- Q).

i=1
Proof. Let ¢c € Gy. By Lemma 76 with U = 4, there is a unique ¢ such that ai_l'yc e

for some v € Gy. Therefore, yca; le a;ha; ! By Proposition 80,

aiha; ' = a;SL(2,9)a; ! - a;Q(n)a; !

C SL(2,kp) - aiQO(n)afl;

hence we can write yca; ! = ¢ (a;wa; '), where ¢ € SL(2,ks) and w € Qp(n). Since

ai€(n)a;! is an open subgroup of G, containing G, Proposition 78 implies that ¢/ =

7

1 1

Yaiw'a;! for some 7' € SL(2,k) and o' € Qp(n). Consequently, yca; ' = v'ajw'wa;?, so

that a; ' (y') Lyec = w'w € Qy(n). Therefore ¢ € Gy, - a; - Q(n). O
5.2.7 Functions on G,

The automorphic forms of interest to us will be introduced as certain functions from G
into a complex vector space V. For the moment, we regard V as any topological space.

We fix a level n and a choice of the a; as in Proposition 83, so that

h
Ga =] Gk ai Q).

=1
Any function ® on Gi\Ga (i.e. on G, left-invariant by Gj) thus determines a collection

of h functions ®®: Qg(n) — V, via
D (w) = B(aw)  (w € No(n)). (5.13)
It turns out that each ®@ is left-invariant under the group I'® defined by
T = Qy(n) Na; L Gra;.
For let w = ai_lfyai e T and W' € Qy(n). Then a;ww’ = va;w', so

30 (ww') = B(qiww’) = B(yaw') = B(aiw’) = ) ().
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Conversely, suppose we are given functions ®® left-invariant under T”. Then we can

define ® on Gy, left-invariant by Gy, via
B (yaiw) = 9 (w) (v € Gk, w € Q(n)). (5.14)

If this @ is well-defined, it is certainly left-invariant under Gy. To show that it is well-
defined, we need only show that two ways of writing an element of G4 in the form ya;w

give the same value of ®. Since 7 is uniquely determined, we just need to check that
vaw = 'aiw’ = V(W) = 30 ().
But this is clear, since a; * (/) "1ya; = w'w™! € TM, 50 80 (w) = 30 (W'wt-w) = O ().

Proposition 84. With notation as above, there is a bijection, given by (5.13) and (5.14),
between the set of functions ® on Ga that are left-invariant under Gg, and the set of
h-tuples of functions ®® on Qo(n) such that for 1 < i < h, & s left-invariant under

%, Moreover, ® is continuous if and only if the corresponding ®9 are continuous.

Proof. 1t is clear that the constructions (5.13) and (5.14) are mutually inverse, so we need
only prove the last sentence. Assume that ® is continuous, and let U C V be open. Then
(Q(i))_l(U) = Qy(n)Na; ' -®~1(V) is open, so & is continuous. Conversely, assume that
each ®® is continuous, and let U C V be open. Then &~ (U) = UG}, - a; - (‘b(i))_l(U).
Since (®®) (V) is open in £(n) which is open in Gy, it follows that ®1(U) is open,

so ® is continuous. O

In §5.2.4 we defined the subgroups K, of Qy(n) for the finite places v. Below, [ K,

denotes the product over the finite places.

Corollary 85. The bijection given by (5.13) and (5.14) restricts to a bijection between,
on the one hand, the set of functions ® on G that are left-invariant under Gy and right-
invariant under [| Ky, and, on the other hand, the set of h-tuples of functions ®) op
Qo(n) such that for 1 < i < h, &) is left-invariant under T™ and right-invariant under

1 K..

Proof. Clearly @ is right-invariant under [ [ K, if and only if the same is true of each i),

The corollary is thus immediate. O
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Notation. For a = (a,) € Gy, we write ay for the projection of a onto the quasifactor?
G, and ag for the projection onto the complementary factor; in other words, ax = (ay),
where w ranges over the infinite places, and ag = (a,), where v now ranges only over the

finite places. Thus, we may write a = (a0, ag)-

With this notation, if a € Qg(n), then ag € [[ K,. Of course, the last sentence relies

on (5.9) of §5.2.4, viz on the equation

Qo(n) = Goo X H K,.

vfoo

In view of this decomposition, functions on Qg(n) which are right-invariant under [] K,
correspond naturally to functions on Go. We will apply this to the functions ®® in
Corollary 85; in order to formulate the transformation property of the resulting functions,

we introduce the groups
Tl = Gj, N aiQ(n)a; *. (5.15)
so that
@ = a;lF[i]ai.
Given ®® as in Corollary 85, we define ¢(9): Goo — V by
¢ (8) = @9 ((a; ' 6ai)oo, 1) - (5.16)

Conversely, given ¢(): G, — V, left-invariant under Tl we define ®®: Qo(n) - V
by

3 (z) = ¢ ((aira; ) oo) - (5.17)

Lemma 86. For 1 < i < h, there is a bijection, given by (5.16) and (5.17), between,
on the one hand, the set of functions ®® on Qo(n) that are left-invariant under ' gnd
right-invariant under [[ Ky, and, on the other hand, the set of functions &9 on G that

are left-invariant under T,

see p.121
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Proof. Let ®® be given and define ¢(¥ by (5.16). Then for y € T,

¢(Z (v0) = o™ ((a ’Y(saz 005 )
o) ((a 18ai) oo, (a; Ly 1a,)o) since ai_l'yai er®
o) ((a 160) 00, ) since (ai_lfyflai)o € HKU

9(9).

Thus ¢ is left-invariant under T'?), as required. Conversely, let () be given and define

®® by (5.17). Right-invariance of ®® under [] K, is obvious. Moreover, for v € T'l,
q)(z) (CL;I’)’GZ d)(z

a;a; ’yazwa 1)00)

((
= 0 (v(aiza; M) o)
(

= ¢ (azxa ) by left-invariance under T'l*
_ (I,(z) ( .Z‘)
Thus &) is left-invariant under F(i), as required. ]

The following result is an immediate corollary; in view of its importance in Chapter 6,

we designate this result a theorem.

Theorem 87. There is a bijection between, on the one hand, the set of functions ® on Gy
that are left-invariant under Gy and right-invariant under || K,, and, on the other hand,
the set of h-tuples of functions ¢ on G such that for 1 < i < h, ¢ is left-invariant
under Tl

Proof. Compose the bijections of Corollary 85 and Lemma 86. O

Of course, the correspondence between the functions & and () is especially simple
when the a; are chosen such that (a;)oc = 1. In that case, equations (5.16) and (5.17)
simplify to

¢@0(0) =251 (0 €Go)

and

o0 (2) = ¢V (a) [z € Qlm).
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Notation. Let Z denote the centre of G = GL(2) as an algebraic group defined over k; it
consists of scalar multiples of the 2 x 2 identity matrix 15 and can thus be identified with
the multiplicative group G, = GL(1). Write Z, for the corresponding adelised group; Z
can be identified with the idele group kj of k.

We now consider what happens when ® in Proposition 84 is invariant under the centre,
i.e. when
D(zz) = (x) (z € Zp, z € Gy).
Clearly, the corresponding functions ®() will not now be arbitrary.

Definition. Functions ®) as in Proposition 84 are Z-compatible if the corresponding

function @ is invariant under Z,.

Let ®: Gp — V be left-invariant under G, and invariant under Z,. Let z € Z, and

suppose that il(det z) is principal. Thus za; = da;w for some § € Gy, w € Qp(n). Then
30) (z) = ®(a;z) = ®(2a;3) = D(da;wz) = %) (wx),

so that ®() is left-invariant under all the w € Qy(n) that arise in this way; the set of all

such w is easily seen to be equal to the group
T'D = Qy(n) Na; ' G 2Zaas,

since if a; '0za; € Qo(n), where § € Gy and z € Z,, then il(det z) is automatically
principal.

Thus, for functions ®@ to be Z-compatible, it is necessary that each ®@ be left-
invariant under I'). This is not sufficient, of course, since (in general) there are elements
z in Z, with il(det z) non-principal. Suppose that i,j are such that il(det(a; 'a;)) is a
square, say equal to a®. Let a € k; be an idele with il(a) = a. Let z = a- 15 € Z5. Then

multiplication by z (on the left, say) defines a homeomorphism
Gk - Q- Qo(n) — Gk “aj - Qo(n).

So if the ®® are Z-compatible, the function ®() is determined by ®®. Thus, all the

information about ® is contained in just some of the functions ®®: we only need one
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for each ideal class modulo squares. The next proposition shows that there is no further

redundancy.

Proposition 88. Let S be a set of indices such that the il(det a;), for i € S, represent
the ideal classes modulo squares. Fori € S, let ®@: Qg(n) — V be left-invariant under
L@ . Then there are unique functions ®U): Qo(n) = V for j ¢ S such that the ®@) for
1 <1i < h are Z-compatible.

Proof. Suppose that such functions (for j ¢ S) exist, and that the ®® for 1 < i < h
correspond to ®, say. Let j be an index not in S. There is a unique 7 € S for which there
exists z € Z, with za; € Gi-a;-Qo(n). (In fact, i must be chosen such that il(det(aj_lai))

is a square, say equal to a2

. A possible choice of z is then z = a - 15, where a € kj is
an idele with il(a) = a.) Write za; = da;w with § € G}, and w € Qg(n). Then for all

(S Qo(n),
) (z) = ®(ajr) = ®(zajz) = ®(da;wzx) = o ().

So if such functions (for j ¢ S) exist, they are uniquely determined by the given functions
(for i € S).
We now define functions ®), for j ¢ S, by

3 (z) = 8D (wz)  (z € Q(n)), (5.18)

where i and w are as above. We first check that ®U) is well-defined by (5.18). Suppose
we also have z'a; = §'a;w’ with 2/ € Z,, & € Gy and w' € Qy(n). Then w'w™! =
a; 1(8") 7102 2 ta; € I'®. Therefore @ (w'z) = @O (w'w™' - wz) = O (wz).

Next, we see that ®U) is left-invariant under (). For let Yy € f(j), say y = a]-_lvz' aj
with v € G and 2’ € Z,. Then wy = y'w, where y = a; 6 'vdz'a; € I'®. Therefore, for
all z € Qo(n),

30 (yz) = O (wyz) = 9 (y'wz) = D (wz) = V().

Since the ®® are left-invariant under f(i), a fortiori under e, they correspond as in
Proposition 84 to a function ® which is left-invariant under G. It only remains to show

that ® is invariant under Z,. Let a € G and z € Z,. Write a = ya;wo and za; = da;w
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with v,8 € Gy and wg, w1 € Qy(n). (Of course, i = j if and only if il(det z) is principal.)

Then a;lajwl = a;lé_lzai € f(i), SO
®(za) = ®(ajwiwg) = 3 (a; tajwy - wo) = 30 (wy) = B(a).
This completes the proof. ]

Corollary 89. Let S be as in Proposition 88. The constructions above give bijections

between

(i) the set of functions ®: Gy — V that are left-invariant under Gy and invariant under

ZA;

(ii) the set of Z-compatible h-tuples of functions ®©: Qo(n) = V such that, for 1 <i <
h, ®® is left-invariant under f(i), and

(iii) the set of families of functions ®®: Qq(n) — V, indezxed by i € S, such that for each

i€ S, ®9 is left-invariant under r@.

Proof. The bijection between (i) and (ii) follows from the definition of Z-compatibility

and the remarks that followed it, and that between (ii) and (iii) from Proposition 83. [

Corollary 90. Let S be as in Proposition 88. The constructions above give bijections

between

(i) the set of functions ®: Gy — V that are left-invariant under Gy, invariant under

2y, and right-invariant under [| Ky, and

(ii) the set of families of functions ®9: Qy(n) — V, indezed by i € S, such that for each

i€ S, ®® is left-invariant under I'D and right-invariant under [ K,.
Proof. Immediate, just as Corollary 85 is immediate from Proposition 84. O

Next, we need a version of Lemma 86 in which the functions ®() are left-invariant not
just under T® but under the larger groups (. For convenience, we define the related

groups
Tl = G N aiQo(n)ZAai_l.

We denote the centre of G, by Z.
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Lemma 91. For 1 < < h, the bijection of Lemma 86 restricts to one between

(i) the set of functions ®®: Qo(n) — V that are left-invariant under T® and right-

invariant under || K,, and

(ii) the set of functions ¢V : Goy — V that are left-invariant under T and invariant

under Zs.

Proof. Let ®® be given and define ¢(¥) by (5.16). Then ¢ is invariant under Z, for if
¢ € 2o, then (¢,1) € TW, so

D (¢8) = @D ((a7¢0ai) 00, 1) = D ((a; ' 0a;) 00, 1) = ¢ (5).

Now let v € Tl Choose z € 2, with a;'yza; € Qp(n). Then

¢ (v8) = 8 ((a; "y8ai)oo, 1)
=0 ((a7'y2a;) 00 (a1 60;) 00, 1) since (zo0,1) € T®
= 0Y ((a;'0ai) o0, (a7 'y2a:)g ") since a; 'yza; € T
=09 ((a;16a:)00, 1) since (a; 'vza:)0 € [ [ Ko
= ¢ (9)

Thus qb(i) is left-invariant under f[i], as required.
Conversely, let ¢ be given and define &) by (5.17). Right-invariance of & under

[] K, is obvious. Moreover, let w = ai_lfyza,- € f(i), where v € Gy and z € Z5. Then

v eIl so
<I)() ’) ( (aa; fyzazxa 1) )
’) ('yzoo a;xa; oo)
’) (zoo a;xa; ) by left-invariance under jd
@ ( a;xa; ) by invariance under Z,,
O ().
Thus & is left-invariant under f(i), as required. ]

We finally obtain the following analogue of Theorem 87.
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Theorem 92. Let S be as in Proposition 88. The constructions above give a bijection

between

(i) the set of functions ®: Gy — V that are left-invariant under Gy, invariant under

Za, and right-invariant under || K, and

(ii) the set of families of functions dD: G = V, indezed by i € S, such that for each

i €8, ¢\ is left-invariant under Tl and invariant under Zo.
Proof. Compose the bijections of Corollary 90 and Lemma 91. O

It is instructive to compare this result with Theorem 87. In the next chapter, we work

with functions invariant under
2ol

but Theorem 92 suggests imposing invariance under the (possibly) larger group
EARNCE

Of course, the distinction would not exist if we had the equality

z, T = z_pli,



Chapter 6

Automorphic forms

In this chapter, we define the automorphic forms and cuspforms of interest to us; roughly
speaking, these are the harmonic modular forms for the group Io(n). The necessary
background was developed in chapters 4 and 5.

For a description of modular forms over Q from the adelic viewpoint, the reader is
referred to [Wei71, §§3-5], which would serve as a suitable introduction to this chapter.

In §6.1, we describe the theory for a general number field k. In passing from QQ to k£ one
encounters complications arising from the embeddings of k£ and from its unit group and
ideal class group; this is the case, for example, in the classical treatment of Hilbert modular
forms, when k is totally real. These difficulties largely disappear with the adoption of the
adelic viewpoint. Our account is based on Weil’s book [Wei71].

In §6.2, we specialise to the case of an imaginary quadratic field of arbitrary class
number h. The case h = 1 was treated by Cremona [Cre81]; an automorphic form is then
a function f: 3 — C? invariant under T'o(n). In the general case, we obtain a family
of functions f( invariant under various “twists” of Tg(n). This formulation is clearly
more cumbersome than the adelic one, and would not seem persuasive without the adelic
derivation; its merit lies in its concreteness. Thus, we can apply results of Kurcanov

[Kur78] to express the space of cuspforms as a homology group which we can calculate.

140
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6.1 The general case

As in §5.2.2, let k be an arbitrary algebraic number field, let G equal GL(2) as an algebraic
group over k, let Z denote its centre, and write Gj and Z, for the corresponding adelised
groups.

Automorphic forms will be introduced as functions on G satisfying a number of con-
ditions. First we state their symmetry properties. Then we derive their Fourier expansions
and state the cusp condition. Finally, we state the remaining conditions and define auto-

morphic forms and cuspforms.

6.1.1 Symmetry properties

We choose an ideal n (the level) and a corresponding idele n, and define the groups K,
(for finite places v) as in §5.2.4. We also define groups K,, for the infinite places w, as

follows. Recall that

GL(2,R) if w is real,
Gy =

GL(2,C) if w is complex.

Accordingly, we choose a maximal compact subgroup K,, of each G, as in §4.2; explicitly,

O(2) if w is real,
K, =

U(2) if w is complex.
We put
K= HKv, Ky = HKw
all v wloo

Let ¢: ki /k* — C* be a quasicharacter of the idele class group, of conductor dividing
n. Write v, 1o for the quasicharacters induced by v on k; and kZ.

Let V be a finite-dimensional complex vector space, and let p: Ko — GL(V) be an
irreducible representation of K, which agrees with ¢ on the centre of K. Since p is
irreducible, it can be written as the tensor product p = ®p,, of irreducible representa-
tions py: Ky — GL(V), taken over the infinite places w [Wei71, §14, Remark 1]. The
representation space V' then equals ®V,,.

Let @: Gy — V be a function. We may consider the following conditions on ®:
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(A) ®(vg) = P(g) for all v € Gy, and g € Gy;
(B) @(g¢) = @(9)¥(¢) for all g € G and ¢ € Zy;

(C) ®(gk) = ®(g) for all g € G and & € [[' K,, (the product being over all finite places

not dividing n);

b
D) for v | n and for all g € Gp and xk = ¢ e K,
(D) g ;

nyc d
@(gr) = 2(9)¢(d);

(E) ®(gr) = ®(g)p(k) for all g € G and k € K.

Note that conditions (B) and (E) are compatible because of the assumption that p and

1) agree on the centre of K.

Lemma 93. (i) In (D), the map k — 1,(d) is a character of K,. The kernel K| of

this character is an open subgroup of K,.

(ii) For finite v not dividing n, put K|, = K,,. Put K' =[] K}, the product being over all
finite places v. Assume that ® satisfies (C) and (D). Then ® is constant on cosets
gK' with respect to K'.

Proof. This is [Wei71, §12, Remark 1]. The first part follows from our assumption on the
conductor of 1. Explicitly, v, is trivial on 1 + 7r{f (U)Dv where m]; (v)DU is the conductor of
1. Now let

Then dd' € O, so
KK > Py (nye + dd') = Py (d)py (d)1hy (1 + nyped (dd')~1);

here the last factor is 1, since 1@ | 7y. So K — 1y (d) is algebraically a homomorphism;
since it is clearly continuous, it is a homomorphism. Since K, is compact, the map is a

character.
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To show that K] is open, we use the fact that K, is totally disconnected, and argue
as in §5.1.4, with H = K,,. This proves (i). Part (ii) is clear. O

Now write B for the subgroup of G consisting of all elements of the form (g af), and

By for the corresponding adelised group; explicitly,

X
Ba=1 (" z €k, yE K]
01

The motivation for considering By is twofold. Firstly, according to Weil, if @ is con-
tinuous and satisfies at least conditions (A) and (B), then it is uniquely determined by its

restriction to Ba. Secondly, Weil [Wei71, §15] gives the decomposition
Ga = GpBaAK Zy; (6.1)

it clearly follows that any (not necessarily continuous) function ®: G, — V satisfying
conditions (A)—(E) is uniquely determined by its restriction to By. Thus, given &: G4 —

V, we define F': ky x ky — V by
Y
F(z,y) =9 . (6.2)
01
Lemma 94. Let ® satisfy conditions (A), (C), and (D), and define F by (6.2). Then F
has the following properties:
(a) F(z+n,y) = F(z,y) for all n € k;
(b) F(nz,ny) = F(z,y) for alln € k*;
(c) F(z+yz,y) = F(x,y) for each finite place v and all z € O,;
(@) Fle,uy) = F(a,y) for all u € [Ty O3

Proof. Part (a) follows from (A) with v = (;7), part (b) from (A) with v = (79). For
(c) use (C) and (D) with x = (%), and for (d) use (C) and (D) with k = (49). Note
that (a) and (b) are given by Weil [Wei71, §13], that (c) is the corrected version of Weil’s

n
0
0
1

(a’), misprinted loc. cit., and that (d) is stronger than Weil’s (b’). O
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Remark. Actually, our condition (C) above is stronger than the condition given by Weil

[WeiT1, §12];
(C") For v a finite place not dividing n and for all g € G, and k € K,,, ®(gr) = ®(g).

There are two reasons why we give (C) in place of (C'). Firstly, it is not clear that
Lemma 93 (ii) holds with (C') in place of (C), since (C') only allows one to adjust finitely
many places at a time. Secondly, we will need the strong version of Lemma 94 (d) in the

proof of Proposition 95, for the same reason.

6.1.2 Fourier series and the cusp condition

At this point, the theory of harmonic analysis on topological groups is brought to bear,
in order to express F' as a Fourier series. We follow the approach of [Wei71, §13]; where
necessary, it will be assumed implicitly that F is well enough behaved (square-integrable,
say) for Fourier theory to apply.

Once and for all, choose a non-trivial additive character v of k4, trivial on k. Every
character 1)’ with the same property can be written as 9'(z) = ¥ (éx) with £ € k*. For
each place v, write 1, for the character of &k, induced by v on k,. For v finite, we say that
1y is of order &, or that 1 is of order § at v, if ¢, is trivial on 7, °9, but not on 7, 9710,;
one can show that § equals 0 for almost all v. For each finite v, let 6(v) be the order of ¢
at v. Let d = (d,) be the idele given by d, = wi(”) for finite v and d,, = 1 for infinite w.
The idele d is called a differental idele belonging to 1; it depends upon the choice of the

prime elements m,, but the ideal il(d) does not. We may assume 1 chosen so that
V() = €722 when £k, = R,
Yy (x) = e 2mi(z+T) when k,, = C;

this determines v uniquely, and il(d) is then the different of the number field k in the

usual sense. Note that 1) is compatible with (4.35).
Proposition 95. Let ®: Gy — V satisfy conditions (A)—(D). Define F' by (6.2). Then

F has a Fourier expansion

P(z,y) = coly) + Y, clédy)y(&x), (6.3)

ek
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with co(ny) = co(y) for all n € k>, with co(uy) = co(y) for all u € [[O;, with c(y)
depending only on Yy and il(y), and with c(y) = 0 unless the ideal il(y) is integral.

Proof. In fact, it is sufficient to assume that F satisfies the conclusions of Lemma 94.
Because of (a), F' has a Fourier expansion
F(z,y) = co(y) + D, c(&y)v(Ew).
€k

By (b) we have, for n € k%,

F(z,y) = colny) + Y (& my)v(Enz)
= co(ny) + D _ cén™ ' ) (éa);

Therefore co(y) = co(ny) and c(&,y) = c(én~t, ny); in particular, for n = € we get ¢(&,y) =
¢(1,&y). Now put

c(y) = c(1,d7y),

where d is a differental idele belonging to 1. Then the Fourier series for F' has the form

(6.3). By (c), we must have, for all z € O,,

c(&dy) = c(&dy)p, (Ey2)-

By the definition of d this means that c¢(édy) = 0 unless ord,(édy) > 0. Putting £ =1
and replacing y by d~'y, we see that c¢(y) = 0 unless m = il(y) is an integral ideal; taking
(d) into account, we see that ¢(y) depends only upon m and y, and may thus be written
as (Yoo, M) With ¢(yeo, m) = 0 unless m is an integral ideal. Finally, (d) also implies that

co(uy) = co(y) for all w € [[O;. This completes the proof. O

The coefficients ¢y, ¢ in (6.3) are given by the usual Fourier formulae:
co(y) = F(z,y) d, (6.4)
ka/k

c(y) = c(yoo,il(y)) = F(z,d"y)y(—z)dz. (6.5)
ka/k

Definition. Let & be as in Proposition 95. We say that & is cuspidal if and only if
co(y) =0 for all y € k.
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Cuspidality can be defined for a more general class of functions ®; below, we sketch

the approach of Garrett [Gar90, §2.5]. For z € ky, put

Let ® satisfy (A). For € € k and g € Ga, put

Welg) = P(Ex)® (u(z)g) da.

ka/k

Proposition 96. There is a Fourier expansion

B(g) =Y Welg), (6.6)

&€k

and for p = (8 g) € Gy, the Fourier coefficients satisfy

We(g) = Wo-14¢(pg)- (6.7)

Proof. Put ¢(z) = ®(u(z)g). Then ¢ is k-invariant, so by Fourier theory there is an

L?-equality

Zwsx «pfw( ) da'.

Eek

Putting = 0 yields (6.6). Since pu(z) = u(ad~'z)p and ® is left-invariant under p, we

have
> b(Ex)Welg) = @ (u(x)g) = ®(u(ad 'z)pg) = ) ¢(ad '&x)We(py),
éek &ck
from which (6.7) follows by uniqueness of Fourier expansions.! O

In [Gar90], @ is said to be cuspidal if and only if Wy(g) = 0 for (almost) all g € G4.

Corollary 97. Let ® be as in Proposition 95. Then ® is cuspidal (in our sense) if and
only if Wo(g) =0 for all g € G, ByAKZx, where
a b

G;c: € Gy,
0 d

1Qur (6.7) differs slightly from the formula in [Gar90], which appears to be misprinted.
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Proof. The function Wy inherits properties (B)-(D) from ® and is left-invariant under G,
by (6.7). Thus Wy vanishes on G}, BAKZy if and only if it vanishes on By, which is if and

only if

1 =z Y z
/ i) de =0  forall (z,y) € ka X k.
ka/k 0 1 0 1

By (6.2), the integrand may be written F'(z+z,y). By a change of variables in the integral,

and (6.4), we deduce that W, vanishes if and only if ¢y vanishes, as required. O

Thus, if ® is cuspidal in the sense of Garrett, then it is cuspidal in our sense. In the
other direction, it suffices to assume that F' is left-invariant under S = ((1) *01 ), in view of

(6.1) and the well-known Bruhat decomposition Gy = G}, U G}.SG}; see [WeiTl, §15].

6.1.3 Automorphic forms and cuspforms
Let ®: Gp — V be a function satisfying conditions (A)-(E), as in §6.1.1.

Definition. The function ® is B-moderate if there exist constants C > 0 and A > 0 such

that, for all € kg and y € kf,
Yy T _
I Csup(ly*, [y ™),

where || || denotes any (fixed) norm on V.

If @ is B-moderate in this sense, then for each infinite place w, the induced function
®,,: Gy — V is B-moderate in the sense of §4.2.6; see [Wei71, §55].

From now on, assume that for each infinite place w, the differentials 3,, and w,,, and
the representation py,: K, — GL(V,,) are chosen as in §4.2, so that p,, relates differential
1-forms @, - wy, on Gy, and fy, - By, on Hy = Gy /Zyw Ky, in the manner of Lemma 57. Let
oo = | [ Hw carry the natural Riemannian structure; if £ has r real places and s complex
places, then $)o, has dimension 2r + 3s. We may regard ®0,, and Quw,, as V-valued

differential (r + s)-forms on $), and G, respectively.

Definition. The function ® is admissible of type Hoo if it is B-moderate on each G, and

the differential (r + s)-form @, - (®w,) on G is the pullback to G of a harmonic form
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Q on $Ho; note that *Q is then a form of degree [k : Q), since dimHoo — (r+s) =r+2s =
k: Q.

Note that this definition becomes greatly simplified when & has only one infinite place,

since there is then no need for tensor products (there being only one factor in each).

Definition (Imaginary quadratic case). The function ® is admissible of type H if

the induced function ®o: G — C* is admissible of type Hc in the sense of §4.2.6.

We are (at last!) ready to state the adelic definition of automorphic forms and cusp-

forms.

Definition. An automorphic form of weight p, character ¥ and type Hoo for To(n), or,
more briefly, an automorphic form of type (n,p,v,Hoo) is a function ®: Gy — V that
satisfies conditions (A)—(E) and is B-moderate and admissible of type Hoo. A cuspform

is a cuspidal automorphic form.

Remark. The analytic condition on ®, that it be admissible of type Hoo, is the natural
analogue of the requirement that a classical modular form be holomorphic. In order to
state the condition, we had to make a special choice of p. The general theory of automor-
phic forms allows a general p, and replaces the type Ho, by something more complicated.
We briefly sketch how this is done; for details, see [Wei71, §52]. The generalisation en-
compasses Maass wave-forms, for example.

For functions f on $9 and ¢ on GL(2,R), related in the usual way, holomorphy of f
amounts to real-analyticity and the Cauchy-Riemann equations; in terms of ¢, these may
be written as W¢ = 0, where W is the left-invariant differential operator on GL(2, R)
defined by the element (_1Z j) of its complexified Lie algebra. One can show that this is
equivalent to D¢ = 0, where the element D of the Lie algebra is a “Casimir operator”.

The generalisation is then as follows. For each real place, one specifies a (possibly

non-zero) eigenvalue d, and requires

D¢ = §¢.

Similarly, for a complex place, one specifies the eigenvalues §' and §” of two “Casimir
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operators” D' and D", and requires
DI¢:5I¢’ DII¢:5II¢;

the case ' = §"” = 0 is then more or less equivalent to the condition that ¢-w be harmonic.

Given p, only certain choices of eigenvalues d, &' and ¢§” are possible.

6.2 The imaginary quadratic case

In this section, we specialise to the case in which the number field & is imaginary quadratic.
Let ®: G4 — C? be a function satisfying conditions (A)—(E). The analysis of ® in §6.1
was based on the decomposition Gy = GEBaKZs. We now analyse @ in the manner

suggested by §5.2.7, based on the decomposition Gj = UG - a; - (Geo X [[ Ky)-

6.2.1 Symmetry properties

First, suppose that the quasicharacter 1) is trivial. By Theorem 87, the function ® corre-
sponds to an h-tuple of functions ¢ : Gy, — C?, with ¢() left-invariant under the group
rll,

Since k is imaginary quadratic, Goo = GL(2,C) = ZBK in the notation of §4.2.4. By
(B), ¢ is invariant under Z. Extend p by triviality on Z to a representation of ZK; then
(B) and (E) imply

¢ (gr¢) = ¢ (g)p(¢) (9 €G, k€K, (€ Z),

so that ¢(9) € S, in the notation of §4.3.2. Hence ¢(*) corresponds to a function f{: §3 —

C? as in Lemma 64; explicitly,

t =z
01

FO(z1) = ¢

Now consider the case of general . We must modify Theorem 87. Recall from
Lemma 71 that v, whose conductor divides n, induces a character y of (O/n)* given
by

x(@) = [ ¥w(@).

vn
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Similarly, by Lemma 93 (i), the map

I &. -, @« b = [T (@

vfoo c d vn
is a character of [] K,; we denote this character by . Thus (C) and (D) may be written

®(gr) = (g)Y (k) for all g € G4 and k € HKU,

and this condition replaces right-invariance under [] K, in Corollary 85. Equation (5.16)

is unchanged, but (5.17) must be replaced by
o) (x) = ¢ ((aiza; )oo) (o). (6.8)

Finally, it is necessary to assume that the a; are chosen in a special way, viz

0 1

where r; € k are ideles whose ideals il(r;) represent the distinct ideal classes. This choice

ensures that conjugation with a; does not affect the diagonal:
-1 .
a; a; = . (6.9)

Theorem 98. There is a bijection, given by (5.13), (5.14), (5.16) and (6.8), between, on
the one hand, the set of functions ® satisfying (A), (C) and (D), and, on the other hand,
the set of h-tuples of functions ¢D on G such that for 1 <i < h, for all v = (I 2) e Il
and § € G,

¢ (8) = ¢V (8) - x1(d). (6.10)

Proof. This is Lemma 86, mutatis mutandis. The point of interest is that

~

P((a; 'y ai)o) = x71(d),
using (6.9). O

With p extended to ZK by means of 9, the passage between ¢ and f( is just as

before.
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Remark. In the case of trivial ¢, we used only (A), (C) and (D) when we applied Theo-
rem 87. Using (B) as well, we could apply Theorem 92 instead, to show that ® corresponds
to a collection of functions ¢(: Go — C3, with ¢ left-invariant under the group f[i];
moreover, we could assume that the index ¢ ranges only over a set S as in Proposition 88.
Again, for general 1, we could generalise Z-compatibility, and replace Theorem 98 with

an analogue of Theorem 92. However, we shall not pursue this line here.

6.2.2 Fourier series and the cusp condition

We now develop () as a Fourier series, using ideas from [Cre81, §3.2] and [Gar90]. We
assume that ¢(®) is left-invariant under T, For fixed ¢, we may regard f() as a function
of z alone, and expand it in terms of the characters of C*, the additive group of C. These
characters all have the form z — (wz), for some w € C, where 1 is any non-trivial

character (c.f. Tate’s thesis, [Tat67, §2.2]). Of course, we choose 9 as in (4.35), that is
P(z) = exp(—2mi Tr(z)) (€ 0.

Define

. 1 w .
wh ={ weo el
01

This set is clearly a Z-module, but need not be an ideal of O, not even in the Euclidean
case (pace [Cre81, p.34]). In some sense, W) may be thought of as the “width” of the
cusp at infinity. For w € W),

1 w t =z
0 1 0 1

FOz+w,t) = ¢ = 19(z,1). (6.11)
From here on, we fix the index i and write f = f() and W = W®. From (6.11), it follows
that f has a Fourier expansion in terms of the characters of C™ that are trivial on W.
The character z — 1(wz) is trivial on W if and only if w € W*, where W* is the dual
Z-module of W, viz

W*={wek|Tr(wW)CZ}.



CHAPTER 6. AUTOMORPHIC FORMS 152

Thus the expansion of f takes the form
fzt) = colt) + Y ce(t)p(éa). (6.12)
Eew
The coefficients c¢ are given by the usual Fourier formulae:
w®)= [ fetdn ety = [ flzt0p(—€2)dz
c/w o/w
Equation (6.12) may be thought of as the expansion of f at the cusp at infinity. As
usual, we must consider Fourier expansions at all the “k-rational” cusps P!(k) = kU {oo}.
If o € GL(2, k) sends oo to the cusp s, and f is invariant under a subgroup I' of GL(2, k),

then f ‘a is invariant under o~ 'T'o, since for v € T,

(flo) (0™ ya) = fl(yo) = (f|1)]o = flo.

Let

1 w 1
Ws=S weo co To
0 1

(Since the (%) for w € W fix oo, they even lie in 0™ 'I'yo for [y = {7y €T | ys =s},
but we shall not need to use this fact.) As before, f |o has a Fourier expansion of the form
(Flo)(zt) = o) + Y ce(t)(€). (6.13)

Lewy
Definition. We say that f vanishes at the cusp s if ¢o(t) vanishes in (6.13); note that, in
general, this does not mean that f(s,t) — 0 as t — 0, but rather that (f|a)(z,t) — 0 as

t — o0.

The property of vanishing at s is well-defined, i.e. independent of the choice of o, as
we now show. Any other choice has the form ¢’ = o7, where 7 € GL(2,k) fixes co and

may thus be written 7 = (8 3). Therefore,

(f‘a')(z,t) = (f‘a)((az +b)/d, at/d) by (4.57)
= co(at/d) + Y ce(at/d)p(E(az + b)/d) by (6.13).
gewy

Since ¢o(at/d) = 0 for all ¢ if and only if ¢y(¢) = 0 for all ¢, we see that vanishing at the

cusp s is indeed well-defined.
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Lemma 99. Let f: $3 — C* be invariant under the group T'. If f vanishes at the cusp

s, then it also vanishes at each cusp s for v € .

Proof. If 0 € GL(2,k) maps oo to s, then yo maps oo to vs. We must compare the

co terms in the Fourier expansions of f|0 and f ‘(70) — but these are the same, since

fl(vo) = (f|n)|e = flo- O
Definition. We say that f is cuspidal if it vanishes at all the cusps.

Remark. In view of Lemma 99, we see that this is really a set of conditions, one for each
cusp of I'; recall that “cusp of I'” means “I'-equivalence class of cusps”. This closely

resembles the situation in the classical theory of cuspforms over Q, as in [Kob84, §III.3].

The expansion (6.12) takes a special form if f - 4 is harmonic, as our next proposition
shows. The same is true of (6.13) if (f |0’) - B is harmonic; in fact, Cremona [Cre81]
implicitly assumes that harmonicity of f - 8 ensures harmonicity of L (f - 8) = (f |0) - B,

but we will not need this here.

Proposition 100. Let f: 3 — C3 be given by the Fourier series

flzt) =colt) + > ce(t)ip(&2).

£ecx

Suppose that f - B is harmonic and f is B-moderate. Then
co(t) = (CO,OtaCO,1t27CO,2t) (6.14)
for constants co o, co1 and co2, and

ce(t) = c(§)H (t[¢]) - diag(&/[€], 1,€/1€]) (6.15)

for each & € C*, where ¢(£) is a constant depending on & and where H(t) is given by
(4.39).

Proof. We give two proofs. The first is a calculation generalising the proof of Lemma 63;
the second uses a trick to enable Lemma 63 to be applied directly. Write f = (fo, f1, f2)
and cg(t) = (°(&,1),c (€, 1), (&, t)). Note that

9 ben) = —omityea),  (e) = ~2miE(ce)
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By (4.33a),

0= (-2miec’(&, ) - 2miec* (&, ) ) w(€2)

£eCx

whence

£ (&) = —¢P(&,t) (6.16)

for all £ € C*. By (4.33b),

0= 0.0~ 00,0 + Y (—2rige (60) + F6 D ~ 06D ) vies)

g£ecx

whence
L 000,4) = 10, 1) (6.17)
dt 9 bl b)
and
~amige (€,1) + TE 1) ~ 17 1) = 0 (6.18)

for all £ € C*. Similarly, (4.33c) gives

%8(0,:&) =t 1c%(0,1), (6.19)
and
ComiEe (6,1) — L6, t) + 1R, 1) = 0 (6.20)

dt

for all £ € C*. Note that given (6.16), equations (6.18) and (6.20) are equivalent and may

be simplified to

%(t—lc‘)(g,t)) — amietLc (¢, 1). (6.21)

Lastly, by (4.33d),
0=L200n-con+ Y (ficl(g 1) — L&, ) + Amiftc (¢ t)) w(E2)
- 2dt ) ) Zdt ) ) ) )

£eCx
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whence
%%cl 0,4) = ¢(0,2), (6.22)
and
%%cl (6.1) — cL(€,1) + AmitO(£,1) = 0 (6.23)
for all £ € C*; this simplifies to
%(t‘%l (&,1)) = —8mikt (&, b). (6.24)

Solving (6.17), (6.22) and (6.19) clearly gives (6.14), whilst (6.21) and (6.24) give
td—Q(t_ch) + i(t_ch) — 167262 et = 0.

dt? dt
This is the same equation as in the proof of Lemma 63, but with 7|£| substituted for .
Hence, up to a constant multiple, the only solution which does not increase exponentially

for t =+ o0 is
c'(&,t) = 2 Ko (4r|€lt).

Hence

SE1) = e tETIer). P60 = 5 (amiel)

Thus, up to a constant multiple, c¢(t) is given by (6.15).

We now give the second proof, which is based on the argument in [Cre81]. Define
ce(z,t) = ce(t)y(€z). If f- B is harmonic, then so is ¢y(t) - 3 and each c¢(z,t) - 8. This fact
is stated without proof in [Cre81], but may be obtained as a by-product of the calculation
above. Thus, (6.17), (6.19) and (6.22) show that co(t¢) satisfies (4.33), i.e. that ¢o(t) - 8
is harmonic. Similarly, equations (6.16), (6.18), (6.20) and (6.23) respectively show that
ce(2,t) satisfies (4.33a)—(4.33d), i.e. that c¢(z,t) - 3 is harmonic.

We cannot apply Lemma 63 to c¢(2,t), because the z-dependence is via ¥(£z), not

¥(2). The idea now is to put cz(z,t) = ce(z671,t¢71); for this to make sense for non-real
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&, we extend f, and hence each ¢, by means of formula (4.43), to a function on C x C*,

not just on $)3. Hence we define

cg(t) = ce(tlg| ™) - diag(€/[€], 1,€/1€])

and put

ce(2,1) = ce()1h(2);

equivalently, we could define

ce(z,t) = ce(2671, 1] 7) - diag(€/[€], 1,€/1€])

and put

c(t) = cg(0,1).

We now claim that the harmonicity of c¢(z,t) - # implies that of c'g(z,t) - 3, a fact
which is implicitly assumed in [Cre81]. There are two ways of seeing this. One is to
evaluate (4.33a)—(4.33d) for c¢(z,t) at (2671,t[¢| 1), to verify the corresponding equations
for ¢i(2,t). The other is to verify that () = (90(t),91(t), g2(t)) satisfies (4.40)-(4.42),

using the formula

gi(t) = fiw, ) (—Ew)dw

together with (4.33a)—(4.33d), integration by parts, and (6.11).
Since c’g(z,t) = c’ﬁ(O,t)zp(z), we may apply Lemma 63 to c'g(z,t), giving c’g(t) =
c(&)H (t). Consequently,

ce(t) = ce(tle]) - diag(€/€],1,€/1€),

giving (6.15). This completes the proof. O

6.2.3 Automorphic forms and cuspforms

We can now give a concrete definition of automorphic forms and cuspforms over an imag-

inary quadratic field. For convenience, we summarise the relevant notation.
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Let k be an imaginary quadratic field of class number h and ring of integers . Let n be
an integral ideal (the level), and let ¢: J"/P"™ — C* be a character, inducing a character
x: (O/n)* — C* in the manner of Lemma 71. Choose ideles r; € ky, with (r;)e = 1,
such that the fractional ideals il(r;) represent the h ideal classes of k; by convention, we
usually take 7 = 1 to represent the principal class. Put R = (r1,...,7r3). Let a; = (7 9),

and
T = {y € GL(2,k) | a;'ya; € Q(n) } .

Definition. An automorphic form of weight 2 for (Io(n), R), with character ¢, is an
h-tuple F = (f, ..., f®) of functions f@: $3 — C3, such that each f) is admissible
of type Hc, and such that for 1 <i < h,

f(i)"y =x ') fO forall y= (r5) € ri, (6.25)
Moreover, F is a cuspform if each f() is cuspidal.

The qualification “of weight 2”7, to be omitted henceforth, refers to the representation
p of SU(2) which is implicit in the definition of the action f(*) |7. Also, the h-tuple of ideal
class representatives R is usually regarded as fixed,2 and we often speak simply of forms

for To(n), rather than for (To(n), R).

Notation. The complex vector space of cusp forms for I'y(n) with character ¢ will be
denoted Sp(n,?). In particular, the space of cuspforms with trivial character will be

denoted Sp(n).

Note that the only part of the definition of automorphic forms to depend on n is the
transformation condition (6.25). So if n | n’, then an automorphic form for (I’O(n),R)
is automatically an automorphic form for (To(n’), R), since in this case, Q(n) 2 Qo(1').

More succinctly,

n | nl == SO(na d)) - So(‘l'll,d)).

In fact, thanks to the adelic viewpoint, we know that the apparent dependence on R is a mirage.
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6.2.4 Homology

We briefly discuss how we can use results of Kurcanov [Kur78] to express Sy(n) as a
homology group. It is this which we then calculate elsewhere in this thesis.

We adopt the notation of Kurcanov, and put I'}(n) = Tll. We write $% = H3UkU{o0},
and equip it with the usual topology. For an arbitrary discrete subgroup I' of GL(2, k), we
denote by Xt the topological space I'\$3;, and by Xr its subspace I'\$)3. In the case when
I" is torsion-free, i.e. has no elements of finite order, Xt is a real analytic Riemannian

manifold, with compactification Xt. We now form the disjoint union
h
Xo(m) = [ Xrym-
i=1
The object of central interest is the first cohomology with coefficients in C,
h
H'(Xo(n),C) = P H" (Xrjw), C). (6.26)
1=1

We now sketch how this is to be interpreted when (some of) the groups I'} (n) have elements
of finite order, referring to [Kur78] for details. Namely, for each i, we choose a torsion-free
normal subgroup T'; of finite index in T(n); such a subgroup exists by a general theorem

of Selberg [Cas86, Ch.5, Theorem 4.1], since I'}(n) is finitely generated. We put

h
X =%
i=1
Clearly,
h
H'(X,C) =@ H'(X1,,0). (6.27)
=1

For each i, the quotient group I'}(n)/I'; acts on the manifold Xr, and on its cohomology;
(6.26) refers to the invariant subspace of (6.27) under these actions.

Kurcénov now defines certain spaces P(n, ), similar to our spaces Sy(n,), and puts
P(m) =) P(n,4),
P

where the sum runs over all the unramified Dirichlet characters of k. The main theorem

of [Kur78], which may be thought of as a version of the Hodge decomposition theorem,?

3see Chapter 4



CHAPTER 6. AUTOMORPHIC FORMS 159
is

P(n) = H'(Xo(n),0),
where the isomorphism is induced by

(FY ) = (08, f - )

we say “induced” rather than “given” because a differential form f(*) . 8 may have to be
replaced by a cohomologous form that is fixed by the action of T} (n)/T};.

There is an exact duality
Hl(XO(n)a (C) X HI(XO(n)a (C) — (Ca

given by integrating a differential form along a chain; this is essentially de Rham’s theorem.
Remarkably, the duality works at the level of the rational (Hecke) structure [Kur78], so it

suffices to work out

Hi(Xo(n), Q) (6.28)

and the Hecke action on this space. The rational homology is generated by paths between
cusps, and conversely, any path between cusps is rational. (The corresponding situation
in the case of classical modular forms over Q is described by the Manin-Drinfeld theorem:;
see [Cre97] for details.) We can therefore calculate (6.28) using modular symbols; basically,

the modular symbol {A, B}r is the (complex) homology class identified by duality with

B
wr—>/ o*w,
A

where w denotes a differential on Xr, and ¢: H3 — Xr denotes the natural map. In fact,

the functional

we will only compute
V(n) = Hi(Xrym), Q); (6.29)

this is equivalent to finding only the f() component of a cuspform.
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Remark. It may appear inelegant that the P(n,1)) are not the same as our Sy(n, ). The
space P(n,) is defined adelically, much like our functions ®: G — C3; the difference is
that (D) is replaced by right-invariance under K,. The result is that (6.25) is replaced
by invariance of £ under I'l", which means that f(®) - 3 may be viewed as a differential
form on the quotient space Xr;;. This is obviously very convenient in [Kur78], because it
makes the main theorem work, but it does mean that the main theorem does not compute

the space of greatest interest to us. Fortunately, P(n,?) and Sy(n,v) do coincide when

=1



Chapter 7

Modular points and Hecke theory

It is well known that classical modular forms for SL(2,Z) correspond to certain functions
on Z-lattices in C. This idea, briefly described in §2.1.2, extends to forms for the main
congruence subgroups of SL(2, Z); such forms correspond to functions on “modular points”
defined over Z, which are Z-lattices in C equipped with some extra structure. Modular
points may be used to introduce Hecke operators; the theory is described in [Kob84].

In fact, C is playing the réle of R?, and the theory works because Q has a unique
infinite place, which is real. The purpose of this chapter is to develop an analogous theory
when Q is replaced by an imaginary quadratic field k, and R? by C?. For much of the
chapter, we allow k to be an arbitrary number field embedded in C (even a totally real
field). However, the application to bear in mind is when & — C is the unique archimedean
embedding. We consider the most important congruence subgroups of I' = GL(2, D),
namely T itself, Tg(n), T'1(n) and I'(n); we write I’ in the generic case.!

We begin in §7.1 by defining lattices in C". We then introduce the set M = M(T") of
modular points for I as a set of lattices in C? equipped with certain extra n-torsion data.
In §7.2, we use modular points to develop a theory of “formal” Hecke operators; they form
a certain ring of endomorphisms of the free abelian group on M.

In §7.3, we introduce the rather ad hoc notion of an admissible basis of a modular

point, and prove some technical lemmas. The case of I'(n) turns out to be unsatisfactory,

1We shall not need to consider the derived subgroup (commutator subgroup) of I', so the notation I"

should not cause confusion.

161
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which may reflect the non-existence of a Hecke theory for I'(n). (In the classical case, that
problem is overcome by “twisting” forms for I'(V) into forms for I'i (IV); in the imaginary
quadratic case, a proper theory of twists has yet to be worked out.)

The purpose of §7.3 becomes clear in §7.4, where we show that modular forms for I'y(n)
over an imaginary quadratic field may be viewed as functions on modular points. This
viewpoint allows us to use the “formal” Hecke operators of §7.2 as “actual” operators on

the space of modular forms.

7.1 Modular points

7.1.1 Lattices in C"

Let k be a number field with ring of integers . Fix an embedding k& — C; this makes C”
into a k-module and hence an O-module. We shall be interested in certain 9-submodules.
There is clearly an induced embedding k" — C7, so that lattices in k" (as discussed in
§1.1.4) become lattices in C"; the purpose of this section is to describe a broader class of
lattices in C".

If k C L C Cis a tower of fields, and A is an O-submodule of C", then the L-subspace

of C" spanned by A is just

LA = { Zaiwi

Definition. An O-lattice in C" is an O-submodule A of C" satisfying

a; € L, wiEA}.

(i) CA =C, i.e. A generates C" over C;
(ii) there are D-modules F, F' C C7, free of rank r over O, such that F' C A C F}
(iii) A is finitely generated over O, and dim(kA) = 7.

We abbreviate “O-lattice” to lattice when the intended O is clear from the context.
Condition (i) excludes submodules which are not “discrete” in the appropriate sense. For
example, A = O(1,0) ® O(x,0), with = ¢ k, is not a lattice in C2, even though (ii) holds
with F = F' = A. Conditions (ii) and (iii) are equivalent, as we now show; in practice,

(ii) is often the easier to verify.
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Proof of equivalence. Assume (iii). Since A is obviously torsion-free, A is a (rank r) O-
lattice in kA. By our remarks at the start of §1.1.4, this implies (ii).

Conversely, assume (ii). Since F//F' is torsion, it is finite of order equal to the norm
of the ideal ord(F/F"). So A is finitely generated, viz by the r generators of F' together

with coset representatives of F' in A. Obviously dim(kA) = r, proving (iii). O

Essentially, where in §1.1.4 we considered lattices on the fixed (abstract) vector space
k", we now consider lattices on all the r-dimensional k-vector spaces E C C" satisfying
CE = C; for a given lattice A C C", the space F is just kA. All our earlier results on
lattices may be applied to lattices in C", for the constructions are all taking place inside
the appropriate E. Thus, if A’ D A are lattices and a is a fractional ideal, then aA is a
lattice, and A, A’ and aA all embed in the same E.

Finally, note that if A” D A are lattices, then any O-module A’ satisfying A” D A’ D A

is automatically a lattice, by (ii) above; this fact will often be used implicitly.

7.1.2 Modular points

Let T' = GL(2,9), let n be an integral ideal of O, and let IV be one of the congruence
subgroups I, T'y(n), ['1(n) and T'(n). Of course, I' = ['y(O) =T'1(O) = T'(D), so everything

we say about the cases ['g(n), I'1(n) and I'(n) will apply to I if we set n = ©O.
Definition. By a modular point for I" we mean:
(i) for I =T: a lattice A C C?;

(i) for I = Ty(n): a pair (A,S), where A is a lattice in C? and S C C?/A is a (cyclic)

9-submodule isomorphic to O /n;

(iii) for I = T'1(n): a pair (A,t), where A is a lattice in C?> and t € C2/A is an element

with annihilator n;

(iv) for I'" = ['(n): a pair (A, (t1,t2)), where A is a lattice in C* and ¢, € C?/A are

generators over 9 of the total n-torsion submodule n~!A/A of CZ/A.

In each case, A is called the underlying lattice of the modular point.
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We make some remarks about these definitions. In (iv) above, pairs (¢1,%2) always
exist, for by Lemma 8, n"'!A/A = (9/n)?, so we may take as ¢, the pullbacks of
generators of the two summands O /n.

Thus also, in (iii), a suitable ¢ always exists, for example ¢ = #;. Finally, in (ii), a
suitable S always exists, for example S = Ot. The number of different ¢ giving rise to the
same S is of course ¢(n) = |(O/n)*|. In other words, in (ii), the isomorphism O/n = S is
only determined up to automorphism of S, whilst in (iii), we fix an isomorphism 1 ~ t.

Given a lattice A, there will in general be several modular points of the form (A, S),
(A,t) and (A, (t1,t2)). However, when n = O there is only one modular point correspond-
ing to each A, and we identify it with the modular point A for T.

Various concepts associated with lattices will be extended to modular points without
further comment; for example, the Steinitz class of a modular point is the Steinitz class
of its underlying lattice, and a modular point is free if its Steinitz class is trivial.
Notation. The set of modular points for I is denoted M(I"). The subset of free modular
points is denoted M (T).

It will be convenient to adopt the following notational convention regarding towers of

lattices.
Notation. Let A’ D A be lattices. If (A, S) is a modular point for Ty(n), we write S’ for
the image of S modulo the larger lattice A’. Similarly, if (A,¢) is a modular point for
I'y(n), we write ¢’ for the image of ¢ in C*/A’. Again, if (A, (¢1,%2)) is a modular point for
I'(n), we write ¢ and t, for the images of #; and to in C2 /A’

In general, (A’,S’") need not be a modular point for Ty(n). It will be one, however, if

ord(A’/A) is prime to n, as we now show.

Lemma 101. Let M = M(To(n)), and let A’ D A be lattices with ord(A'/A) prime to n.
Then (A,S) e M = (A, S") e M.

Proof. Let T = A’/A. Then n annihilates S and ord(7’) annihilates T, so O = n + ord(T)
annihilates S NT. Therefore, SNT = 0. But T = ker(C? /A — C2/A"). So §' = S =2 O/n.
So (A, S") € M, as required. O

Corollary 102. The analogous result holds for T'1(n) and I'(n).
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Proof. Let (A,t) be a modular point for I';(n). By Lemma 101, Ot = Ot = O/n, so
t' has annihilator n, and (A’,¢') is modular. For (A, (t1,%3)) we argue as in the proof of

Lemma 101, with O¢; + Ots in place of S. O

7.2 Formal Hecke theory

Let T be one of the congruence subgroups considered above, let M = M(F'), and let
ZM be the free abelian group generated by M. We shall define formal Hecke operators
as certain endomorphisms of ZM. For concreteness, we shall work with I'g(n), but the
formalism applies, mutatis mutandis, to the other congruence subgroups.
For each integral ideal a of £, define a Z-linear map T,: ZM — ZM by
T.(A,S) = > (.8
A'DA
ord(A'/A)=a
(A", )eM
This sum is over all those superlattices A’ of A with ord(A’/A) = a and (A’, ") € M; the
sum is finite because any such A’ satisfies A C A’ C a=!A, and a='A/A = (9 /a)? is finite.
Also, for each integral ideal a of O prime to n, define an endomorphism 7, q: ZM —

ZM by
Toa(A,S) = (a7'A, "), (7.1)

where, as usual, S’ denotes the image of S modulo the larger lattice. By Lemma 101, this
definition makes sense, that is to say, (a”'A, S") € M.
We shall shortly derive some identities between these operators and prove that they

commute pairwise. Qur first proposition records some almost obvious facts.

Proposition 103. The operators ZM — Z.M introduced above satisfy the following iden-

tities:
(i) T<i> = T<1>,<1> = 1 = identity map.
(ii) For a and b both prime to n,

Ta,aTb,b = Tab,ab = Tb,bTa,u-
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(iii) For a prime to n and any b,

To,aTo = TpTa,a0-
Proof. Clear. O
Proposition 104. If a and b are coprime, then T, and Ty, commute. In fact,

ToTy = Tap- (7.2)

Proof. We compute the action of both sides on generators (A, S) of ZM.

Tw(A,S) = ) (A9 (7.3)
AII;A
ord(A” /A)=ab
(A",S")eM
T.Th(A,S) = ) > @S (7.4)
AIQA A”QA’

ord(A’/A)=b ord(A”/A")=a
(A,8"Yem (A”,8")em

First note that, by the tower law, every (A", S”) arising in (7.4) arises in (7.3). We must
show that, conversely, every (A”,S") arising in (7.3) arises in (7.4) for one and only one
A

Given (A”,S") arising in (7.3), by Lemma 11 there is a unique lattice A’ such that
A" D AN DA, ord(A"/A") = a and ord(A’/A) = b. Moreover, since (A”,S") € M, it is
clear that (A’,S") € M, completing the proof. O

We now consider T, for a a power of a prime ideal p. The situation is simpler when p

divides the level.
Proposition 105. Let p be a prime ideal dividing n. Then for n > 1,

Ty = (Ty)". (7.5)
Proof. By induction on n, it suffices to show that Tynt1 = TpTy» forn > 1. Let (A, S) € M.

Tynt1(A, S) = > (A", 8" (7.6)
AH QA
ord(A” /A)=pn+1
(A",8")eM
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T,T(A,S) = ) dooo@,s) (7.7)
AIQA A”QAI
ord(A’/A)=p"  ord(A”/A')=p
(A’,S’)EM (A”,S”)EM
By the tower law, every (A”;S") arising in (7.7) certainly arises in (7.6). We must show
that, conversely, every (A", S") arising in (7.6) arises in (7.7) for one and only one A’.

It suffices to show that given A” D A with ord(A”/A) = p"*! and (A", S") modular,
there exists a unique lattice A" with A” D A’ D A and ord(A”/A’) = p, since for such A’ it
is automatic that ord(A’/A) = p™ and that (A’,S’) is modular.

The key step is to observe that A € pA”. Otherwise, writing n = pn’, we would have
pn'S C A C pA”, whence n'S C A", contradicting S” = O/n, i.e. (A”,S”) modular. Hence

Lemma 13 applies, completing the proof. O

In the case when p does not divide the level, we need the operator T , introduced

earlier.

Proposition 106. Let p be a prime ideal not dividing n. Then forn > 1,
TpnTp — Tpn+1 + N(p)Tpn—lTp’p (78)

Proof. Let (A,S) € M. We apply the various operators in (7.8) to (A,S). Because of
Lemma 101 and the assumption p { n, the condition on S is automatically fulfilled for all
lattices A’, A” considered below.

By Corollary 9, ord(p~'A/A) = p2. So by the tower law, Ty=Ty(A, S), Tyn+1(A, S) and
Tyn-1Typ(A,S) are linear combinations of modular points (A”,S"), where A” O A and
ord(A"/A) = p™ti.

Let A" be a lattice with A” D A and ord(A”/A) = p™*+1. In the above linear combina-
tions (A", S") appears with respective coefficients a,b and ¢, say. We have to show that
a =b+ N(p)c. Clearly b =1, so we must show that a =1+ N(p)c.

We have two cases. First, assume that A” 2 p~'A. Then ¢ = 0, and a is the number
of lattices A’ satisfying A” D A’ D A and ord(A’/A) = p. The assumption A ¢ pA” allows
us to apply Lemma 13, giving a = 1 as required.

Now assume instead that A” D p~!A. Then ¢ = 1. Any lattice A’ having ord(A’/A) = p

satisfies pA’ C A C pA”, so satisfies A’ C A”. So a is the number of such lattices A’. Since
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such a A’ satisfies A’ C p~!A, the number of such A’ is just the number of non-trivial proper
submodules of p~'A/A = O/p @ O/p. Because p is maximal, O/p is a field with N(p)
elements, and a is just the number of one-dimensional vector subspaces. So a = N(p) + 1.

This concludes the proof. O

If a = p$' - - - p& is the prime factorisation of the integral ideal a, then (7.2) shows that
Ty = Tyer -+ Tyer. Then (7.5) and (7.8) show that each Tyes is a polynomial in Tp,; and
Ty p;- It is easy to see from this and Proposition 103 that all of the operators T, (for
a any integral ideal) and T o (for a prime to n) commute with each other. Thus, these
operators generate a commutative algebra H of Z-linear maps ZM — ZM. Of course, H
is already generated by the T}, , (for p { n prime) and the T, (for p any prime).

There is an elegant way to summarise equations (7.2), (7.5) and (7.8) as formal power
series identities, where the coefficients of the power series are elements of #. First, for
p | n, we can restate (7.5) as follows:

oo 1
I _
IE_O:T,,[X “TE p|n, (7.9)

that is, (3 7,; X')(1—T,X) = 1 in H[[X]]. This follows from (7.5) by equating coefficients,
because the coefficient of X' for I > 0 is Ty —Ty-1T,. Similarly, for p { n, (7.8) is equivalent

to the identity

o0
1
T.X! = : 1
lz_; i 1-T,X + N(p)T,, X2 " fn (7.10)

For by equating coefficients of X in (3 T, X") (1 — T, X + N(p)T;,X?) = 1 we see that

(7.10) is equivalent to the equalities
Ta> =1,

sz — Tpl—lTp + N(p)sz_sz,p =0 for I > 2.

To incorporate Proposition 104, we introduce a new variable s € C by putting X =

N(p)~* for each p in (7.9) or (7.10). We then take the product of (7.9) over all p with
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p | n and of (7.10) over all p with p {n:

1 1
HZT[ Ny =1l 1—T,N(p)~* g{ 1 —TyN(p)=* + T N(p)' =2

p 1=0 pln

Using Proposition 104, uniqueness of the prime factorisation a = p$*---pt, and the re-

lation N(a)™% = N(p{*)~%--- N(p&)~%, we can multiply out the left hand side, much as

T

in the proof of the Euler product expansion for the Riemann zeta-function. We conclude

that

1 1
ToN(a . 7.11
2N =g i pxp g, s O

Remark. One could consider an analogous theory based on lattices of rank r and a suitable
definition of modular points. The proof of T,T, = T}, would be unchanged. However, the
analogues of (7.5) and (7.8) would be more complicated, because of the failure of unique-
ness in Lemma 13 when r > 2. The appropriate Euler factors would be correspondingly

more complicated.

7.3 Admissible bases

This purpose of this somewhat technical section will become clear in §7.4. Once and for
all, let p1, ..., pp be integral ideals of O representing the h ideal classes; as usual, we take
p1 = O to represent the principal class. When necessary, we will further assume (as we

may by Lemma 1) that the p; are chosen so that

pitn=9. (7.12)

7.3.1 Bases of arbitrary lattices

By structure theory (§1.1.3), every lattice A C C2 is isomorphic to p; ® O for some i,
called the class of A. Hence A has the form p;uw; @ Ows for vectors wy,wy € C? which are
linearly independent over C. By abuse of language, we call wi,ws a basis for A, even when

A is not free.? In the free case, of course, a basis is unique up to transformation by an

2 A purist might say “quasibasis”, but no confusion will arise.
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element of I' = GL(2,9); for the general case, we need the “generalised Bianchi groups”

GLy,(2,9) of Chapman [Cha94], defined by

a b
GLy,(2,0) = a,d €9, bep;', cepi, ad—bec € O
c d

Lemma 107. The bases of a lattice A = pjw1 @ Dwy are precisely those wi,w) € C?

satisfying

w w
B (7.13)
CL)Q w2

for some v € GLy,(2,9).

Proof. Let w},w) be a basis. Certainly (7.13) holds for for some v = (¢%) € GL(2,k). In
fact, as wh € A, we have ¢ € p; and d € O; as p;w] C A, we have p;a C p; and p;b C O,
ie.a€eDand b e pz-_l. It follows that dety € ©. By symmetry, (dety)~! € O, whence
dety € O*. Thus v € GLy,;(2,9).

Conversely, let v € GLy,(2,9) and define w},w) by (7.13). Then

piw] + Owh = pilawr + bws) + O(cwr + dws) C piwr + Dwy = A,
and
A = piw1 + Owy = p;(dw’ — bwh) + D(awh — cwl) C piw] + Ows,
proving A = p;w] @ Ouwh, as required. O

Notation. Let wy,wy € C? be linearly independent over C. We may regard the row vectors

w1,ws as the rows of a matrix

w
w= € GL(2,C),
w2

and define

A‘(j) =piw1 D Ows.
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(2)

The sum is direct because the w; are even independent over C. Thus w +— Ay’ is a

surjection from GL(2,C) to the set of lattices of class 4.

Notation. The set of modular points of class 7 for I is denoted M;(I"'). Thus, there is a

disjoint union
M(T') = [ Ma(T). (7.14)

Our first task is to construct a modular point for T with underlying lattice Ag); this
gives rise to functions GL(2,C) — M, (T"), which we denote by w P, A basis w of a
modular point P of class ¢ will be called admissible if P = Pu(,i). We will then discuss the
existence of admissible bases and to what extent they are unique.

It is instructive to begin with the special case of free lattices, firstly, because it is
simpler to deal with, and secondly, because it is sufficient for some applications. In the

special case, we can omit the superscripts, writing w — A, and so on.

7.3.2 Special case: free modular points

1

Once and for all, choose 8 € n™" as in Lemma 2; recall that it satisfies

n =90+ 98, n={zeO|zpeOD}.

Given a free lattice A, we may use 3 to write down an element of each M1 (T"); this is
accomplished by our next lemma. The case © = Z, n = (N) occurs in [Kob84]; in the

general case, the role of 1/N is played by £.

Lemma 108. Let wi,ws € C? be linearly independent over C. Define a lattice A in C?
by A = A, = Ow1 & Ows. Then

(1) A S Ml(r)7
(i) (A, (DBws +A)/A) = (A, (n"lwy + A)/A) € My (To(n)),
(iii) (A, Bwz mod A) € M (T'y(n)),

(iv) (A, (Bwi mod A, Bws mod A)) € My (T'(n)).
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Proof. Case (i) holds by definition. For (ii), define a map O — (Ofws + A)/A by z —

zfws mod A. This is clearly surjective, with kernel
{z€D | 2fweA}={z€D|zeD}=n. (7.15)

So (DBwa+A)/A = (ntwy+A)/A = O /n, as required for (ii). Equation (7.15) also shows

that the annihilator of Sws mod A equals n, proving (iii). To verify (iv), we observe
DPwi + OPws + A = 11_1(4)1 + n_lwg + A= n_lA
showing that the Bw; mod A do generate n~*A/A, as required. O

We remark that the modular points in (i) and (ii) do not depend on the choice of 3,

although of course those in (iii) and (iv) do.

Notation. The function GL(2,C) — M7 (I") constructed in the lemma will be denoted
w— P,.
Definition. An admissible basis of a free modular point is
(i) for A € My(T'), any basis of A;
(ii) for (A,S) € M1 (Tg(n)), a basis wi,ws of A such that S = (A + OBws)/A;
(iii) for (A,t) € Mq(T1(n)), a basis wy,ws of A such that ¢ = Bws mod A;
(iv) for (A, (t1, tg)) e M (I‘(n)), a basis w1, ws of A such that ¢; = Sw; mod A fori = 1, 2.

Thus, wi,ws is an admissible basis of a free modular point P if and only if the con-
struction of Lemma 108 applied to wy,ws yields P, i.e. if and only if P, = P. Of course,
in cases (iii) and (iv) we should really say “B-admissible”; however, it does no harm to
suppress the dependence on (3, since (3 is assumed fixed once and for all.

We postpone the question of existence for the moment. First we show that if an
admissible basis exists, then the set of admissible bases is the orbit under the corresponding

congruence subgroup I'’ of any one such basis.
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Lemma 109 (Uniqueness up to ['-equivalence). Let P € M ("), let w = (w1 we)?

and w' = (w] W) be bases of P, and assume that w is admissible. Then w' is admissible

if and only if W' = yw for some v € T'.

Proof. There are four cases: (i) P = A € M;y(T), (ii) P = (A,S) € My (To(n)), (iii)
P = (A,t) € M;(T1(n)), and (iv) P = (A, (t1,t2)) € M;(T(n)). Certainly

wh wi
/ - ’Y
CLJQ w2
for some v = (2¢8) € GL(2,9). In case (i) the result is obvious. In case (ii) we have

Ofws + A D OBwy + A < Buw) — Bawy € A for some a € O
<= fewy + B(d — a)wy € A for some a € O
< fce D, B(d—a)eO for some a € O
< c€en, d—a€n for some a € O

< v €Ty(n).
By symmetry, we also have
Ofws + A COBwh+ A = ' €Ty(n),
and therefore

w' is admissible <= OfBws + A = OBw) + A

— v€Ty (n)
In case (iii), we argue as in case (ii) but with o = 1; thus

' is admissible <= t = Bw) mod A
> Bwh —wy) €A
<~ ¢, d—1€En

< yeTli(n).

The argument in case (iv) is similar. O
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We now turn to the question of existence. First, we report the good news.

Lemma 110 (Existence of admissible bases). Let I equal T', Ty(n) or I'1(n), and let
P € My(T"). Then P has an admissible basis.

Proof. We number the cases as before; the result holds vacuously in case (i). We prove
cases (ii) and (iii); consider first case (iii). Let ej,es be an O-basis for A. Since t €
n_lA/A = (A + BA)/A, there is wy € A such that ¢ = Swy mod A. Write wy = aje; + azes
with a; € ©. We claim that

(a1,a9) +n = 9. (7.16)

For let p be a prime ideal dividing n. Since the annihilator of ¢ is precisely n, we have
p~'nBwy ¢ A. Therefore p~'nB{a1,a2) ¢ O, whence {a1,a2) ¢ p. This proves (7.16).
By Lemma 24 on M-symbols, there exists (A;;) € SL(2,9) such that Ay = a1 (mod n),
Ago = ay (mod n). Put

Then wy,ws is a basis for A, and we = Agje1 + Agzes = wy (mod nA), whence B(wy —ws) €
BnA C A, and so fwy mod A =¢. Thus w1, ws is an admissible basis.

We now turn to case (ii). Since S = ©O/n is cyclic, we may choose a generator ¢ € S.
Clearly ann(t) = n, in other words, (A,t) € My (T1(n)). By (iii), A has a basis wy,ws such
that ¢t = Bws mod A. Then clearly S = Ot = (A + Ofws)/A. O

In case (iv), the news is not so good: there are modular points with no admissible basis.
This is made more precise in the following proposition; for convenience, its statement and

proof employ the summation convention.

Proposition 111. Let A C C? be a lattice with basis e1,es. Let (Cij) € Ma(O) be in-
vertible modulo n. For i € {1,2}, put z; = Cjje; and t; = Bzr; mod A € n"*A/A. Then
P = (A, (t1,t2)) € My(T(n)). Moreover, P has an admissible basis if and only if there
exists (A;j) € T such that A;; = Ci; mod n, and when that is so, Aije;, Agje; is admis-

sible.
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Proof. Let (Dy;) € Ma(9) be an inverse of (Cj;) modulo n. Let s € n"'A/A. We may
write s = Bz mod A for some z = bie,, € A, where by € 9. Since Dy;z; = e, mod nA, we
have B(Dyiz; —eg) € fnA C A. Therefore 3(byDy;x; —x) € A, whence s = by Dy;t; mod A,
showing that s lies in the span of the ¢;. Thus P is a modular point.

Assume that P has an admissible basis 31,2, say. Certainly y; = A;;e; for some
(Aij) € T, and admissibility implies 8(y; — z;) € A, whence 8(A4;; — Cj;)e; € A, whence
B(A;j — Cij) € O, whence finally A;; = C;; mod n. Conversely, assume that (4;;) € T
congruent to (Cj;) exists, and put y; = Aj;je;. Then clearly B(y; — z;) € A, proving
admissibility. |

Thus, the obstruction to admissibility in all cases is the failure of surjectivity of the

natural homomorphism GL(2,90) — GL(2,90/n); see Corollary 23.

Ezample. Let O = Z,n =5Z and 8 = 1/5. Let A = Z?, with basis e; = (1,0), ez = (0,1).
Put z; = (2,0) and zo = (0,1); thus (C;;) = (%9), which is invertible mod 5. Then
P = (A, ((2/5,0) mod A, (0,1/5) mod A)) is a modular point with no admissible basis.

This is a counterexample to case (iv) of a proposition of Koblitz [Kob84, p. 154, Prop.
31], the proof of which had been left to the reader.> Tt implies that modular points, at
least as we have defined them, are not a successful approach to I'(n).

Of course, we may have the wrong definition of modular point in this case, pace Koblitz
[Kob84]. For © = Z, the moduli problem associated to I'(N) is discussed in [Sil86,
Appendix C, §13]. The N-torsion points of an elliptic curve come equipped with the Weil
pairing ey, and the pair (1/N,7/N) satisfies

en(1/N,7/N) = 2™/N.

So a better notion of modular point for I'(V) would be a pair as defined in (iv) above (but
over Z, of course) that maps under the Weil pairing to a specific (fixed) primitive N'*!
root of unity. Presumably a suitable analogue exists in the case of an imaginary quadratic
field, with the Weil pairing on elliptic curves replaced by a 2-dimensional analogue and

with roots of unity replaced by n-division points in C/9.

3p. 174 op. cit., Problem 1
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7.3.3 (General case

We now repeat much of §7.3.2 for general lattices. In view of Proposition 111, we no longer

consider case (iv), so IV will be one of T, T'y(n) and T';(n).

Lemma 112. Let wi,ws € C? be linearly independent over C, and put A = Ag)

Dwy. Then

=piw1 &

(i) A€ M;(D),
(ii) (A, (DBw2 + A)/A) = (A, (n"lwe + A)/A) € M;(To(n)),
(iii) (A, Bws mod A) € M;(T1(n)).
Proof. The proof is word for word the same as for (i)-(iii) of Lemma 108. O

Notation. As indicated earlier, the function GL(2,C) — M;(I") constructed in the lemma

will be denoted
w Pu(,i).

Definition. Let P € M;(I"'). Then wj,ws is an admissible basis for P if and only if

P= Pu(,i). Explicitly, an admissible basis is
(i) for A € M,;(T), any basis of A;
(ii) for (A,S) € M;(To(n)), a basis wy,ws of A such that § = (A + OBws)/A;
(iii) for (A,t) € M;(T1(n)), a basis wi,ws of A such that ¢ = Bws mod A.

Our next lemma generalises Lemma 110; in place of Lemma 24 on M-symbols, we shall

use its refinement Lemma 25.

Lemma 113 (Existence of admissible bases). Let I equal T, Ty(n) or I'y1(n), and let
P e M;(I"). Then P has an admissible basis.

Proof. We number the cases as before. In case (i), the result holds by the remarks at the
start of §7.3.1. We prove cases (ii) and (iii); consider first case (iii). Let e1,e2 be a basis

for A, so A = pje; @ Dey. Since t € n~!A/A = (A + BA)/A, there is wy € A such that
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t = Bwy mod A. Write wy = aie1 + ases with a1 € p; and ay € O. For the first time, we

assume (7.12). We claim that
<a1,a2> +n=9. (717)

For let p be a prime ideal dividing n. We must show (a1,a2) € p. If a1 ¢ p, we are done,
so assume a; € p, whence by (7.12), we have a; € pp;. Thus p~'nBa; C p;. Since the
annihilator of ¢ is precisely n, we have p~'nfBuwy ¢ A. Therefore p~nBasy ¢ O, whence
ay ¢ p. This proves (7.17).

As we may assume without loss of generality that a; # 0, we may apply Lemma 25 on

M-symbols, giving (A;;) € SL(2,9O) such that As; = a1 € p; and Az = ag (mod n). Put

Then wi,ws is a basis for A, by Lemma 107. Now wy = Agje; + Agxes = wy (mod nA),
whence B(wyp —w2) € fnA C A, and so Swz mod A = t. Thus wi,ws is an admissible basis.

We now turn to case (ii). Since S = O/n is cyclic, we may choose a generator ¢t € S.
Clearly ann(t) = n, in other words, (A,t) € M;(I'1(n)). By (iii), A has a basis w;,w; such
that ¢ = fwe mod A. Then clearly S = Ot = (A + Opfws)/A. O

It will not surprise the reader to learn that admissible bases are unique up to an
element of a suitable “twist” of I'. For concreteness, we treat the case I' = T'g(n). The
twisted groups arising will be precisely the groups T'lil of (5.15), provided that the ideles

are chosen correctly. Thus, let r; € k5 be ideles with il(r;) = p;l; as before, put

ri 0
a; = € Ga.
0 1

Assuming (7.12), a simple calculation gives

) a b
Tl = Gy NaiQo(n)a;! = a,d €9, bep;', cenp;, ad—bc e OX 3
c d

when n = O, these groups are just the generalised Bianchi groups GL;,(2,90), so here we

have “generalised Bianchi groups of level n”.
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Lemma 114 (Uniqueness up to I'l-equivalence). Let P € M;(To(n)) and let w =
(w1 wo)t and W' = (Wi Wwh)! be bases of P. Assume that w is admissible. Then W' is

admissible if and only if w' = yw for some ~v € Tl
Proof. Write P = (A, S) € M;(To(n)). By Lemma 107,

Wi w1
T i

for some v = (2%) € GLy,(2,9). The proof will be complete when we have shown that

w' is admissible if and only if ¢ € np;. We have

OBws + A D OBwy + A < Puwhy — Baws € A for some a € O
< fewr + P(d — a)wy € A for some o € O
< fecep;, B(d—a) €O for some a € O
< fc € pi,

= cEnp,,
where the last step uses ¢ € p;. By symmetry, we also have
Ofws + A COBW) + A < c€np;.

This completes the proof. O

7.4 Modular forms as functions on modular points

We show how modular forms can be interpreted as functions on lattices. Qur treatment
parallels the treatment of k = Q in [Kob84].

It is well known that classical modular forms for SL(2,7Z) correspond to certain func-
tions on Z-lattices in C. The idea extends to forms for the main congruence subgroups of
SL(2,Z); such forms correspond to functions on modular points defined over Z. The main
features of the classical case were described in §2.1.2.

The purpose of this section is to develop an entirely analogous theory over imaginary

quadratic fields. After our preparatory work above, we can treat simultaneously the cases
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I" =T, Iy(n) and T';(n). The failure of Lemma 110 for I = T'(n) means that we cannot
proceed further with that case. This may reflect the non-existence of a Hecke theory for
C(n).

We use the notation of §4.3; thus G = GL(2,C), with centre Z and subgroup K =
SU(2), and p: ZK — C3 is a representation. Recall the definition of Sy:

Sy ={¢:G—>C | ¢(Cgr) = d(9)p(CK) V(€ Z gEG, KEK}.

Let P be a modular point, i.e. of the form A, (A, S), (A,t) or (A, (t1,t2)). Let ( € Z
and k € K. It is clear how to interpret ( Pk, and that it is a modular point — for Z acts
on the left by scalar multiplication and K on the right by matrix multiplication, the effect

being to change merely the copy of k2 in which the point lies, in the sense of §7.1.1.
Definition. A function F: M(I") — C? is of weight p if
F((Pkr) = F(P)p(¢k) VP e M), (e C*, ke K.

Our aim is to show that modular forms correspond to certain weight-p functions on
modular points. Again, it is instructive to begin with the “principal” part of modular

forms, which corresponds to functions on free modular points.

7.4.1 Functions on modular points: special case

Thus, define sets S5 and Sg as follows:

Ss={¢eS|¢ly=¢forallyel'},
Se={F: Mi(T') = C | F is of weight p } .

Given ¢ € S5, we define ¢f: M (I'") — C? by
¢ (P) = ¢(w), (7.18)

where w is any admissible basis of P € M1(I""). Conversely, given F € Sg, we define
F’: G— C? by

F’(w) = F(P,). (7.19)
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Our next result is exactly analogous to Proposition 31 of Koblitz [Kob84].%

Proposition 115. The maps (7.18) and (7.19) define mutually inverse bijections §: S5 —
Sﬁ and b: Sﬁ — 55.

Proof. The map (7.18) is possible by Lemma 110 and well-defined by Lemma 109 and
I-invariance of ¢. If wi,ws is an admissible basis of P, then (w;k, wok is obviously an

admissible basis of (Px, and so

¢ (CPk) = ¢(Cwr) = p(w)p(Cr) = ¢*(P)p(Ck),

proving that ¢! is of weight p. Thus (7.18) does define a map S5 — Ss.
In the other direction, we must check that F” lies in Sy and is invariant under I'V. The

first part is formal, since P, = (F,k, and therefore
F’(¢wr) = F(Peur) = F(CPur) = F(P,)p(Ck) = F’ (w)p(CK).

To prove the second part, let v € I'. By Lemma 107, A,, = A, so by Lemma 109, yw is
admissible for F,, i.e. P,, = P,. Thus

(F’|y)(w) = F’(yw) = F(Py,) = F(P,) = F’(w),

i.e. F’|y = F. Thus (7.19) does define a map Sg — Ss.
Finally, we check that the constructions are mutually inverse. Let ¢ € S5 and w € G.

Since w is an admissible basis for P,,, we have

¢ (w) = ¢F(P.) = p(w).

Thus ¢ = ¢. Conversely, let F € Sg and P € M;(I"). Choose an admissible basis w, so
that P = P,. Then

FY(P) = F’(w) = F(P,).

This shows that F*! = F, thereby completing the proof. O

*As an aside, we remark that Koblitz [Kob84] denotes the analogue of the composite F — F* s F**

of (7.19) and (4.48) by F — F; therein lies the origin of our notation for generic elements of Ss.
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7.4.2 Functions on modular points: general case

We now give the obvious generalisation of Proposition 115 for lattices of class i, restricting
to IV = Ty(n) since we have not defined groups I'Yl for I';(n). Thus, define sets Séi) and

Séi) as follows:

S5i):{¢682‘d)"y:d)forall'yef[i]},

S = { F: M;(To(n)) — C* | F is of weight p}.
Given ¢ € S, we define ¢f: M; (To(n)) — C3 by

$H(P) = p(w), (7.20)

where w is any admissible basis of P € M;(To(n)). Conversely, given F € Séi), we define

F’: G — C3 by
F’(w) = F(P,). (7.21)

Proposition 116. Maps (7.20) and (7.21) give mutually inverse bijections §: Séi) — Sﬁi)

and b: Séi) — Séi).

Proof. As for Proposition 115, replacing the special cases of existence and uniqueness by

the general, i.e. replacing Lemma 110 by Lemma 113 and Lemma 109 by Lemma 114. [

We can now sketch the following theorem which relates modular points to modular

forms; it seems unnecessary to write out all the details.

Theorem 117. Let M = M(To(n)). Modular forms for To(n) with trivial character

correspond to certain weight-p functions on M.

Proof. Here “certain” functions means those consistent with “admissibility of type Hc¢”
in the language of Chapter 6. In §6.2.3, we defined modular forms as h-tuples F =
(O, ..., f®), for functions f): H3 — C* invariant under I'lY). By Lemma 64, they may
be viewed as h-tuples ® = (¢(1),... o) with ¢() ¢ Séi). In view of (7.14), we can
combine (7.20) and (7.21) for all 4; thus, given a modular form &, define ®: M — C3 by
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and given a suitable F': M — C3, define a modular form F’* = ((F")(l), ey (F")(h)) by
(F)D(w) = F(P{).

Obviously (by Proposition 116) these constructions give the required correspondence. [

7.5 Hecke operators for modular forms

7.5.1 Action of Hecke operators

It is now a simple matter to turn the formal Hecke operators of §7.2 into actual Hecke
operators for modular forms. Let M = M(Ty(n)). Extend functions F: M — C? to
functions F': ZM — C3 by Z-linearity. We can then define

F|To=FoT,  F|Taa=FoTug;
some authors write T, F' and T; o F" instead of F|Ta and F|Ta,a. Explicitly,

(FIT)((A,9) = > F(A,9)),
ADA
ord(A’/A)=a
(A,S"YeM

and
(F|Toa) ((A,5)) = F((a7'A, 5Y),

where, as usual, S’ denotes the image of S modulo the larger lattice. Clearly these opera-
tors preserve the property of being of weight p; using Theorem 117, we at once obtain an

action on modular forms, by defining
O|T, = (P|T0)’,  ®|Tua= (®F|Tua)’.

There is an underlying representation a — o, of the ideal class group by means of

permutations of {1,...,h}. Thus, given a and ¢, define j = g4(i) by

cl(p:) = cl(pj)el(a).



CHAPTER 7. MODULAR POINTS AND HECKE THEORY 183

In view of (1.9), the values ofF‘T.1 and F|Ta,(1 on M; (Fo (n)) depend only on the values of F
on M, (To(n)). Correspondingly, (® |Ta)(i) and (P |Ta,a)(i) depend only on ¢{9). Explicitly,

(@|Ta)(i) — Z oY) |M,
M

where M runs through the (finite) set of matrices for which PIE,]I‘)U contains P with index
a; the number of these matrices is equal to N(a) + 1 when a is a prime ideal with a tn. Of
course, the action of matrices is by (4.53). We discuss how to find such matrices in §8.1
below.

By the usual correspondences, we finally obtain an action on modular forms F =
(f(l), cen, f(h)) on upper half-space, given by

(F|Ta)(i) — Zf(j)‘M’
M

where M runs through the same set as above and matrices act according to (4.54), that

is, by pullback of the corresponding differential forms.

7.5.2 Eigenforms and newforms

One might now develop a theory of eigenforms, oldforms and newforms, as achieved by
Atkin and Lehner in the classical case k = Q [AL70]. In fact, it would only be necessary
to verify that our definition of Hecke operators is equivalent to that found in a treatment
of general global fields, such as that of Miyake [Miy71]. For a brief discussion in the case
of an imaginary quadratic field of class number one, we refer to [Cre81, §3.3]. We shall be
content with a few sketchy remarks.

A modular form F' is an eigenform for T, with eigenvalue a(a) if and only if F ‘T =
a(a)F. We are interested in computing newforms at level n, that is, those simultaneous
eigenforms in Sp(n) which do not arise from forms in Sp(n’) for some n’ | n. To do this,
we transfer the action to the homology spaces of §6.2.4 and perform all our computations
there. In fact, we work only with the space V(n) of (6.29); by §7.5.1, the only Hecke
operators whose action is even defined for this space alone are the T, and T, , for a a
principal ideal. Nevertheless, we can determine all eigenvalues from this one space, as we

explain below.
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To “find” newforms, one calculates V(n) and the action of enough Hecke operators
on it to split off the 1-dimensional eigenspaces. In view of the result from the general
theory that two forms whose eigenvalues agree at almost all primes are equal up to scalar
multiple [Miy71, Theorem B], we confidently expect finitely many primes (more precisely,
an initial segment of any enumeration of the primes) to suffice for this splitting off, so that
an algorithm which steps through all primes will terminate; in practice, the operators T,
for p 1 n a principal prime seem likely to suffice. Preferably, one splits off the eigenspaces
in a way which allows arbitrarily many eigenvalues to be computed, such as would be
needed to compute with the forms’ Fourier series to high precision.

In fact, by the multiplicative relations of §7.2, it suffices to compute the T, (and T} ;)
for p prime. When p is principal, this is relatively straightforward, since T, does act on
V(n). We now sketch a trick for computing a(p) when p? is principal but p is not. This
method is sufficient to determine all Hecke eigenvalues for those imaginary quadratic fields
with C' = C(2) in the notation of §1.4.

For simplicity, consider first the case of class number h = 2. Choose one non-principal
prime g. Compute Ty: and Tyq; by (7.8), this yields the eigenvalue for (Ty)?, which
determines a(q) up to choice of sign. Now, for each non-principal prime p { n, we can
compute a(pq), since pq is principal, and deduce the eigenvalue for a(p) using T,q = T, 1.
Both choices of sign for a(q) are correct: the two forms thus obtained are “twists” of each
other by the non-trivial unramified quadratic character attached to k; see §5.1.6.

In general, C = C(2) implies that the genus field is equal to the Hilbert class field
and that C = (Z/2Z)"!, in the language and notation of §5.1.6. We now need to fix
t — 1 (independent) non-principal primes ¢; and make a choice of sign for each. For any
other non-principal prime p, the ideal p [] g;* is principal for a unique choice of exponents,
allowing the unique consistent value of a(p) to be deduced. The possible choices of sign
give rise to all the twists of our form by the 2!~! unramified quadratic characters attached

to k.
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Computations

We make some remarks about explicit computations. (See also §7.5.2.) Our techniques
closely follow the work of Cremona and Whitley [Cre81, Whi90] for the fields of class
number one. The differences stem from the existence of non-principal ideals. The results

of our computations are in Chapter 9.

8.1 Explicit Hecke matrices

Let k be an imaginary quadratic field with ring of integers © and class number h = 2.

Proposition 118. Let p be a principal prime, with p = (8), say. Write down matrices

as follows:
L (B0
(i) ;
0 1
1 «
(i) , for a running through a set of residues modulo (3;
0 p

Then the sum of these matrices (as an element of the group algebra over Q) defines the

Hecke operator T}, at level n.
Proof. Exactly as for the classical theory (Hermite normal form). O

Now for the more interesting case of non-principal primes.

185
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Proposition 119. Let p be a non-principal prime, with p*> = (B), say. Solve uB +v =1

for u € O and v € n. Write down matrices as follows:

L (B0
(i) ;
01
o)
(i) , for a running through a set of residues modulo p?;
0 p
(i) , for o running through a set of residues modulo p? and o € p \ p?;
v

(iv) one “special” matriz giving an O-isomorphism O ® O — p @ p, adjusted to lie in

Ag(n) as in the proof of Proposition 35.

Then the sum of these matrices (as an element of the group algebra over Q) defines the

Hecke operator Ty» at level n.

Proof. We do not need to exhibit our means of deriving this list of matrices (by looking at
modules locally), as an a posteriori argument will suffice. The number of these matrices
is 1 + Np + N p?, as required. One verifies that any two, say M; and M,, give distinct
sublattices, since My M, ' ¢ T. O

Proposition 120. Letp and q be distinct non-principal primes, with pq = (), say. Solve

ufB+v=1 foru e O and v € n. Write down matrices as follows:

L (B0
(i) ;
01
1 «
(i) , for a running through a set of residues modulo (3;
0 p
. [B 0 : :
(i) , for @ running through a set of residues modulo § and o € p \ q;
va 1
0
(iv) , for @ running through a set of residues modulo § and o € q \ p;

vo
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(v) two “special” matrices giving a O-isomorphisms OGO — pdqand OGO — qdp,
adjusted to lie in Ag(n) as in the proof of Proposition 35.

Then the sum of these matrices (as an element of the group algebra over Q) defines the

Hecke operator Tyq at level n.

Proof. Similar. O

8.2 Computations

We now step through the integral ideals n in order of increasing norm; this ensures that
all the proper divisors of n will have been treated before n itself. For each n, we use the
relations obtained in §3.8 to determine the space V(n), in the manner sketched at the end
of §1.3; by far the most expensive step here is the linear algebra involved in finding the
kernel of the boundary map. At this stage, one can read off the dimension of V' (n).
Having stored V' (n) as a space generated by M-symbols in the computer’s memory, we
compute Hecke eigenvalues as indicated in §7.5.2. To do this, we convert M-symbols to
modular symbols, a trivial step, and act on modular symbols with the Hecke operators.
The modular symbols obtained must then be converted back into M-symbols; the pseudo-

Euclidean algorithm of §3.6 is an essential tool here, exactly as in [Cre81, Whi90).

8.3 Some directions for further work

We comment briefly on some future directions of this research. We would like to have
a more robust computer implementation of the algorithms than presently exists. Once
enough eigenvalues become available, one could integrate the Fourier series to determine
approximate periods of the forms. Secondly, one should treat other fields with C = C(2).

In the spirit of Cremona’s programme, one ought to search for elliptic curves over k of
the right conductor having traces of Frobenius agreeing with the computed Hecke eigen-
values. In another direction, one should bring I'; (n) and forms for I'y(n) with arbitrary
character into the picture, as was done in [Fig95] for h = 1. Perhaps more problematic is

the question of fields with C' # C(2), clearly an interesting open problem.
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Results

Much of the theory we have developed in this thesis has been valid for an arbitrary
imaginary quadratic field k. In this chapter, we tabulate results of our computations for
the field K = Q(v/—5), of class number 2, and use them to illustrate various aspects of
the theory. We begin by summarising some facts about ideals of k. We discuss the réle of
characters, since we compute forms with trivial and non-trivial unramified character. We
discuss the action of complex conjugation, which allows us to infer all the information for
level 1 from level n and to identify forms which are self-conjugate and hence come from
forms over Q by base change lift. We identify the oldforms and newforms at all levels n
with N(n) < 135 and comment on the dimension of the oldspace, which can be lower than
expected. Lastly, we tabulate Hecke eigenvalues for the newforms we find, and compute

various characters which twist our newforms into others.

9.1 Ideals of k

Let k = Q(+/—5). The ring of integers O of k is [1,v/—5] = Z + Z+/—5. (We use square
brackets to denote the Z-span of elements of O, and angle brackets to denote the O-span.)
The discriminant of k is A = —20.

We use the notation of “reduced” ideals. Every ideal a has the form ca’, where ¢ € Z

and o' is “reduced”, i.e. a' = [a,b+ +/—5] with a,b € Z. (It is natural to choose a > 0 and
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0 < b < a.) Thus, every ideal has the form
Qideal(a,b,c) = cla, b+ v—5].

Let p be a rational prime. If p | A, ie. p € {2,5}, then p ramifies. Explicitly,
(2) = [2,1 4+ /5] and (5) = [5,v/—5]?> = (v/—5)%. For other primes p we find, using

quadratic reciprocity, that

(A) +1 ifp=1,3,7,9 (mod 20),
b

-1 ifp=11,13,17,19 (mod 20).
Therefore,

splits  ifp=1,3,7,9 (mod 20),
g is inert if p=11,13,17,19 (mod 20).
If p is split, it may split as a product of principal primes or of non-principal primes. The
first case occurs when p also splits in Q(y/—1) and Q(v/5) (those being the other two
quadratic subfields of the Hilbert class field) and the second when p is inert in those two
fields. To sum up:

/

is ramified if p € {2,5},

splits into principal primes ifp=1,9 (mod 20),
P
splits into non-principal primes if p=3,7 (mod 20),

is inert ifp=11,13,17,19 (mod 20).

\
Notation. When p is inert or ramified, we write p, for the prime of © above p. When p is
split, we write (p) = pp oPp.p, Where p,, , is the conjugate with the lower value of “b” when

written in standard form. For example, p3, = [3,1 + v/—5] and p3p = [3,2 + v/—5].

For convenience, we record some information about small primes in k£ in Tables 9.1
and 9.2 below. Table 9.1 gives, for each prime p < 400 which splits into principal primes,
both a Z-basis and a principal generator of p, .. Table 9.2 gives, for each prime p < 180

which splits into non-principal primes, a Z-basis of p, , and principal generators of pap, ,

and p3app,a-
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The last two columns of Table 9.2 will be useful in §9.7; an efficient way of obtaining
them is via the theory of positive-definite binary quadratic forms due to C. F. GauB, as
follows. The two reduced forms of discriminant —20 are fi(z,y) = 22 + 532 (the norm

form) and fo(z,y) = 222 + 22y + 3y?, with composition law

fol,y) folu,v) = f(2wu + 20 + yu + 3yv, 20 — yu)

= f1(2zu + zv + yu — 2yv, zv + Yyu + Yov).

A prime splits (or ramifies) into principal primes if it is represented by f1 and into non-
principal primes if it is represented by fs. In the latter case, we find u,v € Z (as shown in
Table 9.2) such that p = fo(u,v). Since 2 = f5(1,0), we have 2p = f1(2u + v,v). Exactly
one of 2uv+v=+vy/=5 lies in p, , and is therefore a principal generator of popy ,. Similarly,
3= f2(0,1), s0 3p = f1(u+3v,u) = f1(u—2v,u+v) and the four elements u + 3v +u/—5
and u — 2v £ (u + v)y/=5, in some order, are generators of P3aPp,as P3abPp,bs P36hp,e and
pasppp- Of these four, only u + 3v + uv/—5 and u — 2v + (u + v)y/=5 lie in p3q, so of those

two, that one lying in p, , is the desired generator of p3upp.q-
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P | Ppa generator P | Ppa generator
5| [5,w] w 181 | [181,30 + w)] 1—6w
29 29,13 +w] | 3—2w 229 | [229,37 +w] | T—6w
41 | [41,6 + w] 6 +w 241 | [241,85 +w] | 144 3w
61 | [61,19 + w] 4 — 3w 269 | [269,110 +w] | 12+ 5w
89 | 89,23 + w] | 3+ 4w 281 | [281,41 +w] | 6+ Tw
101 | [101,46 + w] | 9 — 2w 349 | [349,56 + w] | 13 — 6w
109 | [109,39 +w] | 8+ 3w 389 | 389,165 +w] | 12— Tw
149 | [149,12 + w] | 124w w=+"5
Table 9.1: Split principal primes of Q(v/—5)
P | Ppa (u,v) | P2Ppa | P3abpa
2|[2,1+w] 1,0 2 1+w
3|[3,1+w] 0,1 | 1+w | 2—w
711[7,3+w] Ll | 34+w | 1-2w
23 | [23,8 + w] 1,3 | 143w | 7T—2w
43 | [43,9 + w] 4,1 | 94w | 2+5w
47 | [47,18 4+ w] 2,3 | T+3w | 4—-5w
67 | [67,14+w] | —1,5| 3+5w |11 —4w
83 (83,24 +w] | 4,3 | 11— 3w |13+ 4w
103 | [103,43 +w] | 2,5 | 94+ 5w | 8 —Tw
107 | [107,40 +w] | 5,3 |13+ 3w | 1 —8w
127 | [127,54 +w] | —=2,7 | 3 —Tw |19 —2w
163 | [163,22 +w] | 1,7 | 9—Tw | 22+ w
167 | [167,50 + w] | 7,3 |17 —3w | 16 + Tw
w =5

Table 9.2: Non-principal primes of Q(v/—5)

191
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9.2 Characters

In the theory of modular forms for I'y(N) over QQ, an important role is played by Dirichlet
characters modulo N, i.e. by characters of (Z/NZ)*; thus, one may have modular forms
with character, and one may twist forms by such characters (see §2.1). In the general adelic
theory, this réle is taken by quasicharacters of the idele class group; for our purposes, these
are best thought of as characters of ray class groups (see §5.1.5). Thus, we may have forms
with such a character, and we may twist forms by such characters. As in the classical case,
the twist of a form f by a character y will be denoted f * x (see §2.1.4). Twisting will be
discussed further in §9.7.

9.2.1 Plusforms and minusforms

The modular forms we compute in this thesis are precisely those whose character is unram-
ified (see §6.2.4 and [Kur78]). For fields k of class number 2 there are just two unramified
characters (see Example 1 of §9.7 below), namely the trivial character and the character
v given on primes by

+1 if p is principal, and

pr= (9.1)

—1 otherwise.
When h(k) = 2, a form with trivial character will be called a “plusform” and a form with
character v a “minusform”.
Warning. The words “plusform” and “minusform” also occur in the theses of Cremona
and Whitley [Cre81, Whi90], but with quite a different meaning, discussed in §9.2.2 below.
All the forms in this thesis are “plusforms” in their sense, so we use the same language to

make a different distinction.

9.2.2 GL(2) versus SL(2)

In their doctoral theses [Cre81, Whi90], Cremona and Whitley take as the starting point of
the theory of modular forms the group SL(2), rather than GL(2), and set out to compute
forms for PST'y(n). The choice of SL(2) has certain technical disadvantages. Firstly,
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it then unclear how to bring characters into the theory, since, as Gelbart writes, “the
existence of a non-trivial centre in GL(2) makes it the natural habitat for forms with
non-trivial character” [Gel75, Remark 3.8]. Secondly, Cremona was able to define Hecke
operators T, for prime elements 7w, but found it “impossible, in general, to define an
operator T}, for a prime ideal p, since the definition depends on the choice of generator for
p” [Cre81, p.38]. To make progress, Cremona introduced the so-called “main involution”
J given by f — f‘(g (1)), where € generates D; in Cremona’s language, a “plusform”
is a form for PST'g(n) such that Jf = f, whilst a “minusform” has Jf = —f. An easy
calculation gives T = JT,, so that for plusforms the Hecke operators are independent
of the choice of generator. It was only the plusforms that corresponded to elliptic curves,
and minusforms could always be obtained from plusforms by twisting (specifically, by
twisting by a character y of (O/m)* satisfying x(¢) = —1; to preserve plusforms, one
needs x(e) = 1, which is precisely why it is characters of (O/m)* /9> which occur in this
thesis).

It clarifies matters to adopt a slightly different viewpoint. In the classical theory, it is
well-known that the space of forms for I'; (N) decomposes as the sum over the characters
1 of the quotient I'g(N)/I'1 (N) of the spaces of forms for I'g(/N) with character 1) [Kob84,
Prop.28]. Cremona’s plus- and minusforms are another example of this rather general
phenomenon. Thus, the space of forms for PST'g(n) is the sum of the spaces of forms for
PTg(n) over the characters of the quotient PT'y(n)/PSIy(n); this quotient is isomorphic
to O%/(9*)?%, by Lemma 19, and always has order 2 for imaginary quadratic fields. A
(Cremona) plusform is just a form for PT'g(n) with trivial character, whilst a minusform

is a form for PT'g(n) with non-trivial character.

9.2.3 The réle of T,

Let k£ be an algebraic number field with ring of integers O, and let n be an integral ideal
of O. Let J" be the group of fractional ideals coprime to n, and let P" be the group of
principal fractional ideals having a generator a such that a =1 (mod n). Thus J"/P" is
the ray class group modulo n. Let 1) be a character of J"/P" (or more generally, in view of

the last part of Proposition 122 below, a character of J™/P™ where m | n), and let x be the
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character of (O/n)* /9O induced in the manner of Lemma 71. Finally, let S = Sy(n, )
be the space of cuspforms of level n and character 1. We shall use the operators T 4 for
a coprime to n to construct a representation of J"/P" on S, and we claim that J"/P"
acts on S via the character 1; this is the analogue of the result that T,, ,, f = x(n)f when
k = Q [Kob84, Prop. 35].

Given a, coprime to n, there is d € N such that a? is principal, say a¢ = (a); raising to
a further power if necessary, we may assume that ¢ =1 (mod n). By Proposition 103(ii),

(To0)? = Ta),ay; by (7.1), this operator maps each lattice A to a"'A. Thus, for F € S,

F|(Toa)? = F|(39) "

= x(a)F by (6.10)

=F sincea =1 (mod n).

It follows that F F|Ta,a defines an automorphism of S, which we denote by 7(a). By
Proposition 103(ii) again, 7(ab) = 7(a)7(b), and by the calculation above, 7(a) = 1 for
a € P". Thus 7 is a representation of J"/P" on S. Since J"/P" is abelian, its irreducible
characters are one-dimensional and the operators T, o on S are diagonalisable. Since the
T, and T, 4 for a coprime to n commute pairwise, they are simultaneously diagonalisable,
and S has a basis of simultaneous eigenforms.

If F is such a form, then certainly F|T<a),<a) = x(a)F, by the calculation above. In this
formulation, proving that F’ ‘Ta,a = t(a)F in general is slightly tricky, since the operator
permutes the components of F'; note that T, takes p; ® O to a~lp; @ a~!, which is
isomorphic to p; @ O, where j is defined by cl(p;) = cl(a™2p;); on the other hand, it is
almost immediate in the adelic formulation, since Tj 4 is then given by a matrix (3 2),
where a € kp is an adele with il(a) = a, and condition (B) of §6.1 gives what we want.
We omit the details.

Of course, if a? is principal, then i = j. This means that T, , can be computed on
each component separately. In particular, on the principal component one merely needs
a matrix giving an isomorphism O @ O — a @ a; such a matrix is easily computed. When
h(k) = 2, moreover, since we are restricting to the case ¢ € {1, v}, we only need to compute

Ty p for one (good) non-principal prime to determine the character of our newforms.
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9.3 Complex conjugation

Let g € GL(2,C) and (z,t) € 93, so g - (z,t) = (2/,') as given by (3.12). Writing g for
the complex conjugate of g, we see at once that §- (2,¢) = (2/,¢'). Tt follows that the

conjugation action (z,t) — (Z,t) on £z induces a homeomorphism

c: To(n)\H3 — To(n)\ 3. (9.2)

By functoriality, there is an induced A-linear isomorphism

c: Hy(To()\93, 4) = Hn(To(7)\H3, A) (9.3)

of homology, for any coefficient ring A. To make this more explicit, write C = (Cy,d)
and C' = (C),,d") for the homology chain complexes attached to I'g(n)\$3 and T'o(7)\$s.
The map (9.2) induces isomorphisms ¢, : C,, — C, which respect the boundary maps, i.e.
satisfy 0 o ¢, = ¢;,_1 0 9; thus we have a chain isomorphism from C to C’, inducing (9.3).

For n = 1 we can give the map explicitly in terms of modular symbols:

{Cl, ﬁ}I‘O(n) = {da B}Fo(ﬁ)' (94)

The conjugation map is useful because it behaves well with respect to Hecke operators,
in the following sense. Write T'(a,n) for the Hecke operator T, at level n, and T(a,n) for
its “conjugate”, i.e. for the formal linear combination of matrices obtained by conjugating
each matrix in T'(a,n). Inspection of the matrices making up 7'(a,n) shows that (formally)
T(a,n) = T(,7), because complex conjugation turns a list of residues modulo a into

one modulo a and turns a congruence condition modulo n into one modulo n. Thus, if

v € Hy(To(n)\$H3,C) is an eigenvector with T'(a,n)v = v, then
T(a,n)c(v) = c(T(a,n)v) = Ac(v).

Thus, to every eigenspace in H; (I‘o(n)\f)g) there corresponds one in Hy (Fo (ﬁ)\fjg) with
the eigenvalues for a and a interchanged. By duality,! to every modular form f at level
n there corresponds a form at level 1 with the eigenvalues for a and @ interchanged; we

denote this “conjugate” form by f.

! A more detailed argument, taking account of all h homology pieces, can be given. Note that c takes a

form for (T'o(n), R), in the notation of §6.2.3, to one for (I'o(i), R') for some R’ different from R in general.
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As an illustration, we give two examples taken from our tables of newforms in §9.6

below.

Ezample 1. At level n = popapprp there is a newform we denote fg; consequently, fg is a
newform at level pap3ap7,. The first few eigenvalues of fg and fg are shown in Table 9.3

below. This is a typical example; the eigenvalues at p and p appear to be quite unrelated.

Ezample 2. A more interesting example is provided by the newform f5 at level (p3q)2pas
and its conjugate f5 at level p3,(p3p)?; see Table 9.3. The eigenvalues at p and p agree up
to sign. The explanation is that both forms recur as oldforms at level (p3q)?(psp)?, where

they are related by twisting. See §9.7 for further details.

5 29a 29b 4la 41b 6la 61b 89a 896 10la 101 109a¢ 109b

fs|1l 0 -5 7 12 -8 -8 10 -15 -8 12 5 10
fs|1l =5 0 12 7 -8 -8 —-15 10 12 -8 10 5

fs|0 8 -8 2 —2 —6 —6 —6 6 —4 4 -2 =2
fs|l0 -8 8 —2 2 —6 —6 6 —6 4 —4 -2 =2

Table 9.3: Two newforms and their conjugates

Now assume that n = n. In this case, the complex conjugation map ¢ defines an
involution on H; (FO (n)\fjg), which we can compute explicitly (using (9.4) and the same

procedures used for Hecke operators).

Warning. In general, ¢ does not commute with all the Hecke operators; in particular, it
cannot be used to split off eigenspaces in the way that the Atkin-Lehner W-involutions
and the “complex conjugation” involution (induced by the map z — —Zz on the upper half

plane) are used in [Cre97].

If f is a newform at a self-conjugate level n, then so is f; the effect of conjugation
on all such newforms within the range of our tables is shown in Table 9.4. In most cases
f = f, but occasionally f = f * v (the two cases cannot be distinguished by computing
¢ on Hy(Dg(n)\$3) alone, of course). Other behaviour is also possible. Thus, at level

n = (11), the newforms hg, hg, he * v and hg * v are all distinct; in fact, ho = hg, where
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o is the automorphism of Q(v/—2,1/—3) given by /=2 /=2 and /=3 — —/=3. At
level n = (p2)?, the newforms hg, hg, he * v and hg * v are all distinct; in fact, hg = he * &,

where £ is the character given by (9.8).

plusforms minusforms
f=1 fa, f1, fo; f11, fr6, f18, fo2, fo5, f30 | f1,f3, f6, 10, f125 f155 f19, 92, M, fo6, h3
f=f*v|fo f20, f21
other he ha

Table 9.4: Effect of conjugation on newforms at levels n = n with N(n) < 135

9.4 Decomposition of V(n)

The following result is very important, in view of the well-known facts from linear algebra
that Hermitian operators are diagonalisable, and that pairwise commuting diagonalisable

operators are simultaneously diagonalisable.

Proposition 121. Let x be an unramified character, let f,g € S(n,x), let p be a prime
with p 4 n and let (, ) denote the natural Hermitian inner product (4.5) on S(n,x). Then

(Tpf,9) = x(0)(f, Tr9)- (9.5)

Let ¢y, denote either square root of x(p). Then c,Ty is a Hermitian operator on the complex
p pEp

vector space S(n,x). If f # 0 and T,f = apf, then ay € R if x(p) =1 and ap € iR if
x(p) = —1.

Proof. We omit to prove (9.5), which is the analogue of the result for £ = Q [Kob84,
Prop. 48]. Since ¢, x(p) = cpcy? = ¢p, it follows, as in [Kob84, Prop. 50], that (¢, T, f, g) =
cp(Tpf,9) = cpx(P)(fsTrg) = &(f,Tpg) = (f,cpTpg), showing that c¢,T, is Hermitian.
Finally, if T, f = apf, then a similar calculation using (9.5) gives ay(f, f) = x(p)ay(f, f)-
For f # 0 this implies a, = x(p)dy, and the result follows. O

Hence S(n,x), as a vector space over C, has a basis whose elements are eigenforms

for all the T}, with p { n. By duality, the same is true for each summand of H;(Xy(n),C)
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when decomposed according to the characters (rather than the ideal classes; recall that
H1(Xo(n),C) was defined (in §6.2.4) as a sum over ideal classes).
Let Vi(n) = HI(XF;') (m): @) (in the notation of §6.2.4). For simplicity, assume that

h = 2, so by duality, there is an isomorphism
S(na 1) & S(“a V) = ‘/1(11) @ Vg(ﬂ),

where the V; are viewed as C-vector spaces by extension of scalars. It will be enough to
work with the piece V(n) = Vi(n) corresponding to the principal class; it decomposes as

a direct sum
Vin)=V*in) oV (n),

where V't (n) corresponds to forms with trivial character (“plusforms”, elements of S(n, 1))
and V™ (n) corresponds to forms with non-trivial unramified character (“minusforms”,
elements of S(n,v)); see §9.2.

Each of V*(n) is a module for the algebra, T, say, of Hecke operators T, with a principal
and coprime to n, and by the remarks above, it has a basis of simultaneous eigenvectors
for the elements of T (with eigenvalues and eigenvectors defined over the algebraic closure
of Q). We have computed the spaces V*(n) in terms of a particular basis consisting of
Z-linear combinations of modular symbols with endpoints at the cusps; that this basis
is the natural one to use is related to the appropriate analogue of the Manin-Drinfeld
theorem, see [Kur78, Lemmas 6 and 8] (in particular, with respect to this basis the Hecke
operators are given by matrices with entries in Z). The eigenvalues of the 7}, are certainly
algebraic integers, but they need not be rational integers, and the change of basis to a basis
of eigenvectors need not be defined over Q. As far as the rational structure is concerned,
then, several kinds of behaviour are possible, as we now explain.

Decompose V*(n) = eV, say, where each V(@ is T-invariant and irreducible. As
we remarked elsewhere, finitely many Hecke operators suffice to effect this splitting. Each
V® is characterised by its sequence of eigenvalues. If the sequence already occurs at a
level dividing n, the component V(@ ig called “old”, and otherwise, “new”.

Let v generate a 1-dimensional V(. Then the eigenvalues for v of T, (for p principal)

and of (T)? and Tyq (for p and q non-principal) are necessarily rational. There are two
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possibilities:

(i) The eigenvalues for non-principal primes also lie in @Q; we say that such a factor is

“of type f”.

(ii) The eigenvalues for non-principal primes lie not in @, but in a quadratic extension

of @ such a factor called “of type g”.

Two-dimensional factors will all be called “of type h” (although there is a similar distinc-
tion, see §9.6).

Table 9.5 below lists d(n) = dim V' (n) for all levels n of norm up to 135; levels with
dim V' (n) = 0 are omitted, and in view of §9.3, only one level is listed from each pair of
conjugate levels. For each level, both its prime factorisation and the coefficients (a, b, ¢)
of its “standard form” [a, b + v/—5]c are given.

Notice that if m | n, then d(m) < d(n), because newforms at level m give rise to spaces
of oldforms at level m; for more precise statements, see §9.5.

The table also shows the decomposition of V' (n) into eigenspaces for the Hecke algebra.
For the levels n in the range of the tables, the irreducible components have dimension 1 or
2, so they are all of “types” f, g or h. When a space is “new”, its multiplicity is one, and it
is denoted by a boldface letter according to “type” (fi, f2, g1, and so forth) together with
a superscript to indicate the character (either plus or minus). When the same sequence of
eigenvalues recurs in the oldspace, it is written in ordinary “maths italic” (f1, f2, g1 and
so on) and the table indicates the multiplicity with which it occurs; thus the oldspace at
level n = (po)* with eigenvalues f; has dimension two. (When verifying that d(n) is fully

accounted for, the reader should recall that an h needs to be counted with weight two!)
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level homology

n a,b,c | N(n) | d(n) V(n)
ps 2,1,2 8| 1|f
p3 1,0,4 16|  3|2fi+1£
papbsaPss | 2,1,3 18 1|5
p3ps 5,0,2 20| 1|ff
P3P3a 6,1,2 24 2 | 2f1
pl.ps | 3,1,3 27| 1|fy
p3 2,1,4 32| 5|3fi+2f
P3p3apss | 1,0,6 36| 3|2fs+f;
paps 10, 5,2 40 5|2fi+2fs+ £
pabasbrs | 42,11,1 [ 42| 1 |f5
pZps | 45,20,1| 45| 1|gT
p3ap3sPs | 5,0,3 45 | 1| fy
pip3a | 3,14 48| 6 |4f1+2f
prabzy | 1,0,7 49| 1|f]
pop3 2,1,5 50 2| +fp,
pap3.pas | 6,1,3 54| 4| 2f3+2fs
pipra | 14,3,2 | 56| 3 |2fi +1fg
P2pasbs | 15,52 | 60| 3| 2fs+f
ps 1,0,8 64 | 9 |4f1+3fo+f5 + 1]
p3ph2sa | 69,8,1 69 1] £}
pap3, | 18,7,2 72| 3|3fi
p3paabas | 2,1,6 72| 11| 4+ 35+ 2f6 + £ + £
paps 5,0,4 80| 13| 4fi+2f2+3fs+ 1y + 2f7 + £
psab3, 9,23 81 2| 2fs

Table 9.5: Decomposition of V(n) — part 1 of 2

200
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level homology

n a,b,c | N(n) | d(n) V(n)
p3.0%, 1,0,9 81 5| 2fs+2fs+ 8y
popaabra | 21,10,2 84| 2|23
P89a 89,23,1 89 1| gs
p2piaps 90,25, 1 90| 2|2
pap3aP3sbs | 10,5,3 90 5| 2f3+2fg + £
P3p3a 6,1,4 96 | 10| 6f1 +4f;
pab?, 98,17,1 98 2| £5+ £y,
pobrabrs | 2,1,7 98| 5 |2fi0+f5+hy
pap? 1,0,10 100 71 2f11 +2f12 + 2fs + fi
P1o1b 101,55,1 | 101 2| gf +85
Pop3ab3s | 3,1,6 108 | 10 | 4f3+3f5 +2f6 + £y
p5h7a 7,3,4 112 | 9| 4f1 +2f +2f13 + £
p2paga 29,13,2 116 1] £
p3pabps 30,5, 2 120 | 12 | 4f; +4fs+ 2f7 + 2f1a
P11 1,0,11 121 5| f5;+hy +hy
PapPata 123,47,1 | 123 2 | hf
pobZpr | 126,11,1| 126 | 4| 2fs + £ + £
pab2. 7 126,251 | 126 | 1 |f£%
P2b3aP3h7ae | 14,3,3 126 4| 2f3+2fs
p3 2,1,8 128 | 11| 5f1 +4f2 + fi5 + fie
p3,hs 135,20,1 | 135 412g1 + hy
P3aP3bs 15,5,3 135 | 6| 2f5 4291 +2fo
ps 1,0,16 256 | 19 | see §9.7, Example 3
i 2,1,16 512 | 31 | see §9.7, Example 3

Table 9.5 — part 2 of 2
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9.5 Dimension of the oldspace

It would be interesting to develop Atkin-Lehner theory for modular forms over imaginary
quadratic fields, and it should be possible to do so using modular points, as is done for
the case k = Q in [Lan76, Chapter VIII], for example. Such a treatment would have to
take account of the fact that the dimension of the oldspace is not always as high as one
would expect: in particular, an oldform can occur with multiplicity one!

Recall that in the classical case, if M | N, then a newform f at level M gives rise at
level N to an oldspace of dimension ¢(N/M), where ¢ is the “divisor function” (i.e. ¢(a)
equals the number of natural numbers dividing a); to see this, one notes that for each ¢
dividing N/M, the function z — f(¢z) is a modular form at level tM, hence at level N a
fortiori, and that these functions are linearly independent.

In the case of an imaginary quadratic field, for ideals m and n with m | n, one might
therefore expect a newform at level m to give rise to an oldspace of dimension ¢(n/m),
where ¢(a) now denotes the number of ideals dividing a.

Now consider Table 9.5. In nearly all cases, the dimension of the oldspace is as ex-
pected. For example, let m = (p2) and n = (p2)3. Then n/m has the three factors 1, py
and (p2)?, and as expected the newform f; at level m occurs with multiplicity three at
level n.

However, there are exceptions; in the range of our table these are all caused by the
newforms fi5 and fig at level m = (p2)8, which satisfy f = f * v. The induced oldspaces
at levels ()7, (p2)® and (p2)° have dimensions 1, 2 and 2 respectively, rather than 2,
3 and 4. The oldspaces appear to grow at half the normal rate; for further details, see
§9.7 (Example 3). Presumably, linear independence of some of the oldforms fails because
all the eigenvalues at non-principal primes are zero, so that forms which “ought to be

independent” are dependent after all.

9.6 Tables of newforms

In Table 9.5 we showed how Hi([o(n)\$3,Q) decomposes into modules for the Hecke

algebra that are irreducible over Q. One-dimensional modules were denoted by f or g,
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two-dimensional ones by h. We now pass to the corresponding newforms; to avoid needless
repetition, we shall choose “representative” newforms as follows.

In general, a new eigenvector of type f corresponds to two newforms, which are twists
of each other by the unramified character v. We choose one arbitrarily, and denote it
by the same symbol f; the other is then f x v. (Of course, if f = f * v, as happens for
f15 and fi6, there is no choice to be made.) We only need to tabulate the eigenvalues of
the representative form f, since those of f * v are easily deduced (one simply negates the
eigenvalues at non-principal primes).

Eigenvectors of type g are dealt with in the same way. For a module of type h, we
make a choice v of eigenvector (defined over a real quadratic extension F'|Q) and then a
choice of v-twist. Let o be the non-trivial Galois automorphism of F'|QQ. The forms h and
hxv correspond to the eigenvector v, and there are two forms A and h? xv corresponding
to the conjugate eigenvector v?. Note that F' is real quadratic, by the Hermitian property
of Hecke operators at principal primes. The eigenvalues at principal primes lie in F', and
the eigenvalues at non-principal primes either in F' (as for the plusforms h4 and hg) or in
a quadratic extension F' of F' (as for the minusforms hi, he, hg and hs). In our examples,
F'|Q is always biquadratic (we do not know if this is so in general). The eigenvalues of h?
are obtained from those of h by applying the automorphism o (extended to F'|Q where
necessary, one extension yielding h° and the other h? * v).

We now tabulate Hecke eigenvalues for the representative newforms chosen as described
above. For each form, we list the eigenvalues of T}, for the good principal primes with
N(p) < 400 and for the good non-principal primes with N(p) < 180; an entry of “x”
denotes a bad prime, and an entry of “?” a value we have not computed.

In Table 9.6 we give the plusforms of types f and g, and in Table 9.7 the minusforms
of those types. In Table 9.8 we give the forms of type A (both plus and minus); we can
always specify their eigenvalues in terms of a (-basis of two elements: for example, the
eigenvalue of hy for posy is v/—2 — 3v/—3.

As predicted by Proposition 121, plusforms have real eigenvalues, whilst minusforms
have real eigenvalues at principal primes and pure imaginary eigenvalues at non-principal

primes.
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n N(n) 5 29a 29b 4la 41b 6la 61b 89a 89b
pa 6] fol 2 -2 -2 -2 -2 10 10 -6 -6
p3ps 2001 f] + 6 6 6 6 2 2 —6 —6
p3ps 0| fr| = -2 -2 -6 -6 -2 -2 -6 -6
P3aP3sPs 45| fo| *+ -2 —2 10 10 -2 -2 -6 -6
pap?2 50 | fi1| * 0 0 -3 -3 2 2 15 15
p8 64 | fig | —2 —10 —10 10 10 —10 —10 10 10
P3bP23a 69 | fir | —4 1 -6 9 6 -8 -1 6 —10
p3p3aP3b 72| fig | —2 6 6 -6 -6 -2 -2 —6 —6
P89a 89| g3|—2 -8 2 =10 -6 6 -2 * —6
pobsapseps | 90 | fa| * -6 —6 -6 —6 —10 —10 18 18
pap7, 98 | fo3| 1 -1 -8 -2 -5 -8 0 -7 -8
Pab7ab7e 98| fs| 0 —6 —6 6 6 8 8 —6 —6
P1o1h 101 g4| 0 10 0 2 —6 —10 14 —14 0
P3P3.P3s 108 f;] 0 0 O 6 —6 —10 —10 18 —18
P5h7a 112 | fos | -3 3 -2 -2 3 10 —-10 —-11 4
p3p29a 116 | fog | -2 % —6 —6 —10 -2 14 6 —6
P11 121 | fao | 1 0 0 -8 -8 12 12 15 15
p2p3P7s 126 f5| 3 0 9 -9 0 8 8 6 9
p2p3sP7 126 | fs2| -3 -6 -3 -3 —6 —10 —10 —12 —3
P2b3.P70 126 53| 3 6 3 3 6 —10 —10 12 3

Table 9.6: Plusforms of types f and g for Q(v/—5) — part 1 of 5
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10la 1015 109a 109 11 149a 149> 13 18la 181b 229a 229b
fo 6 6 -6 -6 -6 18 18 10 22 22 6 6
fa 6 6 2 2 -2 —6 -6 —22 —10 —10 14 14
fr 6 6 14 14 -6 -10 —-10 —22 —10 —10 —26 —26
fo 6 6 14 14 -6 22 22 —22 —10 -10 6 6
fii| —18 —-18 —10 —-10 -13 0 0 —10 2 2 20 20
fie| —2 =2 6 6 —22 14 14 10 —-18 —-18 30 30
fi7 0 —2 —11 -10 7 -7 —6 —19 4 -7 -6 -9
fig| —18 —18 -2 -2 —6 14 14 —22 6 6 22 22
a3 0 2 6 10 8 -20 —-10 6 —-10 —26 -2 26
feo| 18 18 —-10 -10 —-22 —6 —6 —22 14 14 —-10 -—10
faz| =10 14 -2 11 3 8§ 17 9 2 12 —27 —13
fas 0 0 2 2 —22 —18 —18 —-10 20 20 -4 —4
gs | —10 *x -2 10 6 6 —10 22 —14 —6 18 —26
for | 12 —12 2 2 —10 —-12 12 14 2 2 2 2
fog| —4 —-14 14 -1 19 18 -7 -15 -18 -8 21 11
fao| -6 -2 —-14 -6 -6 -—10 6 -2 —18 —-10 14 26
f30 2 2 10 10 * —10 —10 —10 7 7 15 15
fa1| 12 0 -7 2 —13 —21 -—-18 -—19 2 20 5 —13
f3o 6 0 -7 2 5 15 6 —1 —16 2 5 5
faz| —6 0 -7 2 5 —15 —6 —1 —16 2 5 5

Table 9.6 — part 2 of 5
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241a 241b 269a 269b 28la 281b 17 349a 349b 19 389a 389b
fa| 22 22 -6 -6 —-18 —-18 34 -2 -2 —22 —30 -30
fa| 14 14 18 18 6 6 2 —-10 —-10 —22 -6 —6
fr 2 2 14 14 10 10 -30 30 30 —22 6 6
fo| —14 —-14 14 14 -6 —6 —30 —2 —2 —22 6 6
fu| 1717 0 0 —18 —18 —-25 —10 —10 —13 30 30
fie| =30 —30 —26 —26 10 10 —30 —10 —10 —38 —34 —34
fir | —23 0 —4 —-15 —22 31 23 1 -1 —-20 23 -9
fis| 18 18 —10 —-10 26 26 —-30 30 30 —22 -2 —2
g3 4 18 —-10 -6 —18 16 -4 —-10 —-24 2 —6 30
fa2 2 2 -6 —6 18 18 2 —-10 —-10 —-22 —6 —6
fas | 17 24 7 —10 2 16 —18 —-30 -26 12 -2 —16
fos | =10 —-10 —-12 —-12 -6 —6 2 —-28 28 —-34 18 18
g4 0 10 2 -2 —14 22 20 -14 2 —12 8§ —10
for 2 2 0 0 —6 6 14 —34 —-34 26 24 -—24
fog| —23 -8 -—21 14 12 -28 —-16 18 -2 -2 30 0
foo| 10 —22 6 14 —-22 —6 18 -2 -—-14 2 -2 6
fao| -8 -8 10 10 —-18 —18 —-30 30 30 —38 —15 ~—15
far| =10 17 —6 9 30 6 —16 26 —10 20 —18 —6
f32 8§ -1 —6 21 12 24 20 —-10 —-10 —34 24 —18
f33 8 -1 6 —21 —12 —24 20 —10 —10 —34 —24 18

Table 9.6 — part 3 of 5
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83a 83b 103a 103b 107a 107b 127a 127b 163a 163b 167a 167b
fol =2 2 14 —-14 -10 10 —6 6 2 -2 -—18 18
fi| 6 —6 —14 14 6 6 -2 -2 10 10 -18 -—18
fr| 16 16 —4 —4 0 0 12 12 —-16 -16 —-12 —12
fo|—12 —-12 16 16 12 12 8 8 4 4 0 0
ful -9 -9 4 -4 -3 -3 2 2 11 11 12 12
f16 0 0 0 0 0 0 0 0 0 0 0 0
fir] 14 0 0 —4 71T 15 0 16 —22 —14 9
fis| 4 4 —-16 —-16 12 12 8 8§ —12 —12 —24 24
g3 | -8 Tt 8t -3t t -5t 9 8 -2t —5t 17t —11t
foo | =12 —12 4 4 12 12 —20 -20 4 4 0 0
faz | 12 9 0 —6 18 6 12 -9 -3 -3 —-12 -9
fs| 6 6 4 4 —-12 -12 16 16 16 16 12 12
gi| —3t —4t -5t 4 13t -5t 6t 15t 0 3t Tt —14t
for | 12 —12 14 14 12 -12 —-10 -10 —16 —16 0 0
fos | 18 =3 4 16 10 -10 —6 11 17 —7 -8 3
foo| 12 16 14 6 8 —12 2 8 24 -2 —6 -—18
f30 6 6 16 16 —18 —18 -8 -8 —4 —4 12 12
fa1| =9 —18 14 —4 12 -6 11 2 ?7 11 3 ?
fa2 | —15 6 -4 -4 18 -6 -7 2 11 11 9 0
fa3 | —15 6 4 4 18 —6 7 -2 —11 -11 9 0

t=+v2

Table 9.6 — part 5 of 5
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n N(n) |lname| 5 29a¢ 296 4la 41b 6la 61b 89a 89b
p3 8 fil-2 -2 =2 2 2 —10 -10 —6 —6
pobsaPss | 18| fz3|—-4 0 0 2 2 2 2 10 10
P3aPab 27| fs| 0 8 -8 2 -2 —6 -6 —6 6
p2p3apss | 36 fo| 2 6 6 —10 —10 2 2 10 10
p2p3eP 7o 42 fe| 1 0 -5 7 12 -8 -8 10 —15
p3sPs 45 g1 | * 6 6 -6 —6 —10 2 6 —6
P7aP7H 49 fio | —4 5 5 2 2 -8 =8 0 0
pap? 50 | fi2| ¥ 0 0 -3 -3 2 2 —15 —15
P3P7a 56| fis|] 3 3 -2 2 -3 —10 10 -11 4
P2psps | 60| fuu| + -2 -2 6 —-10 2 2 —6 10
p$ 64| fis| 2 -10 —-10 —10 —10 10 10 10 10
p3psapss | 72| fio| 4 -8 -8 2 2 2 2 -6 —6
pbs 80| fwo| * 6 6 -6 —6 -2 -2 —6 -6
pbs 80| ful| * -2 -2 6 6 2 2 —6 -6
P3aP3s 81| g| 0 o0 0 0 0 2 2 0 0
pabz, 98| fu| 3 3 -6 -6 -3 10 —10 -3 —12
pap3 00| fos| * -6 -6 6 6 2 2 6 6
P1o1b 101 gs| O 6 0 -6 6 14 2 —6 0

Table 9.7: Minusforms of types f and g for Q(v/—5) — part 1 of 5
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10l 1016 109a 1096 11 149a 1496 13 18la 181b 229a 229b
fi 6 6 6 6 -6 —-18 —18 10 22 22 6 6
fs| -8 —8 —10 —10 —18 20 20 —10 2 2 10 10
fs| —4 4 -2 -2 6 4 -4 =2 2 2 —14 -—14
fo| —2 =2 2 2 —6 2 2 26 —-10 —10 —26 —26
fs| —8 12 5 10 -3 15 —-10 -5 —-18 -8 15 —25
g| —6 0 —10 8 —4 —12 0 —10 —4 20 26 —22
fio| 12 12 -5 -5 —-13 —-10 —-10 25 —18 —18 10 10
fio| —18 —18 10 10 -13 0 0 10 2 2 —20 —20
fis| —4 —-14 -14 1 19 -18 7 -15 —-18 -8 21 11
fia | —10 6 18 2 10 -6 -6 —6 -10 22 6 6
fis| -2 -2 -6 -6 —22 —14 -14 10 -18 -—18 30 30

f19 0 0 6 6 —18 12 12 22 —14 —-14 -6 —6
f20 6 6 -2 -2 —22 6 6 —22 —10 —10 14 14
fo1 6 6 —-14 —-14 -6 10 10 —22 —-10 —-10 —26 —26
9 0 0 14 14 —-22 0 0 26 —22 —22 26 26
faa 0 -6 2 -7 -5 -6 15 1 -2 —16 5 -5
fo6 6 6 -2 -2 —22 6 6 22 —-10 —10 —14 —14

gs | —18 * 14 14 14 -18 -6 —10 -—22 2 =22 -10

Table 9.7 — part 2 of 5



CHAPTER 9. RESULTS 211

241a 241b 269a 269b 28la 281b 17 349a 349b 19 389a 389b
fi| =22 —22 6 6 18 18 34 -2 —2 —22 30 30
fa| 22 22 0 0 —18 —18 30 —10 —10 —38 —20 —20
fs| 14 14 24 —24 —26 26 —34 -2 -2 10 24 —24
fo| -2 -2 -6 —6 6 6 18 14 14 -38 34 34
fs| 22 17 10 5 —18 —18 —-20 -30 10 12 10 30
g1 2 —-10 —-18 18 —18 —6 26 14 14 8 12 0
fiol 22 22 —10 -—10 7 7 —15 20 20 —-38 -5 =5
fio| 17 17 0 0 —18 —-18 25 10 10 —13 —30 —30
fis| 23 8§ 21 —-14 -—-12 28 —-16 18 -2 -2 -30 0
fia| —18 14 18 18 6 —10 —-14 -34 -2 10 -22 10
fis| 3 30 26 26 —-10 —10 —-30 -10 —10 —38 34 34
fio| =10 —10 —24 —24 —-18 —-18 —2 22 22 26 —12 —12
foo| —14 —-14 —-18 —-18 —6 —6 2 —10 —10 —22 6 6
for| -2 -2 -14 -14 —-10 —-10 -30 30 30 —-22 —6 —6
g 2 2 0 0 0 0 14 34 —34 —22 0 0
foa| -1 -8 21 —6 24 —-12 20 10 —-10 34 18 24
foe| 14 14 —18 —18 6 6 -2 10 10 —22 6 6
gs 8§ —22 30 30 —6 6 20 2 2 20 24 30

Table 9.7 — part 3 of 5
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2 3a 3b Ta Tb 23a 23b 43a 43b 47a 47b  67a  67b
fil * 2% 2% —2% -2 -2 -2 —6i —6i 6i 6i —14i —14i
fal * « x  2 2% 4 4 4i 4i  —8i —8 —8i —8i
fsl @« %« =20 % —4i —4i 8 —8i 0 0 —12i 12i
fo| * * % 4 4 —4i —4i 4 —4i —4i -4 —4i —4
fo| * @ % 3 = i —4i 6i —4i —12i 8i —12 3i
g| t -t % =3t 0 —2t t 3t —6t —2t Tt 9 —6t
fiol|2% —i —i % % —6i —6i 4 4i  —3i =3 2i 2i
fio | i i =2 —2%  6i 6i —4i —4i —12% —12 13i 13
fis | * 20 =30 o« 3 —2% —Ti 4 4i  —4i 6i i —4i
fuul * 0 « 0 4 —4i 8 —8 —4i 12 8 —8  12i
fis| « 0 0 0 0 0 0 0 0 0 0 0 0
fiol * % % 2% 2 —4i —4i —120 —12i 0 0 8 8i
foo | * 2% —20 2% —2i 6 —6i 10i —10i 6i —6i 2 —2i
for| * 0 0 4i —4i —4i 4 —8i 8i 4i  —4i 8 8i
g2 | u * 0 0 4du 4du 0 0 4u 4u 0 0
fos | * 2% —i  x i —6i 3 8 —8i 0 —6i —13i 44
fos | * 20 2 2 2 —6i —6i 10i 100 —6i —6i 2i 2i
gs| t —t 2t 0 3t —5t ¢ 0 0 -2t -2t 0 —9¢

i=+—1, t=+v—=2, u=+—5

Table 9.7 — part 4 of 5
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83a 83b 103e¢ 103b 107a 107b 127a 1270 163a 163b 167a 167b

fi 2 20 14¢ 145 102 10s 67 67 2i 2; —18 —18:i
f3 43 4 14¢ 14d 120 12 2 2i —16¢ —16¢ 12¢ 12
fs | —122 —12 6: —0¢ 44 45 2 -2 —8& 8 123 12
feo| —4i —4i 4 4 120 12 4i 4 —20¢ —20¢ 12z 124
fs| —9 6: —147 —44 8 -2 -7 =20 115 197 —-177 —12
g1 | 10t t 3t 0 13t 4t 9t 0 15t —6t —8t Tt
fio 4q 4d 199 197 -8 —8& 21 20 14s 14 =3 =3
fie| =9 -9 —4i -4 3i 3 -2 -2 11¢ 11¢ —127 —124
fiz | —18 =3¢ 4i —161 —10¢ —10¢ 6: 113  17: 7 =8 =3
fia| —4 -8 —161 —12 0 45 —161 43 8 —4i —12 0
f15 0 0 0 0 0 0 0 0 0 0 0 0
J19 4 4 20 -2 -4 —4¢ 18 18 161  16¢ —123 —12
Jao 6: —6: —14¢ 14i —61¢ 67 2 —2¢  10¢ —10¢ —18&  1&
fo1 161 —16: i —44 0 0 12¢ —12¢ 16¢ —16¢ 12 —123
g2 | —8u —8u 0 0 —8u —8u 0 0 0 0 4u 4u
foa 6: 152 —4¢ —4i —6: 18 —-2¢ -7 1li —113 0 -9
foe | —6¢ —6¢ —14¢ —14¢ —61 —61 24 2¢  10¢ 106 18  18;

g5 Tt 10¢ 3t —6t —5t -5t 12¢ -9t 6t 9t Tt 4t
Ii:\‘_la t:V_Q, U:V—5

Table 9.7 — part 5 of 5
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9.7 Ray class groups and twists

In this section, we compute those ray class groups whose characters occur as twisting
characters in our tables of modular forms. It will be useful to have one general result.
Let k be an algebraic number field with ring of integers £, and let m be an integral
ideal of O. Let J™ be the group of fractional ideals coprime to m, and let P™ be the group
of principal fractional ideals having a generator a such that a =1 (mod m). Thus J™/P™
is the ray class group modulo m, and J!/P! is the ideal class group of k. Finally, let pm

be the group of principal fractional ideals coprime to m; thus P(™ = jmn P!,

Proposition 122. There is an exact sequence of abelian groups
1 ; P(m)/Pm , Jm/Pm 3 Jm/P(m) — 1, (9.6)

and there are isomorphisms J™/P(™ 2 JU/P and P(™ /P™ = (O /m)*/O*. If m' | m,
then there is a canonical surjection J™/P™ — J™ /P™ and hence a canonical injection

(J™ /P )% 5 (J™/P™)* of the corresponding character groups.

Thus the ray class group is an extension of the group (O/m)* /O by the ideal class
group. We stress that m in this proposition is an integral ideal, not a general modulus

(which might be divisible by real infinite primes).

Proof. Exactness of (9.6) is trivial. The map J™ — J' — J!/P! is surjective (since, by
Lemma 1, every ideal class contains an ideal coprime to m) with kernel J™ N P! = P,
giving the first isomorphism. A similar argument gives the last sentence.

To define the map P(™ /P™ — (O/m)* /9%, begin by noting that every element of
P™) has the form 79O for non-zero a,b € O. By Lemma 38, we may assume that (a,b)
is coprime to m, from which it follows (since a/b is coprime to m) that each of a and b is
coprime to m; multiplying both a and b by an inverse of b modulo m if necessary, we may
further assume that b = 1 (mod m). Thus every element of P{(™ /P™ is represented by
some a € O coprime to m, which we map to (9/m)*/O*. The image of a is well-defined,
for if aP™ = a'P™, then (aD)b = (a’O)b for some b, = 1 (mod m), so there exists

€ € O* such that ab = ea’t/, whence a = ea’ (mod m). The map thus defined is clearly a
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surjective homomorphism. If aP™ is in the kernel, then a = ¢ (mod m) for some € € O*,

whence a$) € P™. This completes the proof. O

As in the case k = Q, the twist of a form with character ¢ by a character x has
character 1y?; thus, twisting by a quadratic character y preserves the character, whilst
twisting by a quartic character y that satisfies x> = v changes plusforms into minusforms
and vice versa.

In the case k = Q, the Chinese Remainder Theorem applied to (Z/MZ)* implies that
it suffices to consider characters to prime-power moduli. To find all quadratic characters,
it then suffices to consider M = 4, M = 8 and M an odd prime (thus only such characters
are treated in [AL70], for example) whilst to find all quartic characters, one only needs
the further modulus M = 16. A similar simplification is not possible in the case h(k) > 1,
as we see below (Example 5).

From now on, let ¥ = Q(v/—5), so that O = Z + Zw, where w = /—5. For each ideal
m such that m? divides one of the levels in our tables of newforms, we now determine all
characters x of J™/P™ with x? € {1,v}. The values of m to be considered are O, po,
(p2)?, (p2)®, (p2)%, P3as (P3a)%, P3aP3bs P5, D7a, P2b3a and pops (and their conjugates).

Ezample 1. Let m = 1. Clearly P(™ = P™ and the ray class group is just the ideal class
group, cyclic of order 2. The non-trivial character v is given by (9.1) above. (The same
is true for any k with h(k) = 2.) Notice that fi5 * v = fi15 and fi6 * v = fig, so the

eigenvalues of fi5 and fig at all non-principal primes are zero.

For m = py the group (O/m)* is again trivial, so J™/P™ =2 J!/P! and there are no

new characters.

Ezample 2. Let m = (p2)? = (2). A set of invertible residues modulo m is {1,w}, so
(O/m)*/O* has order 2 and J™/P™ has order 4. Since (p3,)? = (2 — w) ¢ P™, the
group J™/P™ is cyclic of order 4, and any non-principal prime (other than py) serves as a
generator. Note that for p a split prime, p, .ppp = (p) € P™; hence inversion in J™/P™ is
given by conjugation. By inspection of the principal generators of p (for principal primes

p) and of p3ep (for non-principal p) in Tables 9.1 and 9.2, we obtain, with a slight abuse
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of notation (writing, for example, 29ab for pagq, P2gs),

P™ > {29ab, 89ab, 101ab, 181ab, 229ab, 349ab, . .. ,11,13,17,19, ... },
psP™ O {5,41ab, 61ab, 109ab, 149ab, 241ab, 269ab, 281ab, 389ab, . .. } , 01
9.
p3aP™ D {3a, 7b,23b, 43a, 47a, 67b, 83b, 103a, 107b, 127b, 163a, 167a, . . . },

payP™ O {3b, Ta, 23a, 43b, 47b, 67a, 83a, 103b, 107a, 127a, 163b, 167b, ... } ,

and the character group is generated by the quartic character, y say, defined by

(

1 for p € p3, P™,
—1 for p € ps P™,
P <
—i  for p € p3p P™,

1 for p € P™.

L

Forms at level n may be twisted by x whenever (p2)* | n; in the range of our tables, this

means at levels (p2)*, (p2)°, (p2)*Psas (p2)8, (P2)*P5, (p2)°P34, (P2)*P7a and (p2)7. Since

x? = v, twisting by x interchanges “plusforms” and “minusforms” (at the expense of

possibly changing the power of py in the level). Sure enough, inspection of our tables of
eigenvalues shows fi = fo * x (at level (p2)*), fis = fie * x (at level (p2)%), fo0o = fa*x
and f21 = frx x® (both at level (p2)*ps), and f13 = fog * x (at level (p2)*pra).

For m = (p2)? the invertible residues are {£1, +w}, so (O/m)* /9O is the same as for

m = (p2)2, and there are no new characters.

Ezample 3. Let m = (po)*. The invertible residues are {+1, +1 + 2w, +w, 2 + w}, so
(O/m)* /DX = Cy x Cy. Since (p34)% = (2 — w) — 2 £ w, we see that J™/P™ =2 Cy x Cy.
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Each coset in (9.7) is partitioned into two, giving

P™ > {89ab,...,11,13,17,19,... },
p29a P™ D {29ab, 101ab, 181ab, 229ab, 349ab, ... },
psP™ D {5, 61ab, 109ab, 149ab, 269ab, 389ab, . .. },
pa1aP™ D {41ab,241ab,281ab, ...},
psaP™ O {3a,43a, 67b, 83b,107b, 163a, . .. },
paP™ > {7b,23b, 47a, 103a, 127b, 167a, ... } ,
pspP™ > {3b, 43b, 67a, 83a, 107a, 163b, ... },

p7P™ D {7a,23a,47b,103b,127a, 1670, ... }.
There is a new quadratic character, £ say, given by

+1 if p € P™U (p41oP™) U (p3aP™) U (P35 P™),
p = (9.8)

=1 ifp € (psP™) U (p29a P™) U (p7aP™) U (p7o.P™).

The full character group, generated by £ and the character x induced from the lower

modulus m’ = (p2)?, is as follows:

1 x| v|x®| & &x| &v|&d
P11 1] 1] 1] 1] 1| 1
pooaP™| 1| 1] 1] 1|—1|-1|-1] -1

psP™| 1]—1| 1|-1[—-1| 1|=-1] 1
pagP™| 1|—1] 1|-1| 1|-1| 1] -1
psP™| 1| i|-1|—i| 1| i|-1| —i
pP™ | 1| il 1| —i| 1| —i| 1| i
ppP™ | 1| —i|—1] 4| 1| —i|-1| i

praP™| 1| —i|—-1| i|—-1] 4| 1| —i

All the newforms at level n = (p3)® are accounted for by twisting oldforms by the new
characters: we find dim V' (n) = 19, where the oldspace may be written 6 f1 + 5f2 + 2f15 +

2f16, and four representative newforms are fi; * &, fo*x &, fi5*x& and fig * €.
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At level n = (p2)® we find dim V' (n) = 31. The oldspace may be written 7f; + 6f2 +
2f1 x &+ 2fo x €+ 2f15 + 2f16 + f15 * € + f16 * £ (as in §9.5, note that the dimensions of
oldspaces with f = f x v, such as fi5 * £, grow at half the usual rate). The newspace
consists of four modules of type h, these being twists of any one of them by 1, y, £ and
£x. Representative newforms are hg and hg, as shown in Table 9.8, and the reader can
verify that hg = hg * , as mentioned in §9.3.

Ezample 4. Let m = ps = [5,w]. The invertible residues are {+1,+2}, so (O/m)*/O*
has order 2. Since (p2)? = (2) — £2, the ray class group is cyclic of order 4, generated by

any non-principal prime. Inspection of Tables 9.1 and 9.2 gives

P™ > {41ab, 61ab, 101ab, 181ab, 241ab, 281ab, . .. ,11,19,... },
PogaP™ O {29ab, 89ab, 109ab, 149ab, 229ab, 269ab, 349ab, 389ab, . .. ,13,17,... },
poP™ D {2,7ab,47ab, 67ab,107ab,127ab, 167ab, ... },

p3aP™ D {3ab, 23ab, 43ab, 83ab, 103ab, 163ab, ... },

and the character group is generated by the quartic character, x say, given by
(

¢ for p € p3a P,

—1 for pe p29apm’
p 3 (9.9)

—i  for p € po P™,

1 for p € P™.

\
Since x? = v, twisting by y interchanges plusforms and minusforms. At level n = py(p5)?,
we find f12 = fi1 * X, and at level n = (p2)2(p5)?, we find fog = f1 * X.

If m = p3, or m = p3p, then (O/m)* /O is trivial. If m = (p34)? = [9,7 + w], then
(O/m)*/O* = {£1,42,+4} has order 3, and the corresponding cubic twist will not be
visible in our tables; similarly, we do not see any twists with m = p%b.

Ezample 5. Let m = p3apsp = (3). The invertible residues are {+1, +w}, so (O/m)* /O*

has order 2. Since (p2)? = (2) — %1, the ray class group has structure Cy x Co. The four
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cosets of P™ are

P™ > {61ab, 109ab, 181ab, 229ab, 241ab, 349ab, . .., 11,13,17,19,... },
psP™ > {5, 29ab, 41ab, 89ab, 101ab, 149ab, 269ab, 281ab, 389ab, ... } ,
poP™ D {2,23ab,47ab,83ab,107ab,167ab, ... },

p7aP™ D {7ab,43ab,67ab, 103ab, 127ab,163ab, ... }.

The character group is as follows, generated by the unramified character v and a new

character .

coset 1 v| x| vx

P™ | 41| +1[+1|+1
psP™ | +1|+1|—1|-1
poP™ | 41| —1]+1]—1
praP™ | 41| 1| 1] +1

The character y may be seen at level p%apgb. Firstly, there is a newform g, with go = go*x,
a fact reflected in the high proportion of its Hecke eigenvalues that are zero. Secondly, the
oldforms f5 and f5 satisfy f5 = f5 * X, but the y-twist cannot be obtained by composing
a P3q-twist and a psp-twist (there being no such twists). This example demonstrates that
unlike in Atkin-Lehner theory for £ = Q, or indeed for k imaginary quadratic of class
number one, it is no longer sufficient to consider twists modulo prime powers only.
Another example is provided by the newforms for at level p3p3,psp and for at level

p3p3ab2,, which are related by for = for * vx.

For the remaining candidate moduli, nothing new is found. Thus, for m = pops, =
2,14 w][3,1+ w] = [6,1+ w], the invertible residues are {£1}, so (O/m)*/O* is trivial.
For m = pops = [2, 1 4+ w][5, w] = [10, 5+ w], the invertible residues are {£1, +3}; since all
the generators to be considered are coprime to po, their residues modulo m are determined
by their residues modulo p5 (by the Chinese Remainder Theorem) and we get nothing new,
merely the characters modulo ps found above. Finally, for m = p7, or prp, the invertible

residues are {+1, 42, £3}, so the only new characters are cubic.
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9.8 Base change lift of forms over

Let f = Y a(n)e? "* be a weight 2 cuspform (over Q) for ['o(NN) with character y, and let
k | Q be a quadratic field extension. There is a well-known process of “base change lift”
from Q to k£ which constructs from f a weight 2 modular form F' for T'y(n) for suitable n.
Lifting may be described in the language of automorphic representations, or (as below) in
the more classical language of automorphic forms.

Historically, real quadratic fields were treated first. The early paper of Doi and Na-
ganuma [DN69] dealt with the special case h(k) =1, N =1 and x = 1. Those authors
defined the lifted Dirichlet series L(F, s) directly (by defining its coefficients in terms of
the a(n), as in (9.11) below) and derived its functional equation by exhibiting it as the
integral of f against a certain Maass wave form.

Later, Asai [Asa78] considered the “Doi-Naganuma lifting” in the context of imaginary
quadratic fields, restricting to the case of Q(v/—D) for D € {7,11,19,43,67,163}, to N = 1
and x = (_*—D); here, the lift was defined by integrating f against a certain theta function.
Asai’s results were generalised to general class number, to arbitrary congruence subgroups
of SL(2,Z), and to general x by Friedberg [Fri83].

For a concise summary of relevant facts regarding base change lift from QQ to an imag-

inary quadratic field of discriminant A (at least for h(k) = 1), see [Cre92]. In particular,

(i) Every cusp form f of weight 2 for I'o(NV) lifts to a form of weight 2 for I'y(n), where
n is an ideal of k divisible only by primes dividing NA.

(ii) A cusp form F of weight 2 for I'g(n) is the lift of a form f on some I'o(XN) if and

only if the Fourier coefficients of F' satisfy a(p) = a(p) for all p.

By this result, our plusforms satisfying F' = F (see §9.3) are lifts of cuspforms defined

over (; below, we aim to identify these cuspforms.

Proposition 123. Let k be an imaginary quadratic field of discriminant A, and let x be
the associated quadratic Dirichlet character x — (%) Let f =" a,e?™"% be a normalised
newform for To(N) with Dirichlet character x. Let n be an ideal of k and let F be a
normalised newform for T'o(n) with unramified character 1, and write T,F = C(p)F for

all primes p. Assume that F is a lift of f. Then
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(i) if p lies above p, thenp |n <= p| N;

(i) if xx(p) = 1, so (p) = pp, then C(p) = C(p) = a(p); if further p{ N then x(p) =

(iii) if xx(p) = =1, s0 (p) = p is prime, then C(p) = a(p)? — 2px(p) and x(p)* = 1.

The case xx(p) = 0 is treated in Corollary 124. Note that x(p) =0ifp | N, even if x is
the trivial character, so that at bad inert primes, our formula for C(p) is not in agreement

with the formula on p413 of [Cre92].

Sketch proof. Let L(f,s) = ann~* be the L-series of f, let L(f, xk,8) =Y anXxx(n)n=*
be its twist by x, and let L(F,s) = > C(a) N(a)~* be the L-series attached to F. Then
formula (3.5.2) in [Fri83] gives

L(f,s) - L(f, Xk, s) = L(F, s).

We wish to express both sides as Euler products in order to equate Fuler factors locally,
i.e. for p on the left and the primes p above p on the right. To obtain Fuler products, we
need newforms. Since f ‘ka need not be new (see §2.1.4) we replace it by the newform

f * xx at level N’ and replace L(f, xx,s) by L(f * xx,s) = Y. b(n)e*™*. By (2.8),

L(f,9) " =] —alp ) [J(1 - alp)p* + x()p' ),

p|N ptN

and similarly for L(f * xx, s) with a(p) replaced by b(p). On the other hand, by (7.11),

L(F,s) "t =[] (1= Co)Np) =) TL(1 - Clo) N(p)~* + (p) N(p)' ).

pln pfn
Part (i) follows at once from the need to equate the right number of Euler factors of the
right shape. Now let p be a prime with p{ A, so p does not ramify. By Theorems 6 and 7
of [AL70], b(p) = xx(p)a(p), and p occurs to the same power in N and N’. First, suppose
that xx(p) = 1, so that p splits; write (p) = pp, where N(p) = N(p) = p. If pt N, then

neither p nor p divides n, and equating Euler factors gives

(1—a@)p™* + x(P)p* %) = (1= Clp)p™ + $(p)p' ™) (1 — CP)p~* + p(p)p' ™),
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implying that C(p) = C(p) = a(p) and x(p) = ¥(p) = ¥(p), as claimed. If p | N, then p

and p divide n, and we obtain

(1—a@p~*)’= (1 - Clr)p*) (1 - CEP*),

and again C(p) = C(p) = a(p). Now suppose that xx(p) = —1, so that p is inert, (p) = p
say, where N(p) = p?. Note that 1(p) = 1, since p is principal and 4 is unramified (by

assumption). If pt N, then p t n, and equating Euler factors gives

(1—a@p™ + x@)p' ) (1 +alp)p™ + x(p)p' ) = 1— C(p)p~* + ¢ (p)p*' ),

implying C(p) = a(p)? — 2px(p) and x(p)? = 1. If p | N, then p | n, and we obtain

(1= a(p)p™®) (1 +alp)p™®) =1-C(p)p~>,

implying C(p) = a(p)?. We may write this as C(p) = a(p)? — 2px(p) since x is a Dirichlet
character modulo N, so x(p) =0 for p | N. O

Corollary 124. With notation as above, assume that xi(p) = 0, i.e. that p is ramified.
Write (p) = p?. Then C(p) = a(p) + b(p), and if p{ n, then x(p) = ¥ (p).

Sketch proof. Note that N(p) = p. There are several cases. If p { N, then p? | N’ by
Theorems 6 and 7 of [AL70], so that b(p) = 0 by (2.7). Equating Euler factors gives

1—a(p)p™ + x(p)p' "> =1—=C(p)p~° +1p(p)p' %,

whence C(p) = a(p) and x(p) = 9(p). Next, suppose p | N but p? { N. Again p? | N’ and
b(p) = 0. We equate

1—a(p)p™ =1-C(p)p~",

giving C(p) = a(p). In both cases above, it is more symmetrical to write C(p) = a(p)+b(p);
this covers also the cases in which p? { N’. Finally, if p? divides both N and N', then
a(p) = b(p) = 0, and equating Euler factors gives C(p) =0 = a(p) + b(p). O
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Corollary 125. Let k = Q(v/—=5). Let F be a newform for To(n) with unramified char-
acter . Assume that F is the lift of a newform f for T'o(N) with character x. If F is a

plusform, then x = 1, whilst if F' is a minusform, then x is given by

if p=+1 (mod 5),
x(p) = Lo mod 3 (9.10)
-1 ifp==42 (mod 5).

For p not ramified and p | p the Fourier coefficients of F and f are related by

o) = a(p) if p splits, and 9.11)

a(p)2 —2px(p) if p is inert.
Proof. Note that x(—1) = 1, since f = f‘(_ol _01) — x(=1)f. (See [Kob84, p138], for

example.) We have

1 ifp=1,3,7,9 (mod 20),
xk(p) =
1 ifp=11,13,17,19 (mod 20).

If ¢ =1, then x(p) =1 for p=1,3,7,9 (mod 20). Since x(—1) = 1, this implies x = 1. If
1 = v, then x(p) =1 for p=1,9 (mod 20) and x(p) = —1 for p = 3,7 (mod 20). Using
x(—1) =1, we deduce (9.10). O

Ezample. At level n = (p2)?(p5), there is the new plusform f;4 and its unramified twist
fa*v. From Table 9.4, we know that both satisfy C(p) = C(p) for all p. So they must be

lifts of forms over Q with eigenvalues

split/ramified inert
pl2 35 7 23 29 41 43 47 61 67 83 89 ... |11 13 17 19 ...
falx 2 %x -2 -6 6 6 10 6 2 -2 —6 —6 ...| 0 2 £6 +4 ...
faxv|ix =2« 2 6 6 6 —-10 -6 2 2 6 —6 ...| 0 £2 £6 +4 ...

Cremona’s tables contain four forms with matching eigenvalues:

2 35 711 13 17 19 2329 31 3741 43 47 53 5961 67 71 73 79 83 89
20Al—-24+ 20 2-6-4 6 6-4 2 6-10—-6-6 12 2 2-12 2 8 6—6

80B|— 2+-20 2-6 466 4 26 10 6-6—-12 2—-2 12 2-8—-6—6
100Al— 2+-2 0-2 6-4—-6 6—4—-26 10 6 6 12 2—-2-12-2 8—-6—6
400E[— -2+ 2 0-2 6 4 6 6 4-2 6-10—-6 6-—-12 2 2 12-2-8 6—6
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The forms listed above are all twists of 20A; thus 100A = 20A * 5, 80B = 20A * —4 and
400E = 20A * —20. The forms 80B and 100A lift to f4, whilst the forms 20A and 400E
lift to f4 * v. The situation is entirely typical, and may be illustrated with the following

figure:
—20

f*=20
5

Fay +———fs—d—— %5

Table 9.9 below lists, for each plusform in our tables with C(p) = C(p), the forms over
Q of which it is a base change lift. We do not have a similar table for minusforms, since

we have not had access to tables of forms for I'g (V) with character (9.10).

Remark. The process of lifting has an obvious counterpart in the theory of elliptic curves:
every elliptic curve E/Q may be viewed as a curve E/k. It is thought (and in most cases,
known [Wil95]) that E/Q corresponds to a newform f (with trivial character) for I'o(V)
(where N is the conductor); naturally, we expect E/k to correspond to the lift of f. In
general, it is our plusforms which should correspond to elliptic curves over & (or to abelian
varieties over Q with “extra twist” by xx [Cre92]); our minusforms do not (as is clear from

the presence of v in the Euler factors).
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New plusforms F for I'y(n) | Corresponding new-

n N(n) F forms for T'y(N)
(h2)%ps 20 | fa 80B, 100A
faxv | 20A, 400E
(p2)ps 40 | f7 80A, 200C
fr*v | 40A, 400A
P3aP3bhs 45 | fo 75B, 240D
foxv | 15A, 1200J
p2(ps)? 50 | fun 50A, 400B

fi1 xv | 50B, 400C
(p2)° 64 | fie 32A, 800A
(p2)3p3aPab 72| fis 48A, 600D
fis x v | 24A, 1200A
P2b3aP3pPs 90 | fo2 150C, 240B
foo xv | 30A, 1200P

pap7aPh 98 | fos5 112C, 350D
f25 * UV 14A, 2800V
b1 121 | f30 176B, 275B

f30 *x vV 11A, 4400M

Table 9.9: Plusforms obtained by lifting from Q to Q(v/—5)
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