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Abstract. In this thesis we improve on various methods connected with
computing the Mordell-Weil group of an elliptic curve. Our work falls into

several parts:

1. We give a new upper bound for the difference of the logarithmic and

canonical heights of points on elliptic curves.

2. We give a new method for performing the infinite descent on an elliptic

curve. This is essentially a lattice enlargement algorithm.

3. We show how to compute the 2-Selmer group of an elliptic curve defined

over the rationals by a method which has complexity

LD (0.5, Cl) = (6(1OgD)0'5(10g log D)0'5)61+0(1)

)

where D = |A| the absolute value of the discriminant of the elliptic curve,
and c¢; is a positive constant. This part is based on joint work with N.

Smart.

4. We give a recipe for ‘higher descents’ on homogeneous spaces arising from
the 2-descent. This is useful in dealing with homogeneous spaces which
are everywhere locally soluble but for which a search for points does not

reveal any global points.

5. We give algorithms for checking our homogeneous spaces for solubility

over completions of number fields.
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