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Abstract

In many everyday tasks it is necessary to compare the performance of the individuals in

a population described by two or more criteria, for example comparing products in order

to decide which is the best to purchase in terms of price and quality. Other examples

are the comparison of universities, countries, the infrastructure in a telecommunications

network, and the candidate solutions to a multi- or many-objective problem. In all of these

cases, visualising the individuals better allows a decision maker to interpret their relative

performance. This thesis explores methods for understanding and visualising multi- and

many-criterion populations.

Since people cannot generally comprehend more than three spatial dimensions the visual-

isation of many-criterion populations is a non-trivial task. We address this by generating

visualisations based on the dominance relation which defines a structure in the population

and we introduce two novel visualisation methods. The first method explicitly illustrates

the dominance relationships between individuals as a graph in which individuals are sorted

into Pareto shells, and is enhanced using many-criterion ranking methods to produce a

finer ordering of individuals. We extend the power index, a method for ranking according

to a single criterion, into the many-criterion domain by defining individual quality in terms

of tournaments. The second visualisation method uses a new dominance-based distance in

conjunction with multi-dimensional scaling, and we show that dominance can be used to

identify an intuitive low-dimensional mapping of individuals, placing similar individuals

close together. We demonstrate that this method can visualise a population comprising a

large number of criteria.

Heatmaps are another common method for presenting high-dimensional data, however they

suffer from a drawback of being difficult to interpret if dissimilar individuals are placed

close to each other. We apply spectral seriation to produce an ordering of individuals

and criteria by which the heatmap is arranged, placing similar individuals and criteria

close together. A basic version, computing similarity with the Euclidean distance, is

demonstrated, before rank-based alternatives are investigated. The procedure is extended

to seriate both the parameter and objective spaces of a multi-objective population in two

stages. Since this process describes a trade-off, favouring the ordering of individuals in

one space or the other, we demonstrate methods that enhance the visualisation by using

an evolutionary optimiser to tune the orderings.
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One way of revealing the structure of a population is by highlighting which individuals are

extreme. To this end, we provide three definitions of the “edge” of a multi-criterion mu-

tually non-dominating population. All three of the definitions are in terms of dominance,

and we show that one of them can be extended to cope with many-criterion populations.

Because they can be difficult to visualise, it is often difficult for a decision maker to

comprehend a population consisting of a large number of criteria. We therefore consider

criterion selection methods to reduce the dimensionality with a view to preserving the

structure of the population as quantified by its rank order. We investigate the efficacy

of greedy, hill-climber and evolutionary algorithms and cast the dimension reduction as a

multi-objective problem.
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1. Introduction

Situations in which the relative performance or quality of individuals in a population must

be compared are commonplace, and the performance of such individuals are often described

by a set of competing criteria. A well known example is the comparison of universities;

an individual university is often described by a set of criteria known as key performance

indicators (KPIs), each of which measures a particular aspect of the university, such as

the proportion of students graduating with good honours degrees or research output. In

order for a student to identify the university at which they wish to study, they may wish

to compare the different universities based on the data provided by the KPIs to determine

which is best. League tables that rank universities according to some function of their

criteria are commonplace. Another example in which such quality measures are used to

compare individuals is in the construction of a maintenance schedule for the components of

a technical infrastructure, such as the wireless access points in a mobile telephone network.

Here it is important to identify poorly performing components so that they can be given

priority in the schedule. The purpose of this thesis is to provide methods that facilitate

the visualisation and understanding of a population of such individuals in cases where

there is conflict between criteria, such that good performance on one criterion does not

guarantee good performance on another.

A common way in which university performance has been evaluated is to construct a league

table, a ranking of individuals from which their relative quality can be easily observed.

League tables are frequently used to rank sports teams based on the results of tournaments.

In that case, the league table is based on a single criterion, often a maximisation of points

accrued in a tournament with other teams. In the case of a population described by

a more than one criterion the league table must be constructed by drawing together

information from all of the criteria. This can be, and often is, done by aggregating the

criterion values into a single value. However, criteria are often measured on different scales,

such as a proportions representing graduation rates and monetary values representing the

amount spent for every student, and directly aggregating these values does not produce

a meaningful overall score for the individual. The criteria can be normalised in some

way; however, aggregation functions usually require a priori weights to be chosen for

the criteria so that an indication of the importance of each criterion is incorporated into

the aggregation. Solutions to multi-objective optimisation problems, which are analogous

to the individuals we seek to compare, are often compared using the Pareto dominance

relation [e.g., Deb, 2001], which is defined later. This allows for the comparison of solutions
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1. Introduction

on their original, unnormalised and unweighted, objective values, and facilitates the partial

ranking of solutions. In the many-objective case, where a problem comprises four or more

objectives, dominance is less discriminative and often cannot differentiate between solution

quality. Alternative ranking methods have been developed by the optimisation community

for such populations. In Chapter 3 we show how to rank many-criterion populations with

some of these methods, demonstrating multi- and many-objective ranking methods in lieu

of building a league table by normalising, weighting and aggregating criterion values in

order to compare individuals in a principled way.

A complementary method to comparing individuals by ranking a population is to produce

a visualisation of the individuals from which their relative performance can be inferred.

Multi-criterion populations are often visualised by plotting individuals on two or three

dimensional axes, known as a scatter plot [Deb, 2001]. Clearly, this approach will not

work for populations described by four or more criteria. For this reason, we adopt the

nomenclature of optimisation problems and refer to populations comprising two or three

criteria as multi -criterion populations; many-criterion populations comprise four or more

criteria. To visualise a many-criterion population one of two alternatives must be consid-

ered: either a method that is capable of visualising the entire population, such that all

of the original data can be recovered from the visualisation, is required, or some of the

criteria must be discarded so that a conventional tool, such as a scatter plot, can be used.

Neither of these two approaches is perfect; methods that can visualise high-dimensional

data are often cluttered because they attempt to represent high-dimensional data in two

or three dimensions. On the other hand, reducing the dimensionality of the data leads

to an inevitable, undesirable, loss of information. An important focus of this thesis is to

find methods which can visualise a many-criterion population in a clear and intuitive way

that is useful to a decision maker, without having to discard criteria, and we present two

approaches. One is a novel visualisation which constructs a graph of a population using

dominance and incorporates the rank of individuals visually with colour. The other, seri-

ation, in which an ordering is obtained that places similar items close together, enhances

a very well known visualisation method, the heatmap. We also show how seriation can

be a useful tool in the visualisation of solutions to many-objective optimisation problems

by incorporating solution parameters and objective values into the visualisation together.

Chapter 3 presents the work on visualising populations as graphs, while Chapter 5 presents

the work on seriation.

Whilst we aim to visualise the original population with respect to the full set of criteria,

reducing the dimensionality of the population allows for easier visualisation and can also

expose informative structural information about the individuals and their relationships

with each other. To this end we investigate dimension reduction techniques that are suited

to this particular type of data. Dimension reduction methods generally require a method

for quantifying the loss of information that their application will incur. Methods in which

criteria are discarded have been proposed that, for example, consider correlation between

10



1. Introduction

criteria [Deb and Saxena, 2005] and the changes in pairwise dominance relationships be-

tween individuals [Brockhoff and Zitzler, 2007a]. In Chapter 6 we propose a method that

calculates an individual’s rank based on the original set of criteria and seeks a criterion

subset that preserves this rank as closely as possible. This method is incorporated into

a bi-objective evolutionary algorithm which explores the trade-off between the number of

criteria used to describe a population and the amount of information loss incurred. An

alternative to discarding redundant criteria is to project the population onto a new set of

coordinate axes. Methods that do this often attempt to preserve metric information; Eu-

clidean distance is a common choice for this, however this does not capture the dominance

relations between the individuals in the population and may not be the appropriate metric

for cases in which the criteria are on different scales. In this thesis we introduce a new

metric based on dominance which captures the relations within the population. This is

used in Chapter 3 in conjunction with a well known dimension reduction technique, multi-

dimensional scaling (MDS) [Kruskal, 1964; Sammon, 1969], to produce an embedding in

which individuals with similar dominance relationships are placed close together.

Understanding the geometry of a population of individuals can provide useful information

to a decision maker, allowing them, for example, to determine which individuals are ex-

treme. A recent example of such an idea from the evolutionary optimisation community

is the identification of the corners of a non-dominated population [Singh et al., 2011], and

we extend this idea to identify the set of individuals that lie on the edge of a mutually

non-dominating population so that they can be highlighted in a subsequent visualisation.

Three methods for doing this are presented in Chapter 4 and we observe that whilst this

is a relatively straightforward task for a multi-criterion population, the extension into

many-criterion populations brings with it additional complications.

1.1. Thesis Structure

This thesis is organised as follows:

Chapter 2: Background

This work draws on evolutionary methods for solving multi- and many-objective op-

timisation problems, so the background chapter begins by introducing them. Since

the work is closely related to population ranking, we discuss methods for comparing

permutations. Finally, methods for visualising high-dimensional datasets are dis-

cussed, with a particular focus on their application to many-criterion populations.

Chapter 3: Many-criterion League Tables

The focus of this chapter is the ranking and visualisation of many-criterion popu-

lations. Existing methods from multi- and many-objective evolutionary algorithms

are reviewed. We show how Pareto sorting and a ranking method such as average

11



1. Introduction

rank or the power index can be combined to produce and visualise a league table

from a many-criterion population and provide demonstrations on several example

populations. A new measure of the stability of an individual’s rank is presented

and the chapter concludes by introducing a similarity measure based on dominance

which we use as the basis for visualising populations with MDS.

Chapter 4: Finding the Edge of a Mutually Non-dominating Population

In an effort to enhance the understanding of a many-criterion population we have

investigated methods for identifying which individuals lie on the edge of a mutually

non-dominating population. Such individuals represent extreme values on specific

criteria, and combinations of criteria, and as such may be of interest to a decision

maker. We discuss how the “edges” of a set of mutually non-dominating individuals

may be defined and present straightforward algorithms for finding the edge of a

mutually non-dominating multi-criterion population.

Chapter 5: Seriation of Heatmaps

Heatmaps are an established method for visualising a high-dimensional dataset, how-

ever they can often appear cluttered and unintelligible. Seriation has been used to

ameliorate this by placing similar individuals and/or criteria close together, and we

introduce seriation methods that are designed to take advantage of the structure of

many-criterion populations. Seriating heatmaps of such populations results in a vi-

sualisation that is significantly clearer and easier to understand. We also extend the

work of Pryke et al. [2006] by seriating heatmaps of parameter space and objective

space for the visualisation of solutions to many-objective problems simultaneously;

we optimise the permutation of solutions so that they are ordered to produce a clear

heatmap in both spaces.

Chapter 6: Rank-based Dimension Reduction

While previous chapters have demonstrated methods for visualising many-criterion

populations, they are often better visualised and more easily understood if redun-

dant criteria are removed. Using methods developed in earlier chapters that can

rank a population based on a set of criteria, we introduce methods for reducing the

dimensionality of a population whilst preserving the original rank of individuals as

closely as possible. We present evolutionary methods for criterion selection.

Chapter 7: Conclusion

We conclude the thesis by drawing together elements from the preceding chapters

and discuss potential avenues of future investigation.

12



1. Introduction

1.2. Thesis Contributions

The main novel contributions made by this thesis are the following:

• A method based on Pareto sorting for visualising many-criterion populations (Chap-

ter 3).

• New measures of the robustness of an individual’s position in a partial ordering

determined with Pareto sorting (Chapter 3).

• A method for describing the outcome of a tournament played between many-criterion

individuals which is used to define a graph of the population and extend a ranking

method, the power index, to many-criterion use (Chapter 3).

• A method for describing distances between many-criterion individuals using domi-

nance which can be used to produce low-dimensional embeddings with MDS (Chap-

ter 3).

• Three methods for identifying individuals which lie on the edge of non-dominated

populations (Chapter 4).

• Seriation methods for enhancing heatmaps of many-criterion populations and op-

timising a visualisation which uses heatmaps to illustrate both the decision and

objective space components of a multi-objective solution set (Chapter 5).

• Methods for reducing the number of criteria such that the overall rank of individuals

is preserved (Chapter 6).

1.3. Publications

Some elements of this work have been published or submitted for publication in journals

and conference proceedings:

David J. Walker, Richard M. Everson, and Jonathan E. Fieldsend. Visualisation and

ordering of many-objective populations. In IEEE Congress on Evolutionary Computa-

tion (CEC 2010), pages 3664–3671, CCIB, Barcelona, Spain, July 2010a.

D. J. Walker, R. M. Everson, and J. E. Fieldsend. Ordering multi-objective populations

with the power index. In 2010 Postgraduate Conference for Computing: Applications

and Theory (PCCAT 2010), pages 12–18, Exeter, Devon, UK, June 2010b. University
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1. Introduction

of Exeter.

D. J. Walker, R. M. Everson, and J. E. Fieldsend. Rank-based dimension reduction

for many-criteria populations. In Proceedings of the 13th annual conference on Genetic

and evolutionary computation, GECCO ’11, pages 107–108, New York, NY, USA, 2011.

ACM.

K. McClymont, D. Walker, E. Keedwell, R. Everson, J. Fieldsend, D. Savic, and

M. Randall-Smith. Novel methods for ranking district metered areas for water dis-

tribution network maintenance scheduling. In CCWI 2011, Exeter, 2011.

D. J. Walker, R. M. Everson, and J. E. Fieldsend. Visualising many-objective popula-

tions. In Proceedings of the 3rd Workshop on Visualisation in Genetic and Evolutionary

Computation (VizGEC 2012) at GECCO 2012, Philadelphia, 2012.

D. J. Walker, R. M. Everson, and J. E. Fieldsend. Visualising Mutually Non-dominating

Solution Sets in Many-objective Optimisation. IEEE Transactions on Evolutionary

Computation, (in press).

R. M. Everson, D. J. Walker, and J. E. Fieldsend. Edges of Mutually Non-dominating

Sets In Proceedings of the 15th annual conference on Genetic and evolutionary compu-

tation, GECCO ’13, (in press), New York, NY, USA, 2013. ACM.

1.4. Summary

In this chapter we have briefly introduced the notion of many-criterion populations and

alluded to their prevalence. Having highlighted the difficulties associated with visualising

and understanding such populations, we now introduce some relevant background material

before presenting methods aimed at enhancing their interpretability.
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2. Background

2.1. Introduction

In this chapter we introduce the underlying concepts upon which the work presented in

the remainder of the thesis is based. The central theme of the thesis is the understand-

ing and visualisation of many-criterion populations using approaches from evolutionary

multi-objective optimisation, so we begin this chapter with an introduction to techniques

commonly used in solving single-, multi- and many-objective problems with evolutionary

algorithms. An important part of this discussion relates to decision making and popula-

tion ranking, as does a significant proportion of the rest of the thesis, so we then introduce

basic techniques for ranking alternatives in multi-criteria decision making and comparing

permutations. We conclude the chapter by describing visualisation methods that are com-

monly used for presenting high-dimensional data. We illustrate the techniques on example

sets of solutions to multi- and many-objective problems.

2.2. Optimising Multiple Objectives

Many industrial and scientific problems require the identification of an optimal set of

parameters. A parameter is an adjustable variable that defines an aspect of a solution;

an example problem is the design of a wireless telecommunications network, in which a

potential network configuration is a solution and the bearing of a single wireless access

point antenna within the network is a parameter that can be adjusted [e.g., Smith et al.,

2008]. Such optimisation problems consist of a criterion, often called an objective, which

evaluates the suitability of a candidate solution for solving a problem and is to be either

maximised or minimised. When a problem is defined in terms of just one objective it

is known as a single-objective or uni-objective optimisation problem. In the case of the

mobile telephone network design problem, a possible objective would be to maximise the

coverage provided by the network to ensure the best possible service for mobile telephone

users.

A putative solution to an optimisation problem is commonly represented as a P -dimensional

vector x = (x1, . . . , xP ). Throughout this thesis we denote by xp the value of the pth pa-
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2. Background

rameter and by xip the pth parameter of the ith solution in a collection of N solutions

X = {xi}Ni=1. Generally, an optimisation problem is either continuous or discrete. In a

continuous problem, a parameter can take any value within a specified range. A discrete

optimisation problem involves the selection of the best combination of a finite set of pa-

rameters. An important difference between the two is that while it is possible to place

a natural ordering over a set of real valued parameters in a continuous problem, there is

no such ordering over the parameters in a discrete problem. The reason for optimising a

continuous problem is clear, as an infinite number of parametrisations are possible. Opti-

mising a discrete problem is challenging because of the number of possible combinations

of parameters. There are often far too many combinations to enumerate and evaluate all

of them. Whatever the problem type, the solution x is mapped to objective space with

an objective function f such that:

y = f(x) (2.1)

where y is to be maximised or minimised. A problem such as this is known as a single-

objective problem because the quality of a solution is determined in terms of a single

function that returns a scalar value. In practice, however, most problems do not just

consist of a single objective, but rather a set of M objectives between which a trade-off

exists. In this case, the single-objective value for the ith solution, yi, becomes a M -

dimensional vector yi:

yi = f(xi) (2.2)

= (f1(xi), . . . , fM (xi)) (2.3)

in which yim is the value of the ith solution on the mth objective such that yim = fm(xi).

The collection of solutions X has a corresponding collection of objective vectors, Y =

{yi}Ni=1. In such a multi-objective case, where a problem comprises two or three objectives,

the objectives can be maximised, minimised, or a combination of the two. To extend the

illustrative problem into the multi-objective domain, the problem is reformulated to consist

of two objectives. The original objective, to maximise network coverage, is retained and

a second one is added to minimise the number of wireless access points needed. Installing

a large number of access points is likely to result in good network coverage, however

the cost of deploying the network will be prohibitively expensive. A trade-off therefore

exists between the two objectives; Figure 2.1 demonstrates this idea, presenting candidate

solutions to a multi-objective problem comprising two objectives (a bi-objective problem),

one of which is to be minimised while the other is maximised. Clearly, the red solutions

are inferior to the blue solutions; each red solution is worse on both objectives than at

least one of the blue solutions. For example, the solution y2 is inferior to y1, and y4 is

inferior to y3. It is also clear that while the extreme solutions in the blue solution set,

those at the extremes of the collection, optimise one objective well, they do so at the

expense of their performance on the other objective. The absence of a distinct “knee” in

the solution set, a point at which an improvement in either objective would drastically

reduce the quality of a solution on the other objective, means that it is not clear which
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Figure 2.1.: An example of the trade-off between two objectives in a minimisation problem.
Each of the red solutions is inferior to a least one of the blue solutions, for
example y2 is inferior to y1 and y4 is inferior to y3. It is not, however, clear
which of the blue solutions provides the best operating point for a decision
maker to choose as improving the objective value for any solution decreases
its performance on the other objective.

solution a decision maker should prefer, assuming that they have no a priori preference

of one objective over the other. This highlights the most important distinction between

a single- and multi-objective problem, that whereas a single-objective problem is solved

by a single optimal solution, in general a multi-objective problem is optimally solved by

a set of solutions which trade off the problem objectives. Without loss of generality, a

multi-objective problem is defined in terms of a minimisation as follows:

minimise ym = fm(x) for all m = 1, . . . ,M. (2.4)

The set of solutions that solve a multi-objective problem lie on the Pareto front. The

Pareto front is defined in terms of the Pareto dominance relation. Dominance is a binary

relation under which an objective vector yi dominates yj , denoted yi ≺ yj , if it is at least

as good as yj on all objectives and better on at least one. More formally, assuming that

all objectives are to be minimised without loss of generality:

yi ≺ yj ⇐⇒ ∀m(yim ≤ yjm) ∧ ∃m(yim < yjm). (2.5)
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This is known as strong dominance. Similar to strong dominance is weak dominance:

yi � yj ⇐⇒ ∀m(yim ≤ yjm). (2.6)

In this thesis, we use the term dominance to refer to strong dominance. An objective vector

that is dominated by no other is said to be non-dominated and if neither of two objective

vectors dominates the other then they are mutually non-dominating. In Figure 2.1, the blue

solutions are mutually non-dominating with respect to each other, and are non-dominated.

Each of the red solutions is dominated by at least one of the blue solutions. The goal of

optimising a multi-objective problem is to find feasible solutions whose objective vectors

lie on the true Pareto front, which optimise the trade-off between problem objectives. A

feasible solution is one that does not violate any problem constraints, and we denote by X
the feasible decision space that maps to the feasible objective space Y. Objective vectors

on the true Pareto front are mutually non-dominating with respect to each other, and

non-dominated with respect to any other feasible solutions:

F = {y ∈ Y | ¬∃y′ (y′ ∈ Y ∧ y′ ≺ y)} (2.7)

The solutions with objective vectors y ∈ F are called Pareto optimal. The pre-image of

the Pareto front is called the Pareto set S:

S = {x ∈ X | ¬∃x′ (x′ ∈ X ∧ f(x′) ≺ f(x)}. (2.8)

It is important to note that some of the examples in this thesis are collections of in-

dividuals, populations Y, rather than collections of objective vectors corresponding to

many-objective solutions. In these cases we rewrite the definition of Pareto optimality

given in Equation 2.7 in terms of the population Y rather than the feasible objective

space Y:

F = {yi | ¬∃yj (yj ∈ Y ∧ yj ≺ yi)}. (2.9)

In addition to objectives, a problem can also have constraints. These are conditions which

must be met in order for a solution to be considered a candidate for solving a problem. A

likely example from the example telephone network problem is that an access point must

be on dry land, and there must be no pre-existing structures in that location. Otherwise,

obviously, the access point cannot be built there. Constraints can be represented as bounds

on parameters, and, as described earlier, the feasible region for a problem, within which

allowable solutions exist, is denoted X for parameter space. The objective space image of

this feasible space is denoted Y, such that x ∈ X and y ∈ Y for a feasible solution.

Optimisation problems can be linear or nonlinear, where in the case of a nonlinear problem

at least one of the constraint or objective functions is nonlinear [Miettinen, 1999], and a

variety of methods exist to solve them. A commonly used family of methods, discussed

in the next section, are evolutionary algorithms [Goldberg, 1989]. Hill-climbers are also
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popular owing to their simplicity. A hill-climber operates by generating an initial solution

to a problem, which is modified to move it to a new region of the search space. If the new,

modified, solution yields a higher quality according to the problem objective(s) then it is

retained instead of the original solution. Otherwise, if the new solution is inferior to that

original solution, it is discarded. The local search strategy means that it is possible for a

hill-climber to become trapped in a local optimum, a region of the search space that offers

the best solution quality of any in the local neighbourhood, but that is inferior to the

globally optimal solution, which is the best possible solution to the problem at hand. It

is difficult for a hill-climber to escape from a local optimum because there are no superior

solutions within its search neighbourhood to which the algorithm can move. Hill-climbing

algorithms are employed in later chapters of this thesis. Other popular methods are the

downhill simplex method [Nelder and Mead, 1965], simulated annealing [Kirkpatrick et al.,

1983], tabu search [Glover and McMillan, 1986] and nonlinear programming [Kantorovich,

1969]. Since this thesis is concerned with evolutionary approaches these methods, along

with the great range of other techniques available, are not discussed further here.

The selection of a method with which to solve an optimisation problem can be influenced

by the problem type, specifically with regard to deciding how a solution to the problem

should be represented. A variety of solution representations are used, and a common

choice in the realm of evolutionary algorithms is to use a binary string. A binary en-

coding can be used in both continuous problems, where the string represents numerical

parameter values, or in discrete problems, where the binary values represent combinations

of parameters. This is a particularly popular representation for evolutionary algorithms

because, as will be discussed in Section 2.3, those methods develop new candidate solu-

tions by modifying existing solutions; a binary representation facilitates straightforward

mechanisms for solution modification. A common alternative is to use a vector of decimal

values to represent solutions to a continuous problem, which can provide greater precision.

Discrete problems sometimes lend themselves to representation by permutation.

2.2.1. Classical Aggregation Approaches

Much of the early research into solving multi-objective problems focused on how existing

techniques, which had been successfully applied to single-objective problems, could be

applied to multi-objective problems [Deb, 2001; Coello Coello et al., 2007]. A problem with

this is that to solve, for example, a single-objective minimisation problem a single-objective

algorithm compares quality between two solutions xi and xj such that if f(xi) < f(xj) then

xi is the better solution. In order to facilitate this sort of comparison in the multi-objective

case, early efforts went into identifying methods for aggregating objective functions. A
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Figure 2.2.: Tangential lines formed by different weightings of two objectives. The min-
imisation of the weighted aggregation shown by α identifies the solution y1

as it lies on the region of feasible space with which the aggregation cost line
is tangential. Likewise, the aggregation shown by β identifies the solution y4.
Since the two solutions y2 and y3 lie in a non-convex region of the solution
space, it is not possible to locate them using weighted aggregation, since the
cost line must form a tangent with the search space but cannot intersect with
Y. To identify these two solutions, the tangent would intersect with other
regions of the search space.

simple technique for doing this is to take a weighted sum of the objective functions

ŷ =

M∑
m=1

γmfm(x) (2.10)

so that ŷ is minimised instead of y; γ is a vector of weights in which γm is the weight of

the mth objective. This requires a priori knowledge to choose appropriate weights for the

objectives. It may also be necessary to normalise objective ranges, which requires that

the upper and lower bounds of the objectives be known; this information is not always

available [Deb, 2001]. Additionally, since a weighted aggregation such as this results in

a single solution, we must run multiple repeats with different weightings to explore the

trade-off between objectives. The most important problem, however, is that weighted

aggregation methods can only solve convex multi-objective problems (see Das and Dennis

[1997] and discussion in Erghott [2005]). Figure 2.2 shows the feasible (objective) search

space of a two-objective minimisation problem. The Pareto front of this problem comprises

both convex and non-convex regions. A weighted aggregation operates by placing isocost

lines in the space, the gradient of which are decided by the weighting assigned to each

objective. The problem is solved, for a given aggregation, when the isocost lines lie at a

tangent to the feasible search space, but do not intersect with it. This is shown by the
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Figure 2.3.: By minimising the worst weighted objective value in the population on a single
objective the Tchebycheff metric can find Pareto optimal solutions inside non-
convex regions of the Pareto front.

two lines in Figure 2.2, α and β; the result of minimising the aggregation shown by the α

isocost line is the solution y1, and the result of minimising the aggregation shown by β is

y4. Both y1 and y4 lie on convex portions of the Pareto front, however the solutions y2

and y3 lie on a non-convex region. Although these two points are still Pareto optimal, a

weighted aggregation will not be able to place an isocost line at a tangent to either without

intersecting another part of the search space. As such, this part of the Pareto front will

remain unexplored.

An alternative to using a weighted aggregation approach is to use a weighted metric

aggregation, such as the weighted Tchebycheff metric to minimise the aggregate objective

values [Deb, 2001]:

ŷ =
M

max
m=1

γm|fm(x)− zm|, (2.11)

where z represents an ideal point. Since only one weighted objective value is considered

(the worst objective value), minimising the Tchebycheff distance can find solutions that

reside in convex regions of the Pareto front. Having said this, domain knowledge is still

required to choose the ideal point.

2.2.2. Pareto Dominance

As we have already discussed, multi-objective problems are formulated in terms of the

dominance relation, and methods that compare solutions using dominance have received
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significant attention. Considering solutions to multi-objective problems in terms of dom-

inance provides a much better alternative to aggregating objective values. There is no

need to normalise objective values since they are not combined in any way, and there is

no need to decide on the relative importance of individual objectives. Recently, however,

a good deal of research has focused on many-objective optimisation problems, which com-

prise four or more objectives [Ishibuchi et al., 2008]. It has been noted that dominance

is less suitable for comparing solutions to many-objective problems [Hughes, 2005; Farina

and Amato, 2003]. This is because as the number of objectives increases, the likelihood

that two randomly chosen objective vectors will be mutually non-dominating with respect

to each other increases rapidly. Given an M -dimensional individual y at the centre of cri-

terion space, and assuming a uniform distribution of objective vectors, the proportion of

criterion space within which other individuals are mutually non-dominating with respect

to y is determined as follows [Farina and Amato, 2002; Fieldsend, 2003]:

1− 1

2M−1
. (2.12)

As a result, an optimisation method that relies on dominance to compare the quality of

objective vectors will be unable to differentiate between all but a small fraction of solutions

as M , the number of objectives, becomes large. An alternative to dominance is therefore

required so that solutions to many-objective problems can be usefully compared. Since the

more generic many-criterion populations that we consider in this thesis are also affected by

this issue, we investigate techniques for comparing many-criterion individuals in Chapter

3.

2.3. Evolutionary Algorithms

A common approach to solving a complex optimisation problem is to use an evolutionary

algorithm (EA). An EA is a computational method inspired by the principles of natural

selection and evolution. Such algorithms have been successfully applied to solving single-,

multi- and many-objective optimisation problems [Deb, 2001; Coello Coello et al., 2007].

Many different types of EA have been developed, but perhaps the most well known variety

is the genetic algorithm (GA) [Holland, 1975]. A GA is an algorithm that searches the

feasible solution space by generating a group of solutions called a population. In a GA,

a solution’s parameters are often referred to as a chromosome; the chromosome of a

solution in an evolutionary algorithm is analogous to the genetic material of an organism

in the natural world, encoding the ‘genetic material’ of an ‘organism’ as a binary string

(although real-valued variants have been developed to facilitate more efficient searching in

a continuous space [Agrawal and Deb, 1994]). GAs are iterative algorithms, where each

iteration is called a generation. At each generation parent solutions are combined with a

crossover operator to produce new child solutions that can then be perturbed to a new,
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hopefully better, region of the search space with a mutation operator. Once all of the new

child solutions have been evaluated against the problem objective function, known in the

GA nomenclature as a fitness function, the parent population for the next generation is

selected according to the fitnesses of the parent and child populations; there are various

different schemes for doing this, and they are discussed shortly.

The benefit of using a GA comes from its use of a population and operators that swap

genetic material between parents. Whereas an approach such as a hill climber might

perturb a solution to a local minimum from which it will struggle to escape, the additional

change brought about by the crossover operator can place a child solution in a region of

space that is far from its locally optimal parents, allowing the algorithm to more efficiently

search the feasible space and identify the globally optimal solution.

The evolution strategy (ES) is a search algorithm that is similar in operation to the GA

and was developed at approximately the same time [Rechenberg, 1973; Schwefel, 1994;

Beyer and Schwefel, 2002]. Whereas the GA was initially intended for use with binary

representations, the ES was developed with a real-valued solution representation in mind;

rather than an individual solution being represented by a binary string, a vector of real

valued numbers is used. ESs are commonly categorised according to whether or not they

employ elitism. The selection operator in an evolutionary algorithm can either be elitist or

non-elitist. In a non-elitist algorithm, only those child solutions generated at the current

generation can be selected as parents for the next generation, disregarding progenitors

whatever their quality. In an elitist selection strategy, progenitors have a chance of being

retained. In the traditional ES notation, a parent population of µ solutions is evolved

to produce a child population of λ solutions. The non-elitist variant of an ES is called a

(µ, λ)–ES while the corresponding elitist version is called a (µ + λ)–ES. An ES modifies

child solutions using mutation and recombination operators. It is common to find instances

of either variety of ES in which both µ = 1 and λ = 1. These are a special case, known as

the (1, 1)–ES and (1 + 1)–ES respectively, and child solutions are modified using mutation

alone, without recombination. A (1 + 1)–ES is somewhat similar to a hill climber, as

discussed above, in which the superior solution is retained at each generation and a weak

mutation operator will not provide enough change to release the solution from a local

minimum.

2.3.1. Evolutionary Operators

Evolutionary algorithms generate solutions to problems by combining parameters from

existing parent solutions to create new child solutions that are perturbed to a different,

hopefully superior, region of the search space. At the end of a generation, the best solutions

are retained for future use. It is the task of three evolutionary operators to perform

these tasks, namely the crossover, mutation and selection operators, each of which can
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be implemented in a variety of ways. Operators that best suit a particular problem and

encoding can thus be chosen.

Crossover

An operator that is often used in population-based EAs, such as genetic algorithms, is

crossover. Crossover operates on a set of solutions, a pair in the usual simplest case,

and exchanges genetic material between them to create a pair of child solutions. The

most basic crossover operator is single-point crossover [Goldberg, 1989; Deb, 2001]. Here,

a point 1 ≤ C < P is chosen at random and the first C, x1, . . . , xc, parameters are

exchanged between parent solutions. An extension of this is to choose two points and

exchange the parameters between them; this is known as two-point crossover [Goldberg,

1989; Deb, 2001]. In uniform crossover [Goldberg, 1989; Deb, 2001] each parameter is

exchanged with a given probability.

The crossover operators described so far were originally designed for use with a binary en-

coding and operators have been developed for use with real valued encodings. A prominent

example of this is simulated binary crossover (SBX) [Agrawal and Deb, 1994]. SBX uses

a probability distribution designed to have the same search capability as that of single-

point crossover on a binary representation. The distribution is twin-peaked, with a peak

centred on each of the two parent solutions. New child solutions are generated from values

drawn from the distribution and their distance from the parent solutions is controlled by a

non-negative real number called the sharing value that governs the shape of the distribu-

tion. With care, crossover can also be applied to a permutation-based population [Eiben

and Smith, 2003]. In a permutation on the integers 1, . . . ,M , each integer in the range

must appear exactly once. Here, it is important to ensure that the result of combining

two parent solutions is a permutation; partially mapped crossover (PMX) [Goldberg and

Lingle, 1985], edge crossover [Whitley et al., 1989] and order crossover [Davis, 1985] are

techniques for achieving this.

Mutation

Whereas a crossover operator typically operates on a pair of solutions, a mutation operator

operates on a single solution. It is the task of a mutation operator to move a solution to

a new region of the search space by modifying some proportion of its parameters.

One of the most basic mutation operators operates on solutions represented as a binary

string, and works by flipping the bits on certain parameters so that a 1 becomes 0 and

vice versa. The choice of parameters to be mutated can be made in a number of ways;

two popular methods are to select a fixed number of parameters at random or to mutate
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each parameter with some probability.

When dealing with real-valued parameters, a popular choice is the Gaussian mutation

operator [Yao et al., 1999]. Parameters are selected for perturbation with some probability,

and each selected parameter is modified with the addition of some Gaussian random noise.

The standard deviation for the Gaussian distribution from which the mutation is drawn is

a parameter which can either be set a priori or learned during the optimisation procedure.

Alternatives to the Gaussian are, for example, to use a Laplacian distribution [Yao et al.,

1999; Smith et al., 2008] which is favoured for some problems because its ability to generate

perturbations more distant from the mean more frequently means that the search space

is explored more rapidly. While generally small perturbations allow for more effective

evolution, exploiting the high quality solutions that have already been identified, large

perturbations can enhance the explorative capability of an algorithm. An alternative is

to use a polynomial distribution to generate mutations [Deb and Goyal, 1996]. Here the

distribution depends on a parameter, similar to that used in SBX, which generally remains

fixed throughout an optimisation process [Deb, 2001]. The ability to control the width of

the distribution provides a means of controlling the likely distance of a child solution from

its parent in a similar way to setting the standard deviation of a Gaussian distribution,

preventing premature convergence [Subbaraj et al., 2011].

When a solution is represented by a permutation, as with crossover, care must be taken

to ensure that mutating a solution does not alter the solution’s status as a permutation:

given a permutation of P items, each item must be represented exactly once. To do this,

operators that change the position of items in a solution are used. Examples are the swap

operator, in which two randomly chosen parameters are exchanged, the insert operator,

in which two parameters are chosen at random and the permutation adjusted so that

the two parameters are placed next to each other, as well as an operator that selects

a contiguous block of parameters and shuffles the order of the parameters in the block,

therefore modifying the permutation [Eiben and Smith, 2003].

2.3.2. Fitness Assignment

Having generated a putative solution to an optimisation problem using crossover and/or

mutation operators, its quality is evaluated with the calculation of a fitness value. When

dealing with single-objective optimisation problems, a fitness value for the solutions in

the population can simply be the objective value for each solution (as discussed in Coello

Coello et al. [2007], the notion of an “objective” belongs to the problem, while the notion

of “fitness” is specifically used within an algorithm to evaluate the quality of the solutions

it generates). That said, objective values for single-objective solutions can be converted

to fitness values by means of, for example, ranking or normalisation.

25



2. Background

The computation of fitness values in the multi-objective case is more complicated, since a

solution may have multiple conflicting objective values. In this case, a common approach

has been to employ the dominance relation to produce a single fitness value for each

solution. Various approaches to this have been taken, including assigning a rank to a

solution according to how many layers of non-dominated solutions must be removed away

before the solution itself is non-dominated in a process called Pareto sorting [Srinivas

and Deb, 1994]; this procedure is described in detail in Chapter 3. Other methods rank

the solution according to the number of solutions that it is dominated by [Fonseca and

Fleming, 1993; Horn et al., 1994]. As mentioned previously, such a selection scheme is

less effective for many-objective problems in which the large number of objectives renders

solutions incomparable with the dominance relation. Two widely adopted approaches

for resolving this are to use alternative comparison methods and reduce the number of

objectives a problem comprises; both of these methods are discussed later in this thesis

(Chapters 3 and 6).

Selection

A selection operator decides, based on the fitness of the current parent and child popu-

lations, which solutions should be retained as parents in the next generation. Selection

operators can be broadly classified in two ways. In the first, the selection operator is

restricted to considering only child solutions, while parents, regardless of their quality, are

discarded. The alternative is to allow high quality parent solutions to be retained in place

of child solutions of poorer quality. This latter elitist approach has been shown empirically

to yield better results and is more often used [Deb, 2001].

As with crossover and mutation operators, a range of different selection strategies have

arisen in the literature. In the most basic method, a mating pool is formed by combining

the parent and child populations and selecting the µ fittest solutions in the population.

An alternative is tournament selection [Deb, 2001]. In this method, two or more solutions

are chosen at random and a tournament is played between them. The winner is the fittest

solution, and is placed into the new population. The parent solutions then return to

the mating pool for further selection. In roulette wheel selection [Deb, 2001], fitnesses

are converted into probabilities of selection, such that probability of being selected is

proportional to the scaled fitness. Then, the population is filled by making random draws

from a uniform distribution and selecting the solution corresponding to the interval in

which the random value lies.
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Algorithm 1 Unified Model for Multi-objective Evolutionary Algorithms [Laumanns
et al., 2000]

1: t := 0 Initialise the generation counter
2: (E0,X0, p0e) := initialise() Initialise the archive, population and elitism parameter
3: while terminate(Et,Xt, t) = false do
4: t := t+ 1 Update the generation counter
5: Et := truncate(update(Et−1,Xt−1)) Update the archive
6: pte := adapt(Et,Xt−1, pt−1e ) Update the elitism parameter
7: Xt := vary(sample(evaluate(Et,Xt−1, pt))) Generate child solutions
8: end while

2.3.3. Multi-objective Evolutionary Algorithms

A plethora of multi-objective evolutionary algorithms (MOEAs) have been developed in

order to solve multi- and, more recently, many-objective optimisation problems. Most

of these algorithms share common elements, and the Unified Model for Multi-objective

Evolutionary Algorithms (UMMEA) was proposed by Laumanns et al. [2000]. This model

is shown in Algorithm 1. Briefly, this generalises an MOEA by using an iterative process

to generate solutions to a multi-objective problem from existing solutions in a population,

as well as potentially those stored in an archive. The purpose of an archive is to store

the current approximation of the Pareto front. It allows for solutions that have yet to be

dominated to remain after they leave the search population in order to provide a better

approximation of the true Pareto front. Additionally, depending on the implementation

of the algorithm, archived solutions can be used to generate new solutions as well as those

in the search population if an elitist approach is taken. Since the UMMEA is intended to

generalise a MOEA its steps are high-level processes rather than the specific evolutionary

operators discussed previously. EAs are generational algorithms, and so require a counter

to track the current generation (Line 1). The next step initialises the elite archive for

storing currently non-dominated solutions (E), an initial population of solutions (X), and

a parameter to control the amount of elitism (pe). Setting pe = 0 means that archived

solutions are not used in selection, whilst pe = 1 means that only archived solutions are

considered (Line 2). The iterative process of evolving solutions then begins, and continues

until some termination criterion is met (Line 3). The first step in the process is to update

the archive with the elite solutions in the previous population, Xt−1. Any of the new

solutions that are mutually non-dominating with respect to those that are already in

the archive are themselves archived, and any solutions already in the archive that are

dominated by a new solution are discarded. It may be necessary to truncate the number

of solutions within the archive (Line 5). This can be done, for example, by clustering

the solutions [Zitzler and Thiele, 1999] although Fieldsend et al. [2003] point out that

truncating the archive can inhibit convergence. In the next step, the elitism parameter is

updated prior to its use (Line 6), noting, that in some cases the elitism parameter remains

fixed throughout the execution of the algorithm. Finally, a new population of solutions

is generated by selecting parent solutions from the population that are used to generate
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child solutions which are mutated, or perturbed, and evaluated (Line 7). With this simple

framework in mind, we now introduce some of the most prevalent MOEAs and discuss

how they align with the UMMEA.

Pareto Archived Evolution Strategy

The Pareto Archived Evolution Strategy (PAES) [Knowles and Corne, 1999, 2000] is a

(1 + 1)–ES, meaning that each generation consists of a single parent and child solution. A

bounded archive of non-dominated solutions found by the algorithm is maintained.

At each generation, the choice between retaining the parent or child as the parent solution

in the next generation is based on dominance. If one solution dominates the other, then it

is retained as the new parent solution. If they are mutually non-dominating, and the child

is not dominated by the archive, the chosen solution is the one which resides in the less

crowded region of objective space so that diversity in the solution set is maximised. This

information is obtained using a novel gridding technique; the objective space component

of the archived solutions is overlayed with a M -dimensional grid and the cell in which

each solution resides identified. The cell with the fewest solutions is identified as the most

sparse, and whichever of the two solutions resides in it is retained as the next parent.

Referring to the definition of the UMMEA provided above, PAES is an elitist algorithm

in that, in order to be selected as a parent, a solution must already reside in the archive,

also known as the elite set.

Other variants of PAES, based on a (µ+ λ)–ES, were investigated by Knowles and Corne

[2000], however they were not found to produce a significant improvement over the original

(1 + 1) algorithm.

Non-dominated Sorting Genetic Algorithm

One of the earliest evolutionary algorithms developed to solve multi-objective problems

was the non-dominated sorting genetic algorithm (NSGA) [Srinivas and Deb, 1994]. In

NSGA, solutions are selected to continue to the next generation based on a two stage

process. First, the population is ranked using a method known as Pareto sorting. This

procedure produces a partial ordering of solutions by peeling off layers of non-dominated

solutions; the first Pareto shell comprises the initially non-dominated solutions in the

population. These solutions are temporarily discarded leaving a new non-dominated set,

which become shell 2. This process continues until all solutions have been assigned to

a shell1. NSGA uses the resulting ranking of solutions as an intermediate fitness value.

1Chapter 3 provides a more detailed discussion of Pareto sorting in the context of constructing many-
criterion league tables.
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Then, in order to differentiate between those solutions residing in the same Pareto shell the

algorithm determines the proximity of solutions to their nearest neighbours by computing

a sharing value that takes a value of 0 if the solutions are more than a specified distance

apart in objective space, σshare, and a value based on their distance if they are closer, and

hence part of a niche. The sharing value sij is calculated as follows:

sij =

1−
(

dij
σshare

)
: dij < σshare

0 : otherwise
(2.13)

where dij is the distance between the objective vectors of solutions yi and yj . A niche

count for a solution is computed by adding the sharing values between it and the other

members of the same Pareto shell, and a final fitness value computed by dividing the

intermediate fitness value by the solution’s niche count. This niching mechanism is based

on the normalised Euclidean distance between solutions.

The original NSGA algorithm received three criticisms: it is computationally expensive,

is not elitist, and requires the setting of the parameter σshare. To address these issues,

Deb et al. [2000] developed a successor, NSGA-II. NSGA-II used a modified, faster, Pareto

sorting procedure which reduced the time complexity of the algorithm from O(MN3) to

O(MN2), recalling that M is the number of objectives and N the population size. The

new algorithm is elitist in that the selection of future parents is based on both the current

parent and child population; there is no archive of elite solutions. A parameterless niching

method, the crowding distance, was also developed. To compute the crowding distance

for a solution, a distance is identified such that it defines the largest axis-parallel (hyper-

) cube that can be placed in objective space around the solution without intersecting

any other solution. NSGA-II was developed in 2000, and is still a staple of the multi-

and many-objective optimisation literature against which other algorithms are tested (for

example, [Garza-Fabre et al., 2010; Smith et al., 2008; Zhang and Li, 2007; Knowles, 2006;

Bader and Zitzler, 2011]). A recent drawback with the algorithm is that it has been found

to provide poor approximations to the Pareto front of a many-objective problem; this

is because of its use of dominance to evaluate the quality of the solutions it generates,

and as previously mentioned dominance cannot discriminate well between many-objective

solutions. However, as we will discuss in Chapter 6, research is now considering how the

number of objectives comprising an optimisation problem can be reduced, and NSGA-II

is commonly used to evaluate the efficacy of such dimension reduction approaches [Deb

and Saxena, 2005; Brockhoff and Zitzler, 2007a; Singh et al., 2011].

Strength Pareto Evolutionary Algorithm

The Strength Pareto Evolutionary Algorithm (SPEA) [Zitzler and Thiele, 1999] is an elitist

EA, maintaining an elite archive of non-dominated solutions found during the search that
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is used in the selection of future parent solutions, as well as a population of solutions. The

fitness of an archived solution is defined in terms of its strength, where the strength is the

proportion of solutions in the main population which it dominates:

si =
n

N + 1
(2.14)

where n is the number of dominated individuals in the population of N solutions. The

fitness s′j of a solution in the main population is the summed strength of the dominating

archive solutions, with one added to ensure that population members are never fitter than

those in the archive:

s′j = 1 +
∑

i,yi≺yj

si. (2.15)

Selection is based on the fitnesses of solutions in the union of the population and archive.

By incorporating fitnesses defined in these terms the algorithm employs a niching mech-

anism, designed to preserve population diversity, based on dominance, rather than the

distance-based methods used by NSGA and NSGA-II. The archive used by SPEA is

bounded, and the removal of solutions is controlled by a hierarchical clustering method.

Zitzler et al. [2001] extended the original SPEA algorithm, making several alterations. The

first modifies the fitness assignment procedure so that the number of dominating individu-

als in either the population or the archive, rather than just the archive, is considered when

assigning strength. This prevents the solutions in the population receiving the same fitness

value if they are all dominated by an archive containing solutions which all have the same

fitness value. The selection procedure is also modified, firstly, so that solutions on the

extremes of the estimated Pareto front are not removed. The second change concentrates

the search on the non-dominated individuals by adding the non-dominated individuals

in the population to the archive and selecting from the resulting combined population of

elite solutions. If the number of solutions in this combined archive exceeds the specified

archive size then clustering is used to discard solutions. If it is less than the specified size,

dominated solutions from the population are added to reach the required number.

All three of the methods outlined here provide good approximations to the true Pareto

front of a multi-objective problem, however since they rely on dominance as their primary

method of selecting parent solutions for the next generation they struggle to differentiate

between solutions to many-objective problems. This results in a lack of selection pressure,

and the effectiveness of the algorithms tends toward that of a random walk in the search

space. A popular current trend in evolutionary optimisation is to develop methods that

can provide sufficient selection pressure to locate the Pareto front of a problem comprising

a large number of objectives [Ishibuchi et al., 2008], and we will now proceed to briefly

outline some of the approaches that have been taken.
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2.3.4. Many-objective Evolutionary Algorithms

Having observed that the dominance-based EAs discussed so far can suffer from a lack of

selection pressure when optimising a many-objective problem, we now turn our attention

to selection mechanisms specifically developed for solving such problems.

Rank-based MOEAs

Since one of the principal reasons that multi-objective evolutionary methods are not gen-

erally effective for many-objective problems is their reliance on dominance as a measure

of quality, another avenue of research is the search for an alternative method for assessing

solution quality. A promising line of work in this area is to consider alternative rank-

ing methods that allow an optimiser to maintain sufficient selection pressure to locate

the Pareto front. Solutions can then be selected based on their rank using the selection

schemes described earlier in this chapter, for example, tournament selection and roulette

wheel selection.

Average Rank One of the more prevalent methods that has been proposed is average

rank [Bentley and Wakefield, 1998; Corne and Knowles, 2007; Garza-Fabre et al., 2009;

Li et al., 2010a]. Given that the particular scales of individual criteria are immaterial in

determining whether one individual is better than the other, the population is converted

to rank coordinates. The population is ranked M times, once for each objective, resulting

in a set of ranks rim for each individual. Then, the average rank r̄i of the ith individual

is calculated by taking the average of these ranks. The rank of the ith individual on the

mth objective is rim, and this has the effect of normalising the objectives by placing each

on the range [1, N ]. The individual with the objective value on a particular objective is

assigned rank 1, while the worst is assigned rank N . Assuming that there are no ties, each

rank appears M times; ties are dealt with by assigning the average of the range of ranks

occupied by the tied individuals. The average rank is then the average of an individuals

ranks across all M objectives:

r̄i =
1

M

M∑
m=1

rim. (2.16)

This formulation is clearly similar to the weighted sum aggregation discussed earlier in

this chapter. The difference is that this method operates on the ranked objective values,

rather than the raw objective values used in weighted sum methods. Using ranks in this

way provides a simple way of normalising the solutions, placing the objectives on the same

scale during each stage of the optimisation process.

In a study of various alternative selection operators [Corne and Knowles, 2007], such as

favour relation [Drechsler et al., 2001] and preference ordering [di Pierro et al., 2007] (both
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of which we will discuss shortly), a variant of average rank, which operates on the non-

dominated solutions in a population, was found to produce a good estimate of the Pareto

front in combinatorial problems.

Maximum Rank Also proposed by Bentley and Wakefield [1998] was the maximum

rank method. Here, as with average rank, the population are converted to rank coordi-

nates, such that rim is the rank of the ith individual on the mth objective. Rather than

averaging the ranks those individuals with the best rank on specific objectives are retained

as parents in the next generation. Bentley and Wakefield [1998] propose creating a mating

pool with this approach and then creating children from random combinations of parents

from that pool. Selection based on maximum rank has a drawback that it tends to prefer

solutions that are extreme in one or two objectives. This can lead to the selection of

solutions with generally poor performance on the majority of the objectives but that are

extremely good on one of the problem objectives.

Favour Relation The favour relation is a simple alternative to comparing solutions with

dominance that is better able to discriminate between individuals in a high-dimensional

space. A solution yi is favoured over solution yj if the number of objectives on which yi

is superior is greater than the number of objectives for which yj is superior. Drechsler

et al. [2001] observe that there are a number of advantages to using the favour relation to

compare solutions, for example it is scale invariant and does not require weighting. That

said, it is possible to weight objectives to impart an indication of their relative importance.

The relation is not transitive [Drechsler et al., 2001] and as such is not a partial order.

Despite the increased discrimination between solutions, there are at most M ranks, mean-

ing that the resulting ordering might still provide insufficient information with which to

discriminate between individuals.

Preference Ordering An approach taken by di Pierro et al. [2007] is to compute the

preference order of the non-dominated individuals in a population. Preference ordering

is based on the notion of efficiency of order k. An individual is efficient of order k if it

is non-dominated in all of the
(
M
k

)
k-objective subsets that can describe the population

and dominated in at least one of the
(
M
k−1
)

(k − 1)-objective subsets. This notion is used

to refine the ordering of solutions produced with a non-dominated sorting scheme, such

as that employed by NSGA-II. Each non-dominated solution is ranked according to its

efficiency of order k such that the higher k in which it is efficient, the better the rank

it receives. The result is a partially ordered set that provides better discrimination than

using Pareto sorting alone. In an extension to this scheme, proposed by di Pierro et al.

[2007], an individual is efficient of order k with degree z if it is non-dominated in at least

z of the k-objective subsets. This extension facilitates discrimination between individuals
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that are efficient of the same order k.

This approach is shown by di Pierro et al. [2007] to offer better convergence to the Pareto

front, as well as better coverage of it, when tested on a set of benchmark test problems.

Unfortunately, this performance is at the expense of the computational complexity required

to evaluate all of the possible objective subsets. As such, the application of preference

ordering is generally limited to small many-objective problems. For example, a study by

Garza-Fabre et al. [2009] compares the performance of various ranking methods on a set of

many-objective benchmark problems, but restricts the use of preference ordering selection

to M ≤ 20.

Global Detriment Three alternative selection operators proposed by Garza-Fabre et al.

[2009] are global detriment, profit and global best. Global detriment compares a solution

with the others in the solution set {yi} and measures the amount by which it is inferior

on each normalised objective:

gd(yi) =
∑

yi 6=yj

M∑
m=1

max(yim − yjm, 0). (2.17)

Global detriment is to be minimised, such that a low global detriment receives a good

rank.

Profit Profit considers superiority of solutions in terms of the gain that one solution

generates over another. They define the gain, which is to be maximised, of a solution yi

with respect to yj as the sum of the differences between their normalised objective values

on objectives where yim < yjm. More formally:

gain(yi,yj) =

M∑
m=1

max(yim − yjm, 0) (2.18)

The overall profit is then calculated with respect to the gain of a solution compared with

the other solutions in the population:

pr(yi) = max
j 6=i

(gain(yi,yj))−max
j 6=i

(gain(yj ,yi)). (2.19)

In order to rank solutions, overall profit is maximised.

Global Best The final method presented is global best, which seeks to minimise the

distance between solutions and the current “ideal” point, an M -dimensional vector ỹ in

which ỹm = mini(yim) is the best (normalised) value for the mth objective in the current
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population:

gb(yi) = δ(yi, ỹ) (2.20)

where δ is a metric; Garza-Fabre et al. [2009] use Euclidean distance.

Having introduced these three measures, Garza-Fabre et al. [2009] perform a comparative

study in which the three methods are compared to methods from the many-objective op-

timisation literature: standard non-dominating; average rank, as well as maximum rank,

favour relation, weighted summed aggregation and preference ordering are all evaluated.

The three methods proposed in the study, as well as average rank and weighted summed

aggregation are shown to provide good convergence, however the diversity of the popula-

tion of solutions produced in the experiments is not considered.

Preserving Diversity in Rank-based MOEAs

Several recent works have observed, and we have confirmed, that whilst ranking methods

such as average rank and global detriment provide good convergence to the true Pareto

front, this is at the expense of the diversity of the solution set [Garza-Fabre et al., 2010;

Li et al., 2010a,b].

The Clustering-based Elitist Genetic Algorithm (CEGA) was presented by Garza-Fabre

et al. [2010] and attempted to enhance the diversity of the population using agglomerative

clustering in concert with global detriment ranking. A proportion of the next parent

population is selected with standard global detriment ranking, while the remainder is

selected from a population on which clustering has been used to prune highly similar

solutions. This avoids the problem that a solution of very high quality will be selected

frequently, creating large numbers of child solutions that are close in objective space,

and as such solutions in other regions of objective space are given higher priority. They

demonstrate that CEGA retains the good convergence properties of an EA that uses

global detriment to rank solutions, while providing a solution set with better coverage of

the Pareto front than would be achieved using global detriment alone.

Li et al. [2010a] propose two methods for enhancing diversity in a many-objective opti-

miser. The first modifies average rank selection with an adaptive grid by introducing a

layering mechanism in which only those solutions which are in the current layer are eli-

gible for selection. At the start of the procedure, all of the solutions are in the current

layer. The individual with the best average rank is selected, and those solutions that are

identified using the grid as being neighbours of the selected individual are relegated to the

next layer and can no longer be selected. Once all of the individuals in the current layer

have been exhausted, if the new parent population still requires solutions, the next layer

becomes the current layer. This continues until a sufficient number of solutions have been

selected. A second method using an adaptive grid is proposed by Li et al. [2010b]. In this
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work, a grid ranking method is used to determine which solution should be selected. This

is based on minimising the sum of the grid coordinates of a solution. Each cell is assigned

a rank in each objective, according to how far from the optimal position it is, and the

solutions are ranked according to the sum of their ranked grid coordinates in a procedure

that is equivalent to average rank. If two solutions are tied according to grid ranking

then the adaptive grid crowding method from the authors’ earlier work [Li et al., 2010a]

is employed. If this does not resolve the tie then a third method, grid coordinate point

distance, the distance from a solution to the optimal coordinates of the grid element in

which it resides, is used. Both of these methods are evaluated on the DTLZ test problems

[Deb et al., 2002] and are shown to perform well.

These different methods provide improved diversity enhancement compared to the ranking

methods used in isolation, however there is still work to be done in order to produce

algorithms that approximate many-objective Pareto fronts as well as dominance-based

evolutionary algorithms approximate multi-objective fronts.

Many-objective Aggregation Methods

Research into solving many-objective problems has also considered aggregation techniques.

Approaches, such as a multi-objective genetic local search approach [Ishibuchi and Murata,

1996] and Pareto Simulated Annealing [Czyzak and Jaszkiewicz, 1998], use aggregation

methods to generate an approximation to the Pareto front of a multi-objective problem in

a single run, as opposed to the more common approach of executing multiple runs of an

algorithm for different objective weightings. In the many-objective domain, Hughes [2003]

presented Multiple Single-objective Pareto Sampling (MSOPS), which is an algorithm that

used aggregation methods to optimise a set of arbitrary target vectors {q} initialised by

randomly sampling directions in the search space originating from a utopian point. Fitness

was determined by the rank of solutions according to how well they optimise each target

vector, which was evaluated using a weighted sum aggregation:

f̂(x) = f · q (2.21)

=

M∑
m=1

fm(x)qm (2.22)

Hughes incorporated the MSOPS fitness assignment procedure into a differential evolution

(DE) algorithm [Storn and Price, 1997]; however, he observed that it can also be incor-

porated into other evolutionary algorithms; a subsequent paper [Hughes, 2007b] used an

evolutionary program. Hughes [2003] applied the method to a bi-objective problem but

noted that since it does not rely on dominance for the comparison of solution quality it

was a suitable candidate for optimising many-objective problems.
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Hughes [2007b] presented MSOPS-II, in which it was shown that a useful extension in some

cases is to generate target vectors manually based on a priori knowledge of the problem

search space. That said, Hughes suggested that it is also useful to use automatically

generated target vectors for exploring the search space of a previously unseen problem.

An alternative is to consider the volume of space dominated by an objective vector. The

hypervolume indicator, also known as the S metric, [Fleischer, 2003] is a performance

measure which is capable of characterising both convergence and diversity. It measures

the volume of objective space dominated by an estimated Pareto front and bounded by

a reference point. Common strategies for choosing a reference point are to use the worst

possible value for each objective, if they are known, or to use the worst value in the

population for each objective [Bradstreet et al., 2006]. The hypervolume is maximised

when a population is converged to and covers the Pareto front and is computed by summing

the volume of hypercubes dominated by the estimated Pareto front. More formally, given

a reference point ẏ, the hypervolume is defined as [Brockhoff et al., 2008]:

IH(Y) = vol

 ⋃
yi∈Y

[yi1, ẏ1]× [yi2, ẏ2],× . . .× [yiM , ẏM ]

 (2.23)

Without properly converging to and covering the true Pareto front the amount of dom-

inated space between the solution set and reference point will be smaller than if the

algorithm had properly converged and covered the true Pareto front. Therefore, given a

set of solutions, a selection operator will prefer those that maximise the hypervolume.

Whilst the hypervolume can be measured for any number of objectives, the complexity

of its calculation is extremely expensive [While, 2005]. Much work has been done to

identify algorithms for reducing the computational complexity of an exact hypervolume

calculation [While et al., 2006, 2012]. A promising alternative approach is to use Monte

Carlo sampling to produce an estimate of the hypervolume rather than calculating it

exactly [Everson et al., 2002]. A set of samples is taken from the region enclosed by an

ideal point at which all objectives are minimised and the reference point. The sampled

hypervolume is then simply the proportion of samples dominated by the estimated Pareto

front. In order to achieve an accurate result, it is necessary to have a large number of

samples to ensure sufficient resolution which limits the use of this approach in an iterative

algorithm.

Due to its scalability, the hypervolume indicator has seen use as the selection operator

in an MOEA. Such examples have calculated the hypervolume [Bradstreet et al., 2006]

however a recent advance was the development of a hypervolume-based search algorithm

called HyPE which resolves the complexity issue by calculating the hypervolume for multi-

objective problems (M ≤ 3) and estimating it with sampling for many-objective problems

(M > 3) [Bader and Zitzler, 2011]. The algorithm is shown to provide superior results to

the algorithms it is compared against, including NSGA-II and SPEA2.
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Beside its use as a selection operator, the hypervolume has been frequently used as a means

of comparing experimental results produced by a MOEA. The purpose of an evolutionary

optimiser is to converge to and cover the true Pareto front, at which time the hypervolume

is maximised. By computing the hypervolume at each generation, it is possible to see how

far into the execution of an optimiser, if at all, this happens.

As was the case with the rank-based methods, these approaches have made progress to-

ward the goal of optimising a many-objective problem, however there are still problems

to be overcome, for example the complexity of incorporating a technique such as the

hypervolume into an iterative algorithm.

Objective Reduction in MOEAs

One of the major fields of interest within the MOEA community currently, discussed

in more detail in Chapter 6, is the identification of redundant objectives which can be

removed, reducing a many-objective problem to a multi-objective problem that is more

easily solved by a standard dominance-based MOEA. As with other types of dimension

reduction, the process involves identifying the objectives whose removal will cause the

smallest loss of information. This has been done by identifying the objectives responsi-

ble for providing the largest proportion of the variance in the objective vectors [Deb and

Saxena, 2005]; discarding the objectives which cause the smallest change in the pairwise

dominance relationships between objective vectors [Brockhoff and Zitzler, 2007a]; and

identifying the corners of the Pareto front for a problem so that the change in the propor-

tion of non-dominated solutions as objectives are discarded can be quantified [Singh et al.,

2011]. Objective reduction is the subject of Chapter 6 and these methods are discussed

in further detail there.

2.3.5. Test Problems

Throughout this thesis we illustrate the methods we present on example populations, some

of which are solutions to test problems. Therefore, we briefly introduce some of the test

problems that appear in later chapters. An integral part of the development of MOEAs

is to apply them to suites of test problems. Test problems are multi-objective problems

for which the true Pareto front is known, allowing evaluation of how close to the true

front the solution set produced by a MOEA is, and how well it covers the true front.

They also facilitate the evaluation of a MOEA on various problem features that are found

in real world problems, such as degenerate fronts, in which the true Pareto front of an

M -objective problem is Q-dimensional (Q < M), or discontinuities, regions of infeasible

space within the Pareto set or front.
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DTLZ Problem Suite

The DTLZ test problem suite [Deb et al., 2002]2 comprises extensions of the popular ZDT

problems [Zitzler et al., 2000] and is designed to aid research with the advent of research

into both multi- and many-objective problems. The problems are scalable to any number

of objectives and parameters, and provide researchers with a variety of problem features.

DTLZ1 and DTLZ3 are multi-modal, meaning that the objective space contains deceptive

fronts, local optima in which an optimiser can become trapped, facilitating the evaluation

of an algorithm’s ability to escape from such regions. DTLZ5 contains a degenerate front,

where the true Pareto front comprises fewer dimensions than the objective space in which

it exists. The problems have a structured parameter space, in which individual parameters

are responsible for either the position of a solution on the Pareto front, or its distance to

the Pareto front. This information is useful in computing the distance from the Pareto

front in order to tell how well the algorithm has approximated the true Pareto front.

Deb et al. [2002] provide suggested parameterisations which have been widely used in the

literature. These define the number of parameters for a given number of objectives; for

example, for DTLZ1 the suggested number of parameters is M − 1 + k, where k = 5.

For DTLZ2, k = 10 is suggested. Here, k is the number of distance parameters, which

control how far a solution is from the Pareto front. The first M−1 parameters are position

parameters, which control in which region of the Pareto front the solution resides. We note

that this decomposition of parameters can make the work of an optimiser unrealistically

easy, since it is a feature that has been introduced to make the analysis of results easier

rather than to produce a more realistic problem. The DTLZ problems themselves have

been extended so that problem features beyond those envisaged by Deb et al. can be

tested. Examples of this are the creation of the DTLZ5(I,M) [Deb and Saxena, 2005] and

DTLZ2BZ [Brockhoff and Zitzler, 2007b]. These problems comprise redundant objectives

for testing objective reduction methods.

Figure 2.4 presents example Pareto optimal solution sets for the DTLZ problem suite

[Deb et al., 2002]. These sets were produced by evaluating Pareto optimal solutions for

3-objective problem instances. The number of parameters are as proposed by Deb et al.

[2002].

WFG Toolkit & Suite

Huband et al. [2005, 2006] conducted a review of multi-objective test problems and found

that the DTLZ problems omitted some desirable problem features. For example, they ob-

2The work presented by Deb et al. [2002] was preceded by a technical report [Deb et al., 2001] in which
the problems were numbered differently. In this thesis we refer to the numbering according to Deb
et al. [2002].
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(a) DTLZ1 (b) DTLZ2 (c) DTLZ3

(d) DTLZ4 (e) DTLZ5 (f) DTLZ6

Figure 2.4.: Three-objective instances of DTLZ1-6. The solutions were sampled from the
Pareto sets of 3-objective instances of problems; the number of parameters is
as specified by Deb et al. [2002]. These plots show the corresponding objective
vectors. The problems retain the geometry shown here in M > 3 objectives.

served that the suite does not contain problems with flat regions in the fitness landscape.

In addition, they point out that DTLZ5 is only degenerate when M < 4. As a result of

their survey, they proposed the Walking Fish Group (WFG) toolkit, a framework for the

creation of test problems based on a set of transformation functions, as well as a new set of

benchmark test problems, the WFG problem suite. Desired characteristics are introduced

into the problems via transformation functions, which operate on the parameters. Shape

functions define the shape of the true Pareto front as either linear, concave, convex, mixed

(concave and convex) or disconnected. Further transformation functions define the fitness

landscape, introducing bias regions and shifting the location of optimal regions, and re-

duction transformations introduce dependencies between parameters. Unlike the DTLZ

problems, the objectives in the WFG problems are on different scales. Figure 2.5 presents

example objective space solution sets for the WFG problem suite [Huband et al., 2006].

The solutions are sampled from the true Pareto set of test problems WFG1-9. Note that

WFG4–9 (Figures 2.5(d)—2.5(i)) all employ the same shape function and thus the shape

of the Pareto front is the same for all six problems.
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(a) WFG1 (b) WFG2 (c) WFG3

(d) WFG4 (e) WFG5 (f) WFG6

(g) WFG7 (h) WFG8 (i) WFG9

Figure 2.5.: Three-objective instances of the WFG problems; the number of parameters
in each case is as recommended by Huband et al. [2005]. The solutions were
sampled from the true Pareto set of the problems. These plots show the
corresponding objective vectors. The geometries shown here are retained in
M > 3 objectives.

2.4. Multi-criteria Decision Making

While the methods on which it is based are drawn from evolutionary multi- and many-

objective optimisation, much of the work presented in this thesis relates to multi-criteria

decision making (MCDM). In particular, we seek to develop methods for visualising popu-

lations of alternatives between which a choice must be made by a decision maker. As such,

this section presents a short introduction into methods used in that field for differentiating

between multi-criterion individuals representing alternatives to an MCDM problem. We

begin by outlining how a decision maker’s preferences can be incorporated into the MCDM

framework, before examining techniques used to rank alternatives in MCDM.
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2.4.1. Selecting an Individual based on Decision Maker Preferences

Of crucial importance in the construction of a MCDM problem is the role of the decision

maker. The decision maker is a human who will interact with the system developed to

solve their problem, and will eventually be responsible for selecting a single solution to

it based on the analysis conducted. Generally, a decision maker is a person with some

specialist or expert knowledge about the domain in which the problem resides. They will

have some problem-specific knowledge relating to why a solution for the decision making

problem at hand is required; this specialist knowledge of the problem and its domain are

incorporated into the MCDM framework in the form of preferences. The decision maker

is required to used their specialist knowledge in order to find the preferred solution to the

problem at hand.

Preferences in a MCDM can be incorporated in three different ways [e.g., Coello Coello

et al., 2007]: a priori preference articulation; interactive preference articulation; and a pos-

teriori preference articulation. In a priori preference articulation, preference information

is obtained by the decision maker before the multi-criterion analysis is started. The prefer-

ences provided by the decision maker at the start of the process remain fixed throughout.

This type of preference articulation is popular, but inflexible. Rather than require a fixed

set of preferences from the decision maker before the multi-criterion analysis can start, an

alternative is to involve the decision maker in the analysis. Additional difficulties might

be encountered if the decision maker does not fully grasp the complexities of the MCDM

framework employed and may have overly optimistic or pessimistic expectations [Miet-

tinen, 2008]. Interactive preference articulation is perhaps a better alternative to the a

priori approach because it allows more flexibility. By involving the decision maker in the

analysis process, the putative solutions generated can be based on knowledge and intuition

that they have gained as the analysis process proceeds. A drawback is that tasks designed

to elicit current decision maker preferences (e.g., ranking individuals and adjusting con-

straints) can be non-trivial [Coello Coello et al., 2007], however as discussed by [Miettinen

et al., 2008], involving them as problem solutions are generated avoids generating solutions

that, although feasible, are not of interest to the decision maker. As such, the number

of solutions from which the final selected solution must be chosen is smaller. The final

option, a posteriori preference articulation, does not require interaction with the decision

maker until a set of putative solutions to the problem has been generated. At this point,

the decision maker must select one. A potential issue with such an approach, discussed

by Coello Coello et al. [2007], is that at no point in the solution generation process has

the problem domain been constrained with the application of decision maker preferences;

as such, the number of putative solutions from which the decision maker must make their

selection is likely to be large. Also, as noted by Miettinen [2008], the process by which

this large set of solutions, many of which may be of little interest to the decision maker,

are generated might be prohibitively expensive.
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Various techniques exist with which decision maker preferences are incorporated into the

MCDM framework. One example, proposed by Magoc et al. [2011], is an a priori technique

that uses the preferences of the decision maker to construct “preference constraints” before

solutions are generated by some optimisation process. This is done by asking the decision

maker to score the importance of relative changes in criterion values, quantifying how

desirable it is to improve the score of an individual according to one criterion at the

expense of a reduction in another criterion value for that individual. The result is a

much smaller search space in which the optimisation process must operate, simplifying

the optimisation problem.

Another technique, proposed by Fenton and Wang [2006], discussed the problem of data

integrity in MCDM tasks. They observe that the data used in such tasks can often be

suspect, and propose that preferences can be incorporated into a fuzzy MCDM framework

to capture a measure of the uncertainty of criterion values, before preferences are used to

take account of the level of risk and confidence the decision maker has about their selection.

Their study indicates that such an approach is useful in “human-oriented” decision tasks.

2.4.2. Ranking Alternatives in MCDM

Methods for ranking alternative solutions to MCDM problems are, as in the case of multi-

and many-objective evolutionary algorithms described above, an important component of

multi-criterion analysis. One of the important reasons for this is that, given a total ordering

of the alternatives, the decision maker is presented with a single preferred solution. Also,

comparing the rank of an individual according to the different criteria by which it is

measured can provide information about the degree of correlation or conflict between the

criteria in the population. Three popular approaches to ranking individuals in the MCDM

literature are TOPSIS, ELECTRE and PROMETHEE.

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) [Yoon and

Hwang, 1995] ranks multi-criterion individuals according to their distance to some prede-

fined ideal solution, as well as to the worst possible solution. A preference order is defined

over the relative distance to the ideal point, on which basis the multi-criterion alternatives

are ranked. This approach has been used in a variety of MCDM problems [e.g., Zavadskas

et al., 2006; Triantaphyllou et al., 1998] and has also been used to rank solutions to as

part of a multi-objective GA [Coello Coello et al., 2007].

Another common MCDM ranking techinque is ELECTRE (elimination and choice trans-

lating algorithm) (Benayoun et al. [1966]; discussed in Coello Coello et al. [2007]). The

individuals are representated as a directed graph, which is used to infer a preference or-

der. The graph is defined using the notions of concordance, disconcordance and thresholds.

The concordance between a pair of individuals quantifies the number of criteria in which
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one individual is superior to the other, while disconcordance is a measure of the number

of criteria in which that individual is superior. Two threshold values are then used to

place edges between the nodes representing individuals in the graph such that an edge is

placed between two individuals if their concordance value is greater than the concordance

threshold value and their disconcordance value is less than the disconcordance threshold

value. The original version (ELECTRE I) has been modified to create various successors

[Coello Coello et al., 2007] and remains a common choice ranking alternatives in MCDM

problems [e.g., Thokala, 2011; Ling et al., 2012].

PROMETHEE (Preference Ranking Organisation Method for Enrichment Evaluations)

was first demonstrated by Brans et al. [1986], and like ELECTRE various versions exist

[Lewi and Hoof, 1992]. Defined in the original work, PROMETHEE I provides a partial

ordering of individuals. A preference index is defined based on a preference function,

which is designed to model the decision maker’s preferences for a particular criteria; the

preference index is a weighted average of the preference functions for a pair of individuals.

PROMETHEE I only considers those cases where two individuals are comparable; a second

variant proposed by Brans et al. [1986] is capable of producing a total order by taking into

account incomparable individuals, although the authors comment that this may provide a

less realistic ordering of individuals in favour of receiving an exact ranking. Like TOPSIS

and ELECTRE, PROMETHEE has been used for ranking solutions in multi-objective

problems [Coello Coello et al., 2007].

2.5. Comparing Permutations

Many of the methods introduced in this thesis rely on ranking population based on combi-

nations of different criteria. Consequently it is important that we are able to differentiate

between these rankings, and various statistical tools exist to do this. Two of these methods,

Spearman’s footrule [Spearman, 1904, 1906; Diaconis and Graham, 1977] and Kendall’s τ

metric [Kendall, 1938], are used throughout this work and introduced here.

2.5.1. Spearman’s Footrule

Spearman’s footrule [Spearman, 1904, 1906] is the city block distance between two per-

mutations. Let π and ρ be two permutations, where a permutation is an ordering of the

integers 1, . . . , N , such that each integer in the range appears exactly once; they might be,

for example, rankings of a population according to the mth and nth objectives describing

a population. A permutation of length N is used to order N items in a collection, such

as the populations we consider in this thesis. Spearman’s footrule δSF is the summed
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absolute difference between the positions of individuals in the two permutations:

δSF(π,ρ) =
N∑
i=1

|πi − ρi| . (2.24)

Assuming that π and ρ are permutations of N elements, the maximum possible value of

the metric, δSFmax, which occurs when the permutation π is the reverse of ρ, is:

δSFmax =

{
N2

2 when N is even
(N+1)(N−1)

2 otherwise.
(2.25)

Spearman’s footrule is a metric, a distance between two permutations, although this is

only the case when there are no tied ranks. When tied ranks are present, the metric

condition δ(i, j) = 0 if and only if i = j is not satisfied because two elements in the

ranking can have the same value.

2.5.2. Kendall’s τ Metric

Kendall’s τ metric, δKT, is also a distance between two permutations, but it considers

how the pairwise ordering of individuals changes between permutations. If the ordering

between a pair of individuals is unchanged (πi > πj and ρi > ρj or πi < πj and ρi < ρj)

then τij(π,ρ) = 0. Otherwise, if the pairwise ordering is different, τij(π,ρ) = 1. Then

Kendall’s τ metric is defined as:

δKT(π,ρ) =
∑
ij

τij(π,ρ). (2.26)

Like Spearman’s footrule, the maximum value of δKT, δKT
max, occurs when π is the reverse

ordering of ρ, and is:

δKT
max =

N(N − 1)

2
. (2.27)

As is the case with Spearman’s footrule, Kendall’s τ is a proper metric if there are no

ties present. In the presence of ties, two different elements in a ranking can have the same

value, and therefore a distance of zero.

Spearman’s footrule and Kendall’s τ are known to be well correlated [Diaconis and Gra-

ham, 1977]. A demonstration of this appears in Figure 2.6 in which 1000 random per-

mutations of length 20 have been compared with the ordered version of the permutation

using both Spearman’s footrule and Kendall’s τ . The correlation shown here corresponds

with the inequality given in Diaconis and Graham [1977] that δKT ≤ δSF ≤ 2δKT. This

relationship is indicated by the two monotonically increasing lines in Figure 2.6.
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Figure 2.6.: Correlation between Spearman’s footrule and Kendall’s τ metric.

2.6. High-dimensional Visualisation

Much of the work in this thesis aims to enhance the understanding of a many-criterion

population by a decision maker, and a way in which this is often done for data sets is

to represent the data visually. Note, that from now on we use the term many-criterion

population, rather than the term many-objective population. This is because the methods

presented in the forthcoming chapters are illustrated on a range of populations including,

but not limited to, solution sets to optimisation problems. For example, a running exam-

ple that will be introduced in Chapter 3 reports on the performance of UK universities

according to eight key performance indicators rather than solutions to an optimisation

problem; a crucial distinction is that there is no parameter space component in that case.

Visualisation is a sensible approach to presenting multi-criterion data for a number of

reasons. Lotov and Miettinen [2008] observe that a human decision maker will struggle

to keep the alternatives in mind when presented with a long list of numerical values.

Visualisation, as noted by Korhonen and Wallenius [2008], provides a better means of

quickly obtaining a general view of the population. Human cognition is well suited to

evaluating visual information; for example, spatial proximity of points in a visualisation

intuitively provides information on the similarity of those points. Given a pair of multi-

criterion individuals that are close together in a visualisation, a decision maker would

likely interpret them as being “similar” in some way. Likewise, their visual proximity

to known optimal or nadir points in the criterion space provides an indication of the
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quality of those individuals; an individual that is placed close to an optimal point in

criterion space is preceived to be of high quality. The identification of such optimal, or

“goal”, points in criterion space can also be made with the aid of a visualisation. Lotov

et al. [2004] suggest the use of an interactive visualisation method, Interactive Decision

Maps, to identify goal points by allowing the decision maker to experiment with different

combinations of criterion values and find the most satisfactory trade-off possible. It is

also possible to identify properties of the population, such as using ordered heatmaps,

parallel coordinate plots and pairwise coordinate plots to identify correlations and conflict

between criteria. These techniques are discussed in more detail later in this chapter, and

this particular use of the heatmap approach forms part of the work presented in Chapter

5.

In order to be of use, the visualisation tools must be suitable for interpretation by a range

of audiences. For example, one of the principal examples that this thesis draws on is

that of university league tables, and one of the main purposes of such league tables is

to enable potential students to select universities at which they may wish to study. In

that scenario, the decision maker must be assumed to have little or no specific knowledge

regarding higher education. Conversely, another of the examples used in this thesis relates

to the construction of maintenance timetables for the components of a wireless mobile

telephone network. In that scenario, the decision maker requires a visualisation that

will enable them to identify the components which are most in need of maintenance,

in order of increasing performance. Multi-criterion decision making is commonly used

in concert with GIS systems [e.g., Rinner, 2003] for town planning problems, where, as

with the maintenance example, a visualisation is required from which the best option

can be selected from the population of alternatives. While these two examples require

the decision maker to arrive at a more definite choice of individual than the university

league table example, the maintenance engineer or town planner is likely to have more

specialist knowledge that will enable them to manipulate the criteria and interact with the

visualisation to make an informed decision. In the town planning scenario, some of this

knowledge might be based on information collected from a public consultation exercise;

multi-criterion visualisation combined with GIS can be useful here too. Jelokhani-Niaraki

and Malczewski [2012] conducted a study in which they found that producing a simple

interactive visualisation can increase participation in such exercises.

A significant body of work on the visualisation of high-dimensional data exists, some of

which we review in this section before going on to describe how it has been used in a

many-criterion context. Visualisation methods generally require some form of dimension

reduction, and they can be broadly classified by whether information lost as a result of

this reduction is recoverable or not. We review examples of both groups, beginning with

those in which lost information is recoverable.
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Figure 2.7.: Examples of multi-objective scatter plots for 2 and 3 objective instances of
DTLZ2. Individuals are coloured by the objective on which they are best
ranked (red = f1, green = f2 and blue = f3). The objective vectors correspond
to solutions generated by a (µ+ λ)–ES which ran for 250 generations.

2.6.1. Visualising All Criteria

It is most desirable to visualise a population with respect to the entire criterion set so that

the maximum amount of information is available to the decision maker. Since it is generally

not easy for a person to comprehend more than three spatial dimensions a considerable

amount of research has been done to find methods which can visualise a many-criterion

population that, again, comprises more than four criteria. We are principally concerned

with methods drawn from multi- and many-objective optimisation.

For illustration, Figures 2.7, 2.8 and 2.9 present a set of examples of existing visualisation

techniques. The examples all show the objective space mapping of solutions F̂ = {yi}
generated by running a (µ+λ)–ES for 250 generations, maintaining an elite archive of non-

dominated individuals throughout the process. At each generation, every member of the

parent population was copied and an additive Gaussian mutation of standard deviation

σ = 0.2 was applied to exactly one parameter in each child solution. Both µ and λ

were set to 20. We used the aforementioned test problem DTLZ2 and generated results

for M = 2, 3, 5 objective instances of the problem; the number of decision variables was

P = 10 + (M −1) as recommended by Deb et al. [2002]. With the exception of Figure 2.7,

all of the examples use 768 objective vectors from the 5-objective archive. By construction,

the Pareto front is known to be the portion of a spherical shell of radius 1 lying in the

positive orthant and the solutions in the set F̂ approximate this front. The solutions are

quite well converged; for the 2-objective instance the median distance from the true Pareto

front is 5.48 × 10−4. For the 3-objective archive the median distance is 3.15 × 10−3, and
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for the 5-objective archive 5.38 × 10−2. These distances were computed by finding the

median distance between the archived solutions and the true Pareto front, which can be

determined analytically for this test problem [Van Veldhuizen and Lamont, 1998].

Probably the most common method for visualising solutions in a multi-objective context

is to produce a scatter plot on 2- or 3-dimensional axes, where each axis represents an

objective. Examples are shown in Figure 2.7a (two objectives) and Figure 2.7b (three

objectives) and clearly show the spherical nature of the estimated front. Solutions have

been coloured according to the objective m on which the solution is performing “best” as

follows. In order to avoid biases due to the differing scales on which the objectives were

measured, the solutions were ranked on each objective separately; we denote the rank of

solution yi on the mth objective as rim with 1 being the best rank and N the worst possible

(N = 768 in this case). The solution yi is then coloured according to the objective for

which rim is minimum. As Figure 2.7b shows, this colouring tends to colour neighbouring

solutions in the same colour and provides some indication of the nature of a region of

objective space. Although this provides relatively little additional information for 2 and 3

objectives, the same device considerably enhances the interpretability of many-objective

visualisations.

Two of the earliest methods identified for use in many-objective optimisation were parallel

coordinate plots [D’Ocagane, 1885; Inselberg, 1980; Fonseca and Fleming, 1993] and pair-

wise coordinate plots [Meisel, 1973; Cleveland, 1994]. A parallel coordinate plot presents

each solution yi as a line graph of yim versus objective m with the values connected by

lines. Whilst this is easily extended to any number of objectives, as Figure 2.8a shows for

the 5-objective DTLZ2 solutions, the plots are often too cluttered to be of use. As in Fig-

ure 2.7 the solutions are coloured by the objective on which they have the best rank. Zhao

et al. [2003] extended parallel coordinate plots to incorporate sequential data, data which

changes over time, into the standard parallel coordinate plot with the addition of trend

figures which are used to show how a particular variable or criterion changes over time. A

pairwise coordinate plot compares each pair of objectives as a 2-dimensional scatter plot,

as shown in Figure 2.8b. This is useful for revealing correlated and anti-correlated pairs

of objectives and provides information on the pairwise interactions between objectives.

However, the fact that the points representing a particular solution in each plot are not

visually linked means that it is generally difficult to perceive relations between solutions.

While it is mechanically easy to extend to any number of objectives, the number of plots

M(M − 1)/2 rapidly becomes overwhelming.

Heatmaps are frequently used to represent large multivariate datasets [Eisen et al., 1998;

Grinstein et al., 2001; Wilkinson and Friendly, 2009] and have recently been used for

multi-criterion populations [Pryke et al., 2006; Nazemi et al., 2008; Biswas et al., 2009;

Hettenhausen et al., 2010; Kiesling et al., 2011]. In a heatmap, criteria are represented by

columns, solutions by rows, and relative values as ‘heat’ represented by colour. Figure 2.8c
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Figure 2.8.: Examples of the many-objective visualisation methods for the example 5-
objective DTLZ2 front. With the exception of the heatmap visualisation, in
which the colour of a cell indicates the ‘temperature’ of that value, individuals
are coloured by the objective on which they are best ranked (red = f1, green
= f2, red = f3, cyan = f4 and black = f5).

presents a heatmap of the 5-objective DTLZ2 archive. The arbitrary ordering of solutions

means that it can be difficult to observe relationships between the various solutions and

objectives. Schemes for reordering the rows and columns in a heatmap to provide a

clearer view of a many-criterion population, which we discuss in Chapter 5, have been

proposed by Pryke et al. [2006] and Nazemi et al. [2008]. In addition, in order to be

of use, the objectives must be on the same scale. One way in which this is done is by

normalising values to similar ranges; for example, Nazemi et al. [2008] recommend linearly

scaling the solutions for each objective to [0, 1] before assigning colours. In Figure 2.8c

the objectives are all on roughly the same scale, so no scaling was done before assigning

colours; nonetheless, the heatmap is dominated by the cooler colours because there are

just a few individuals with large criterion values. We present methods that use the full

range of colours and place similar solutions together to enhance a visualisation of both

objective space and parameter space in Chapter 5.
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(d) Neuroscale

Figure 2.9.: Examples of the dimension reduction visualisation methods. Individuals are
coloured by the objective on which they are best ranked (red = f1, green =
f2, red = f3, cyan = f4 and black = f5).

2.6.2. Visualising a Subset of the Criteria

Since scatter plots provide such an intuitive visualisation of multi-criterion individuals, an

obvious course of action is to project the population into 2 or 3 dimensions and draw a

scatter plot.

Probably the most common linear dimension reduction technique is principal component

analysis (PCA, [Jolliffe, 2002]) which identifies the directions of objective space that cap-

ture the maximum amount of variance in the individuals. Figure 2.9a shows the PCA

projection of the 5-objective DTLZ2 individuals into the two-dimensional space spanned

by the first two principal components. The projection has identified the two directions in

objective space that retain the most variance and are therefore the best linear approxi-

mations to the original population in a mean squared sense. However, when we colour the

individuals by the objective on which they achieve the best rank as in Figure 2.7, we see

that the clustering illustrated in this multi-objective visualisation is less clear. Although it
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is still possible to see clusters of solutions that are best on the same objective, the clusters

are beginning to overlap. This is a relatively small example, and the clusters will overlap

more as the dimensionality of the population increases. Of course, some information must

inevitably be lost by projecting into a lower dimensional space, but we note that PCA is

ignorant of the mutually non-dominating nature of these individuals.

Three nonlinear methods that have been used for visualising many-criteria individuals are

Self Organising Maps (SOMs) [Kohonen, 1995], Generative Topographic Mapping [Bishop

et al., 1998] and Neuroscale [D. Lowe and M. E. Tipping, 1996]. All three of these methods

aim to preserve nearest neighbour distances between individuals.

The SOM [Kohonen, 1995] is a topographically-arranged network of interacting transfor-

mation functions, whose response (displayed as a degree of excitation of all the component

nodes) varies depending on the network input. In the basic formulation (as used in e.g.

[Obayashi, 2002; Fieldsend and Everson, 2005]), the SOM defines a mapping from the

input space onto a two-dimensional array of nodes. Each node in this array has an asso-

ciated M -dimensional reference vector w, and these nodes are compared to any input, y,

to the network, in a parallel fashion. The SOM seeks to find some best matching node to

y, denoted wc, whose response should be maximised given the input. Additionally, the

SOM learning algorithm seeks to instill a local relationship between neighbouring nodes,

such that nodes that are spatially close to one another in the network topology should also

be concerned with adjacent regions of input space. One interpretation of this approach

presented in [Kohonen, 1995] is to view the trained SOM as a nonlinear projection of the

probability density function of the M -dimensional input into the two-dimensional display

provided by the network.

Figure 2.9b illustrates the reference vectors associated with a SOM of the 5-objective

DTLZ2 archive. Each hexagon represents one of the reference vectors in the trained

mapping, and each vector has been coloured according to the objective of the reference

vector which has the best value. These ranks were obtained by considering each reference

vector in turn as a supplementary individual in the population which has already been

ranked by each criterion. From the distribution of colours in the visualisation it is clear

that the reference vectors have been distributed across the Pareto front and provides a

coarse-grained spatially coherent representation.

The SOM lacks a generative model for the data being visualised; this means that it is dif-

ficult to incorporate new data to the visualisation. The Generative Topographic Mapping

[Bishop et al., 1998] is a principled alternative to the SOM which represents the data as a

nonlinear mapping to the high-dimensional data space of a topographically ordered low-

dimensional latent space. The data is then visualised as its projection into the latent space.

The nonlinear mapping is achieved by a constrained mixture of radial basis functions and

a Gaussian noise model accounts for discrepancies between the noise-free mapping from
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latent space to data space and the observed model. The likelihood corresponding to this

generative model is then maximised using the expectation-maximisation algorithm [Demp-

ster et al., 1977] in order to learn the model parameters and the latent visualisation. Figure

2.9c shows the visualisation of the 5-objective DTLZ2 archive by Generalised Topographic

Mapping; objective vectors have been broadly clustered into similar groups, as indicated

by the colouring, but there is a imperfect separation into distinct, topographically coher-

ent regions. This is unsurprising, accounting for the information that has been lost in the

compression process.

Neuroscale [D. Lowe and M. E. Tipping, 1996; Lowe and Tipping, 1996] has also been

used for many-objective visualisation [Fieldsend and Everson, 2005; Everson and Field-

send, 2006]. It also uses radial basis functions to form a nonlinear mapping projecting an

M -dimensional individual y into a Q-dimensional individual ŷ using topographical infor-

mation derived from considering the distances between solutions, where Q < M . The aim

is for the embedding to preserve pairwise distances between the individuals. The radial

basis functions are arranged as a neural network whose inputs are the high-dimensional in-

dividuals and the outputs are the corresponding low-dimensional individuals. The network

is trained to minimise the Sammon stress [Nabney, 2004]:

N∑
i

N∑
j>i

(
dij − d̂ij

)2
, (2.28)

in which dij is the distance between the objective vectors i and j in M -dimensional ob-

jective space and d̂ij is the distance between the corresponding individuals in the Q-

dimensional space. This metric is minimised when the distances between pairwise indi-

viduals in the original objective space and the embedded space are the same. Figure 2.9d

demonstrates the application of Neuroscale to the visualisation of the 5-objective DTLZ2

archive. Individuals have been coloured by the objective on which they achieve the best

rank, but like PCA, segregation into distinct regions is less clear than in the multi-objective

examples of Figure 2.7. Closely related to Neuroscale is a method proposed by Valdés and

Barton [2007] in which individuals are embedded in a 3-objective space by minimising the

Sammon error:
1∑

i<j dij

∑
i<j(dij − d̂ij)2

dij
. (2.29)

This embedding is then presented to a decision maker as an interactive virtual environment

that can be explored for knowledge discovery.

Clustering approaches have also been used, for example, in order to visualise the results of

multi-objective nurse scheduling in which Fuzzy C-Means Clustering was used to cluster

the solutions. The axes onto which the data were then projected were identified using

Fuzzy Multiple Discriminant Analysis by finding the projection that maximises the ratio

between within-class scatter and between-class scatter Yoshikawa et al. [2007].
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The prosection method [Tušar and Filipič, 2011] visualises a population by compressing

the objectives using prosections. A prosection is the projection of individuals within a

section of the objective space into a low-dimensional space; in two dimensions, solutions

are projected onto a line running through the section and intersecting the origin. The

projections of solutions onto the line defining the section are then rotated through the

angle between the projection line and one of the axes so that a dimension is removed.

Reducing the dimensionality in this way has the advantage that if one solution dominates

another then its prosection projection dominates the others’ projection. However, two

mutually non-dominating solutions may be projected so that one dominates the other.

Additionally, it is currently only possible to visualise populations of four objectives or

fewer

Another method [Koppen and Yoshida, 2007] which seeks to preserve dominance relation-

ships first projects the non-dominated solutions onto the positive quarter of a circle centred

on the origin. The individuals are distributed in a way that attempts to preserve nearest

neighbour distances between the solutions. Interestingly, projecting the non-dominated

solutions into a two-objective space such as this implies an ordering on the solutions; at

one end of the embedded Pareto front the solutions best optimise one of the objectives

while at the other end the solutions best optimise the other objective. Having reduced

the dimensionality of the non-dominated solutions, a greedy procedure is used to find the

position of each dominated solution that best preserves the dominance relationships of the

original population. This procedure aims to minimise the number of implicit dominance

relationships that are created in the two-dimensional embedding. An implicit dominance

relationship occurs when two non-dominated solutions, yi and yj for example, are placed

at two points on the circumference of the circle. If a solution yk is dominated by yi and yj

in the M -objective space then this should be shown in the visualisation by the placement

of the projection of yk. Care must be taken to ensure that the placement of yk in the

two-dimensional space does not imply dominance relationships between non-dominated

solutions that were not present in the original objective space.

All of the visualisation methods reviewed in this chapter tend to suffer from one of two

problems. They are either lossless and present the entire set of objectives, which often

results in a lack of clarity, or they incorporate a dimension reduction which loses infor-

mation about the dominance relations between solutions. Subsequent chapters present

methods aimed at addressing both of these issues. Methods for enhancing the clarity of

lossless visualisation methods are presented in chapter 5, in which we investigate methods

intended to improve the interpretability of heatmaps by reordering the rows and columns.

In the next chapter, we introduce methods for compressing the dimensionality of a many-

criterion population so that it can be visualised by conventional means, while seeking to

minimise the loss of dominance information.
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2.6.3. Interactive Visualisation

A common feature of the MCDM literature is the use of interactive visualisations to en-

hance decision support. Interactive visualisation is an important tool for making decisions

based on multiple criteria because it provides an opportunity for a decision maker to

experiment with different putative solutions and see the effect almost immediately.

Interactive visualisation has been used in a range of areas. As mentioned earlier, spatial

MCDM problems, such as town planning problems like a site selection task, have a range

of stakeholders. Providing an interactive visualisation allows such stakeholders, some of

whom may not have specific domain knowledge about the entire problem, or may only

be interested in the criteria that affect them (rather than the full set of criteria) to make

their preferences known. These preferences can then be taken into account by the person

with overall responsiblity for selecting a site. Examples in which interaction has been used

to collect information on group preferences are Jelokhani-Niaraki and Malczewski [2012];

Rinner [2003].

One of the early interactive visualisation tools for populations of solutions to multi-

objective populations, the Pareto race system, was presented by Korhonen and Wallenius

[1988]. Specifically, they facilitate the exploration of the Pareto front of a linear program-

ming problem by allowing the decision maker to “drive across” the feasible search space.

Exploration is controlled by using the keyboard to alter the direction of travel and speed,

and goals can be fixed or relaxed depending on the decision maker’s preferences as the

space is explored. The current solution is shown with a set of bars, one for each criterion.

Korhonen and Yu [1997] illustrated a similar method for quadratic optimisation problems.

A nonlinear alternative to the Pareto race, the Pareto Navigator, was presented by Eske-

linen et al. [2010]. The decision maker begins by selecting a starting point from a small

number of generated Pareto optimal solutions and setting preferences. The preferences

are used to specify a direction, and the navigator begins to generate more Pareto optimal

solutions according to that direction. As the search proceeds, the decision maker has the

opportunity to alter the direction of travel by modifying their preferences, and the search

continues until the navigator has generated a suitable solution. Tarkkanen et al. [2009]

observes that much could be gained by combining interactive visualisation in MCDM with

the field of visual analytics, using the Pareto Navigator as an example of a multi-criterion

visualisation.

Another well known example of an interactive visualisation is the Interactive Decision

Map (IDM) [Lotov et al., 2004]. The IDM visualisation is capable of illustrating a trade-

off between three criteria. Two of the criteria are shown on the coordinate axes, while

the third is shown with areas of colour. A decision maker can also investigate a problem

described by four or more criteria; any criteria not shown as part of the visualisation are
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represented by scroll bars that a user can adjust to their desired operating point. By

allowing a decision maker to investigate different combinations of criterion values in this

way better enables them to make an informed decision by illustrating trade-off that is

possible for a given problem. An example in which IDM was used to profile a multi-

criterion population is Lotov [2002], where visualisation was used to support the choice of

water quality improvement strategies according to five critera.

The importance of these interactive visualisation methods should not detract from the use-

fulness of static visualisation methods. The next chapter introduces a running example

of comparing the performance of universities according to multiple criteria, and such data

is commonly published in outlets such as newspapers (indeed, the example we employ is

published annually in the Times newspaper). Such paper-based presentation will always

be static. Some of the classical visualisation techinques we have described, such as par-

allel coordinate plots, benefit from interaction; by allowing the decision maker to explore

different orderings of criteria, the inherent cluttered visualisation can be made clearer to

a degree. The static techniques discussed above (e.g., scatter plots, dimension reduction

methods and heatmaps) can generally be adapted for use in an interactive environment,

although we note that such interactive versions of some methods can be less useful than

others. Vetschera et al. [2010] conducted a comparative study in which the performance

of interactive heatmaps and parallel coordinate plots was evaluated in a portfolio selection

task. The parallel coordinate plots were observed to offer significantly better usability in

the decision making process. Interactive methods, such as the Pareto race and Pareto nav-

igator, will have limited usefulness in a static environment, since they require interaction

with the decision maker in order to specify preference information.

2.7. Summary

This chapter has provided an introduction into the background material on which the

subsequent work is based. We have given a basic introduction to evolutionary multi- and

many-objective optimisation, as well as discussing methods for ranking many-criterion

populations and comparing such orderings. We have also discussed the problems of visu-

alising many-objective populations: novel methods for resolving the issues highlighted are

presented in the next two chapters.
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3.1. Introduction

Populations of individuals frequently arise in a variety of fields and, as described in the

previous two chapters, it is often necessary to identify which individuals have the highest

quality. One way in which this can be done is to construct a league table [Goldstein and

Spiegelhalter, 1996; Usher and Savino, 2006] so that the individuals are arranged in an

ordered list. A common example is ranking the sports teams in a league according to their

match outcomes. A league consists of a set of teams, which can be considered a population

of individuals (in which each team is an individual), each of which plays against the other

teams in the league. It is then common to construct a league table by assigning points to

a team based on the number of times they defeat their opponents. The aim is to maximise

the number of points, which defines a criterion by which the individuals can be ranked.

Such a criterion is often called a key performance indicator (KPI) [e.g., Franceschini et al.,

2007]. A KPI describes an individual’s performance with respect to a single measurable

criterion. Constructing a league table from a single KPI is a simple matter of scoring all

of the individuals by the KPI and then ranking them based on their score. Clearly, the

individual with the best score is assigned rank 1; the individual with the second best score

is assigned rank 2, and so on until the worst individual receives rank N (assuming no

ties). League tables are also commonly used to compare the performance of schools and

universities [e.g., Usher and Savino, 2006; O’Leary, 2009]. Additionally, they are widely

used in industry, for example evaluating the performance of the components of a technical

infrastructure, such as wireless access points in a mobile telephone network or district

metered areas in a water distribution network [McClymont et al., 2011]. This enables the

identification of poorly performing nodes and maintenance schedules are devised in which

the nodes are given preferential attention.

It is often the case, however, that a population of individuals are described by more

than one KPI. In such a population, KPIs can be in conflict with one another. For

example, in the bi-criterion case, conflict arises where individuals with a good score on

Some of the material in this chapter has been published as Walker et al. [2010a,b]; McClymont et al.
[2011]; Walker et al. [2012b,a].
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one criterion have a poor score on another, while the individuals with a good score on

the second criterion have a poor score on the first, and there is no individual with good

performance on both. It is therefore necessary to choose how to combine information

from all KPIs in order to arrive at an informative league table. A popular method for

producing a league table from multiple KPIs is to aggregate them by taking a weighted

sum [Benito and Romera, 2011]. Whilst aggregating criteria in this fashion is mechanically

straightforward, selecting the weights for criteria that may well be on different scales is

not. One KPI could be a proportion, such as the proportion of students at a school or

university to achieve a good qualification, while another could be a monetary cost, such as

the amount spent on each student in pounds. To provide a useful overview of the school

or university it is necessary to combine these two KPIs in a meaningful way. This means

that the KPIs must be rescaled so that they are on the same scale, and once this is done it

is not clear how the weights should be applied. Identifying methods for which the need for

a priori weighting of criteria can be avoided is an issue that this work addresses. League

tables and their construction are described in the next section, along with a discussion of

advantages and disadvantages of their use.

Fitness assignment methods within multi-objective evolutionary algorithms identify which

of the current population of solutions are best suited to being parent solutions in the next

generation. The process by which this is often done is inherently similar to the construction

of a league table: the solutions can be ranked according to their objective values, which are

criteria like the KPIs discussed previously, so that the best ones are selected [e.g., Deb,

2001]. Given the similarity between populations of solutions to optimisation problems

and the more general multi-criterion populations discussed in this thesis, a promising

line of investigation is to consider the mechanisms from fitness assignment methods in

multi-objective evolutionary algorithms for evaluating the quality of individuals. Early

multi-objective algorithms aggregated objectives to cast a multi-objective problem as a

single-objective problem [e.g., Das and Dennis, 1997; Deb, 2001; Coello Coello et al., 2007],

so that conventional fitness assignment methods could be applied, however they were later

replaced by dominance-based methods that allow for the comparison of solutions with

respect to individual objectives, without the need for weighting or aggregation [Deb, 2001;

Coello Coello et al., 2007]. As discussed in Chapter 2, dominance is a fine candidate for

comparing multi-objective solutions comprising two or three objectives, but it is less able

to discriminate between solutions with four or more objectives (many-objective solutions).

As such, a considerable amount of research [e.g., Bentley and Wakefield, 1998; Drechsler

et al., 2001; di Pierro et al., 2007; Corne and Knowles, 2007; Li et al., 2010a; Garza-Fabre

et al., 2010] is currently aimed at identifying other candidates for solution comparison in

a search space formed by a large number of objectives, some of which are employed later

in this chapter.

In this chapter we apply methods used to compare solutions in multi-objective evolutionary

algorithms to the problem of constructing league tables in the more general context of
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many-criterion populations. We investigate various ranking methods. Some of them have

been used in the selection operators in multi- and many-objective evolutionary algorithms.

One, the power index, has been used for ranking individuals according to a single criterion

and we extend it to the multi-objective domain for the first time. Another problem

addressed in this chapter is the presentation of a league table. A league table is usually

presented as a table of numeric values or a ranked list, but when confronted with several

criteria it is often more useful for a decision maker to be presented with a visualisation

of the data which is capable of illustrating the members of the population with respect

to their performance measures. The various multi-criterion ranking methods are used

to visualise a many-criterion population as a graph, and we show that a more useful

presentation of the population is achievable by using multiple ranking methods in concert

with each other.

This chapter is structured as follows. Firstly, we discuss many-criterion populations in

the context of league table construction and introduce the GUG09 population, which will

be a running example throughout this thesis. Then, we discuss various multi- and many-

criterion ranking methods and demonstrate their application to the ranking and visualisa-

tion of a range of many-criterion populations. We then introduce a novel metric, the dom-

inance distance, for computing the distance between individuals in terms of dominance.

We project individuals into a low-dimensional space, aiming to preserve their dominance

distances, using a well known technique for dimension reduction, multi-dimensional scal-

ing (MDS). We retain the notation for a many-criterion population introduced previously:

Y = {yi}Ni=1, Y is a population of N individuals yi, each of which is a M -dimensional

vector of scores for the M criteria, and we assume that low scores correspond to better

performance.

3.2. Measuring Quality with League Tables

League tables are widely used to discriminate between the quality of universities as mea-

sured by a set of performance indicators, converting the set of scores for a university into

a single value which can be easily ranked [Goldstein and Spiegelhalter, 1996; Usher and

Savino, 2006]. The purpose of their construction is to facilitate the understanding of uni-

versities based on a set of available data. The data used to construct league tables measure

various aspects deemed pertinent to determining university quality, such as indicators of

teaching and research quality. The collection of this data is one of several contentious issues

surrounding the use of league tables. Whilst it is desirable for information to come from

independent third parties, some data inevitably comes from the universities themselves.

In some cases, institutions have objected to the very notion of such a ranking exercise

and have chosen not to participate [Salmi and Saroyan, 2006; Usher and Savino, 2006].

They are important to a university for a range of purposes, such as goal setting, as well as

being used by students in the selection of a university at which to study, governments for
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assigning funding and employers in the selection of graduates [Salmi and Saroyan, 2006].

Various different types of league tables have been produced. These include national league

tables, such as the Good University Guide published annually by the Times newspaper

[O’Leary, 2009], international league tables, such as the Times Higher Education Sup-

plement World Rankings [Baty, 2010], as well as those that measure courses rather than

whole institutions [Usher and Savino, 2006].

Clearly, a league table is strongly dependent on the type of KPIs used to construct it,

as well as the way in which the data is manipulated prior to construction. A common

approach to constructing league tables is to combine the individual scores of a university

with an aggregation method, often based on summing the individual indicators [Salmi and

Saroyan, 2006; Usher and Savino, 2006; Benito and Romera, 2011]. Often, the indicators

are on different scales, and indeed, measured in different units, so to aggregate them in

a meaningful way they must first be normalised. Two ways in which this is done are to

rescale or to standardise the data. Rescaling is done by adjusting the values based on the

maximum value present for a given criterion, for example:

y′im =
yim

maxj yjm
, (3.1)

while a method of standardising used in league table construction [e.g., Benito and Romera,

2011] computes z-scores based on the mean and standard deviation of a criterion across

all universities, ȳm and σm:

y′im =
yim − ȳm

σm
. (3.2)

The scores can then be aggregated, commonly done by taking a weighted sum [Benito and

Romera, 2011; Ding and Qiu, 2011]:

ŷi =
M∑
m=1

γmy
′
im (3.3)

where γm is the weight of the mth criterion.

A difficulty with such an approach is that it is difficult to know how to apply weights

to the criteria so that the appropriate amount of weight is assigned to each normalised

criterion. The selection of weights is either subjective or objective [Ding and Qiu, 2011]:

subjective weight selection is done by canvassing expert opinion, whereas objective weight

selection methods use techniques such as least squares regression to estimate appropriate

weights to suit the data.

Despite these difficulties, and the reluctance in some quarters to accept league tables as a

measure of institution quality [Salmi and Saroyan, 2006], league tables are becoming more

widely used. As a result, techniques are being investigated for constructing more reliable

league tables [Usher and Savino, 2006]. These include placing a university in a region of

a population to provide an indication of its quality without assigning an exact rank that
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would be subject to noise based on the data collection and manipulation methods involved.

An extension of this is work by Benito and Romera [2011] in which the robustness of a

institution’s rank is assessed to provide a more statistically sound illustration of quality.

Usher and Savino [2006] describe a league table in which the quality of German universities

is conveyed by presenting all of the original criterion values. They note that, whilst this

method of presentation is unsuitable for printed media, it is well suited for presentation as

an interactive tool as part of a website. Later in this chapter we present methods which

can be used to convey university quality without requiring the construction of a league

table, but first we introduce the principal example dataset used in this chapter, and indeed

throughout the thesis.

3.2.1. The Times Good University Guide 2009

The Good University Guide is an annual league table published by the Times, ranking UK

universities. The Times Good University Guide 2009 (GUG09) [O’Leary, 2009] describes

the performance of 113 UK universities in 2008. Each university entry is represented by

eight KPIs. To produce the GUG09 league table, the values for a university are aggregated

to produce the GUG score. First, the values are normalised by creating z-scores before

they are aggregated with a weighted sum. Student satisfaction and research quality are

given weight 1.5, while the remaining KPIs are assigned weight 1. Universities can then

be ranked by their GUG score, which is to be maximised. This results in an ordering

of universities which corresponds to popular experience; universities such as Oxford and

Cambridge, which are accepted as being of a very high quality, are ranked highly by GUG

score. The KPIs on which the GUG score is based are as follows:

1. Student satisfaction – quantified by the institution’s score in the National Stu-

dents Survey (NSS); this is an annual survey of graduating students. Some univer-

sities did not return a value for student satisfaction in 2009 and as a result some

individuals have missing data. We present a novel method for imputing these values

later in this chapter.

2. Research quality – based on the institution’s results in the Research Assessment

Exercise (RAE) in 2008. Each university is given a score out of 9 based on the amount

of 4∗ (world-leading), 3∗ (internationally excellent), 2∗ (internationally recognised)

and 1∗ (nationally recognised) research conducted at that university. This score is

a weighted sum, where 4∗ research is weighted highest and 1∗ research receives the

lowest weight.

3. Student-staff ratio – the average number of students to each member of staff with

teaching responsibilities.
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4. Services and facilities spend – average amount spent on facilities for staff and

students, per student; expenditure is averaged over two years, measured in pounds.

5. Entry standards – the average UCAS score achieved, rather than the score required

by the institution as part of a provisional offer, by new students under the age of 21.

6. Completion – the percentage of students projected to complete their studies.

7. Good honours – the percentage of students who achieve either a first class or upper

second degree.

8. Graduate prospects – the percentage of former students employed in graduate

level jobs six months after graduation.

With the exception of student-staff ratio, all KPIs are to be maximised. Throughout this

thesis, for ease of interpretation, we arrange the KPIs so that they are all to be minimised.

The original GUG09 data is shown in Appendix A.

3.3. Visualising and Ordering Many-criterion Populations

In order to visualise and order a many-criterion population Y it can be helpful to regard

individuals yi ∈ Y as the nodes in a weighted directed graph [Berge, 1962; Knuth, 2011],

with edges describing dominance relations between individuals. For example, the presence

of a directed edge from yi to yj implies that yi ≺ yj . Representing a population in this way

is a useful method of revealing the structure. For example, by examining how the nodes

are connected we can discover which are the important individuals in the population. We

can discover which are the most dominant, which are the most dominated, and whether the

graph is strongly connected (if this is not the case then that might indicate disconnected

regions in the population, such as those shown on the true Pareto front of the test problem

DTLZ6 in Figure 2.4(f)). In general, the graph G = (Y, E,W) is defined by the set of

nodes Y, the set of directed edges eij ∈ E and a set of non-negative weights corresponding

to the edges, which we write as an adjacency matrix W; Wij > 0 iff there exists an edge

eij from yi to yj , and Wij = 0 otherwise.

A disadvantage with the dominance-based graph described above is that when a pop-

ulation comprises a large number of criteria the individuals will tend to be mutually

non-dominating. Thus the nodes will not be connected and no structure will be revealed.

As an alternative, suppose that an individual yi is better than yj on some proportion of
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Figure 3.1.: The adjacency matrix W of the GUG09 population. Universities are in al-
phabetical order and the colour of Wij indicates the proportion of criteria for
which university i (x-axis) is better than university j (y-axis).

the M criteria. We use the proportion to weight the edges between them, Wij and Wji:

Wij =
M∑
m=1

I(yim < yjm) +
1

2

M∑
m=1

I(yim = yjm) (3.4)

in which I(p) is the indicator function, returning 1 if the proposition p is true and 0

otherwise. The second term accounts for the possibility of ties, which although unlikely to

arise in an evolutionary optimisation scenario can occur in league table data. For example,

two universities might have the same entry standards. This may be interpreted in terms

of a tournament between the individuals, in which a criterion is selected at random and

the dominating individual on that criterion wins; the weights are the probabilities that

each individual will win such a tournament. Clearly, if yi wholly dominates yj , that is

yim < yjm for all m, then yi will win every tournament with probability 1. This generalises

the idea of the favour relation proposed by Drechsler et al. [2001] in which the winning

individual in a tournament between two individuals is the one which is better on more

criteria. We define Wii = 0 for all i, so that Wij + Wji = 1 for all i 6= j. Moon and

Pullman [1970] call matrices with this property generalised tournament matrices (GTMs)

and they have been used to rank single-criterion populations [Keener, 1993; Slutzki and

Volij, 2005]. Figure 3.1 shows the adjacency matrix of the GUG09 population.

Whilst it is not necessary to weight the criteria for the calculation of probability of domi-

nance, if importance weights are provided, as is the case for the GUG09 population, they
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can be incorporated into Equation 3.4 as follows:

Wij =
M∑
m=1

γmI(yim < yjm) +
1

2

M∑
m=1

γmI(yim = yjm) (3.5)

Although weights are available for the GUG09 population we treat all M criteria equally

throughout this thesis, unless otherwise stated.

3.3.1. Leagues

Moon and Pullman [1970] show that a GTM may be partitioned into leagues;1 any indi-

vidual in one league will certainly beat (or dominate) any individual in an inferior league.

A GTM may be permuted into a normal form so that blocks containing all ones lie in the

top right hand corner. They define a decomposable matrix W, one that can be permuted

by a permutation Q so that

QTWQ =

[
A C

0 B

]
(3.6)

where A and B are square matrices. Then W is a GTM if there exists a permutation Q

such that

QTWQ =


W1 1 . . . 1

0 W2
...

...
. . . 1

0 . . . 0 Wl

 (3.7)

where each Wi is a separate league, and every individual in Wi will beat every individual

in Wj , for j > i. As Moon and Pullman show, a GTM may be put into normal form by

permuting the rows and columns so that the row sums
∑

jWij are in decreasing order,

after which the blocks can be read off. The GUG09 data comprises a single league; that

is, no university (or group of universities) dominates every other university.

Partitioning the population into leagues does, however, not provide a total ordering of

individuals. An individual in one league can be said to be better than one in a lower

league but it does not differentiate between members of the same league. Indeed, it

appears that it is very uncommon to find more than a single league in a multi- or many-

criterion population. All of the examples in this thesis comprise a single league and we

have not found any multi-criterion data comprising more than one league.

1Earlier in this chapter the term “league” was used to refer to a population of sports teams. From now
on, the term refers to its technical meaning, as defined in this section.
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Algorithm 2 Pareto sorting

Require: The population of individuals Y.
1: s← 1
2: repeat
3: Ps ← nondom(Y) Find the current non-dominated set; assign to shell s
4: Y ← Y \ Ps Temporarily discard the individuals in the current non-dominated set
5: s← s+ 1
6: until Y = ∅
7: return {Ps}

3.3.2. Pareto Shells

A finer gradation of individuals within a league is provided by sorting individuals into

Pareto shells of mutually non-dominating individuals, using the non-dominated sorting

procedure that is used in some multi-objective evolutionary algorithms [Goldberg, 1989;

Srinivas and Deb, 1994]. The common approach of using an evolutionary algorithm re-

quires the incorporation of dominance into a selection operator, and Pareto sorting has

been used in prevalent MOEAs such as NSGA [Srinivas and Deb, 1994] and its successor,

NSGA-II [Deb et al., 2000], where the first step of the selection operator is to sort the

search population into Pareto shells.

The notion of Pareto sorting is relatively simple, and results in each member of the popu-

lation being assigned to a Pareto shell ; the better the Pareto shell in which an individual

resides, the better its quality as determined with dominance. The procedure by which

individuals are assigned to shells is described in Algorithm 2. Those individuals in the

population that are not dominated by any member of Y are assigned shell P1 (Line 3); for

convenience of notation we define a function nondom(Y) which returns the non-dominated

individuals in the set Y. The individuals in P1 are then removed from the population

(Line 4) and a new subset of individuals in Y become non-dominated. These individuals

are assigned to P2 and are themselves discarded. This procedure continues until the entire

population has been assigned to a shell. Formally, we define P1, the set of Pareto optimal

individuals, as:

P1 = {yi ∈ Y | ¬∃yj (yj ∈ Y ∧ yj ≺ yi)} (3.8)

and the sth Pareto shell, where s > 1, is defined as:

Ps = {yi ∈ Y′s | ¬∃yj (yj ∈ Y′s ∧ yj ≺ yi)} (3.9)

where Y′s = Y \⋃s−1
n=1 Pn.

Figure 3.2 illustrates the result of using Pareto sorting to order a small population com-

prised of two criteria. We interpret such an ordering as a crude league table of the

individuals in the population.
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y2

y1

Shell 1

Shell 2
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Shell 4

Figure 3.2.: A two-criterion population comprising 10 individuals which have been sorted
into Pareto shells. The Pareto shell is shown by the colour of the individual:
blue (P1); green (P2); orange (P3); and red (P4). Both criteria are to be
minimised. Each shell Pn comprises the non-dominated individuals when
shells P1, . . . ,Pn−1 are discarded.

Constructing a league table in this fashion provides a means of imputing missing values

in the data. To highlight a situation in which such imputation is usefully employed we

return to the GUG09 population, in which some of the universities did not return a score

for the student satisfaction KPI. If the value yim, the mth KPI for the ith individual, is

missing and the criteria are to be minimised the score can be imputed with the following

procedure:

1. Assign a very poor value to yim, for example yim ← maxi yim.

2. Sort the population into Pareto shells.

3. If yi ∈ Pj , then assign yim ← maxyk∈Pj ykm.

This conservative imputation uses the worst value of any individual in the same Pareto

shell as the incomplete individual for the missing criterion as a surrogate value. Thus, an

individual with missing values cannot be promoted to a better shell than justified by the

data which is present. We note that the presence of multiple missing criterion values in a

single individual does not affect the process of imputation as described above, since under

dominance criteria are independent.

Figure 3.3 shows the GUG09 population visualised with a technique based on a Pareto

sorting of the universities it describes. The visualisation arranges the individuals in the
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Figure 3.3.: A league table of the GUG09 data produced and visualised using Pareto sort-
ing.

graph according the Pareto shell to which they belong, such that the progression of quality

from those individuals that are Pareto optimal in P1 to those in the poorest Pareto shell

is visible. The universities in P1 are those which are dominated by no other university

according to the eight KPIs on which the GUG09 league table is based. The universities

in P2 are dominated by at least one of the universities in P1, and so on for the remainder
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3. Understanding Many-criterion League Table Data

of the population. Universities within a Pareto shell are mutually non-dominating and are

therefore incomparable. In this case, the visualisation comprises six Pareto shells. The

alignment of the shells from left to right is an aesthetic choice and could justifiably be

different, for example aligning the shells in a top-down fashion. The vertical position of

the node was determined by the layout algorithm employed by the GraphViz package used

to construct the graph [GraphViz, 2012].

In order to preserve the clarity of the visualisation, only those edges between nodes in

adjacent Pareto shells are shown; thus, an individual in P1 could dominate individuals in

P3 but the relationship would be omitted. For example, Oxford is in P1 and edges are

shown between it and the 17 universities it dominates in P2. However, it also dominates

Liverpool in P3, Oxford Brookes in P4, Salford in P5 and Thames Valley in P6; none of

these relationships are shown in the visualisation. Were the edges that represent these

relationships to be included they would be overlaid and difficult to follow, which would

lessen the information provided by the visualisation.

Visualising the GUG09 data in this fashion allows us to make interesting observations

about its structure. We can, for example, determine which are the most dominant indi-

viduals in a Pareto shell by examining the number of individuals in the next shell which

an individual dominates. Individuals such as Oxford in P1 and Leeds in P4 are clearly

highly dominant and can be said to define the next Pareto shell because of the number

of individuals in the next shell that they dominate. Many of the individuals, for example

Exeter in P2 and Plymouth in P5, would be promoted to the immediately superior Pareto

shell were they not dominated by Oxford and Leeds, respectively. Unfortunately, whilst

it is possible to observe some information about the dominant individuals, if individuals

within the same shell do not dominate individuals in the next shell they are indistinguish-

able. It is not possible, for example to infer whether Imperial or Cambridge in P1 is the

superior individual based on this visualisation. Additionally, as mentioned above, it is

not possible to take a more global view on who a university dominates because the edges

representing domination beyond the immediately inferior Pareto shell are omitted.

As discussed previously, a problem with this proposed visualisation is that Pareto sort-

ing is not capable of constructing a useful league table because dominance is unable to

discriminate between individuals in a high-dimensional space. The proportion of space in

which resident individuals are mutually non-dominating increases as follows [Farina and

Amato, 2003; Fieldsend, 2003]:

1− 1

2M−1
. (3.10)

Given this, the proportion of the space in which individuals are mutually non-dominating

increases rapidly with M , and the individuals become generally incomparable. This is a

problem which occurs when using multi-objective evolutionary algorithms to solve many-

objective problems and we discuss methods that have been proposed to resolve this issue

shortly.
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Figure 3.4.: Expected number of Pareto shells for uniform random populations of given
individual and criterion size. The points in the graph which correspond to the
population size of the GUG09 and Wireless Access Point (AP) populations
used later in this chapter are marked.

Figure 3.4 illustrates the number of Pareto shells which can be expected for various pop-

ulation sizes of given numbers of criteria. The populations were produced by sampling

uniform random values and sorting them into Pareto shells so that the number of shells

could be recorded; the procedure was repeated for 1000 random populations and the figure

shows the mean of these repetitions. As can be seen, populations with relatively small

numbers of criteria are sorted into a large number of shells. Whilst the number of shells is

shown to increase with population size, an 8-criterion population of 100 individuals does

not sort into more than 3 shells, which will result in a league table in which it is difficult to

discriminate between large numbers of individuals. Interestingly, this is approximately the

population size and dimensionality of the GUG09 population which, as shown in Figure

3.3, comprises 6 shells. Pareto sorting thus reveals structure in the GUG09 population

that is less prevalent in the 1000 uniform random populations investigated here. We con-

jecture that this is because of a relationship between the criteria in the GUG09 population

that is not present in the uniform random populations, where all criteria are independent.

In order to contextualise these results, we mark the GUG09 population in terms of the

number of individuals. We also mark a population of 165 individuals representing wire-

less access points (APs) in a mobile telephone network which we introduce later in this

chapter. Figure 3.5 shows a similar set of results for a similar experiment, this time using

populations composed of Gaussian random noise instead of uniform random noise.

Having illustrated the difficulty associated with using dominance for comparison in many-

criterion populations, we present two methods by which the structural information revealed

by Pareto sorting can be increased. The first considers the amount of “rank credit”

required to promote an individual to the next Pareto shell, while the second examines

how much rank credit an individual can afford to lose without being demoted to the next
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Figure 3.5.: Expected number of Pareto shells for Gaussian random populations of given
individual and criterion size.

Pareto shell.

Rank Stability

As we have demonstrated above it is possible to reveal structural information about a

population using Pareto sorting. However, since dominance is less discriminative in a high-

dimensional space, Pareto sorting can be uninformative for a many-criterion population;

the GUG09 population, for example, sorts into six Pareto shells, and we state that an

individual in shell Ps is superior to an individual in shell Pt, where s < t. It is not,

however, possible using Pareto sorting alone to reveal information about the structure of

the population within a Pareto shell. In this section, we investigate methods for using the

robustness of an individual’s position in a Pareto shell to reveal additional structure in

the population based on the Pareto sorting.

One way in which a set of Pareto shells can be used to reveal additional structure within a

population is to consider the stability of an individual’s place in its assigned Pareto shell.

To do this, we consider an approach whereby we evaluate how much of an improvement

is necessary in order that an individual be “promoted” to the immediately superior shell.

Converting the population to rank space, we imagine an allocation of extra “rank credit”

that can be assigned to an individual. We consider that an individual requiring a small

amount of additional rank to be promoted to the next shell is likely to be of higher quality

than one requiring a large amount of credit. An alternative formulation, which we discuss

later in this section, might consider loss of rank and evaluate individual quality in terms

of how much rank can an individual lose before it becomes dominated by a member of its

own rank and is therefore “demoted” to the immediately inferior shell.
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3. Understanding Many-criterion League Table Data

To begin with, we calculate the amount of rank credit required to promote an individual.

Consider the example of Strathclyde University, residing in shell 2 and dominated by two

universities in shell 1 (Oxford and UCL) as shown by Figure 3.3. When converted to rank

coordinates, Strathclyde, Oxford and UCL are described by the rank vectors for the eight

criteria:

Strathclyde 32 51 51.5 32 29 64 16 14.5

Oxford 1 3 4 2 2 1 1 4

UCL 32 6.5 1 6 8 13 13 5.5

Clearly, Strathclyde is dominated by both Oxford and UCL and to be promoted to the

next Pareto shell it requires enough additional rank credit so that it is mutually non-

dominating with respect to both universities. By inspection we can see that Strathclyde

and Oxford have the smallest rank difference on criterion 8; Oxford has a rank of 4 while

Strathclyde has a rank of 14.5, so they are 10.5 “ranks apart”. Thus, if we improve

Strathclyde’s rank on that criterion by 11.5 it will be superior Oxford and overall the two

universities will be mutually non-dominating. Similarly, we can see that Strathclyde and

UCL are tied on the first criterion, while UCL is superior on the other 7. An improvement

of 1 rank position on the first criterion for Strathclyde will cause those universities to

become mutually non-dominating too. The rank credit required to promote Strathclyde

to the next shell is therefore the sum of these two differences, 12.5. Had both Oxford

and UCL been closest on the same criterion, the larger of the two differences would have

been sufficient to promote Strathclyde. We note that this formulation uses the notion of

strong dominance, however it would be possible for other forms of dominance, such as

weak dominance or ε-dominance to be used instead, however since we have formulated the

Pareto shells in terms of strong dominance we do not discuss these alternatives further.

Algorithm 3 describes a procedure of determining the amount of credit required to promote

each individual in the population to the next Pareto shell, except, of course, those in shell

1 who cannot be promoted beyond their current position in the best shell.2 To outline the

process, an upper limit of the amount of credit needed to promote an individual to the

immediately superior shell is calculated. This upper limit is then refined to see if smaller

amounts of credit can be distributed amongst the individual’s criteria in such a way that

it still promoted. The score of each individual is the smallest amount of rank credit that

causes it to be promoted.

The procedure begins by converting the population to rank coordinates (Line 1). Having

done this, each Pareto shell can be considered in turn, obviously omitting P1. For a given

member of the current shell, ri ∈ Ps, an upper limit of the credit needed to promote an

individual is computed with the upper limit function (Line 3). The upper limit is the

2An alternative strategy might consider how much credit is needed for a member of P1 to dominate the
other members of P1, creating a new shell “P0”.
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Algorithm 3 Rank Promotion

Require: Y (the population of individuals); {P} (the set of Pareto shells into which Y
sorts); s (the current Pareto shell).

1: R := rank coords(Y) Convert to rank coordinates
2: for ri in Ps do
3: ui := upper limit(R, i,Ps−1) Maximum credit needed to promote individual ri
4: ci := ui Initialise current credit to upper limit
5: for d := buic − 1, . . . , 1 do
6: f := false

7: for pt in partitions(d,M) do
8: if ¬∃j (rj ∈ Ps−1 ∧ rj ≺ (ri − pt)) then
9: ci := d Update the credit with the current partition size

10: f := true Make sure that the next value of d is searched
11: break The smallest credit has been found - move onto the next individual
12: end if
13: end for
14: if f = false then
15: break No partition found for this d - stop the search
16: end if
17: end for
18: end for
19: return The credit ci required to promote each individual ri in Ps.

sum of the largest amounts by which yi is dominated by any member of the superior Ps−1
on each of the m criteria.

We begin the calculation of the upper limit ui by first defining a matrix in which each

column represents a criterion and each row represents a dominating individual in Ps−1,
Λi, where all entries are 0. Then, for each dominating individual yj , we find the smallest

difference between criteria for a criterion where yj dominates yi:

n = argmin
m,rim−rjm>0

|rim − rjm| (3.11)

and set Λijn = |rin − rjn|. The upper limit is then determined by computing the sum of

the maximum difference for each criterion, the maximum value in each column of Λi:

ui =

[∑
m

max
j

∣∣Λijm∣∣+ 1

]
. (3.12)

The remainder of the procedure then assigns rank credit to different criteria in order to

find any better ways of distributing the rank so that the individual is promoted with the

smallest possible additional rank, as it is possible that a smaller amount of credit than ui

can be used to promote an individual. Consider the following 3-criterion individuals:
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m = 1 m = 2 m = 3

r1 8 8 8

r2 1 6 1

r3 3 2 1

If we want to promote r1 we must compute u1. Using the approach outlined above,

u1 = (2 + 1) + (5 + 1); the closest criterion value for r2 is criterion 2 (2 ranks difference)

while the closest value for r3 is criterion 1 (5 ranks different). Hence u1 = 9. By examining

the individuals more closely we can see that having added rank credit of 3 to criterion 2,

in order to dominate r2, we are now only 4 ranks from dominating r3 on that criterion.

Hence, it is possible to promote r1 with rank credit of at most 8.

In order to search for cases where the upper limit is larger than necessary, we generate

m-partitions, where a partition is a M -dimensional vector containing integer values that

sum to d. In a partition pt the value ptm indicates the amount of rank credit that we assign

to the m-th criterion. We examine various partitions to see if they promote an individual

with less credit than is indicated by the upper limit. All partitions are generated for

d = buic−1, . . . , 1, where ui is the upper limit needed to promote yi and the process stops

when no d-partition can promote yi; this is a computationally expensive task because of

the large number of m-partitions for a vector of length M but, for the GUG09 population,

was shown to be more efficient than starting with 1 credit and counting up to ci. We define

the function partitions(d,M) which returns all of the possible d-partitions of length M ,

and as each d-partition is generated (Line 7) a check is made to see if any member of Ps−1
dominates yi with the benefit of the current additional rank credit (Line 8). Note that

ri − pt represents the rank-coordinate version of yi with the benefit of the rank credit

provided by partition pt. If the individual is not promoted the next partition is generated.

Otherwise, if it is possible to promote yi with the current partition, then the current best

rank credit ci is updated accordingly with the current m (Line 9).

Table 3.1 illustrates promotion credit for individuals in two of the Pareto shells (P2 and

P3) in the GUG09 population. The left-hand side of the table shows the credit needed to

promote the individuals in shell P2 to P1 and the right-hand column provides a similar view

of shell P3. This provides interesting information about the structure of these two shells.

For example, we can see that the position of King’s in P2 is quite strong, since it would

require only a small amount of improvement to be promoted to P1 with the Pareto optimal

universities. On the other hand, Glasgow would require a relatively large amount of credit

to be promoted. Two other universities requiring large amounts of credit to be promoted

to P1 are Manchester and Strathclyde. This makes intuitive sense since examination of the

Pareto shell visualisation in Figure 3.2 informs us that these two universities are dominated

by two P1 individuals (Oxford and LSE in the case of Manchester, Oxford and UCL for

Strathclyde) as opposed to the rest of P2, which are dominated by Oxford alone. In

addition to providing an indication of the structure within a shell we can also differentiate
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Shell 2 Shell 3
Rank University Credit Rank University Credit

1 King’s 2.0 3.5 Bath 1.0
3 Bristol 2.5 3.5 East Anglia 1.0
3 Loughborough 2.5 3.5 Birmingham 1.0
3 Leicester 2.5 3.5 Queen’s Belfast 1.0

5.5 St. Andrews 3.0 3.5 Queen Mary 1.0
5.5 Warwick 3.0 3.5 Dundee 1.0
7 Edinburgh 4.0 7 Cardiff 3.5
8 York 4.5 9 Keele 4.0

9.5 Durham 5.0 9 Aston 4.0
9.5 Exeter 5.0 9 Sussex 4.0
11.5 Nottingham 6.0 11 Sheffield 4.5
11.5 Lancaster 6.0 12 Bedfordshire 5.0
13 Southampton 6.5 13.5 Abertay 6.0
14 Aberdeen 8.5 13.5 Newcastle 6.0
15 Manchester 10.5 15 Hull 7.0
16 Strathclyde 11.5 16 Surrey 7.5
17 Glasgow 12.0 17 Kent 9.0

18.5 Royal Holloway 9.5
18.5 Liverpool 9.5
20 Reading 11.0
21 Essex 12.5
22 Bradford 16.5

Table 3.1.: Promotion credit for shells P2 and P3 of the GUG09 population.

between more of the universities. Although some ties remain it is now possible to infer a

more complete ordering of the universities by considering their promotion credit.

An alternative to calculating the amount of extra rank that an individual needs to be

promoted to the next shell is to calculate the amount of rank that they would need to

loose in order to be demoted to the immediately inferior Pareto shell. Calculating demotion

credit is mechanically simpler than calculating promotion credit, and computationally

much faster. As described above, the promotion credit calculation requires the comparison

of each individual in shell Ps with each individual in Ps−1 to see which individuals dominate

it and by how much. To demote an individual, all that is necessary is for the individual

to become dominated by a member of its own shell. This simply involves finding the

difference between an individual and its peers in the shell it resides in, on the criteria that

the peers dominate the individual on. More formally, the demotion credit is the smallest

distance between any of the M criterion values of an individual yi and the corresponding

criterion values of the other members of the same shell:

min
yj∈Ps

min
m
|yim − yjm|. (3.13)
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Consider the following example. The following are the rank coordinate version of Oxford,

Cambridge and UCL3:

Oxford 1 3 4 2 2 1 1 4

Cambridge 88.5 1 6 3 1 2 2 2

UCL 32 6.5 1 6 8 13 13 5.5

Let us assume that we wish to find the amount of rank that Oxford would have to lose

in order to be demoted to shell P2 (ignoring, for the moment, the other members of P1).
For this to happen, Oxford would have to be dominated by at least one of the other two

individuals. Therefore, we simply find the criteria on which Cambridge and UCL are

dominated by Oxford (criteria 1, 3, 4, 6 and 7 in the case of Cambridge, and all criteria

with the exception of criterion 3 for UCL). We then find the sum of differences between

Oxford and the other two individuals on dominating criteria, and the credit required to

demote Oxford is the smallest of these, with 1 added4. In the example here, the difference

between Oxford and Cambridge on dominating criteria is 92.5, while the difference between

Oxford and UCL on dominating criteria is 70. Hence, the demotion credit is based on the

difference between Oxford and UCL, and is 71. Any less credit would mean that Oxford

was still mutually non-dominating with respect to the other two universities.

Table 3.2 illustrates the demotion credit for shells P2 and P3 in the GUG09 population.

As with the promotion results shown in Table 3.1, ranking the individuals within a shell

refines the ordering induced by Pareto sorting. Interestingly, while some individuals occupy

similar positions as they did within the promotion rankings (i.e., Bath at the top of

P3 and Strathclyde at the bottom of P2), some individuals are placed far from their

promotion-based rankings. For example, Newcastle in P3 is in the bottom half of the

promotion ranking but has the second highest rank in the demotion ordering. This is

unsurprising, since the promotion scores are calculated with respect to the individuals in

the immediately superior shell while the demotion scores are concerned with the other

residents of the current shell. Both measures provide interesting information about the

stability of an individual; an ideal individual is one that is easy to promote and difficult to

demote, such as King’s which requires little credit for promotion and is difficult to demote.

Conversely, Strathclyde requires little credit to be demoted and is difficult to promote.

Such information was not available by considering the Pareto sorting alone.

This section has demonstrated the use of Pareto sorting to explore the many-criterion

population on which the GUG09 league table is based. We have shown that visualising

the population in its Pareto shells provides useful information about the structure of the

population and illustrated techniques for evaluating the stability of an individual’s position

3Note that the Cambridge’s rank for the first criterion is based on an imputed value.
4The additional 1 rank is to ensure that adjusting an individual’s ranks does not result in two equivalent

individuals.
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Shell 2 Shell 3
Rank University Credit Rank University Credit

1 Warwick 46.0 1.0 Bath 66.5
2 St Andrews 42.0 2.0 Newcastle 38.5
3 King’s 39.0 3.0 Sheffield 32.5
4 Durham 23.0 4.0 East Anglia 32.0
5 Bristol 19.0 5.0 Birmingham 30.0
6 Leicester 18.0 6.0 Queen’s Belfast 29.0
7 York 16.5 7.0 Reading 27.5
8 Southampton 16.0 8.0 Queen Mary 26.5
9 Aberdeen 14.0 9.0 Sussex 26.0
10 Lancaster 11.0 10.0 Aston 24.0
11 Glasgow 8.0 11.0 Royal Holloway 23.5

12.5 Manchester 7.5 12.0 Dundee 14.5
12.5 Edinburgh 7.5 13.0 Kent 13.5
14.5 Loughborough 6.5 14.0 Cardiff 13.0
14.5 Nottingham 6.5 15.0 Liverpool 11.0
16 Exeter 5.0 16.0 Keele 7.5
17 Strathclyde 3.0 17.0 Surrey 7.0

18.0 Hull 6.5
19.0 Bradford 4.5
20.0 Essex 3.5
21.0 Bedfordshire 3.0
22.0 Abertay 2.0

Table 3.2.: Demotion credit for shells P2 and P3 of the GUG09 population.

in its Pareto shell. In the coming sections we consider alternative ranking methods to

Pareto sorting for exploring the structure of many-criterion populations.

3.3.3. Average Rank

As stated in Chapter 2, the particular scales of the separate criteria are immaterial in

determining whether one individual is better or worse than another on a given criterion,

so it is natural to rank individuals based on each criterion. Average rank, introduced in

Chapter 2, is a method that ranks a population in such a way.

Consider the graph Gm, which describes the mth criterion with an associated adjacency

matrix Wm, a GTM with 0, 0.5 and 1 entries only (where Wm
ij = 1 if and only if yim < yjm;

if yim = yjm then Wm
ij = Wm

ji = 0.5, i 6= j). Then we compute a rank vector ρm for each

criterion m in which the rank rim of an individual i on criterion m is:

rim = N − 1−
∑
j

Wm
ij . (3.14)

High performing individuals are assigned numerically low scores, with 0 the best score,
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Figure 3.6.: The adjacency matrix shown in Figure 3.1 re-ordered according to various
ranking methods. Recall, that red indicates a high probability that individual
i (y-axis) dominates individual j (x-axis)

while the worst individual has a score of N − 1 because it is bettered by all others (with

the exception of itself).

Ranks for separate criteria can then be averaged in order to produce an overall rank for

each individual. The average rank for individual i over all M criteria is:

r̄i =
1

M

M∑
m=1

γmrim (3.15)

where γm is a weight indicating the importance of the mth criterion. Whilst it is possible

to incorporate weights into the average rank, in this work we treat all criteria equally.
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Shell 1

Shell 2

Shell 3

Shell 4

Shell 5

Shell 6Oxford (1)

St Andrews (7)

Warwick (4)

Durham (9)

York (11)

Bristol (10)
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Loughborough (24)

Exeter (17)

Leicester (16)

Nottingham (12)
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Edinburgh (15)
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Napier (71)
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Ulster (52)

B'ham City (60)
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Figure 3.7.: Pareto shell visualisation of the GUG09 population coloured by average rank.
Blue indicates a good rank, while red indicates a poor rank.

Figure 3.6(a) presents the GUG09 adjacency matrix with the universities reordered by

their average rank, while Figure 3.7 shows the Pareto shell visualisation of the individuals

in which the nodes have been coloured by average rank. A university coloured in blue has

a good average rank while a red university has a poor average rank. By observing Figure

3.7 it is clear that the average rank agrees with the partial ordering resulting from Pareto

sorting in this case.

3.3.4. Graphical Population Ranking

As we are modelling the individuals yi ∈ Y as a weighted directed graph, we can avail

ourselves of methods designed for ranking the nodes in a graph.

One method for constructing such an ordering of nodes in a graph based on adjacency

information is the outflow method introduced by van den Brink and Gilles [2009]. Outflow

is the sum of the weights leaving a node; in terms of the adjacency matrix, the outflow

score for the ith individual is defined by:

σouti =
∑
j

Wij . (3.16)

Individual i is ranked at least as highly as node j if and only if σouti ≥ σoutj . It is also noted

that, outflow generalises the out-degree and ranking by the Copeland score [Henriet, 1985;

van den Brink and Gilles, 2009] which assigns a rank to a player in a tournament based

on how many times it beats other players. They also provide axioms which characterise
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outflow ranking:

Anonymity: the labelling of a node does not affect its rank.

Positive responsiveness: the performance of an individual is increased if the weights by

which it dominates another individual increase.

Outflow monotonicity: the pairwise ordering between individuals does not change unless

their outflows change.

Order preservation: the addition of two weighted graphs does not change the order of two

individuals where their order is the same in the two original graphs.

An interesting observation is that when a population comprises multiple criteria, each with

its own adjacency matrix Wm, the outflow rank is equivalent to the average rank. This

is because the overall adjacency matrix is the average of the individual matrices Wm:

W =
1

M

M∑
m=1

Wm. (3.17)

If we denote a vector of ones as 1, the vector of outflows for the population may be written

as:

σout = W1 (3.18)

=
1

M

M∑
m=1

Wm1 (3.19)

= N − 1− 1

M

M∑
m=1

ρm (3.20)

where ρm is the vector of ranks for the mth objective. It is noted by Corne and Knowles

[2007] that these two techniques are also equivalent to another ranking method from multi-

objective optimisation, the winning score [Maneeratana et al., 2006].

The outflow, and by equality average rank, has many attractive features: it is easy to

compute, easy to understand, and, as described previously, is the same method used by

Moon and Pullman [1970] to partition a graph into leagues. Nonetheless it only uses

information about the weights leaving a node and, as van den Brink and Gilles [2009]

mention, this is analagous to ranking countries by their total exports, rather than, for

example, the trade balances which would be the result of ranking by the difference between

outflow and inflow.
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West England (82)
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Canterbury CC (84)
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Figure 3.8.: Pareto shell visualisation of the GUG09 population coloured by average shell;
blue indicates a highly ranked individual, while blue indicates a poorly ranked
individual

3.3.5. Average Shell

The preference order [di Pierro et al., 2007] ranks individuals by how robust they are

as criteria are removed, but as noted above tends not to be very discriminative because

only M levels are available. A related idea is to track which Pareto shell an individual

resides in as criteria are removed. Since with M criteria there are
(
M
k

)
combinations of k

taken from the original M , we average over the ranks of these combinations and denote

the result by S̄k(y). Note that S̄M (y) is just the Pareto shell of the individual using all

criteria whereas, providing that criterion values are all distinct, S̄1(y) is the average rank

of y. An individual may then be assessed by the average shell, weighted by the dimension

of the reduced criterion space:

S̄(y) =
2

M(M + 1)

M∑
k=1

kS̄k(y). (3.21)

3.6(b) presents the adjacency matrix re-ordered by average shell and Figure 3.8 shows a

Pareto shell visualisation for the GUG09 population in which the nodes in the graph are

coloured by average shell. By colouring the individuals in the graph we can see that those

individuals with the best average shell score are in the Pareto optimal shell. That said,

the results are quite similar to those of average rank. Due to its simplicity we prefer to

use average rank.
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3.3.6. Stationary Distribution

It is straightforward to define a random walk on the graph describing the many-criterion

population. Consider a random walker who at each time step jumps from the current

node to one of the node’s neighbours, a node with which the current node shares an edge,

with the probability of transition from the node i to node j of pij = Wij/
∑

kWik. The

transition probabilities are therefore summarised in the matrix

P = D−1W (3.22)

where D is the diagonal matrix of row sums of W which may be recognised as σout, the

vector of outflows (Eq. 3.16) such thatDii = σouti . If pt−1 is the (row) vector describing the

probability of finding the walker at each node at time t−1, then the probability distribution

at t is pt = pt−1P. A graph is strongly connected when, for every two nodes yi and yj

there is a sequence of directed edges connecting yi to yj . This is true for nondecomposable

GTMs, as described by Moon and Pullman [1970] (i.e., GTMs representing a single league).

The Perron-Frobenius theorem [e.g., Horn and Johnson, 1990] implies that the transition

probability matrix of a strongly connected graph has an eigenvalue 1 and unique left

eigenvector π with πi > 0 for all i which defines the stationary probability distribution

of a random walk on G; that is: π = Pπ. The stationary probability of finding a walker

at a node has been used in ranking applications, notably in the PageRank algorithm

[Page et al., 1998] in which frequently visited web pages are ranked highly. For ordering

many-criterion populations, directed edges point away from powerful individuals so that

powerful individuals are expected to be those with a low stationary probability.

The GUG09 adjacency matrix, re-ordered according to the stationary distribution, and

population, in which the nodes are coloured by the stationary distribution, are shown

in Figures 3.6(c) and Figure 3.9, respectively. However, although the broad ordering is

as expected, there are some prominent anomalies. Oxford is ranked at 1, but King’s is

ranked at 2 although it is in P2, because it dominates many universities so that a random

walker arriving at King’s will easily be transported away from it. Conversely, Cambridge

in P1 is ranked at 33. This is due to it not returning a NSS score so that the NSS

value used is the worst value for P1. Cambridge is thus on the ‘edge’ of P1 and does not

dominate many others, which means that a probability mass arriving at Cambridge is not

easily transported away from it, leading to a relatively high probability in the stationary

distribution and consequent poor rank.

3.3.7. Power Index

Earlier in this chapter we showed the equivalence of the average rank and outflow methods.

Recall, that the outflow rank is determined by summing the ranks of the dominated
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Figure 3.9.: Pareto shell visualisation of the GUG09 population coloured by stationary
distribution; blue indicates a highly ranked individual, while blue indicates
a poorly ranked individual. Abertay and Bedfordshire are coloured red and
orange respectively yet are in a relatively high Pareto shell (shell 3); each has
one criterion on which they achieve a good score, making it difficult for other
individuals to dominate them and placing them in a superior Pareto shell than
would be indicated by considering all of their criterion values (the majority of
which are poor). Ranking by stationary distribution does, however, consider
all of the criterion values and the individuals are consequently assigned a low
rank.

individuals for a given member of the population. It is reasonable to consider that if

the dominated teams have themselves dominated strong individuals then that should be

reflected in their dominator’s rank based on the intuition that they might be more difficult

to “beat” using the sports team analogy discussed earlier. The long path method can be

traced back to Wei [1952] and Kendall [1955] and was called the power index by Berge

[1962]. It is a method that ranks the individuals in a population by incorporating a notion

of the quality of individuals that it dominates by considering the individuals that they in

turn dominate, and so on. The power index has been used to rank sports teams [Keener,

1993] based on a GTM describing the outcome of matches between teams. It is defined in

terms of the right eigenvector of W which can be reached by considering the sequence:

ut = Wut−1 (3.23)

for t = 1, 2, . . ., starting with u0 = 1. This means that u1 is the vector of average ranks

or outflows, σout; u2 is the vector that assigns to yi the scores of all other individuals in

proportion to the weight Wij , that is u2ij =
∑

jWiju
1
j . The limit of this procedure is

u = lim
t→∞

ut∑
i u

t
i

. (3.24)
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Figure 3.10.: A league table of the GUG09 data produced and visualised using Pareto sort-
ing; universities are coloured by the power index such that a blue university
is more powerful than a red one.

The limit exists when G is strongly connected, meaning that every node has a relationship

with every other node, and is the eigenvector of W corresponding to the largest eigenvalue;

that is u solves

Wu = λu. (3.25)

The Perron-Frobenius [Horn and Johnson, 1990] theorem assures that W has a unique

positive eigenvector. The population is then ordered by the values of u; if ui is the nth

largest element of u, then yi is assigned rank n.

Figure 3.6(d) shows the adjacency matrix for the GUG09 population ordered by the power
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index and Figure 3.10 shows a second visualisation of the population, first seen in Figure

3.3. The adjacency matrix shown in Figure 3.6(d) is a reordering of the unweighted

GTM, and whilst the power index does not rely on weightings, weighted criteria can

be incorporated into the computation of an individual’s power if they are available by

using the weighted probability of dominance (Equation 3.5). Turning to the graph, the

individuals have this time been coloured by their power index, such that blue indicates

the most powerful and red the least powerful. Additionally, the power index rank of each

university is shown in its node. Note, that the power index ordering does not necessarily

respect the ordering imposed by Pareto sorting, in that a university in shell j, y ∈ Pj ,
may be ranked better than y′ ∈ Pj−1 and vice versa. We observe that this can also occur

with the other ranking methods considered so far in this chapter. Clear examples of this

shown in Figure 3.10 are SOAS in P1 which is ranked at 23 by the power index, together

with Bedfordshire and Abertay, both in P3, but ranked at 77 and 88 respectively. As the

figure shows, this is because they do not dominate any universities in P4. We may infer

that SOAS, Bedfordshire and Abertay are situated on the periphery of their shells because

they do not dominate others. Conversely, those universities that dominate many others

are ranked better, for example, Oxford (1), King’s (9), Sheffield (22) and Leeds (31) all

dominate most of the individuals in the following shell.

Clearly the power index provides a good deal of additional information on the structure

of a many-criterion population. We note however, that like average rank, it does not

differentiate between members of a bi-criterion non-dominated set because in that case

Wij = 1/2 ∀i 6= j and the power index of each member is 1/
√
N . Calculating the entire

collection of eigenvalues and eigenvectors for W can be expensive for a large population.

Fortunately, the power index is the eigenvector corresponding to the principal eigenvalue;

this can be quickly calculated using the iterative power method [e.g., Golub and Van Loan,

1996; Hochbaum, 2006]:

ut+1 =
Wut

‖Wut‖ , (3.26)

where u0 is again an N -dimensional vector of ones. Experimentation showed that N

iterations were sufficient to obtain an equivalent ordering of individuals to that achieved

by calculating the full collection of eigenvectors.

Figure 3.11 shows the degree of correlation between the average rank (and outflow) and

the power index; as can be seen, they are very closely correlated. This is to be expected,

since the power index is a refinement of average rank in which, as the iterative process

described in Equation 3.23 is followed ties between individual’s overall ranks are resolved.
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Figure 3.11.: Power index score versus average rank/outflow score for the GUG09 popu-
lation. High values indicate best performance in both cases.

Illustrations

Figures 3.12 and 3.13 illustrate further applications of the combined Pareto shell power

index visualisation method to visualising many-criterion populations. The first, shown

in Figure 3.12, is an updated version of the GUG09 population that we have been using

throughout this chapter. This version, GUG11, reports on 116 universities on the same

criteria as were described earlier in the chapter for GUG09 but for data collected in 2011.

An interesting difference between the two is that some universities for which scores were

imputed in GUG09 have proper values in GUG11. A notable example of such a university

is Cambridge, for whom a student satisfaction score was available in 2011; Cambridge

now participates in the National Student Survey. As such, power index provides a more

realistic impression of the university, placing it second only to Oxford in the resulting

ranking. An example of an individual with an imputed score in this data is the University

of Buckingham in P1. This is a teaching-only institution, and as such does not have a

score for research quality. It has an extremely high student satisfaction score, which the

other members of P1 do not dominate.

Figure 3.13 is a series of visualisations of the search population of an evolutionary algo-

rithm as it optimises a multi-objective problem. The problem is a 3-objective instance

of DTLZ2 [Deb et al., 2002] which we optimise using a basic multi-objective (µ + λ)–

Evolution Strategy (ES) where both µ and λ are set to 50. The algorithm was run for

100 generations, although only three of the first 10 generations are shown in the visualisa-
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Figure 3.12.: Visualisation of the GUG11 population coloured by power index.
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Figure 3.13.: Pareto shell visualisations of the search population in the (µ+λ)–ES evolving
solutions to the 3-objective instance of DTLZ2. Solutions are sorted into
their Pareto shells and coloured by “ranked” average rank (such that colours
indicate the ranks 1, . . . , N produced by ranking the individuals’ average
rank scores r̄i); a blue solution represents one with a good average rank
while red indicates a poor rank. The value in the node is an identifier for the
solution it represents. Clearly, as the search proceeds and better solutions
are found, the population becomes mutually non-dominating.

tion. At each generation the parent population was copied to produce λ child solutions that

were perturbed with an additive single-point Gaussian mutation of standard deviation one

tenth the feasible range of the decision variables. Selection was based on Pareto sorting of

the combined parent and child populations; if a shell contained more solutions than were

necessary to fill the remainder of the new parent population a subset of the solutions in

that shell were selected at random. The populations in Figure 3.13 are the initial random

parent population, as well as the parent populations for generation 5 and generation 10.

As we have seen in previous examples, some of the individuals have a higher power index

than would be indicated by their Pareto shell. We also find that again the more powerful

solutions are those in the Pareto optimal shell that dominate the most individuals. As the

search progresses beyond 10 generations and the algorithm generates superior solutions
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3. Understanding Many-criterion League Table Data

the population becomes mutually non-dominating. If the child population also exclusively

comprises non-dominated solutions then the selection pressure provided by the selection

operator is reduced to that of uniform random selection. At this point, the visualisation

provides no extra information than would be available from simply inspecting the power

index ranking of the solutions.

This section has presented various techniques for ranking a many-criterion population, as

well as showing how one of them, Pareto sorting, can be combined with some of the other

methods to provide an intuitive graph-based visualisation of the individuals in such a

population. Section 3.2 provided a discussion of techniques for constructing league tables,

as is often done when the individuals in a many-criterion population must be compared,

and the visualisation technique that we have been demonstrating was developed with the

aim of addressing some of the problems with aggregating criteria to construct a league

table. All of the ranking methods have attractive features, however in general we prefer

average rank and the power index. The power index provides a method of considering a

multi- or many-criterion population using dominance (or the probability of dominance) and

as such is a suitable candidate for exploring and visualising the structure of a population

in terms of its individuals’ ranks. That said, average rank provides the basis for the

power index and was shown to be well correlated in the examples presented above. It

also has a significant advantage in that it is simple for non-experts to understand. For

this reason, we rely on average rank later in this thesis when occasions arise where it

is necessary to rank a population. The visualisation method we have proposed is not,

however, a league table. As Usher and Savino [2006] observe, a league table is a total

ordering of individuals and although the power index usually produces a total ordering,

the Pareto sorting on which the layout of the graph is based does not typically do this

in the multi- or many-criterion case.5 Given that we are now considering methods that

visualise the performance of many-criterion individuals in lieu of creating a league table,

in the next section we consider methods for illuminating dominance relationships using

standard techniques for visualising high-dimensional data.

3.4. Visualisation with the Dominance Distance

In the previous section we demonstrated a method for illustrating the relative quality of

many-criterion individuals by considering their rank, providing a useful way of exploring

the structure of a many-criterion populations and the relative quality of its individuals

without taking the conventional step of constructing a league table. In this section we

present another method for visualising the individuals in a population based on their

dominance relationships. As mentioned previously, a common method for visualising high-

dimensional data is to project the data into a low-dimensional space. We have already

5Pareto sorting of a single-criterion population places each non-tied individual in its own Pareto shell.
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3. Understanding Many-criterion League Table Data

discussed some of the common methods for doing this in the context of multi-objective

populations, namely Principal Component Analysis (PCA) [Jolliffe, 2002], Self Organising

Maps [Kohonen, 1995; Obayashi, 2002]. Generative Topographic Mapping [Bishop et al.,

1998; Fieldsend and Everson, 2005] and Neuroscale [D. Lowe and M. E. Tipping, 1996;

Fieldsend and Everson, 2005].

Metric information is a common part of these projection processes. SOMs, for example,

use distance information for clustering reference vectors. Neuroscale tries to preserve the

pairwise distances between individuals in the original, high-dimensional, space and the

projection space. A common choice of metric is Euclidean distance between objective

vectors, however this discards information about the dominance relations between the

individuals. These relations provide important information about the structure of a multi-

criterion population and it would be useful to capture this structure in a visualisation of

the population. It is not, however, clear that the use of a metric in a space defined by

criteria that are measured on different scales is sensible. To this end, in this section we

investigate a metric that evaluates the distances between many-criterion individuals based

on dominance. We call this metric the dominance distance, and it is used to visualise

various populations, containing both dominated individuals, as well as mutually non-

dominating individuals using multi-dimensional scaling (MDS) [Sammon, 1969; Webb,

2002].

We begin by defining a new measure of similarity between the individuals in a population,

which attempts to capture the degree of dominance between individuals. We regard points

yi and yj as similar if they both dominate a third point yp, are both dominated by yp,

or both are mutually non-dominating with yp. Refining this idea, we define the similarity

of yi and yj relative to yp as proportional to the number of criteria on which yi and yj

have the same relation (greater than, less than or equal) to yp. Thus

S(yi,yj ; yp) =
1

M

M∑
m=1

[
I((ypm < yim) ∧ (ypm < yjm))

+ I((ypm = yim) ∧ (ypm = yjm))

+ I((ypm > yim) ∧ (ypm > yjm))
]

(3.27)

where I(p) is the indicator function that is 1 when the proposition p is true and 0 otherwise.

The second term in Equation 3.27 accounts for exact equality on a criterion. While

this occurrence is very rare with real-valued objectives in solutions to a multi-objective

problem, it is likely that it will arise in the many-criterion populations, such as the GUG09

population, that we discuss in this thesis due to the presence of categorical and integer-

based criteria. We define the distance between yi and yj relative to yp as:

D(yi,yj ; yp) = 1− S(yi,yj ; yp). (3.28)

The dominance distance between yi and yj is obtained by averaging D(yi,yj ; yp) across
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3. Understanding Many-criterion League Table Data

all of the individuals in the population:

D(yi,yj) =
1

N − 2

N∑
p/∈{i,j}

D(yi,yj ; yp). (3.29)

The dominance distance is a metric. It is clear from Equation 3.27 that D(yi,yj) =

D(yj ,yi). Since the maximum value of the sum in Equation 3.27 is 1, 0 ≤ S(yi,yj ; yp) ≤ 1

and therefore D(yi,yj ; yp) ≥ 0. It is easily checked by direct substitution in Equation

3.27 that S(y,y; yp) = 1 for all yp, so D(y,y) = 0. Conversely, S(yi,yj ; yp) = 1 for all

yp only if yim = ypm for all m. Thus D(yi,yj) = 0 if and only if yi = yj .

To see that D(·, ·) obeys the triangle inequality we associate with yi and yj strings bi and

bj of length M on an alphabet of the symbols {−1, 0,+1} so that a “−1” in position m

of the string for yi indicates that yim < ypm, a “+1” if yim > ypm, and a “0” if yim = ypm.

For example, with M = 7 criteria:

m 1 2 3 4 5 6 7

bi −1 −1 +1 +1 −1 +1 0

bj −1 +1 −1 +1 +1 +1 −1

Here yi is greater than yp on criteria 3, 4 and 6, and yi7 = yp7, while yj is greater than

yp on criteria 2, 4, 5 and 6. Then M ×D(yi,yj ; yp) is the Hamming distance between the

strings yi and yj , namely the number of positions in which their symbols disagree. In the

example D(yi,yj) = 4/7. It is well known that the Hamming distance is a metric, which

shows that the dominance distance is also a metric.

A further characterisation of the dominance distance is provided by noting that with

one criterion (M = 1) the distance is found by calculating the difference in the ranks:

D(yi, yj) = |ri − rj |. Given such a method for finding the dominance distance in the

single-criterion case, we can find the distance between a pair of individuals yi and yj on

each criterion and take the average to find the overall dominance distance:

D(yi,yj) =
1

M

M∑
m=1

|rim − rjm| (3.30)

We note that the distance between individuals is measured by the average magnitude of

the difference in their ranks on each criterion, not the magnitude of the difference of their

average ranks. Equation 3.30 provides an efficient way of calculating D(yi,yj) compared

with a straightforward application of Equations 3.27 and 3.29.
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3.4.1. Multi-dimensional Scaling

We now apply the dominance metric developed in the previous section to the problem of

constructing a low-dimensional embedding of many-criterion individuals for the purpose

of visualising the population.

Both metric [Kruskal, 1964; Sammon, 1969; Webb, 2002] and classical [Webb, 2002] multi-

dimensional scaling (MDS) can be used to create a low-dimensional embedding of a dataset.

Since the aim of this work is to construct a visualisation of a many-criterion population

based on the dominance distance between individuals, metric MDS is a natural choice.

Classical MDS is not discussed further, and for brevity we refer to metric MDS simply as

“MDS”.

The basic prerequisite for using MDS to reduce the dimensionality of a population of

individuals is a matrix of distances. Often this takes the form of a matrix of pairwise

Euclidean distances, but for the purposes of this thesis we employ the dominance distance

defined above. Whatever metric is chosen, by employing MDS we seek a low-dimensional

embedding of the individuals in a population such that pairwise distances in the original,

high-dimensional, space are preserved in the low-dimensional space. Two individuals that

are close in the high-dimensional space should remain so in the low-dimensional space.

Put simply, MDS obtains a set of coordinates from a set of distances by embedding the indi-

viduals into an N -dimensional space from where they are projected into a low-dimensional

(e.g., 2) space. According to Schoenberg [1935], and discussed in Gower [1985], a matrix

of pairwise distances ∆, where ∆ij = D2
ij , is a Eucludean matrix iff the matrix F

F =
1

2

(
I − 11T

N

)
∆

(
I − 11T

N

)
(3.31)

is positive semi-definite. In this case, if F = ZZT is a decomposition of F, then the

row zi of Z forms the coordinates of the embedding of the ith individual, corresponding

to yi, so that ‖zi − zj‖2 = ∆ij . Approximate coordinates in a lower dimensional space

(e.g., 2 dimensions) can be found by projecting onto the principal components of Z, which

turn out to be the eigenvectors of F. If F is not positive semi-definite, so that ∆ does

not correspond to Euclidean pairwise distances, an approximate embedding may still be

obtained by projecting onto the first principal eigenvectors of F. In all of the work reported

here, the eigenvectors of F are non-negative to within numerical precision.

Spectral decomposition of F has a computational complexity of O(N3), however, projec-

tions of several hundred points can easily be achieved in a second and if necessary the

procedure might be made more efficient by finding only the first few principal eigenvectors

of F.
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Figure 3.14.: MDS visualisation of the GUG09 population. Universities are coloured by
power index. The embedding seeks to preserve pairwise dominance distances.
Generally, those universities with a similar power index have been placed
close together.

3.4.2. Illustration

One of the advantages of using dominance distance as a basis for compressing the popula-

tion into a low-dimensional space is that it can be used with both mutually non-dominating

populations, such as the elite sets produced by optimising a multi- or many-objective

problem, and populations containing dominated individuals, such as the GUG09 running

example. In contrast, however, the Pareto shell visualisation does not provide any interest-

ing structural information about a mutually non-dominating population. We illustrate the

approach on both types of population for MDS, beginning with the GUG09 population.

Dominated Populations

Recall, that in the GUG09 population, some universities dominate others. Given this,

according to the definition of dominance distance provided above, similar universities

dominate, or are dominated by, the same universities as each other.

Figure 3.14 and 3.15 present MDS embeddings of the GUG09 population based on domi-
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Figure 3.15.: MDS visualisation of the GUG09 population. Universities are coloured by
Pareto shell. The embedding preserves pairwise dominance distances. Gen-
erally, as with the power index example, those universities residing in the
same Pareto shell have been placed close together.
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Figure 3.16.: The correlation between the first dimension of the MDS projection of the
GUG09 population and the power index values for each university.

nance distance; some universities of interest have been highlighted. Clearly, the horizontal

axis has identified the main trend in the data and is aligned with the power index; Figure

3.16 shows the correlation between the horizontal axis values and the power index of each

92



3. Understanding Many-criterion League Table Data

university. The second axis is used to differentiate between universities of similar power.

We observe that the two extreme universities in the ordinal axis are Oxford and Thames

Valley, which are the two extreme universities when the population is ranked by power

index or average rank. In Figure 3.14 the universities are coloured by their power index,

so that a strong university is coloured blue and a weak university is red, and it is clear to

see that universities of similar power have (generally) been placed close together. Upon

examining Figure 3.15, in which universities are coloured according to the Pareto shell to

which they belong, a similar trend is observed, however here some discrepancies can be

seen. A good example is Abertay, which is in shell 3 (coloured blue). The universities

that it is in close proximity to are those in shells 5 and 6, indicating that they are weaker

than Abertay. This is the phenomenon observed in the previous section, in which a uni-

versity achieves a good score on one of the eight criteria and scores poorly on the others,

making it difficult to dominate. The power index is only mildly affected by this, and the

university receives a power that better suits its entire set of KPI scores. The placement of

Abertay with other universities of low power index implies that it has similar dominance

relationships with other universities, based on its generally poor criterion values. Leeds,

in shell 4, is placed close to Liverpool, in shell 3. As we have previously observed Leeds

is the most powerful member of shell 4 according to the power index, so it is placed close

to the more powerful members of shell 3. According to popular perception of university

quality, Cambridge would be placed close to Oxford. It is however, placed away from the

other members of shell 1. This is because the procedure of imputing a score to replace

its missing NSS score has assigned it the worst NSS score in shell 1, making it appear

artificially worse than it would likely be with a real score.

Lancaster is placed very close to Exeter. This implies that they have dominance relation-

ships in common with a large proportion of the other universities in the population, and

upon examining these relationships this is the case. Exeter and Lancaster have 89 of 111

possible dominance relationships in common. They dominate 28 universities in common,

are both dominated by Oxford and there are 60 universities with which both a mutually

non-dominating.

Figure 3.17 shows the distribution of dominance distances between all of the universities,

ignoring the distance between a university and itself which is 0. As can be seen by the mark

showing the distance between Exeter and Lancaster, they are relatively close. Examining

the eigenvalues of the Euclidean distance matrix F shows that the projecting onto the first

two eigenvectors preserves 70.4% of the variance in the population. Were we to include an

additional third eigenvector in the projection we would recover an additional third 4.84%.

This would provide only a relatively small improvement in terms of the amount of variance

preserved in the embedding considering the added complexity that a third dimension in

the visualisation would incur.

In Figure 3.18 we use the MDS embedding of the GUG09 population to illustrate the simi-
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Figure 3.17.: The distribution of dominance distances between universities in the GUG09
population. Note, that the distance between a university and itself is not
considered. The distance between Exeter and Lancaster is marked, and the
two universities are shown to be relatively close.

larity between some of the various many-criterion ranking methods that we have discussed

in this chapter and Chapter 2. We present eight visualisations of the GUG09 population

embedded in a 2-dimensional space with MDS, and in each of them the individuals are

coloured according to their score as determined by a different ranking method. Whereas

previous illustrations have been coloured so as to indicate regions of high and low individ-

ual quality in a population, the colour scheme in these figures is used to show the score

of the individual according to a particular ranking method. A individual that is coloured

red has a low value according to the ranking method in question, while a green individual

has a high score. Recall that both power index and profit ranking are to be maximised,

while the other ranking methods (average rank, global detriment, global best, stationary

distribution, SPEA rank and Pareto shell) are to be minimised. As can be seen by ex-

amining the eight figures, the general trend observed in earlier examples, where the high

quality individuals are gathered together on the right-hand side of the embedding and

the poorest individuals are collected on the left-hand side, is present in all of the ranking

methods considered. In each of the figures, the individual with the best score is marked by

a cross; in the case of the Pareto sorting example (Figure 3.18(h)) all of the Pareto optimal

individuals are marked. As would be expected, in all of the illustrations the best indi-

vidual is Pareto optimal. Figure 3.19 further illustrates the trends shown in Figure 3.18

by plotting the score of each individual according to each pair of ranking methods. In all

cases there is a noticeable agreement between the ranking methods, whether the ranking

methods are well correlated (e.g., average rank and global detriment) or anti-correlated

(e.g., power index and average rank). Interestingly, there is less agreement between the

first six ranking methods in the grid when compared to the SPEA rank and Pareto sorting

approaches. This is likely due to the fact that they depend on dominance and are operat-

ing in a many-criterion space; as has been discussed previously in this thesis, dominance
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Figure 3.19.: Correlation between ranks of individuals in the GUG09 shown in Figure 3.18
according to: power index; average rank; global detriment; profit; global
best; stationary distribution; SPEA rank; and Pareto shell.

does not discriminate well between individuals in such an environment.

We now introduce a new many-criterion population, with which we demonstrate one of

the significant advantages of using the dominance distance to visualise a population with

MDS. Figure 3.20 illustrates a population of 165 individuals. Each individual represents a

wireless access point (AP) in a mobile telephone network. Each access point is responsible

for connecting mobile telephones to the network so that consumers can make telephone

calls, and the performance of the access points is described by a set of 27 KPIs. These

KPIs monitor aspects of the performance of an AP such as the frequency of call drop-outs

and bit loss rates. Clearly, a mobile telephone provider wishes to provide the best possible

service to a consumer, and so it is important for them to ensure that the maintenance issues

are dealt with. Unfortunately, it is not possible for engineers to perform maintenance on
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Figure 3.20.: The performance of wireless access points in a mobile telephone network
visualised according to 27 KPIs using dominance distance MDS. As with the
populations comprising smaller numbers of criteria, the MDS embeds the
individuals so that regions of quality can be identified; those individuals with
a good power index have been placed on the left-hand side of the embedding,
while those with a poor power index have been placed on the right-hand side.

all of the APs simultaneously and their efforts must therefore be guided by which of the

APs would most benefit from maintenance work. As such, a visualisation of the KPI data

is useful. Unfortunately, with each APs entry residing in a 27-dimensional space, this is

not a trivial matter. It is not feasible, for example, to use the Pareto shell visualisation

demonstrated in the previous sections because all 165 individuals reside in the Pareto

optimal shell (c.f. Figure 3.3), and there is no dominance structure for that method to

illustrate. It is, however, possible to illustrate the population using the dominance distance

and MDS since the dominance distance considers relations for each distinct criterion. This

embedding is shown in Figure 3.20. As with the previous GUG09 visualisations, the

individuals are coloured according to their power index (blue again indicates the more

powerful individuals), and as with the other examples in this section the individuals are

broadly grouped according to their quality. Such a visualisation is useful to an engineer

who is responsible for designing a maintenance schedule for the telephone network. By

examining Figure 3.20 it is immediately clear which of the APs need attention; they are the

APs with a poor power index. That said, examining the additional information provided

by the proximity of APs in the dominance distance embedding provides a useful notion of

the similarity between them. An AP might not receive the worst rank in the population,

but by its proximity to an individual that does have a bad rank would be recognised as a

candidate for maintenance.

In examining the variance captured by the MDS projection we observe that 48% is captured

by the first two eigenvectors. The addition of the third eigenvector captures an additional
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Figure 3.21.: An MDS embedding of 500 individuals drawn from the true Pareto front of
DTLZ6 in three objectives (a). Individuals are coloured by their power index.
The best and worst individuals are shown in blue and red, and samples from
the minimising bounding box have been projected into the embedding. The
symmetry of objectives 1 and 2 can be seen, as can patches of high and
low quality. The population shown in (b) illustrates the geometry of the
3-objective DTLZ6 Pareto front.

8%. While the projection has captured less variance than in the GUG09 example discussed

earlier we draw attention to the fact that this is a larger population, both in terms of

individuals and more significantly criteria (recall that the GUG09 population comprises

8 KPIs while this population has 27). That said, the visualisation it results in clearly

clusters individuals of similar rank, and an engineer could easily use it as the basis for

designing a maintenance schedule.

Non-dominated Populations

In addition to visualising populations of dominated individuals, we also demonstrate its

efficacy at reducing the dimensionality of mutually non-dominating sets. Figure 3.21

shows 500 3-objective solutions to the test problem DTLZ6 [Deb et al., 2002] projected

onto the principal two eigenvectors of F (recall that F = ZZT , where Z is a matrix in

which the rows are N -dimensional individuals between which the Euclidean distances are

the same as the distances between the individuals in the population Y as defined by the

metric D). Individuals were generated by drawing samples from the known true Pareto

front of the problem, and are coloured by their power index. In order to help orient

the decision maker, we also mark the best and worst solution for each objective and the

edges of the axis parallel bounding box which contains the solutions which meet at the

global best point [Garza-Fabre et al., 2009], namely (mini(yi1),mini(yi2), . . . ,minM (yiM ));
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Figure 3.22.: 500 individuals from the true Pareto front of DTLZ6 in five objectives,
coloured by power index (a) and best objective (b). The symmetry seen
in Figure 3.21 remains, even given the additional objectives. Additionally, it
is possible to observe correlations between some objectives by their placement
(e.g., y1 and y2, y3 and y4; each pair is overlaid).

these edges are parallel to the coordinate vectors in the M -dimensional space. The best

individuals are marked in blue and the worst are marked in red. The black numbers at

the end of the projected axes indicate which criterion a particular axis belongs to. The

visualisation reveals the symmetry between objectives y1 and y2, with y3 a distinguished

objective. Note that the worst solutions on each objective are mapped close to the ends of

the bounding box axes, while the best solutions are opposite these ends, indicating that the

visualisation is providing a topographic representation from the dominance distance, which

itself is based only on the greater than, less than or equality relations between individuals.

It is clear from the visualisation that a good average rank (dark blue) corresponds to poor

values of y3 and good solutions of y3 are only obtained by having a poor average rank.

Note that although distinct clusters are not evident, the average rank shows that there

are isolated patches of high and low rank. A 3-objective instance of DTLZ6, as shown

in Figure 3.21(b), is characterised by the clustering of Pareto optimal solutions into four

“cushions”. The cushions are disconnected, and the disconnected regions are not visible

in the dominance distance MDS embedding because the dominance distance does not

incorporate Euclidean information. While it would be best to retain all features of the

population, such as discontinuities, it is important to consider the dominance relationships

between individuals in order to best understand the population.

Figure 3.22 shows solutions from the 5-objective version of the same test problem. It

is apparent that the visualisation has identified a remarkably similar structure and the

symmetry in the population remains despite the additional two objectives. Figure 3.22 (a)

shows the individuals in the population coloured by their power index, and the distribution

is very similar to that shown in the 3-objective case. The last objective, y5, is again
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distinguished. In Figure 3.22(b) the individuals are coloured according to the objective

on which they have the best rank, and it is clear the the individuals whose best rank is on

objective y5 have been placed away from the remainder of the population. Also, there is

good correlation between objectives y1 and y2 (the bounding box axes are mapped almost

on top of one another), and between y3 and y4. Separation of these three groups (y1 and

y2, y3 and y4, and y5) can be seen by the colouring in Figure 3.22(b) in which individuals

are generally collected together according to the group on which they are best ranked. For

example, those individuals whose best rank is on y1 or y2 are projected together.

The dominance distance visualisation of solutions to a problem with a degenerate one-

dimensional Pareto front, such as WFG3 [Huband et al., 2005], maps the solutions to

a single line along the coordinate axis with solutions arranged by power index along it,

and there is only a single non-zero eigenvalue of F. We do not show an example of this

projection because there is no additional information provided beyond the simple ordering

of individuals by their power index.

We also provide a visualisation for a population of solutions to a real world optimisation

problem drawn from the literature. Hughes [2007a] applied MSOPS [Hughes, 2003] to

the problem of designing an appropriate set of waveforms that can be transmitted by a

Pulsed Doppler Radar to simultaneously measure the velocity and distance of a target.

To do this, Hughes optimised a schedule of Pulse Repetition Intervals (PRIs), which are

the times between the transmission of radar pulses. A solution to the radar waveform

design problem consists of P parameters. Each parameter is a PRI, determining the

amount of time to wait before transmitting the next radar pulse, and Hughes [2007a] has

provided results for schedules of P = 4, 6, 8, 10 and 12 PRIs. These parameters map onto

an objective vector y comprising M = 9 objectives. The first eight objectives characterise

different aspects of the radar signal and the final objective is the total transmission time

for the waveform:

• Objectives 1 and 2 measure the median range and velocity before the schedule is not

decodable.

• Objectives 3 and 4 measure the median range and velocity before the schedule has

blind regions.

• Objectives 5 and 6 measure the minimum range and velocity before the schedule is

not decodable.

• Objectives 7 and 8 measure the minimum range and velocity before the schedule has

blind regions.

• Objective 9 is the time required to transmit the entire waveform, in milliseconds.
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Figure 3.23.: A dominance distance MDS embedding of the radar data. As with the pre-
vious examples, individuals have been grouped according to their quality as
determined by the power index.

The first eight objectives are to be maximised by good individuals whilst the 9th is to

be minimised, however in the datasets [Hughes, 2007b] all objectives have been organised

for minimisation. We use 200 randomly sampled solutions of the 11398 solutions in the

12 PRI archive. Figure 3.23 shows the MDS dominance distance visualisation of the 200

solution radar data population. As indicated by the bands of colour, representing bands of

similar power, the method has produced a diagram that groups similar solutions together,

allowing a decision maker to identify groups of solutions which are similar to each other

in the way in which they are related to other solutions in the set. Here the individuals

with a low power index are located along the top of the “crescent” of solutions, but with

a band of solutions with similar average rank, those at one end of the “crescent” are

related to other solutions in ways more similar to each other than those at the other end;

that is solutions at one end tend to be greater than or less than other solutions on the

same objectives. Note that the bounding box axes, which are more distant from the front

than in the DTLZ6 front, are grouped into those associated with range (objectives 1, 3, 5

and 7) and those associated with velocity (objectives 2, 4, 6 and 8). The axis for y9 has

been placed close to the velocity objectives. The visualisation shows that the low rank

solutions are associated with good values for y2, y6 and y8, while the best solutions for

other objectives, located near the horns of the crescent, have high average rank and are

close to (or identical to) solutions which are very poor on other objectives.

We emphasise that this spatial arrangement in the visualisation plane reflects the similarity

of order relations among the solutions, rather than their spatial configuration in objective

space. Nonetheless, as the colouring by best objective (Figure 3.24) shows, visualisation

by MDS with dominance distance tends to group solutions that are close in objective
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Figure 3.24.: Radar population coloured by best objective. As can be seen by the labels
indicating the best and worst individual on each objective, individuals have
been placed such that they are grouped according to the type of objective
that they best optimise (e.g., range, velocity or transmission time).

space.

Here 54.3% of the variance in theN -dimensional embedding is retained in the 2-dimensional

projection onto the plane. Projection onto the third eigenvector of F captures an addi-

tional 5.5%, but visualisation is more cumbersome.

As in the case of the GUG09 examples above, we apply the ranking methods to the radar

population and use MDS to visualise which regions have the highest quality (Figure 3.25).

Note, that while the previous comparison included Pareto sorting and ranking according

to the fitness strategy used in the SPEA algorithm, these examples are of a mutually non-

dominating population. As such, these two ranking methods are omitted. In all cases, the

ranking methods prefer the region of the population at the top of the crescent shape pro-

duced by the MDS embedding. This is away from the regions of the population containing

the individuals highlighted in Figure 3.24 as being worst on a particular objective and

close to the individuals that are best on objectives y8 and y6. Examining the correlation

between rankings shown in Figure 3.26, we can see that the general trends are as we have

seen in the previous example for the GUG09 population. Some of the correlation plots

shown in Figure 3.26 indicate that the individuals belong to one of two “leaves”. In that

plot, each individual is coloured according to the objective type on which it has the best

rank. Thus, an individual whose best rank is a range objective (y1, y3, y5 or y7) is coloured

red, one whose best rank is a velocity objective (y2, y4, y6 or y8) is coloured blue, and

one whose best rank is on the transmission time objective (y9) is coloured black. A clear

grouping is evident in the plots: those individuals that best optimise a velocity objective

or the transmission time objective are collected together, and the individuals that best
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Figure 3.25.: MDS embeddings of the radar population; individuals are coloured by various
ranking schemes.

optimise the range objectives reside in their own distinct cluster. We discuss this grouping

further in Chapter 4.

Finally, we use the MDS with dominance distances to illustrate the projection of a pop-

ulation of samples drawn from the Pareto front of a 3-objective test problem and show

which regions are preferred by the different ranking methods. Figures 3.27 and 3.29 show

a set of 1000 samples from the true Pareto front of a 3-objective instance of the DTLZ2

test problem, the part of a spherical shell in the positive orthant.

From observing the DTLZ2 examples, the MDS has clearly produced an embedding that

preserves the geometry of the 3-dimensional objective vectors. As with the DTLZ6 exam-

ples shown in Figure 3.21, the effect of projecting the population into a 2-dimensional space

with MDS and the dominance distance has been to flatten the population. Turning our

attention to the colouring of the individuals we can see that quality is distributed across

the population similarly, in that extreme qualities tend to be either in the centre or at

the corners of the population. This observation corresponds to existing knowledge about

some of the ranking methods that have been used in many-objective selection operators.

For example, Garza-Fabre et al. [2010] observed that using a selection operator based on

average rank, global detriment or profit offers good convergence properties but leaves large

portions of the Pareto front unexplored. A similar point was made by Li et al. [2010a]

with regard to average rank. The regions that would be preferred by an MOEA using any

of these algorithms for selection can be identified by examining the plots in Figure 3.27

103



3. Understanding Many-criterion League Table Data

0.0

0.2

0.4

0.6

0.8

1.0

Power Index

60

70

80

90

100

110

120

130

140

150

Average Rank

100

200

300

400

500

600

Global Detriment

−3

−2

−1

0

1

2

Profit

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Global Best

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

60 70 80 90 100110120130140150 100 200 300 400 500 600 −3 −2 −1 0 1 2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 0.0 0.2 0.4 0.6 0.8 1.0

Stationary Distribution

Figure 3.26.: Correlation between ranks of individuals in the radar archive shown in Figure
3.25 according to: power index; average rank; global detriment; profit; global
best; and stationary distribution. The colour of an individual indicates the
type of objective on which it has the best rank (red indicates a range objec-
tive, blue indicates a velocity objective and black indicates the transmission
time objective). Colouring in this way reveals a clear relationship between
the types of objectives; velocity and transmission time objectives are clus-
tered together, while range objectives generally form a cluster on their own.

for areas of high quality. For example, in the average rank case, the individuals with the

highest quality are in the corners of the population. A MOEA using a selection operator

based on average rank would therefore select the solutions in the corners. Those in the

centre of the population would be discarded, and the diversity in the population would be

quickly reduced. This explains the behaviour of MOEAs noted in studies such as Garza-

Fabre et al. [2010] and Li et al. [2010a]. From the set of examples shown here, it is clear

that many of the commonly used ranking methods will suffer from this problem. A visu-

alisation such as this facilitates diagnostic interaction with the search population or elite
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Figure 3.27.: DTLZ2 MDS embeddings coloured by various ranking schemes.
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Figure 3.28.: The distribution of average rank across the surface of a concave mutually
non-dominating population. Whereas in the case of the equivalent convex
population the lowest (best) average rank scores were found in the corners
of the population, in this case the centre of the population is preferred.

archive of an evolutionary algorithm to examine how a selection operator is performing

and which regions of the search space it prefers.

Figure 3.28 demonstrates the different distribution of average ranks found on a mutually

non-dominating concave population. Whereas in the convex equivalent the corners of the

front have the lowest, and therefore best, average rank scores, in this case the best scores
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Figure 3.29.: Correlation between ranks of individuals in the DTLZ2 population shown
in Figure 3.27 according to: power index; average rank; global detriment;
profit; global best; and stationary distribution.

are achieved by those in the centre of the population. A MOEA would therefore prefer

the centre of the population and leave the corners unexplored. We also observe that the

global best ranking is quite sensitive. The removal of the optimal point could shift to

another region of the population if the individual with the best rank is removed.

The correlation shown between the ranking methods, shown in Figure 3.19 is, for the most

part, present in the rankings of the DTLZ2 population, shown in Figure 3.29. One notable

observation is that there is a degree of correlation between the scores according to global

detriment and average rank, power index and profit. According to the definitions provided

by Garza-Fabre et al. [2009] we would expect them to be anti-correlated; this was observed

to be the case in the earlier two examples. This is because average rank, the power index

and profit all prefer values in the corners. Individuals in a corner (for example, the corner
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formed by f1 and f2) of this population will have one criterion (f3) on which they have

extremely poor scores. When the global detriment is calculated, they have a worse score

than the individuals with middling values at the centre of the population. Thus the best

individuals according to average rank are the worst according to global detriment and vice

versa in this case.

As with the radar example above, the individuals in Figure 3.29 are coloured according

to the criterion on which the individual has the best score. Again, the leaf to which

an individual belongs indicates the type of objective that the individual best optimises.

Although the clustering is less clear than it is in the radar case, it is possible to observe

three “leaves”, indicating that one corresponds to each objective (this is most clearly seen

in the case of the comparison between global detriment and global best).

This section has presented a new metric that considers distances between many-criterion

individuals in terms of their dominance relations with the other individuals in a population

and used it to project many-criterion individuals into a 2-dimensional space for visuali-

sation with MDS. We have provided various examples of such projections that clearly

illustrate the potential behind this approach and described how various aspects of the

geometry of a many-criterion population are represented in an MDS projection. While

compressing the dimensionality of a many-criterion population with MDS provides a useful

visualisation in which features of the high-dimensional space are preserved, it is a linear

method that will not capture any nonlinear features present in the data. As such, we in-

tend to extend the work presented here by applying the dominance distance to approaches

such as Isomap [Tenenbaum et al., 2000], Locally Linear Embedding [Roweis and Saul,

2000], Laplacian Eigenmaps [Belkin and Niyogi, 2001] and Maximum Variance Unfolding

[Weinberger and Saul, 2006]. These methods are known to be more adept than MDS

at preserving features of multivariate data, such as a low-dimensional manifold on which

data points exist. The discovery of such features in multi-criterion populations would yield

important information about the population’s structure, as well as suggesting that more

suitable visualisations can be constructed using nonlinear dimension reduction techniques.

3.5. Conclusion

The construction of a league table from a set of conflicting performance measures is a

commonly undertaken task. Such a league table, in which individuals are arranged into a

total order, is often constructed by generating a score from a weighted aggregated sum of

the performance measures for each individual. This requires the rescaling of the criteria

and the selection of weights. Knowing how to weight different criteria can be difficult,

and is often subjective. To this end, this chapter has presented methods for illustrating

performance data without requiring the construction of a league table or articulation of

criterion preferences.
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Given the similarity between the task of ranking individuals to convey their quality based

on a set of performance measures and the role of the selection operator in a MOEA, which

often select the solutions that best optimise a multi- or many-objective optimisation prob-

lem, we have applied methods based on dominance to constructing near-total orderings of

many-criterion individuals. Having described and illustrated various approaches from the

evolutionary optimisation literature, we applied them to the development of a visualisa-

tion that requires no rescaling or weighting of criteria. We illustrated the visualisation of

various many-criterion populations as a graph in which the individuals are arranged into

their Pareto shells; further information is provided by colouring each individual according

to its score on a range of ranking methods. We demonstrated that the outflow ranking

method is analogous to the average rank method, popular in recent MOEAs, and applied

the power index to the multi- and many-criterion domain by developing a probabilistic

view of the dominance relation. While these methods were able to visualise multi-criterion

and small many-criterion populations, the reliance on Pareto sorting limited their applica-

tion to populations comprising large numbers of criteria. We address this issue in Chapter

6 where we consider methods for identifying which criteria are the most important for

defining the structure of a population so that the remainder can be discarded.

We have also considered a more traditional form of visualising high-dimensional data,

compressing the dimensionality of a population with metric MDS. Here, we developed a

metric that defines pairwise distances between individuals in terms of their dominance

relationships with other members of a population. We demonstrated this technique on

a range of populations, both mutually non-dominating and those containing dominated

individuals, and illustrated the intuitive fashion in which individuals are organised in the

low-dimensional embedding. Since MDS finds a linear approximation, future work will

extend this approach to apply dominance distances to methods such as isomap, locally

linear embedding, Laplacian eigenmaps and maximum variance unfolding.

Having introduced dominance-based MDS, we will employ it again in Chapter 4. There,

we enhance a 2-dimensional embedding of a population by identifying landmarks in the

original, high-dimensional, space, and highlight them in the visualisation. Specifically,

we develop methods for identifying individuals that lie on the edge of a mutually non-

dominating population and show how such information can be useful for data mining and

knowledge discovery.
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Non-dominating Population

4.1. Introduction

So far in this thesis we have presented methods for visualising many-criterion populations,

including methods that are suited to visualising the mutually non-dominating solutions to

a multi- or many-criterion optimisation problem. In order to enhance our understanding

of such populations, it can be useful to consider landmark individuals, such as individuals

that lie on the corner of a population. From the point of view of constructing a visu-

alisation, identifying such individuals can help to understand how the individuals in the

population have been represented. For example, visualising a population with a technique

such as MDS requires the embedding of individuals in a new coordinate space, with which

the decision maker is not familiar; marking those individuals that lie on the edge of the

original (M -dimensional) population can help them to navigate the visualisation.

In addition to using landmark individuals to assist a decision maker, the identification of

individuals lying on the edge of a mutually non-dominating population is also of inter-

est to the developers of multi-objective evolutionary algorithms. In order to generate an

estmiated Pareto front which completely covers the true Pareto front (recall that, along

with convergence to the true Pareto front, full coverage of the front is one of the goals

of optimising a multi-objective problem) using a fitness strategy that encourages the gen-

eration of new solutions from those which form the extent of the current Pareto front is

an obvious strategy. Among the algorithms to use this idea are two of the most popular

MOEAs, PAES and SPEA2 (both described in Chapter 2).

Recently Singh et al. [2011] proposed a method for finding the corners of a Pareto front.

Although we note that this is not strictly the same as the populations of individuals

which are the focus of this thesis, their definition provides a useful starting point for the

discussion we present in this chapter. According to Singh et al. [2011], a solution lies in

the corner of a Pareto front if (assuming a minimisation problem) it minimises all criteria

in a k < M -criterion subset. Since we are interested in populations of individuals, rather

Some of the material in this chapter has been published as Everson et al. [2013].
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Figure 4.1.: The two individuals which lie on the edge of a mutually non-dominated pop-
ulation comprising two criteria.

than the complete Pareto front of a many-objective optimisation problem,1 we seek the

corners of a set of many-criterion individuals. Given a population Y = {yi}Ni=1 and a

set of indices corresponding to some of the M criteria, κ, where |κ| = k, let yκi be the

projection of yi onto the k criteria specified by κ. In order to find all of the corners in a

population it is necessary to consider all of the possible criterion subsets κ. We recall the

function nondom(A) which returns the non-dominated members of the population A and

formally state the set of individuals in the corner of a population as:⋃
κ

(nondom (Yκ) : |nondom (Yκ)| = 1) , (4.1)

the union of the non-dominated points for each k-criterion subset, assuming that the k

criteria are minimised by a single individual.

An alternative to finding the corners of a mutually non-dominating population is to find the

entire edge. We begin by considering the 2-criterion case. Here, the task of identifying the

individuals that lie on the edge is intuitively clear. Assuming, without loss of generality,

that the two criteria are to be minimised we simply find the individual that minimises

each criterion. This is shown graphically in Figure 4.1. Intuitively, it is clear that the two

highlighted individuals form the edge of the population, and they can be easily found both

by a human decision maker and automatically. That said, we note at this point that well

known methods for finding the edge of a cloud of points, such as finding the convex hull

[de Berg et al., 2000] are not suitable for this task. In the 2-criterion population shown in

Figure 4.1 all of the individuals are on the convex hull.

1Although the individuals in a population might be samples from the Pareto front of a many-objective
optimisation problem.
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Figure 4.2.: The hourglass population. The corners of the hourglass are marked (A, B, C
and D). The radar population is visualised using MDS with the dominance
distance.

Unfortunately, the task of identifying the edge in a population comprising three or more

criteria is somewhat more challenging, even for a person. Given such a population, defining

exactly what is meant by the edge is a difficult task. We therefore seek to formally define

when an individual is on the edge, and we provide three candidate definitions. The first

relies on the well known definition of the attainment surface [Fonseca et al., 2001] while

the other two use dimension reduction. All three methods use dominance to identify the

individuals on the edge.

We demonstrate the efficacy of the three proposed methods by finding the edge of two

example populations. One of them is the radar population introduced in Chapter 3 and

the other is an artificial population constructed from a multi-criterion test problem.

The second of the populations, shown in Figure 4.2, is an artificial population constructed

with samples from the positive octant of a spherical shell. As described in Chapter 2,

Pareto fronts are either convex, non-convex, linear, or a combination of the three; any

technique for identifying the edge individuals must be able to operate on all combinations

of these geometries. We begin with a convex set of samples. A copy of the samples

was taken and inverted so that it was concave rather than convex. Both sets of samples

were then relocated so that the top of the convex sample set aligns with the bottom of the

concave samples, creating a “pinch point”. Figure 4.2 illustrates the hourglass population.

The corners of the population have been highlighted (A, B, C and D) for reference later

in the chapter.
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point b, whose mth coordinate maxy′∈Y y
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m. The attainment surface is shown

with the thick black line. Candidate points for solo domination by y1 and y2
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4.2. Identifying Edges with the Attainment Surface

The basic idea behind the first definition we present uses the attainment surface formed

by a mutually non-dominating population to identify individuals which dominate regions

of criterion space that are dominated by no other individual. We illustrate this idea

graphically in Figure 4.3. It presents a 2-criterion population consisting of five individuals.

From inspection, using the intuition presented in the last section, we can observe that the

individuals forming the edge of the population are y1 and y5.

In order to consider the problem using dominance, we observe that y1 is the only individual

in the population to dominate the region of space formed by { (u, v) | y11 < u ≤ y21 ∧ y12 <
v }. We can define a similar region of criterion space such that y5 is the sole dominator.

We can also identify regions of space for which y2, y3 and y4 are the sole dominators. We

therefore seek the individuals on the edge by identifying those individuals which contribute

to the bounds of the region B in Figure 4.3 since only an individual lying on the edge can

affect the extent of the region B. For example, the addition of a solution above y1 would lie

on the edge of the Pareto front, and would extend the region encompassed by B, however

the addition of an individual between y1 and y2 would not.

Before we provide a formal definition of an edge according to the intuition outlined above,

we first declare some preliminaries. The above intuition behind the proposed definition

states that an individual on the edge dominates regions of space, some non-negative dis-

tance from the Pareto front, that are dominated by no other individual; the location of

this space is defined as follows. To begin with, we define the region dominated by the
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population:

U = {u | ∃y (y ∈ Y ∧ y ≺ u)}. (4.2)

Also, let b be the point which has the maximum coordinate of any member of Y in each

dimension:

bm = max
yi∈Y

yim. (4.3)

Then let B be region the which is dominated by Y but lies “below” b:

B = U ∩ { y | y ≺ b }. (4.4)

Finally, we define a function that returns all of the members of Y that weakly dominate

a point x:

doms(x,Y) = { y ∈ Y | y � x }. (4.5)

Having established these preliminaries, we say that y is an edge individual if and only if

there exists a u ∈ U \ B such that doms(u,Y) = {y}. That is, there are points outside of

B (i.e., sufficiently far away from Y to avoid the inclusion of interior individuals) that are

dominated by y alone.

We observe that any point which is a corner according to Singh et al. [2011] is on the edge.

Recall, that in order for an individual to form a corner it must minimise all criteria in a

k-criterion subset. Thus, it will dominate space that is dominated by no other member of

Y on that criterion (or criteria) and is therefore part of the edge.

In order to identify which of the individuals in a population are on the edge, according to

this population, we consider that an edge individual must dominate regions of criterion

space (far enough away from the attainment surface) that are dominated by no other

individual in the population. One approach might be to draw samples from the hypercube

defined by the point b+ and the coordinate axes. We pick a hyper-rectangle to project

onto, defined in terms of a point b+ that is definitely in U \ B:

b+m = bm + ε ε > 0 (4.6)

Assuming that it is positive, the value of ε is immaterial. A problem with this is that since

the edge is defined in terms of weak dominance we can use the point b+ in conjunction

with the individuals in the population themselves to construct a set of candidate points

{u} against which we can test each individual. We extend each member of Y along the

coordinate axes into U \B so that we can evaluate how many individuals in the population

dominate each u. Having defined the hyper-rectangle along which the individuals will be
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Figure 4.4.: The edge of the hourglass population as identified by the attainment surface
method. The method has identified the top half of the edge well, but has
struggled to identify the bottom half, finding only a few edge individuals.

placed we create the M candidate points for yi as:

uin =

yin n 6= m

b+m n = m
m = 1, . . . ,M. (4.7)

By construction yi � uim, but if any other y ∈ Y also dominates uim then yi does not

lie on the edge of the population. In Figure 4.3, the candidate point u11 is dominated by

both y1 and y2. On the other hand, u12 is dominated only by y1. Hence, y1 is a point

which lies on the edge.

Figure 4.4 presents three examples of edge identification using the attainment surface. The

114



4. Finding the Edge of a Mutually Non-dominating Population

first example (Figure 4.4(a)) is of a concave population, and the method has identified

a reasonable approximation of the edge. The second example is of a convex population

(Figure 4.4(b)) and the method has found a much less complete set of edge individuals

when compared with the concave example. The reason for this is explained by considering

the two edge individuals at the top of the population (α and β). In terms of the first

two criteria, f1 and f2, α and β are near-optimal. It is therefore unlikely that another

individual will dominate regions with respect to f1 and f2 that are not also dominated by

α and β, meaning that few of the individuals in the convex population are on the edge.

The final example shows the edge of the hourglass according to the attainment surface

definition. There, we again see that the edge of the concave region has been well identified

while there are large gaps in the edge of the convex region.

Applying the attainment surface approach to finding the edge of the population of in-

dividuals to the radar problem proves to be less successful. This is to be expected, as

it is a side effect of the inability of dominance to discriminate between individuals in a

high-dimensional space. We find that all but two of the 2000 individuals in the population

are on the edge in the 9-criterion space; we do not present an illustration of this result.

4.3. Dominance-based Edge Identification with Rotations

Given a population of mutually non-dominating individuals, we can project them into

the plane by embedding the population in the M -dimensional simplex. In the resulting

(M -1)-dimensional representation of the population, a region of the edge can be found by

identifying those individuals which are non-dominated (in the planar representation, with

respect to the rest of the embedded population). Rotating the planar embedding causes

other regions of the population to become non-dominated, exposing other stretches of the

edge. Given a sufficient number of rotations, it is therefore possible to identify all of the

individuals that lie on the edge of the population, and this section presents a method for

finding the edge in this manner.

In order to arrive at a planar representation of a mutually non-dominating population,

ensuring that the individuals remain mutually non-dominating, we project the individuals

onto the flat simplex. The simplex is the region of the plane in the positive orthant defined

by

n · y = d ym ≥ 0, m = 1, . . . ,M (4.8)

where the elements of the unit vector n normal to the simplex are nm = d/λm and the

perpendicular distance to the origin d can be found as

d−2 =

M∑
m=1

λ−2m . (4.9)
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(a) (b)

Figure 4.5.: Two random rotations of the hourglass population projected onto the principal
M − 1 components.

We project the mutually non-dominating population onto the simplex by

ŷi = yi/(yi · n). (4.10)

Importantly, we note that a mutually non-dominating population remains mutually non-

dominating following projection onto the simplex.

Having projected the population onto the simplex we must find an initial direction on which

to base the rotations of the individuals. We observe that the population now comprises

a single “direction”, in the principal component sense. If we were to project the simplex

projections of the individuals onto the M − 1 principal components, 1 in this case, we

would be able to simply find the edge individuals by examining which are non-dominated,

given sufficient rotations to expose both end-points.

This idea can be extended into the 3-criterion domain of the hourglass population; consider

the example shown in Figure 4.5(a). There, the hourglass population has been projected

onto the simplex, and from there onto the first two (M−1) principal components. If we find

the non-dominated individuals- we find some of the individuals around the edge. Those

individuals are marked with a cross in the figure. A possible rotation of the hourglass

is shown in Figure 4.6(b). In that version of the population, different individuals are

non-dominated, and thus more of the edge has been revealed.

In order to discover the entire edge, we use an iterative procedure in which the principal

component population Ŷ is rotated by a random amount repeatedly. To obtain a random

rotation matrix we begin by generating a (M−1)×(M−1)-dimensional matrix of Gaussian

random values. From this, we take the QR-decomposition, which yields two matrices. One

of these matrices, which we denote by Q, is a rotation matrix with which we can apply a
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Figure 4.6.: The edge of the hourglass as identified by the rotated dominance method.
Clearly (for this population) 4 rotations are insufficient, however 256 rotations
has resulted in a near-complete set of edge individuals.

random rotation to the members of Ŷ so that each ŷi is rotated to the position ŷ′i:

ŷ′i = QŷT . (4.11)

We then find the non-dominated members of the rotated projection Ŷ′ and then rotate the

population again. Hence, we define the set of edge individuals as being those individuals for

which there is at least one rotation matrix Q that causes the individuals planar projection

to be mutually non-dominating:

{ y ∈ Y | ∃Q( ŷ′ = QŷT ∧ domsŶ′(ŷ
′) = 0 ) }. (4.12)

The rotated dominance method is demonstrated for the hourglass population in Figure

4.6. We demonstrate the technique twice, once with 4 rotations and once with 256. While

it is clear that the 4 rotation instance does not fully reveal the entire edge, the 256 rotation

version does. We note that the process of rotating the population and finding the non-

dominated individuals is relatively cheap and therefore the entire process can be quickly

run for a large number of rotations in order to ensure that the whole edge is included.

Comparing the hourglass edge in Figure 4.6(b) with that shown in Figure 4.4 we can

see that the rotation method has improved upon the edge discovered by the attainment

surface method. The method has discovered the entire edge of the population, rather

than missing extensive regions of the convex portion of the population. Also, it finds

fewer interior individuals than the attainment surface approach, and as such it provides a

more exact impression of the population edge. That said, the quality of the edge identified

by this method is dependent on the fidelity of the projection onto the M − 1 principal

components. For this reason, we cannot state that the corner individuals (as defined by

Singh et al. [2011]) are incorporated as we did for the attainment surface method, since
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Figure 4.7.: The hourglass population projected onto criteria f2 and f3. The edge between
points A and B in Figure 4.2 marked with crosses.

it is possible that they will not be on the edge of the population projection. If this is the

case, it is possible for the corners to be excluded from the edge identified by this approach.

As with the attainment surface method we applied this method to the task of identifying

the edge of the 9-criterion radar population. Unsurprisingly, since this method also relies

on dominance in a high-dimensional space, it also identifies all of the individuals as being

on the edge.

4.4. Criterion Subset Edge Identification

In the work by Singh et al. [2011] on identifying the corners of a mutually non-dominating

population, the authors considered the dominance relations in k-criterion subsets. Return-

ing to the 2-criterion population introduced at the beginning of this chapter, we note that

the same intuition can be applied to identifying the edge of such a population. Recall,

that the two individuals that minimise the criteria are those which form the edge in a 2-

criterion population (shown with crosses in Figure 4.1). Thus, we can say that one of the

individuals (for example, the one which minimises the first criterion f1) is non-dominated

in a k-criterion subset comprising f1 alone.

This approach can be used to identify the individuals on the edge of the hourglass. To

do this we consider a k-criterion version of the population, where k = (M − 1). If, for

example, we discard f1, the remaining criteria form the projection shown in Figure 4.7.

118



4. Finding the Edge of a Mutually Non-dominating Population

0.0 0.5 1.0 1.5 2.0
f1

0.0

0.5

1.0

1.5

2.0

f 2

0.0 0.5 1.0 1.5 2.0
f1

0.0

0.5

1.0

1.5

2.0

f 3

0.0 0.5 1.0 1.5 2.0
f2

0.0

0.5

1.0

1.5

2.0

f 3

Figure 4.8.: The criterion subset method applied to the hourglass population. In each
2-criterion subset, the maximising and minimising individuals are found and
added to the edge set E.
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Figure 4.9.: The hourglass population. Individuals identified by the criterion subset
method as residing on the edge of the population have been marked with
crosses.

Referring to the labels in Figure 4.2 we can see that the individuals on edge between

the corners A and B are those which are non-dominated (with respect to minimisation)

in this projection. Finding the non-dominated (in the maximisation sense) individuals

identifies those which are on the edge C—D. In fact, by examining different projections

of the individuals yκ ∈ Yκ, where yκ is the individual y as represented by the criterion

subset κ, we can recover the entire edge. The full process for identifying the edge of the

hourglass is shown in Figure 4.8. The three panels show the population projected into the

M = 3 possible criterion subsets ({f2, f3}, {f1, f3} and {f1, f2}). Each of the individuals

marked with a cross lies on the edge. Once each of the three 2-criterion subsets has been

considered, the edge comprises each of the individuals that were on the edge in any of the

subsets. This set therefore comprises the entire edge of the 3-criterion population, and

they are shown in Figure 4.9; the individuals on the edge are again shown with crosses.
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Size of k Number of individuals on edge

1 51

2 583

3 1842

4 1997

5 2000

6 2000

7 2000

8 2000

Table 4.1.: The number of individuals which lie on the edge of the population of 2000
solutions from the radar archive for criterion subsets k of size 1, . . . , (M − 1).

From this we can define the set of edge individuals; we introduce a new function domsmax(y,Y)

which returns the individuals in the population Y that dominate the individual y when

the criteria are to be maximised, noting that doms is defined in terms of minimisation, and

write the set of edge individuals as follows:

{ y | κ( yκ ∈ doms(yκ,Yκ) ∪ domsmax(yκ,Yκ)) } (4.13)

As we have observed above, it is important that corner individuals are present in the edge.

According to the definition provided by Singh et al. [2011] an individual forms a corner

of the population if it is the only non-dominated individual according to some k-criterion

subset. Given that, as long as at least one of the criteria in that k-criterion subset is

present in a other criterion subsets, that individual will be non-dominated and will be on

the edge according to this definition.

Unlike the previous two methods, this method can be applied to a many-criterion pop-

ulation such as the radar population and we demonstrate its application to finding the

edge of a population comprising 2000 samples from the solution set to the 9-objective

radar waveform problem [Hughes, 2007a]. Table 4.1 presents the number of times that an

individual is found to be on the edge.2 Clearly, the number of individuals quickly rises

with the dimensionality of the k-criterion subset and beyond 3-criterion subsets all of the

individuals are on the edge. As such, we propose a slight modification; since a large pro-

portion of the individuals in the population will be present in at least one criterion subset

we consider the frequency that individuals occur. An individual which is frequently found

to be non-dominated in a criterion subset is more likely to be a part of the edge.

Figure 4.10 illustrates the 2000 solutions from the radar population by reducing their

dimensionality with dominance distance MDS as presented in Chapter 3. Unfortunately,

the density of the points in this visualisation makes identifying regions that are part of the

edge difficult. To ameliorate this, we modify the visualisation slightly, which is shown in

2Some of the objectives contain tied values, hence the total number of maximising and minimising indi-
viduals found with criterion subsets of size 1 is not 2×M .
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Figure 4.10.: A dominance distance MDS embedding of the 2000 radar solutions. The indi-
viduals are coloured according to the frequency that they occur a 2-criterion
subset of the population. The density of the points in the visualisation makes
identifying particular regions as being on the edge difficult.

Figure 4.11. In order to enhance the clarity of the presentation we place a grid of cells over

embedding space. Each cell is coloured according to the median edge frequency within

it such that a red individual is present in a large number of criterion subsets. Since we

know how many possible 2-criterion subsets there are,
(
M
k

)
, we divide by this number to

normalise the frequency

Results are shown for k = 4, 5, 6 and 7. We can observe that the cells around the edge of

the embedding are generally coloured with lighter shades than those in the centre. This

means that the MDS projection has placed those individuals that are more frequently

found in D-criterion subsets on the edge of the embedding, as we would hope. The

lightest colours are at the ends of the “crescent” shape. An additional feature of interest

is the appearance of an edge that bisects the population from top to bottom towards the

right-hand third of the embedding. It is perhaps less intuitive to expect an edge in this

position, however upon investigation the reason becomes clear. The criteria in the radar

population divide into three groups. One group (f1, f3, f5 and f7) relate to the range

at which a radar can discern targets. The second group (f2, f4, f6 and f8) relates to

the velocity at which the radar can be moving and still discern targets, while the final

group (f9) contains a single criterion which minimises the transmission time of the radar

waveform. Figure 4.12 presents the MDS embedding of the 2000 radar individuals; the

criterion that a given individual best optimises has been marked with a symbol. If an

individual best optimises a range criterion, that individual is shown with a plus symbol. If

it best optimises a velocity criterion, then it is shown with a circle, and if it best optimises
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(c) k = 4
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(d) k = 5
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(e) k = 6
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Figure 4.11.: Cellular visualisations of the radar population embedded into 2 dimensions
with dominance distance MDS. The shade of each cell indicates the median
number of times that the individuals within that cell are on the edge in a k-
criterion subset. We show results for k = 2, . . . , 7, which show that in general
individuals on the edge of the population are arranged around the edge of the
embedding, with the exception of those which bisect the population toward
the right-hand side of the plot.
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Figure 4.12.: The MDS embedding of the radar individuals in which the type of criterion
best optimised by an individual is represented by its symbol. individuals
which best optimise a range criterion are shown by a plus symbol; velocity
criteria are shown by circles and the transmission time criterion by crosses.
There is a distinct boundary between those individuals which best optimise
range criteria and those which best optimise velocity criteria or transmission
time. This boundary is in the same position as the edge shown in Figure
4.11.

the waveform transmission time it is shown with a cross. Although there is some degree

of overlap, the individuals have been embedded in such a way that they are organised by

criterion class. The range individuals are mostly located in the right-hand third of the

embedding and do not generally overlap the velocity criteria. The boundary between the

two is in the same position as the edge shown in Figure 4.11. The separation between the

velocity and transmission time individuals is much less clear. These two types of criteria

are well correlated, as we will discuss further in Chapter 5.

4.5. Conclusion

Identifying landmark individuals in a population allows us to explore and understand

its structure. In this chapter we have investigated techniques for defining which of the

individuals in a mutually non-dominating population are on the edge. We have provided

three definitions for such individuals. The first used the attainment surface to identify

the individuals on the edge, and it was shown to be better suited to finding the edge of

a concave population than a convex one. The second projected the population onto the

simplex and then rotated a principal component embedding of the individuals to find those

which were non-dominated. The final method used 2-criterion subsets of the individuals to
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find non-dominating individuals; in addition to finding the edge of an artificial 3-criterion

population this method was shown to be capable of identifying the edge of a population

of individuals to a real-world many-criterion optimisation problem. This in turn revealed

useful information about the layout of the individuals in a dominance distance MDS

visualisation.

This chapter has demonstrated methods that work well in the multi-criterion domain, and

as shown here we have begun to investigate the extension of these methods into the many-

criterion domain. Given the prevalence of many-criterion populations, future work in this

area will address the potential to extend the attainment surface and rotation methods

to cope with many-criterion populations, as well as the search for other techniques for

characterising individuals on the edge of a mutually non-dominating population.
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5. Seriation of Heatmaps

5.1. Introduction

A common approach to visualising high-dimensional data is to use a heatmap (e.g., Eisen

et al. [1998]; Wilkinson and Friendly [2009]). Heatmaps represent values as relative tem-

peratures in a grid, where the temperature of a particular cell is shown with colour.

Several recent works have used heatmaps for visualising solution sets to multi- and many-

objective problems; to visualise such a population, rows are used to represent individuals

and columns to represent criteria. Pryke et al. [2006] presented early work in this area,

visualising solution sets to an instance of the test problem DTLZ2 [Deb et al., 2002] as

well as a real world bi-objective mineralogy problem. They observed that as well as being

applicable to any number of solutions or objectives heatmaps provide a means to visu-

alise parameter space solutions alongside their objective space counterparts. Nazemi et al.

[2008] used a heatmap to visualise solutions to a 5-objective parameter calibration problem

for a rainfall-runoff model and Biswas et al. [2009] visualised the results of optimising a

3-objective traffic management problem with a heatmap to demonstrate the trade-off be-

tween objectives. A heatmap was subsequently incorporated as a decision making tool in

an interactive multi-objective particle swarm optimisation algorithm [Hettenhausen et al.,

2010]. Most recently, Kiesling et al. [2011] discuss the use of heatmap visualisation within

a decision support system to enable the selection of a portfolio based on multiple criteria.

An example of a heatmap is shown in Figure 5.1 in which the individuals in the GUG09

dataset are visualised. Recall that each of the N = 113 individuals y ∈ {yi}Ni=1 describes

the performance of a UK university on eight performance indicators; a university achieves

the best possible performance on these indicators by minimising its score on each of them.

The universities are ordered arbitrarily, alphabetically in this case. Rather than visualise

the objective values yim themselves, we rank the individuals on each criterion to obtain rim,

the rank of the ith individual on the mth criterion. We denote the vector of ranks for an

individual yi by ri = (ri1, ri2, . . . , riM ). This ranking has two principal benefits. First, the

values to be displayed by assigning a colour should be on a common scale, as noted by Pryke

et al. [2006]. Ranking the individuals brings them onto the same range, 1 ≤ rim ≤ N ,

without altering the dominance relations between individuals, so that yi ≺ yj if and only

if ri ≺ rj . Second, providing there are no tied ranks, each ranked value occurs exactly

Some of the material in this chapter has been published as Walker et al. [2010a, 2012b,a].
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Figure 5.1.: A heatmap of the GUG09 population. Each row represents a university in the
data and each column is a criterion. The value indicated by the colour of a
cell is the rank of an individual on a criterion.

M times (once for each criterion), so each colour in the heatmap occurs M times, thus

using the full range of colours equally. This is equivalent to histogram equalisation (e.g.,

[Gonzalez and Woods, 2007]) for each criterion and avoids the problem with linear scaling

of objectives (i.e., that detail can be lost because a few large values force the majority of

the heatmap to be displayed in cooler colours). If ties are present, the tied individuals

are assigned the average of their ranks had a distinct ordinal rank been assigned to each

individual. Using ranks has the disadvantage that the ranks must be recomputed if the

population changes. However, the cost of recomputation is small and in this thesis we

confine our deliberations to static populations.

Heatmaps are a particularly useful method for visualising many-criterion populations be-

cause they can be used to illustrate the trade-off between criteria, providing important

information to a decision maker. It is not possible to see the trade-off between the criteria

in the GUG09 population shown in Figure 5.1, however we demonstrate methods for ex-

posing the conflict between criteria later in this chapter. Their scalability, both in terms

of individuals and criteria, means that they can visualise large populations of individuals

whose performance is described by a large set of criteria. In addition, this information
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is available without having to compress or discard criteria, meaning that no information

is lost in the visualisation process and the original data is recoverable. Techniques men-

tioned in previous chapters, such as MDS, do not offer this feature since they compress

the dimensionality of the population discarding potentially useful information.

Whilst heatmaps can convey useful information, we identify two problems: the presence

of one or two large criterion values in the data means that the full range of colours may

not be used. We have already discussed an approach which addresses this by visualising

the individuals in a population in rank coordinates. More seriously, the arbitrary ordering

of the individuals and criteria in a heatmap hampers its interpretability. In Figure 5.1

the individuals and criteria are unordered and the heatmap is generally unclear because of

the cluttered colours, making it difficult to compare individuals. Methods for reordering

a heatmap to enhance the clarity of the visualisation have been employed in the literature

[Pryke et al., 2006; Nazemi et al., 2008], which are dicussed later in this chapter. Seriation

is a method which has been used to make heatmaps easier to interpret [Wilkinson and

Friendly, 2009] and in this chapter we apply spectral seriation to many-criteria populations

in order to enhance their clarity. We show how the ranking of individual criteria prior

to seriation allows for the use of rank-based correlation measures, such as Spearman’s

footrule and Kendall’s τ metric, and extend the work of Pryke et al. [2006] by seriating both

parameter and objective spaces together. We formulate this as a multi-objective problem in

which we aim to place individuals together that are similar in both parameter and objective

space. We solve this problem by producing a set of solutions which approximate the trade-

off between the two objectives, and use a MOEA to refine the resulting permutations.

5.2. Seriation of Heatmaps

The goal of seriation is to construct a permutation over the individuals in a population

such that similar individuals are placed close together, and dissimilar individuals far apart.

Seriation has a long history with early uses in archaeology to establish a chronological

ordering of artefacts. An early example of its use was by Robinson [1951] who use seriation

to construct a permutation over a collection of pottery-based artefacts. Pottery can be

classified by types, and the prevalence of these types varies over time. Since the type of

pottery in an artefact can be quantified, a similarity was defined in terms of the relative

pottery type found in pairs of artefacts. This is based on the notion that two artefacts

from a similar chronological period will be of a similar type while those from different

periods will not. The resulting matrix of similarities was then reordered in order to ensure

that a pattern of increasing similarity toward the diagonal entry of a row, and decreasing

similarity from the diagonal to the right-hand edge of the row, is followed as closely as

possible. This produces a chronological ordering of artefacts given that artefacts produced

in similar periods will have similar features and therefore appear closer in the ordering

than those with dissimilar features, which are placed far apart. Seriation has also been
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used in sociology for grouping similar people together [Forsyth and Katz, 1946]. There, the

measure of similarity between the individuals participating in the sociological study relates

to their attitude to the other participants, either a positive attitude, a negative attitude

or an ambivalent attitude. The rows and columns of their similarity matrix are then

reordered to produce sub-groups of individuals with largely positive attitudes toward the

other members of the sub-group so that a permutation of the participants, in which those

with similar attitudes are close, is produced. An important advance was made by Atkins

et al. [1998], who introduced a spectral method for finding an approximate solution to the

seriation problem; we discuss this method in detail shortly. For an extensive historical

review of seriation applications see e.g. Liiv [2010].

Since the adoption of heatmaps as a visualisation tool in the many-objective optimisation

literature, efforts have been made to improve their clarity. To our knowledge, the first

study of the efficacy of heatmaps at visualising many-objective populations was presented

by Pryke et al. [2006]. That work illustrated the objective vectors of a population of

solutions to a many-objective problem without requiring the compression of the objective

vectors and losing information about the original objective values. In addition, the visuali-

sation they presented also integrated the parameter space component of a solution into the

heatmap. A monotonic normalisation of parameter and objective values was used to place

all parameters and objectives on the same scale. It is observed in this work that the result-

ing heatmap requires reordering in order to be of use to a decision maker, and the authors

employ hierarchical clustering to clarify the presentation of solutions. Specifically, they

use single-linkage clustering to cluster solutions (rows) based on the Euclidean distance

between their normalised objective values. Having done this, the visualisation is further

improved by reordering the columns. Similar parameters and objectives are placed close

together with a second single-linkage clustering. This has the effect of placing parameters

in amongst objectives, which we feel is undesirable because it makes the observation of

the trade-off between criteria, one of the useful features of a heatmap visualisation, more

difficult. Another case in which a many-criterion heatmap was reordered was presented by

Nazemi et al. [2008]. They used a heatmap to visualise the objective vectors corresponding

to solutions to a many-objective problem and reordered the heatmap based on the simple

strategy of ordering the objective vectors according to their value on the first criterion.

This is a sensible scheme if their criteria are either well correlated or anti-correlated. In

either case, the objective values and trade-off between criteria will be well illustrated. If,

however, there is little correlation between criteria, then the reordering will be ineffective.

In this chapter we use spectral seriation to reorder the set of many-criterion individuals

in the GUG09 and access point populations, as well as non-dominated solution archives

to many-objective optimisation problems. In a many-objective optimisation problem, an

individual comprises a parameter space and objective space component, and we apply

seriation in both spaces; the aim is to place similar individuals, criteria and parameters

close together in the heatmap, thus visualising trends and exceptions from the trends
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present in the population.

5.2.1. Spectral Seriation of Many-objective Populations

Seriation aims to find an ordering of individuals such that similar individuals are placed

close together and dissimilar individuals far apart. Given a permutation π over the indi-

viduals and a symmetric similarity matrix A in which Aij = Aji is the similarity between

individuals yi and yj , we seek to minimise

gy(π) =
N∑
i=1

N∑
j=1

Aij (πi − πj)2 . (5.1)

The objective function gy is minimised when similar individuals are placed close together,

and dissimilar individuals far apart. In this formulation the problem is NP-hard; there are

N !/2 possible permutations of individuals and it is too expensive to evaluate the quality

of all of them for even relatively small values of N . To resolve this difficulty, Atkins et al.

[1998] propose a spectral method in which the first step is to relax the permutation to a

continuous variable v and instead minimise:

h(v) =

N∑
i=1

N∑
j=1

Aij (vi − vj)2 . (5.2)

This relaxed definition is subject to two constraints. Firstly, to ensure that adding a

constant to all vi does not introduce multiple equivalent solutions to the seriation problem,∑
i vi = 0 must be satisfied. Assume that c is a constant value added to the vi. Then, given

Equation 5.1, gy(π) =
∑N

i=1

∑N
j=1Aij ((πi + c)− (πj − c))2. Since the two additional

constants cancel, the permutation with the added c is equivalent to the permutation

without it, hence a second (equivalent) solution to the seriation problem has been found.

The second constraint avoids the trivial solution in which all vn = 0 by requiring the

satisfaction of
∑

i v
2
i = 1. The solution to this constrained problem can be found with

linear algebra. The problem is rewritten as h(v) = vTLv, where L is the graph Laplacian

of A defined as L = A−D, and D is the degree matrix, a diagonal matrix whose elements

are Dii =
∑

j Aij [Fiedler, 1973; Mohar, 1991; Chung, 1997; von Luxburg, 2007]. The

graph Laplacian is a positive semidefinite matrix; and the smallest eigenvalue is 0 with

a corresponding eigenvector proportional to a vector of ones. A discrete permutation is

recovered from the Fiedler vector [Fiedler, 1973], the eigenvector corresponding to the first

non-zero eigenvalue of L, by ordering the individuals such that the individuals with the

nth smallest value in the Fiedler vector occupies the nth position in the permutation. At

first sight locating the Fiedler vector requires a full eigendecomposition of L, however, the

Fiedler vector may be identified as the eigenvector corresponding to the largest eigenvalue

of the complementary graph Laplacian matrix, which may be found by the power method

[Kaveh and Rahimi Bondarabady, 2000]. In any case for the applications addressed here
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(b) Seriated individual similarity

Figure 5.2.: The similarity matrix A and permuted similarity matrix for the universities
in the GUG09 data during the seriation process. The right-hand matrix is
a permutation of the left-hand similarity matrix according to the ordering
produced by seriating A. Seriating collects the dark red (very similar) pairs
of universities so that they lie along the diagonal of the matrix and pushes
the blue (very dissimilar) pairs of universities to the edges.

the matrix decomposition is computationally inexpensive (at worst O(N3)) and very much

faster than exhaustive search whose O(N !) computational complexity renders it infeasible

for N ' 10.

This method requires a symmetric N×N similarity matrix A. In order to compute such a

similarity we use the Euclidean distance between individuals. Prior to the construction of

the similarity matrix, the criterion values are normalised with the rank-based procedure

described above. The similarity Aij between the rank vectors ri and rj corresponding to

individuals yi and yj is defined as:

Aij = 1− 1

M(N − 1)2

M∑
m=1

(rim − rjm)2 . (5.3)

Since the greatest difference in ranks, which occurs when two criteria are anti-correlated,

is N − 1, we can guarantee that
∑M

m=1(rim − rjm)2 < M(N − 1)2, and so 0 < Aij < 1 for

all pairs i, j.

Figure 5.2 illustrates the similarity matrices for the individuals in the GUG09 population

before and after seriation. Red indicates that two individuals are highly similar, and blue

that they are very different, according to the similarity measure defined in Equation 5.3.

Clearly, in the seriated similarity matrix shown in Figure 5.2(b), the individuals have

been ordered so that similar individuals are close together: the red pairs of individuals,

those which are most similar, are placed near to the diagonal and therefore close to the

individuals to which they are similar. Blue, dissimilar, pairs of individuals are placed

towards the edges. The heatmap corresponding to this seriation is shown in Figure 5.3.
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(b) Seriated Individuals
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(c) Seriated Individuals & Criteria

Figure 5.3.: Seriation of the GUG09 data. The left-hand panel shows the unseriated data;
in the central panel, the universities (rows) have been seriated, and in the
right-hand panel this ordering has been seriated with respect to the KPIs
(columns).

Figure 5.3(a) repeats the visualisation of the GUG09 population shown in Figure 5.1, in

which the universities have been ordered alphabetically by name, to facilitate comparison

with Figure 5.3(b) in which the universities have been seriated. The clarity of the heatmap

has been greatly enhanced and it is now possible to begin to observe correlation between

criteria. For example, criterion 4 appears to be well correlated with criterion 5, but we

could not have observed this from the visualisation in Figure 5.3a. In Figure 5.3c the

criteria have also been seriated, and we discuss this visualisation shortly.

In addition to visualising the standard many-criterion populations we have discussed so

far, an important aspect of this chapter is the visualisation of solutions to many-objective

problems, specifically individuals with both parameter space and objective space compo-

nents. In addition to comprising parameter and objective spaces, these populations are

also mutually non-dominating as opposed to the GUG09 population which includes dom-

inated individuals; recall from Chapter 3 that the GUG09 population sorts into 6 Pareto

shells.

We now revisit an example population drawn from the many-objective optimisation liter-

ature. Recall from previous chapters, that [Hughes, 2003] optimised a set of waveforms for

transmission by a Pulsed Doppler Radar to measure the velocity and distance of a target

simultaneously. Here we visualise 200 solutions from the 12 PRI (Pulse Repetition Inter-
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(b) Seriated Individuals

4 9 2 8 6 5 7 1 3
Criteria

77

28

142

185

104

114

147

65

76

32

In
di

vi
du

al
s

20

40

60

80

100

120

140

160

180

200

(c) Seriated Individuals & Objec-
tives

Figure 5.4.: Seriation of the radar waveform data. The left-hand panel shows the unseri-
ated data; the central panel has been seriated with respect to solutions, and
the right-hand panel with respect to solutions and objective.

val) archive published online by Hughes [2007b]. Figure 5.4 illustrates the radar archive

with heatmaps. The left-hand panel shows the solutions in their original, arbitrary, order

in which each solution, ri in rank coordinates, comprises a row of the heatmap. The

colour-scale extends between 1 and 200 because with 200 solutions the ranks lie in this

range. The central panel shows the same archive after the solutions have been seriated.

As was the case with the GUG09 example, shown in Figure 5.3, similar solutions have

clearly been clustered together aiding the interpretation of the visualisation. As with the

GUG09 visualisations in Figure 5.3, Figure 5.4(c) illustrates the radar population after

the criteria have been seriated; these results are discussed in the following section.

The final example of this section shows the telecommunications population, introduced

in Chapter 3. Recall that this population comprises 165 individuals, each of which is

described by 27 KPIs; each individual represents a wireless access point in a mobile tele-

phone network, and the KPIs are used by the network operator to assess how well each

access point is performing for the purposes of scheduling maintenance. Figure 5.5 shows

the telecommunications population, both as an unseriated heatmap in Figure 5.5(a) and

as a heatmap in which the individuals have been seriated in Figure 5.5(b). Clear in both

of these visualisations is the fact that there are a large number of tied values in criteria 8

and 16; more precisely, each of these values is 0, indicating missing data. If k is the rank

of the first individual for which a value is present then the missing data is assigned the
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(b) Seriated Individuals

10 1 0 9 15 6
Criteria

94

80

20

130

115

91

138

73

141

In
di

vi
du

al
s

20

40

60

80

100

120

140

160

(c) Seriated Individuals & Objec-
tives

Figure 5.5.: Seriation of the telecommunications data. The left-hand panel shows the
unseriated data; the central panel has been seriated with respect to solutions,
and the right-hand panel with respect to solutions and objective.

average of the first k − 1 ranks, 1
k−1

∑
k − 1. The improvement in the heatmap in Figure

5.5(b) over that shown in Figure 5.5(a) is, again, clear to see. The seriation according to

KPIs shown in Figure 5.5(c) is discussed shortly.

5.2.2. Seriation of Criteria

From observing Figure 5.3b we can see that having seriated the individuals in the popu-

lation, the clarity of the heatmap could be further enhanced by seriating the criteria too,

the result of which is shown in Figures 5.3(c), 5.4(c) and 5.5(c). We define the similarity

matrix S, which has dimensions M ×M :

Smn = 1− 1

N(N − 1)2

N∑
i=1

(rim − rin)2 . (5.4)

The rest of the procedure continues as before, substituting S for A. The right-hand panel

of Figure 5.3 shows the results of seriating the heatmap in the central panel with respect to

criteria. As can be seen, similar criteria have been placed next to each other; in particular

objectives 4 and 5 which as we observed earlier are visually well-correlated, have remained

adjacent to one and other.
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Figure 5.4 presents a visualisation of the radar data which is arrived at by following the

same procedure used to produce Figure 5.3; individuals are seriated before criteria are

seriated too. Figure 5.4(c) shows the result of seriating the individuals, as in Figure 5.4(b)

and then the criteria. As can be seen, similar criteria have been placed next to each other,

grouping all of the range-based objectives (objectives 1, 3, 5 and 7) on one side and the

velocity-based objectives (2, 4, 6 and 8) on the other. Interestingly objective 9, which

measures the transmission and decoding time, is placed with the velocity-based objectives

and is clearly well correlated with objectives 2 and 4. Also it is clear that objective 6

(minimum transmission time before the schedule cannot be decoded) is least well correlated

with either group, with small values occurring in combination with large and small range

and velocity objective values. We emphasise that neither of these observations about the

character of the non-dominated set as a whole could have been made from the original

heatmap (Figure 5.4(a)). A similar improvement in heatmap clarity is observed in Figure

5.5(c) for the telecommunications population, in which similar performance indicators

have been grouped together.

In the case of the individual seriation the size of the population, 113 universities in the

case of the GUG09 population, prohibits qualitative analysis of the seriated permutation;

there are 113!/2 potential permutations and it is simply not feasible to examine them

all in order to see how close to the optimal permutation our approximation is. For the

criterion seriation, however, the permutation only comprises 8 elements and it is possible

to exhaustively evaluate the quality of each permutation so that we can see where in

the distribution of permutation qualities the approximation lies. Figure 5.6 illustrates the

distribution of permutation qualities for all 8! possible permutations of the GUG09 criteria.

The quality of a permutation is evaluated by permuting the similarity matrix according

to a given ordering and calculating the quality according to the objective function defined

by Equation 5.1. The permutation produced with spectral seriation of the criteria is

highlighted by a black line, and is clearly among the best, residing as it does in the

tail of the distribution with the best permutations. In fact, of the 40320 permutations

of 8 criteria, according to the definition of quality in Equation 5.1, the one identified

by the seriation is the 50th best, placing it in the top 0.12% of all permutations. We

reiterate that spectral seriation is not guaranteed to find the optimal ordering according

to the objective function, but rather an approximation to it. Clearly, in this case, the

seriation has succeeded in finding a good approximation to the optimal permutation. The

visualisation produced using spectral seriation to order the criteria is shown in Figure

5.6(b) for comparison against that of the permutation which provides the highest quality

(shown in 5.6(c)), according to Equation 5.1 in conjunction with the similarity defined in

Equation 5.4. As can be seen, the two figures are very similar. The only differences are

that the ordering of criteria 2 and 6 is reversed in the optimal ordering, as is the ordering

of criteria 5 and 7. Otherwise the approximated permutation is the same as the optimal

one.
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(c) Optimal Seriation

Figure 5.6.: The distribution of all permutation qualities for the GUG09 criteria evaluated
against Equation 5.1 using the criterion similarity measure in Equation 5.4.
The vertical line indicates the position of the approximation identified by seri-
ating the similarity matrix; as can be seen, the approximation is not the best
possible permutation but is in the extreme tail of the distribution toward the
ideal ordering. (b) shows the heatmap visualisation produced using spectral
seriation to reorder the criteria, while (c) shows the ordering with the highest
ordering according to Equation 5.1. Both are very similar.
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The similarity measures defined so far have computed similarity between individuals and

objectives using the Euclidean distance. The example presented in this section have shown

that using Euclidean distance produces a satisfactory permutation. In the coming sections,

we investigate methods for seriating individuals and criteria based on the rank of an

individual.

5.3. Seriating Criteria with Rank Information

As previously discussed, it is useful to put all criteria onto the same scale when visualising

individuals with a heatmap. As we discussed in the introduction to this chapter, since

the dominance relation is only concerned with rank-order among criteria, a natural way

to achieve this is to rank each individual criterion so that each lies on the range [1, N ].

Having ranked the individuals in this fashion, we can consider the problem of seriating

criteria as the problem of placing similar criteria close together. Since ranking according

to each criterion produces a set of M permutations, the distances between those crite-

ria that are similar should be small. We therefore consider methods for measuring the

distance between permutations and used them to compute a similarity between criteria.

We evaluate Spearman’s footrule [Spearman, 1904, 1906; Diaconis and Graham, 1977] and

Kendall’s τ metric [Kendall, 1938]. As defined in Chapter 2, Spearman’s footrule δSF is

computed with:

δSFmn =
N∑
i=1

|rim − rin|, (5.5)

where rim is the rank of the ith individual on the mth criterion, and Kendall’s τ metric

δKT is computed with:

δKT
mn =

∑
ij

τij(πm,πn), (5.6)

where τij(πm,πn) = 1 if the order of the ranks provided for the ith and jth element of

the original data is different in the permutations πm and πn, and 0 otherwise.

To demonstrate the use of permutation metrics for computing similarity for seriation, we

seriated the criteria in a variant of the radar data. The new dataset contained all of the

original 9 objectives, with two additional objectives. The first additional objective, which

we denote by yiA, was produced by averaging two existing, well correlated, objectives

(objectives 1 and 3); thus yiA = (yi1 + yi3)/2. The second is an objective drawn entirely

from uniform random samples (N samples from a uniform distribution between 0 and 1);

this objective is therefore expected to be uncorrelated with the other objectives, and as

such we would expect that the process of seriation will move it away from the groups of

well correlated objectives within the heatmap. The results of seriating the new dataset,

measuring similarity with Euclidean distance, Spearman’s footrule and Kendall’s τ metric,
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(c) Spearman’s footrule

9 4 2 8 B 6 5 7 1 A 3
Objectives

S
ol

ut
io

ns

20

40

60

80

100

120

140

160

180

200

(d) Tau metric

Figure 5.7.: Criterion seriation by rank-based metrics. This version of the radar data has
been modified to include an objective produced by averaging objectives 1 and
3 (objective A) and an objective entirely comprised of uniform random noise
(objective B).
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SEUC SKEτ SSPF

πEUC 7.9038× 102 5.2483× 106 2.6398× 106

πKEτ 7.9053× 102 5.2477× 106 2.6445× 106

πSPF 7.9038× 102 5.2483× 106 2.6398× 106

Table 5.1.: Comparing the permutations produced by seriating by Euclidean distance,
Kendall’s τ and Spearman’s footrule, against the set of all possible permu-
tations of the 9 objectives. The value in each cell represents the quality of a
given permutation according to a given metric. A value highlighted in bold
indicates that it is the best possible quality when evaluated under that metric.
In each case, the spectral seriation has identified the best possible permutation
by the metric in use.

are shown in Figure 5.7. As can be seen, in all cases the well correlated objective (objective

A) is placed next to one or both of the objectives upon which it is based. In addition,

the random objective (objective B) is placed in the middle of the heatmap, between

the two groups of well correlated objectives. In general, the permutations produced by

seriation are very similar across the three metrics. In the case of Spearman’s footrule and

Kendall’s τ metric this is perhaps unsurprising given the inequality provided by Diaconis

and Graham [1977], δKT ≤ δSF ≤ 2δKT. The Euclidean distance ordering is the same

as that produced by Spearman’s footrule and in the case of Kendall’s τ , the ordering

of objectives 4 and 9 have been reversed from that of the other two metrics. We note

that while the ordering under Kendall’s τ is the reverse of those produced with Euclidean

distance and Spearman’s footrule, the permutations are equivalent. Since all three metrics

offer similar performance in this case, we suggest that Spearman’s footrule should be used

to seriate objectives because of its simplicity and speed of calculation.

Returning to the original 9-objective radar archive, it is feasible to evaluate all of the 9!

permutations of objectives in order to examine their fidelity under each of the three met-

rics using Equation 5.1 in conjunction with the similarity matrix defined in Equation 5.4.

Table 5.1 presents the results of this analysis. Each row of the table represents the fidelity

of the permutation which was found by seriating with a similarity matrix computed with

one of the metrics; for example, πEUC is the permutation found by seriating using the Eu-

clidean distance (Equation 5.3). We then consider the quality of this permutation under

the other metrics too; each column represents one of the similarity measures (Euclidean

distance, Kendall’s τ and Spearman’s footrule — SEUC, SKEτ and SSPF respectively) which

is reordered by the permutation such that the quality can be evaluated with Equation 5.1.

A quality which is highlighted in bold indicates that the permutation is the best found

in exhaustive search for a given metric. Reassuringly, the best permutation according to

the Euclidean distance is that found by seriating the Euclidean distance-based similarity

matrix, and as such it is highlighted in the Euclidean distance column. This is also the

case both for Spearman’s footrule and Kendall’s τ , indicating that in all three cases the
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“best” permutation has been found. However, as the spectral method is an approximation

this will not always be the case, especially in the event that there are more objectives;

indeed, it was not the case for the GUG09 results presented earlier in this chapter. Inter-

estingly, the best quality under both the Euclidean distance and Spearman’s footrule are

the same, indicating that the permutations produced are either the same or the reverse of

one another.

In general, because of its simplicity and ease of calculation, we prefer to calculate similarity

between criteria with Spearman’s footrule. That said, the difference in complexity of

calculation between Spearman’s footrule and Kendall’s τ is small, and as we have observed

here they produce similar results.

5.4. Seriating Individuals with Rank Information

We first consider alternative rank-based methods of computing individual similarity, specif-

ically using the rank of two individuals to determine how similar they are. To do this,

we revisit the power index from Chapter 3, although the other ranking methods shown in

that chapter, such as average rank, could also be used; the power index is used because it

produces secondary information about the strength of an individual.

To compute the power index, we first construct a generalised tournament matrix (GTM)

based on the probability of dominance; as described in Chapter 3, the probability that

one individual dominates another is the likelihood that it is better on a randomly chosen

criterion. The power index is then found by identifying the eigenvector u corresponding to

the principal eigenvalue, so that the individual with the nth largest value in u is assigned

rank n.

In order to use the power index as a measure of similarity between individuals we compute

the power of each individual and then use the difference in power between each pair of

individuals:

Sij = max
n

un −min
n
un − |ui − uj |. (5.7)

An alternative to this is to consider the ranked power index, such that we rank the vector

u and compute the difference between ranks instead. The result of these methods

are shown in Figures 5.8, 5.10 and 5.11. The GUG09 heatmaps (Figure 5.8) are clearer,

and by examining the similarity matrices we can see that similar individuals have indeed

been grouped together along the diagonal in what appears to be a very good seriation.

The improvement in the clarity of the radar heatmap (Figure 5.10) is less than we have

observed in previous examples; a likely reason for this is that ordering by Euclidean

distance between values groups individuals together with similar objective values. The

power index, however, can consider two individuals with very different objective values
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Figure 5.8.: Seriation of universities in the GUG09 dataset using the power index as a
similarity measure. Similarity in the central panel was determined using the
raw power index values, whilst in the right-hand panel the power index values
were ranked.
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Figure 5.9.: Before and after similarity matrices for the process of seriating the GUG09
population using the power index as a similarity measure; similarity has been
determined using the power index values. By inspection, the seriation appears
to have found a very good ordering, grouping the red very tightly to the
diagonal of the matrix.

similar if they are both deemed to be powerful in the context of the population. Such

individuals, whilst having similar power, may not have similar objective values. This will

result in placing very different colours next to each other in the heatmap, reducing the

clarity of the final visualisation. This effect is less noticeable in the GUG09 population

heatmaps shown in Figure 5.8. A likely explanation for this effect is the presence of Pareto
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Figure 5.10.: Seriation of solutions in the radar archive using the power index as a sim-
ilarity measure. Similarity in the central panel is based on the raw power
index values, whilst in the right-hand panel it is based on ranked power index
values.

shells within the population. The Pareto optimal individuals are generally superior on a

range of criteria, while those individuals in the last Pareto shell generally exhibit poor

performance on several criteria. As such, in a heatmap, the row corresponding to a Pareto

optimal individual will generally be a cool colour representing poor ranks, and the row

corresponding to a heavily dominated individual will comprise warm colours, representing

good ranks. Since the greatest difference in ranks will be between those individuals in

the first Pareto shell and those in the last, the most superior individuals will be placed

away from the most inferior ones, which gathers together the cool colours at one end of

the heatmap and warm colours at the other. In the case of a mutually non-dominating

population, powerful individuals will be superior on different criteria, causing less clear

separation between the colours and a more confusing visualisation, as shown in Figures

5.10 and 5.11. The visualising the telecommunications population (Figure 5.11) provides a

similar result; while there is a noticeable improvement in quality, the improvement is not as

great as in previous sections. That said, from examining the permuted similarity matrices

for the GUG09 population (Figure 5.8), shown in Figure 5.9, it is clear that the spectral

seriation has produced a permutation that places similar individuals close together as it

should. This highlights the necessity of choosing the similarity measure used to compare

individuals carefully in order to seriate them for visualisation with a heatmap.

In order to assure ourselves that the seriation process is finding suitable permutations
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Figure 5.11.: Seriation of solutions in the telecommunications population using the power
index as a similarity measure. As with the examples in Figures 5.8 and 5.10,
similarity in the central panel is based on the raw power index values, whilst
in the right-hand panel it is based on ranked power index values.

according to the similarity measure used, we evaluate the qualities of the permutations in

a similar fashion to that used in Table 5.1. There we evaluated the quality of permutation

produced by different metrics used to seriate criteria. Three metrics were used, resulting

in three similarity matrices and three seriation permutations. Each similarity matrix was

permuted by each seriated permutation, and the quality assessed using Equation 5.1.

We repeat this procedure here, producing a similarity matrix for the individuals using

Euclidean distance and the power index rank method described in this section; we use

the power index value rather than rank for comparison and provide results for the three

populations (GUG09, radar and telecommunications). Unfortunately, the additional step

of highlighting when seriating produces the optimal ordering is impossible here as all three

populations contain far too many individuals to enumerate all possible permutations. The

results shown in Table 5.2 shows that permuting a similarity matrix by the ordering

produced by its spectral seriation (i.e., the quality of SEUC permuted by πEUC) produces

the superior seriation quality. While this is far from a conclusive proof that the seriation

is producing the best possible approximation to the optimal ordering, it does serve as a

reassurance that the permutation produced is of reasonable quality.

In the last two sections we have shown how various methods can be used to reorder

heatmaps of objective vectors, both in terms of the solution and objective orderings. In

the next section we extend the work of Pryke et al. [2006] and produce a seriated heatmap
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5. Seriation of Heatmaps

Population Similarity Measure πEUC πRK

GUG09
SEUC 1.8593× 107 1.8727× 107

SRK 1.3816× 109 1.3564× 109

Radar
SEUC 1.8278× 108 2.1672× 108

SRK 2.9990× 109 2.4833× 109

Telecommunications
SEUC 9.4766× 107 9.7116× 107

SRK 1.0331× 109 8.6488× 108

Table 5.2.: Comparing the permutation quality produced with Euclidean similarity (SEUC)
and rank-based similarity using power index values (SRK). Permutations were
produced by seriating both similarity matrices. Each similarity matrix was
permuted by each seriated permutation to evaluate the quality of the seriation
using Equation 5.1. In each case, the permutation of the similarity matrix
used to produce the ordering (e.g., the quality of SEUC permuted by πEUC)
produces the superior quality, as would be expected.

visualisation which also incorporates information about parameter space.

5.5. Joint Seriation of Many-objective Solutions

So far in this chapter we have shown how spectral seriation can be used to reorder objective

space heatmaps to enhance their intepretability. In the case of populations of solutions to

many-objective optimisation problems, it is often of interest to view the parameter space

solutions xi alongside their objective space counterparts [Pryke et al., 2006] and in this

section we show how to simultaneously optimise the parameter space and objective space

views. We assume that the parameters are real valued xi ∈ RP , which allows meaningful

distances between parameters to be calculated.

A straightforward way of jointly seriating parameter and objective space is shown in Figure

5.12 for a population of solutions to the WFG8 test problem [Huband et al., 2005]. The

population comprises 200 solutions to a 10-objective instance of the problem, where the

number of parameters is 38. The solutions were sampled from the known Pareto optimal

set and perturbed with the addition of a small amount of Gaussian random noise. Here,

the objective vectors yi have been seriated in objective space with respect to objectives

(reordering the columns) and then objective vectors (reordering the rows) which yields the

heatmap shown in the lower right-hand panel of Figure 5.12. It is important to note that

the same result would have been achieved by seriating first with respect to individuals

(rows) and then criteria (columns) since the order of seriation does not affect the final

outcome. Having done this, solutions xi in parameter space were reordered to match
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Figure 5.12.: Seriation of both objective and parameter spaces for the WFG8 test prob-
lem. The upper panels show heatmaps of parameter space (left) and objective
space (right). The lower panels show the result of first, seriating the objec-
tives, followed by the solutions according to their objective space similarity
(bottom right). The resulting solution ordering is then applied to the so-
lutions in parameter space, and the parameters themselves are seriated to
yield the bottom left heatmap. As can be seen, seriating parameters has kept
the distance parameters (those on the left-hand side of the parameter space
heatmap in (a)) together.
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the order of the objective vectors in the seriated objective space (that is, the rows of

the bottom left-hand panel), and finally the parameters were seriated to place similar

parameters close to each other. In a similar manner to objective space seriation, the order

of parameters was seriated by using spectral seriation to approximately minimise

gx(π) =

N∑
i=1

N∑
j=1

Λij(πi − πj)2. (5.8)

The objective function gx(π) requires a parameter space measure of the similarity of

individuals. Since ranking individuals in parameter space is meaningless we measure the

parameter space similarity of individuals xi and xj in using their correlation or the well-

known cosine similarity:

Λij =

∑P
p xipxjp√∑P
p x

2
ipx

2
jp

. (5.9)

which is the cosine of the angle between xi and xj . We also provide an example later

using the negative mean difference of solutions

Λij = −

∣∣∣∣∣∣ 1

P

P∑
p=1

(xip − xjp)

∣∣∣∣∣∣ (5.10)

which has the effect of placing individuals with parameters of the same magnitude together.

However, particular optimisation problems may suggest alternative measures of parameter

space similarity to those used here.

As Figure 5.12 shows, the resulting ordering of parameter space individuals (induced by

the objective space ordering of individuals) has indeed placed those solutions with larger

parameter values together at the top of the heatmap. The seriation has revealed a clear

correlation of solutions that optimise objective 10 well with larger parameter values, while

the remainder of the objectives are best optimised by small parameter values. Clearly,

however, reordering the parameter space solutions by the objective space seriation has not

induced the same improvement in clarity as we have previously demonstrated in objective

space; in a perfect reordering, all of the large-parameter solutions would reside in the

top half of the heatmap and all of the small-parameter solutions would reside in the

bottom. We discuss an approach to resolving this later in this section. The seriation of

parameters has, however, produced a good result. As is common for many test problems,

the parameters of WFG8 are grouped into two types. In this instance of the problem, 18

of the parameters are position parameters, which control the region of the Pareto front on

which the solution lies. The remaining 20 are distance parameters, controlling the distance

of the solution from the true Pareto front. The 20 distance parameters are well correlated

(since the solutions are very close to the Pareto front their distance parameter values are

nearly equal), and are therefore grouped together in the centre of the heatmap. Since the

solutions were sampled uniformly from across the Pareto front, the position parameters

are uncorrelated, and have been placed at the edges of the heatmap. Later in this section
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Figure 5.13.: A heatmap of the WFG8 parameters and objectives, reordered with hierar-
chical clustering as proposed by Pryke et al. [2006]. As in the other heatmaps
presented in this chapter, a row represents a solution and a column is either
an objective or a parameter. Solutions were clustered with single linkage clus-
tering based on the Euclidean distance between normalised objective values,
and objectives and parameters are clustered together. Dendrograms show
the clustering for solutions (on the left) and objectives and parameters (on
the top).

we show a further example with solutions to the radar data.

Figure 5.13 presents the same data, this time using the visualisation method presented by

Pryke et al. [2006] Here, unlike the method we propose, the objectives and parameters are

visualised with a single heatmap, and the columns of the heatmap are clustered so that

both objectives and parameters are reordered together. Solutions are clustered with single-

linkage clustering based on the Euclidean distance between their normalised objective

values. Similarly, objectives and parameters are clustered together. As in Figure 5.12,

the distance parameters have been gathered together, however the position parameters

and objectives are intermixed. This makes observation of the trade-off between objectives
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more difficult and as such we prefer a visualisation that keeps the two spaces separate.

Additionally, the need to cluster both spaces together precludes the possibility of using

ranks to normalise the objectives to fully use the colour scale, since they must be on the

same range as the parameters that cannot themselves be ranked.

While the example in Figure 5.12 was seriated according to objectives space solutions,

after which parameter space solutions were reordered to match the objective space seri-

ation, it could justifiably have been done the other way around, seriating parameter space

individuals and using the resulting permutation to reorder the objective vectors. How-

ever, there is clearly a trade-off between the quality of the solution orderings in parameter

and objective spaces. The simultaneous clustering method [Pryke et al., 2006] obscures

the trade-off, giving unknown relative weights to parameter and objective spaces. Here we

therefore seek to simultaneously optimise the ordering of individuals in both spaces using a

bi-objective evolutionary algorithm to locate an approximation of the Pareto front formed

by the objective functions gy(π) (Equation 5.1) and gx(π) (Equation 5.8). A solution π

to this multi-objective problem is a permutation by which individuals and criterion vec-

tors are reordered in the heatmaps. Each permutation contains N elements, each element

corresponding to a member of the population to be visualised, determining its position

within the heatmap.

We use a basic multi-objective evolutionary algorithm to explore the trade-off between the

quality of ordering in the two spaces, gx and gy. Specifically, the algorithm is a (µ+ λ)–

evolution strategy with a passive elite archive. A population Π = {πi}Pi=1 is maintained

and at each generation is used to produce an offspring population Π′ of permutations

which are evaluated under the two objective functions. Those µ solutions which are found

to produce the most harmonious ordering of individuals and criterion vectors are used to

replace Π as the parent population for the next generation.

The process is outlined in Algorithm 4. The inputs to the algorithm are the individual

and criterion vectors to be ordered, as well as the similarity matrices which describe

the two spaces. Its first step is to generate a seeded population by constructing a set

of convex combinations of the similarity matrices. To do this we define a parameter η

which determines the proportion of each matrix that is used to produce the combination;

η ∈ [0, 1], and the resulting combined similarity matrix Sη is a positive semidefinite matrix

constructed as follows:

Sη = ηA + (1− η)Λ. (5.11)

In this formulation the example in Figure 5.12, where the populations X and Y shown

in the top row are seriated favouring criterion space A, η = 1, and the influence of

the parameter space similarity matrix Λ is eliminated completely. If η = 0, we remove

the influence of the criterion space similarity matrix and focus exclusively on similarity

in parameter space. To generate a seeded population Π of permutations we generate

µ = 100 combination matrices by generating µ similarity matrices Sη for µ uniform samples

147



5. Seriation of Heatmaps

Algorithm 4 Multi-objective Optimisation of Joint Seriation

Require: Parameter space similarity matrix, Λ; objective space similarity matrix, A.
1: E := ∅ Initialise an empty archive
2: η := 0
3: for i := 1, . . . , µ do
4: Si := ηA + (1− η)Λ Combine parameter and objective space similarity matrices
5: πi := seriate(Si) Seriate the combined similarity matrix
6: fi := (gx(Λ,πi), gy(A,πi)) Evaluate the solution
7: E := update(E,πi, fi) Update the archive
8: η := η + (1/µ− 1)
9: end for

10: while stopping condition not met do
11: for i := 1, . . . , µ do
12: π′i := πi Copy the current solution
13: π′i := mutate(π′i) Mutate the child solution
14: f ′i := (f1(Λ,π

′
i), f2(A,π

′
i)) Evaluate the solution

15: E := update(E,π′i, f
′
i) Update the archive

16: end for
17: {(π, f)} := select({(π, f)} ∪ {(π′, f ′)}) Pareto sorting selection
18: end while

η ∈ [0, 1]. The objective vectors corresponding to the permutations produced by seriating

these combined similarity matrices are shown for the WFG8 population and the radar

data as insets on the main panel of Figures 5.14 and 5.15. As can be seen, the result

is a set of permutations whose corresponding objective vectors lie between those for the

η = 0 case (denoted by a circle) and η = 1 case (denoted by a cross). The procedure by

which the solution sets Π were produced is outlined in Algorithm 4 on lines 3—9. Each

of the non-dominated solutions from the initial seeded population is added to an elite

archive E; this retains a copy of each solution which is non-dominated with respect to the

other solutions in the archive at a given time during the optimisation. If at a later time a

solution is found which dominates an archived solution, the dominated solution is removed

from the archive in favour of the dominating solution. If the solution is not dominated by

any member of the archive, it joins the archive.

Having generated an initial population and initialised the elite archive, the evolutionary

process begins (Line 10). At the start of every generation, each solution is copied to

produce a child solution which is then mutated to change the permutation that it represents

Line (13). These child solutions are evaluated under the two objective functions (Line 14)

and if they are not dominated by any members of the archive they are added to it (Line

15). At the end of each generation, the best µ solutions are identified from the union of

the parent and child populations and are retained to become the new parent population

for the next generation. To identify the top µ solutions, the union of the two populations,

Π ∪ Π′, is ranked using the Pareto sorting technique described in Chapter 3 (Line 17).

When a stopping criterion is met, the evolutionary process stops and returns the final

archive of non-dominated solutions.
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Caution is required when mutating a permutation-based solution since a solution is con-

strained to contain each element exactly once. A traditional mutation or crossover scheme

would not guarantee to obey this constraint so we employ operators based on the trans-

position of elements within the permutation [Eiben and Smith, 2003]. One method used

is block transposition, in which a block of ξ elements are swapped with a second ξ-element

block elsewhere in the permutation. A second method used is shuffle transposition, where

a block is selected in the permutation and its constituent elements randomly reshuffled.

We employed a mutation strategy in which either one of these operators was used inde-

pendently, or both in combination. In the combination case, a pair of blocks of elements

were transposed before a further block of elements were shuffled, or vice versa. The choice

of operators, and the order in which the operators in a stacked mutation were performed,

was determined based on a uniform random draw. 50% of the time both operators were

used, either a shuffle followed by a transposition or vice versa, with even likelihood. 25%

of mutations are purely based on a transposition, and the remaining 25% are purely based

on a shuffle. In all cases, the block size is a random integer in the range (0, bN/10c).

Figure 5.14 shows the combined non-dominated permutations from 10 runs for the 200

WFG8 solutions and objective vectors used previously. As the main panel shows, the

solutions after optimisation are very close to the initial solutions found by Equation 5.11.

The inset panel shows the objective vectors resulting from the seriations of Sη used to

initialise the evolutionary population, together with the gx(π) and gy(π) corresponding to

200 randomly chosen permutations. Clearly the initialisation using Sη provides a very good

approximation to the optimal trade-off between gx(π) and gy(π) and although the MOEA

has improved the front slightly, its main effect, in this case, has been to remove dominated

members of the seeded initialisation set, and to fill in the gaps in the initialisation set.

Whilst it is useful for a decision maker to have full Pareto front approximation on which

to base their selection of operating point, the MOEA has failed to uncover much beyond

the original initialisation set, although of course the dominated solutions corresponding

to low objective space qualities gy(π) have been eliminated. The heatmaps on the right-

hand side of the main panel show the seriations produced by solutions along the Pareto

front approximation. The top heatmap represents the solution highlighted at the top of

the approximated front and is the best ordering with respect to parameter space. The

bottom heatmap is the solution highlighted at the bottom of the approximate front, namely

the best objective space ordering found, and is essentially the visualisation shown in the

bottom row of Figure 5.12. The middle heatmap represents a compromise between the

objective space and parameter space coherence. There is a clear reduction in seriation

quality when parameter space is ordered in terms of objective space similarity and vice

versa. However, it may be worth accepting this compromise in order to be able to view

the two spaces together.

We also demonstrate the result of optimising the joint seriation of parameters and objective

149



5. Seriation of Heatmaps

2.
31

2.
32

2.
33

2.
34

2.
35

2.
36

P
ar

am
et

er
S

pa
ce

Q
ua

lit
y

×
10

8

1.
90

1.
95

2.
00

2.
05

2.
10

2.
15

ObjectiveSpaceQuality

×
10

8

η
se

t
A

gg
re

ga
te

d
Fr

on
t

R
an

do
m

S
ol

ut
io

ns

2.
30

2.
32

2.
34

2.
36

2.
38

2.
40

2.
42

2.
44

×
10

8

1.
90

1.
95

2.
00

2.
05

2.
10

2.
15

2.
20

2.
25
×

10
8

P
ar

am
et

er
s

Solutions

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

O
bj

ec
tiv

es

2040608010
0

12
0

14
0

16
0

18
0

20
0

Solutions

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

2040608010
0

12
0

14
0

16
0

18
0

20
0

Solutions

P
ar

am
et

er
S

pa
ce

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

O
bj

ec
tiv

e
S

pa
ce

2040608010
0

12
0

14
0

16
0

18
0

20
0

F
ig

u
re

5
.1

4.
:

O
p

ti
m

is
ed

tr
a
d

e-
off

b
et

w
ee

n
se

ri
a
ti

on
q
u

al
it

y
in

p
ar

am
et

er
sp

ac
e
g x

(π
)

an
d

ob
je

ct
iv

e
sp

ac
e
g y

(π
)

fo
r

th
e

W
F

G
8

so
lu

ti
on

se
t.

T
h

e
m

a
in

p
a
n

el
sh

ow
s

th
e

in
it

ia
l

so
lu

ti
o
n

s
fr

om
se

ri
at

io
n

u
si

n
g

th
e

si
m

il
ar

it
y

m
at

ri
x

S
η

(5
.1

1)
a
s

cr
o
ss

es
(a

ls
o

sh
ow

n
in

th
e

in
se

rt
)

a
n

d
th

e
co

m
b

in
ed

es
ti

m
a
te

d
P

a
re

to
fr

on
t

fr
o
m

10
ru

n
s

of
th

e
ev

ol
u

ti
on

ar
y

op
ti

m
is

er
.

T
h

e
h

ea
tm

ap
s

on
th

e
ri

gh
t-

h
an

d
si

d
e

of
th

e
fi

gu
re

co
rr

es
p

o
n

d
to

op
ti

m
is

ed
so

lu
ti

on
s

m
a
rk

ed
on

th
e

m
ai

n
p

an
el

b
y

la
rg

e
ci

rc
le

s.
T

h
e

to
p

an
d

b
o
tt

om
v
is

u
a
li

sa
ti

on
s

a
re

th
e

so
lu

ti
o
n

o
rd

er
in

g
s

fo
u

n
d

b
y

th
e

M
O

E
A

w
h

ic
h

b
es

t
op

ti
m

is
e

th
e

p
ar

am
et

er
sp

ac
e

or
d

er
in

g
a
n

d
ob

je
ct

iv
e

sp
ac

e
o
rd

er
in

g
re

sp
ec

ti
ve

ly
.

T
h

e
ce

n
tr

a
l

h
ea

tm
ap

s
sh

ow
a

so
lu

ti
o
n

to
w

ar
d

s
th

e
ce

n
tr

e
of

th
e

P
ar

et
o

fr
on

t
am

ou
n
t.

O
b

je
ct

iv
es

an
d

p
a
ra

m
et

er
s

h
av

e
al

so
b

ee
n

se
ri

a
te

d
in

d
ep

en
d

en
tl

y.
P

a
ra

m
et

er
sp

a
ce

se
ri

a
ti

on
h

as
gr

ou
p

ed
p

ar
am

et
er

s
x

ro
u

gh
ly

in
to
x
p

co
n
tr

ol
li

n
g

d
is

ta
n

ce
fr

om
th

e
tr

u
e

P
ar

et
o

fr
o
n
t

a
n

d
x
p

co
n
tr

o
ll

in
g

a
n

gu
la

r
lo

ca
ti

o
n

on
th

e
fr

on
t.

150



5. Seriation of Heatmaps

−
70

00
00

−
60

00
00

−
50

00
00

−
40

00
00

−
30

00
00

−
20

00
00

−
10

00
00

0
P

ar
am

et
er

S
pa

ce
Q

ua
lit

y
−

1.
25

3×
10

8

1.
82

8

1.
83

0

1.
83

2

1.
83

4

1.
83

6

1.
83

8

1.
84

0

1.
84

2

ObjectiveSpaceQuality

×
10

8

η
se

t
A

gg
re

ga
te

d
Fr

on
t

R
an

do
m

S
ol

ut
io

ns

−
1.

3
−

1.
2
−

1.
1
−

1.
0
−

0.
9
−

0.
8
−

0.
7
−

0.
6

×
10

8

1.
80

1.
85

1.
90

1.
95

2.
00

2.
05

2.
10

2.
15

2.
20

2.
25
×

10
8

P
ar

am
et

er
s

Solutions

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

O
bj

ec
tiv

es

2040608010
0

12
0

14
0

16
0

18
0

20
0

Solutions

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

2040608010
0

12
0

14
0

16
0

18
0

20
0

Solutions

P
ar

am
et

er
S

pa
ce

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

O
bj

ec
tiv

e
S

pa
ce

2040608010
0

12
0

14
0

16
0

18
0

20
0

F
ig

u
re

5
.1

5.
:

O
p

ti
m

is
ed

tr
a
d

e-
o
ff

b
et

w
ee

n
se

ri
a
ti

o
n

q
u

al
it

y
in

p
ar

am
et

er
sp

ac
e
g x

(π
)

an
d

ob
je

ct
iv

e
sp

ac
e
g y

(π
)

fo
r

th
e

ra
d

a
r

d
at

a
.

T
h

e
m

ai
n

p
a
n

el
sh

ow
s

th
e

in
it

ia
l

so
lu

ti
on

s
fr

o
m

se
ri

at
io

n
u

si
n

g
th

e
si

m
il

ar
it

y
m

at
ri

x
S
η

(5
.1

1)
as

cr
o
ss

es
(a

ls
o

sh
ow

n
in

th
e

in
se

rt
)

a
n

d
th

e
co

m
b

in
ed

es
ti

m
at

ed
P

a
re

to
fr

o
n
t

fr
om

1
0

ru
n

s
o
f

th
e

ev
ol

u
ti

on
ar

y
op

ti
m

is
er

.
T

h
e

h
ea

tm
ap

s
o
n

th
e

ri
g
h
t-

h
a
n

d
si

d
e

of
th

e
fi

gu
re

co
rr

es
p

on
d

to
op

ti
m

is
ed

so
lu

ti
on

s
m

a
rk

ed
o
n

th
e

m
a
in

p
an

el
b
y

la
rg

e
ci

rc
le

s.
T

h
e

to
p

an
d

b
ot

to
m

v
is

u
al

is
at

io
n

s
ar

e
th

e
so

lu
ti

o
n

o
rd

er
in

gs
fo

u
n

d
b
y

th
e

M
O

E
A

w
h

ic
h

b
es

t
op

ti
m

is
e

th
e

p
a
ra

m
et

er
sp

ac
e

or
d

er
in

g
an

d
ob

je
ct

iv
e

sp
ac

e
o
rd

er
in

g
re

sp
ec

ti
ve

ly
.

T
h

e
ce

n
tr

al
h

ea
tm

a
p

s
sh

ow
a

so
lu

ti
on

to
w

a
rd

s
th

e
ce

n
tr

e
o
f

th
e

P
ar

et
o

fr
on

t
am

ou
n
t.

O
b

je
ct

iv
es

an
d

p
ar

am
et

er
s

h
av

e
a
ls

o
b

ee
n

se
ri

at
ed

in
d

ep
en

d
en

tl
y.

151



5. Seriation of Heatmaps

vectors for the radar data. Figure 5.15 presents the results of this optimisation, and was

produced by following the same procedure as that used to produce Figure 5.14 – this time

utilising the negative mean difference as the parameter space solution similarity (Equation

5.10). As before, the MOEA was seeded with 100 permutations obtained from seriating

Sη for linearly spaced η and the non-dominated permutations from 10 runs are shown.

Like the WFG8 population, the MOEA has found permutations that have only a marginal

improvement over the initialisation seriations of Sη. For this particular problem, however,

it is clear to see that seriating solutions in objective space also leads to a good ordering of

solutions in parameter space (and vice versa) and that either seriation is difficult to improve

on. This indicates a strong correlation between parameters and solutions, providing useful

information to the problem owner and we emphasise that this radar problem is a real

problem rather than a synthetic test problem. We also draw attention to the marked

improvement over random permutations when using spectral seriation with any of the Sη.

It is not always possible to achieve an ordering that simultaneously groups like solutions

in parameter space and objective space. Nonetheless the two examples illustrate that

a seriation which compromises between parameter space and objective space grouping

quality can be a helpful visualisation, particularly as it allows the investigator to assess

objectives and parameters together.

Although on a limited number of examples, these results indicate that seriation of linear

combinations of A and Λ provides very good approximations to the optimal orderings,

which display an almost linear trade-off between parameter and objective space quality.

There may be examples when an MOEA can improve significantly upon the convex com-

bination defined in (5.11). Here we have used the cosine similarity and negative mean

difference for measuring the proximity of parameter vectors, however, the choice of simi-

larity is less clear than for objective space, where conversion to ranks simplifies the choice.

Other similarity measures may be more useful for particular problems, particularly for

categorical parameters for which there is no natural ordering.

5.6. Conclusions

Heatmaps provide a solution to the problem of visualising a many-criterion population

without incurring information loss through dimension reduction, however the often arbi-

trary ordering of individuals and criteria can lead to a confusing visualisation. Seriation

provides a means of resolving this issue, as has been demonstrated in this chapter.

A variety of metrics have been applied to determining the similarity between individuals

and criteria. Euclidean distance operates well in both cases; ranking each objective and

then using a permutation comparison metric such as Spearman’s footrule or Kendall’s τ

metric allows the criteria to be reordered as similar criteria will produce similar rankings

152



5. Seriation of Heatmaps

over the population. Performance-based measures such as the power index do not ef-

fectively compare individuals since solutions can demonstrate similar performance whilst

residing in a different region of the non-dominated set and having very different criterion

values; the resulting ordering does not enhance the heatmap.

When visualising solutions to a multi-objective problem it can also be useful to visualise the

parameter space component of a solution along with the corresponding objective vectors.

We have shown that ordering solutions in parameter space by a permutation obtained

by seriating objective vectors can enhance the parameter space heatmap, and vice versa,

but that a trade-off exists between the two. Optimising this trade-off with a convex

optimisation procedure generated a permutation which enhanced both spaces, although

results were better for some populations, a set of WFG8 solutions for example, than for

others, a set of solutions optimising radar waveform design.

In this chapter, the focus has been on visualising a many-criterion population in such a way

that all of the criterion values are incorporated into the visualisation. In the next chapter

we change tack and consider methods for identifying which criteria can be safely discarded

without causing too much damage to the rank of the individuals in a population.

153



6. Rank-based Dimension Reduction

6.1. Introduction

So far, this thesis has examined methods for visualising a population of many-criterion in-

dividuals. These visualisations have been based on the structural information provided by

the pairwise dominance relations between individuals. One of the visualisations shown in

Chapter 3 used Pareto sorting to arrange the individuals in a population into a graph. An-

other sought to preserve dominance distances in a MDS embedding of a population. As has

previously discussed, dominance itself does not scale well to differentiate between many-

criterion individuals because the individuals are predominantly mutually non-dominating

and hence are incomparable. While the dominance distance MDS method was shown to

be robust in high-dimensional spaces, we found the method based on Pareto sorting to

be badly affected by this lack of discrimination. It is therefore desirable to identify any

redundant criteria, criteria which do not contribute to the structure of a population, so

that they can be discarded. In this chapter we investigate methods for criterion selection.

The criterion selection problem is analogous to feature selection in pattern recognition

[e.g. Bishop, 2007]. The general aim is to reduce the dimensionality of a dataset while

preserving the characteristics of the original data. In Chapter 3, we used MDS to reduce

the dimensionality of a many-criterion population. There, we defined a metric to operate

in criterion space that computes distances between individuals in terms of their pairwise

dominance relationships with the other individuals in the population. We used MDS to

compress the dimensionality so that individuals that have similar dominance relations with

other members of the population are placed close together in the new, low-dimensional,

coordinate space. We provided illustrations on a variety of populations that demonstrated

the dominance distance MDS approach producing a faithful representation of the popula-

tion and its structure, however it did so at the expense of retaining the original criteria.

Since the decision maker, who must use the visualisation to interpret the population, is

familiar with the original criteria, it is helpful to present them with a visualisation in terms

of those criteria. Since criterion selection reduces the dimensionality of a population by

retaining the most important criteria and discarding the rest, we now turn our attention

to those techniques.

Some of the material in this chapter has been published as Walker et al. [2011].
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6. Rank-based Dimension Reduction

Quantifying the characteristics of a population can be done in a variety of ways. In

feature selection, dimension reduction is often done to find the most informative features

on which to base classification or regression. Feature selection methods therefore select

the features that minimise classification or regression errors [Bishop, 2007]. In terms of

the multi-objective optimisation literature, various approaches have been taken. These

include selecting the objectives that capture the largest proportion of variance present in

a population [Deb and Saxena, 2005] and minimising the number of pairwise dominance

relationships that change as a result of omitted objectives [Brockhoff and Zitzler, 2007a].

In this work we strive to minimise the change to an individual’s average rank caused by

discarding criteria. We incorporate rank-based criterion selection into three algorithms:

a greedy backward criterion selection algorithm; a single-objective hill-climber; and a

multi-objective formulation of the criterion selection problem. We illustrate the effect of

removing criteria with these methods on variants of the GUG09 population that we have

used in earlier chapters, as well as the mobile telephone access point performance data.

As in previous chapters, since the terms criterion and objective are used interchangeably

in the multi-objective literature, it is important to note that in this work we use criterion

to refer to a feature of the population, some of which we intend to discard, and objective to

refer to that which is minimised as part of the algorithm performing the criterion selection.

6.2. Criterion Selection

Most varieties of dimension reduction strive to minimise information loss as quantified by

some measure. A common approach in pattern recognition, where the aim is to predict

values, class labels in classification and real values in regression, is to identify the features

which lead to the best prediction of the target values. As such, a small subset of features

are chosen that maximise the predictive accuracy (for example, measured in terms of the

correct number of classifications) of a pattern recognition tool.

In the evolutionary optimisation literature, one of the earliest studies on discarding redun-

dant criteria was by Deb and Saxena [2005] who presented a method utilising Principal

Component Analysis (PCA), a well known method for feature extraction. PCA aims to

construct new features which retain as much variance as possible from the original fea-

tures. In their study, Deb and Saxena use PCA to identify which criteria are responsible

for the variance in the search population so that they can be retained, rather than using

it to create new criteria. To do this, they use PCA to find the vector of eigenvalues and

matrix of eigenvectors, λ and U, of the correlation matrix of the set of criteria. Let Unm,

the mth element of eigenvector n, represent the contribution of the mth criterion to that

eigenvector. The eigenvalue, λn, which provides the largest proportion of variance within

the population, is identified. Then, two criteria, those representing arg maxm Unm and

arg minm Unm are selected to begin with. Subsequent eigenvectors are examined in the
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order determined by the magnitude of their corresponding eigenvalues, starting with the

largest and decreasing. As each eigenvector is considered, a cumulative sum of the propor-

tion of the total variance within the population that has been retained is kept; Deb and

Saxena [2005] suggest a threshold of 0.95. Once this threshold has been reached the part

of the criterion selection process ends. Which criteria are selected at each stage depends

on the structure and range of the values in the eigenvector. Having determined an initial

criterion subset by means of eigenvector analysis, the correlation matrix is used to identify

any remaining redundancies in the criteria.

Brockhoff and Zitzler [2007a] use the change in weak dominance relationships between

individuals to identify criteria between which there is redundancy. By modelling individ-

uals as the nodes in a directed graph, where an edge indicates that one individual weakly

dominates another, it is possible to observe how many edges are changed (added or re-

moved) with the removal of a criterion. An indication of the damage done to the structure

of a population is given by determining the amount by which individuals must be shifted

in order to ensure that individuals which previously dominated other individuals still do

so in a low-dimensional space. This idea draws on ε-dominance and also bears similarity

to the rank stability work presented in Chapter 3 of this thesis. The removal of a more

redundant criterion will result in a smaller shift than if a conflicting criterion was removed.

Brockhoff and Zitzler [2007a] propose two algorithms. One of them removes criteria until

all but k criteria have been discarded, which they call k-EMOSS (“MOSS” is the mini-

mum objective subset problem). The other, called δ-MOSS, removes criteria until a certain

amount of damage has been done to the structure of the population.

López Jaimes et al. [2008] propose a method in which criteria are clustered into neighbour-

hoods of a given size q according to the degree of conflict between them, measured in terms

of the correlation coefficient. The “most compact” neighbourhood is then found and all

but the criterion at the centre of the neighbourhood are discarded. By discarding criteria

in this fashion the amount of conflict between the remaining criteria is maximised. As with

Brockhoff and Zitzler [2007a], two algorithms are presented. Again, one of the variants

requires the size of the eventual criterion subset to be specified while the other discards

criteria until a certain amount of damage has been done to the population structure, in

this case quantified by the degree of conflict which is lost.

Another of the recent techniques for reducing the dimensionality of a population of solu-

tions to a many-objective problem has already been discussed in this thesis. Singh et al.

[2011] presented a technique which uses an algorithm to find individuals in the corners of a

Pareto front which are then used to determine how the removal of criteria affects the dom-

inance relationships in a similar manner to that shown by Brockhoff and Zitzler [2007a].

They calculate the proportion of non-dominated solutions after a criterion is removed to

that of the full criterion set; if the proportion is high then the number of non-dominated

individuals is similar with or without the criterion in question and it can be discarded
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without damaging the structure of the population.

6.2.1. Rank-based Criterion Selection

To use ranks as a measure of criterion subset quality we return again to the two metrics

used in Chapter 5 for identifying similar criteria, Spearman’s footrule [Spearman, 1904,

1906] and Kendall’s τ metric [Kendall, 1938]. As we outlined earlier, Spearman’s footrule

is the absolute difference between two rankings and Kendall’s τ is a count of the number of

occasions on which the order of a pair of individuals in two rankings is reversed. Both are

proper metrics, assuming that there are no ties. It is possible to modify both so that they

are metrics in the presence of ties, however since this work does not specifically require the

use of a proper metric we use both measures in their original formulation. In order to guide

the search for a suitable criterion subset we use these two measures to compare the ranking

resulting from computing the average rank of a population with respect to the criteria in

the criterion subset and that of the original, full-criterion population. Intuitively, since the

distance between a permutation and itself is 0, we seek a criterion subset that minimises

the difference between the two rankings.

Clearly, the identification of the set of criteria which best preserve the average rank of the

individuals in a population is a combinatoric optimisation problem which we could solve

by examining each possible criterion subset. Unfortunately, as the number of criteria used

to describe a population becomes large, an exhaustive approach is infeasible. As a result,

in the coming sections we investigate the efficacy of this approach by incorporating it into

three methods: a greedy algorithm, a hill climber and a multi-objective formulation of the

criterion selection problem. We apply the methods to variants of the GUG09 population,

as well as the population of individuals describing the performance of N = 165 wireless

access points in a mobile telephone network according to M = 27 criteria.

6.3. Greedy Criterion Selection

The first algorithm we investigate is a greedy procedure for backward criterion selection.

Greedy backward selection is often used as a baseline method in feature selection problems

[Bishop, 2007]. It is an iterative procedure which begins with the full criterion set and at

each step removes the feature or criterion which minimises the loss of information contained

within the data. The greedy backward criterion selection process is described in Algorithm

5. The process begins by producing a vector of ranks r for the full set of criteria (Line

1). We use average rank for this, however any of the rank aggregation methods discussed

in Chapter 3 could be used in its place. At every iteration, each remaining criterion is

removed from the population in turn (Line 6), and the resulting population is ranked
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Algorithm 5 Greedy Criterion Selection

Require: Y, the initial population consisting of M criteria; Q, the dimensionality to
reduce to.

1: r := rank(Y) Rank the original population (e.g., average rank)
2: Z := Y
3: q := M
4: while q > Q do
5: for m = 1, . . . , q do
6: Z′ := {Z(:, l)},∀l(l 6= m) Remove the mth criterion
7: r′ := rank(Z′) Rank the new population (e.g., average rank)
8: sm := δ(r, r′) Evaluate the quality of the current criterion subset
9: end for

10: n := arg maxm{sm} Find the criterion with the largest distance
11: Z := {Z(:, l)}, ∀l(l 6= n)
12: q := q − 1
13: end while

(Line 7); we denote this vector of ranks as r′. These ranks are then compared to those

of the original population with the metric denoted by δ(r, r′), which is either Spearman’s

footrule or Kendall’s τ metric. At the end of the iteration (Line 11) the criterion whose

removal yielded the subset furthest from the original set is removed from consideration,

and the next iteration begins.

This is a simple criterion selection method, requiring
∑M

m=Qm = M
2 (M + 1)− 1

2Q(Q+ 1)

criterion subset evaluations to arrive at a criterion subset of size Q compared to
(
M
Q

)
exhaustive evaluations. It does, however, only search a narrow region of the possible

search space, and so will not necessarily locate the best possible criterion subset. This is

because once a criterion has been deleted it is not reconsidered and its contribution to the

structure of the data is permanently lost.

6.3.1. Illustration

We now present an illustration of the use of Spearman’s footrule and Kendall’s τ metric

in the greedy backward criterion selection algorithm. To begin with, we present two

demonstrations of the algorithm using variants of the GUG09 population that we have

used as an example in previous chapters. The modified populations contain all N = 113

universities along with additional criteria. One of the datasets was constructed by adding

a duplicated set of criteria to the original data. Hence, the new dataset consists of 2× 8

criteria, and the (m+ 8)th criterion is identical to the mth criterion, of which it is a copy.

The second dataset consists of the original data and two artificial criteria, which are well

correlated with criteria in the original data. As was done to modify the radar population

in Chapter 5, these were created by identifying two pairs of well correlated criteria and

averaging each pair to form the new criterion. Criteria 4 and 6 were averaged to produce
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Q

Duplicated Criteria Averaged Criteria
SF KT SF KT

15 1 1 - -
14 9 9 - -
13 3 6 - -
12 11 14 - -
11 6 7 - -
10 14 15 - -
9 2 2 8 1
8 10 10 4 10
7 7 5 9 6
6 15 13 3 5
5 5 3 2 7
4 13 11 6 2
3 8 8 5 3
2 16 16 7 9

Table 6.1.: The order in which criteria are removed by the greedy backward algorithm for
each metric on the two augmented GUG09 datasets. Columns labelled SF and
KT show which criterion is removed at each stage for the corresponding metric.
In neither case have the duplicated criteria been removed before the original
criteria on which they are based, and as such more information is being lost in
the criterion selection process.

criterion 9, and criterion 1 and 5 to produce criterion 10. Since the criteria in the GUG09

data are on different scales, they were normalised by converting them to rank coordinates

before averaging. The new criteria were then ranked along with the rest of the data.

Figure 6.1 shows the distance δ(r, r′) between the original population ranking and that of

the selected subset as criteria are removed. Two cases are shown. In one, the criterion

subset is identified using Spearman’s footrule, while in the other the criterion subset is

found with Kendall’s τ . The plots show the number of remaining criteria Q along with

the corresponding information loss quantified by the measure in use (either Kendall’s τ

metric and Spearman’s footrule). Note that these measures are on different scales on the

ordinate axes. Figure 6.1(a) shows the results for the duplicated data, in which both

measures have produced similar trends, noting their different scales. As may be expected,

the greatest distance is when Q = 2, since the majority of the criteria have been removed

losing most of the original structural information. Table 6.1 illustrates the order in which

criteria were removed. For the duplicated criteria, in the case of both Spearman’s footrule

(SF) and Kendall’s τ (KT) the removal of a duplicate criterion is followed immediately by

the removal of the criterion on which it was based because the average rank of a candidate

criterion subset is compared with the average rank of the original population (comprising

16 criteria). A preferred result would be for the set of duplicate criteria to be removed,

leaving only the original criteria; this would preserve all of the information present in the

data, whereas some information is lost in the sequence shown here. Likewise, the two

synthetic criteria would ideally be removed first; as shown in Table 6.1, that is not the
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(a) Duplicated criteria
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(b) Averaged criteria
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(c) AP data

Figure 6.1.: The information loss changes for criterion subsets of increasing size. Note that
although both Kendall’s τ metric and Spearman’s footrule follow a similar
trend for all three datasets, they have different ordinates.
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case. The order is different when the difference in ranks is measured with Kendall’s τ ; we

recall that the two measures are well correlated but not identical [Diaconis and Graham,

1977].

Figure 6.1(b) presents analogous results for the averaged data. In common with the

duplicated data, the two measures yield very similar results. As with the duplicated data,

the worst case occurs when Q = 2, and from examining Table 6.1, the algorithm mostly

identifies and removes the redundant criteria (the two averaged criteria), although we note

that the instance of the method using Spearman’s footrule does not remove the second

of the redundant criteria, criterion 10. It might be expected that once the artificially

created criteria have been removed from the two datasets that the sequence in which the

remaining eight original GUG09 KPIs are removed would be the same. By examining

Table 6.1 this is clearly not the case. This is because the comparison is made between

the current criterion subset and the original, full, criterion set. Since the average ranks

for these two datasets are different, and from those of the original GUG09 data, so is the

sequence in which the criteria are removed.

Finally, we demonstrate the method on a larger population, the population of individuals

describing the performance of wireless access points in a mobile telephone network. This

population comprises 27 criteria, and it is clearly desirable to reduce these criteria to a

more manageable amount. The results shown in Figure 6.1(c) illustrate the effect of ap-

plying the greedy method, and show that again a degree of similarity between Spearman’s

footrule and Kendall’s τ is present. The sequence in which criteria are removed by the two

measures are similar, although in some places there is some disagreement. For example,

having removed the first nine criteria Spearman’s footrule removes criteria 8 and 24 while

Kendall’s τ removes 24 and then 8.

6.4. Hill Climber Criterion Selection

Various single-objective algorithms have been used for feature selection [e.g. Oh et al.,

2004; Jarmulak and Craw, 1999]. They explore different combinations of criteria and,

unlike greedy backwards feature selection, allow for the reintroduction of criteria that

have previously been discarded. This results in a more thorough search of the space than

was possible with the greedy backward selection algorithm.

We employ a basic hill-climber, which is outlined in Algorithm 6. A solution θ is repre-

sented as a M -bit string, where θm = 1 indicates that the mth criterion is selected and

θm = 0 that it is not. An initial solution is generated by selecting Q criteria at ran-

dom (Line 2). Each iteration begins by mutating the current solution (Line 6). This is

done by deselecting one of the criteria in the bit string and selecting one of the currently

deactivated ones. Initialising the solution and mutating it in this way ensures that the
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Algorithm 6 Hill-climber Criterion Selection

Require: Y, the initial population consisting of M criteria; Q, the dimensionality to
reduce to.

1: r := rank(Y)
2: θ := initialise(M,Q)
3: Z := Y(:,θ) Initially selected criteria
4: φ := δ(r, rank(Z)) Evaluate initial solutions
5: repeat
6: θ′ := mutate(θ)
7: Z′ := Y(:,θ′) Select active criteria
8: φ′ := δ(r, rank(Z′)) Evaluate quality of current subset
9: if φ′ < φ then

10: θ := θ′

11: φ := φ′

12: end if
13: until stopping condition met (200 iterations)

constraint
M∑
m=1

θm = Q (6.1)

is satisfied, and that any subset generated contains the correct number of criteria.

As in the greedy algorithm, the quality of a solution is evaluated by ranking the popula-

tion with respect to the currently selected criteria and computing the distance between

that ranking and the ranking of the full-criterion set using either Spearman’s footrule or

Kendall’s τ (Line 8). If δ(r, r′) is less than the current best solution, then the current best

is replaced by the new solution (Line 10).

Experimental results for the hill-climber on the augmented datasets are shown in Figure

6.2 and can be compared to Figure 6.1. The algorithm was run 20 times for each Q = 2 to

M − 1. The hill-climber has clearly outperformed the greedy method in terms of finding

a criterion subset which preserves the original ranking well under the Spearman’s footrule

and Kendall’s τ . We note that in the case of Q = 8 for the modified GUG09 population

with duplicated criteria the distance between the permutations is 0. This indicates that

exactly one copy of each of the original criteria remains in the criterion subset and the

average rank is therefore the same as the original population. As the hill-climber is able

to search a wider portion of the search space, it has identified subsets whose average ranks

are closer to that of the original populations; this is evident when comparing the smaller

ordinate ranges of this experiment with those of Figure 6.1.

Figure 6.3 shows how the change in distance between permutations changes during the

execution of the algorithm for Q = 4. Both the τ metric and Spearman’s footrule have

converged to the optimal criterion subset in 200 iterations, and no further progress is

made. The process is therefore quite cheap to run as few iterations are required to arrive
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(a) Duplicated criteria
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(b) Averaged criteria
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(c) AP data

Figure 6.2.: The results of criterion selection with a hill-climber for increasing values of Q.
Whilst the trends are similar to those of the greedy algorithm, the error loss
is substantially lower.
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(a) Duplicated criteria
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(b) Averaged criteria
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(c) AP data

Figure 6.3.: Hill-climber convergence results for Q = 4, showing how the algorithm is
converging towards the optimal criterion subset containing four criteria. The
algorithm has converged by 200 iterations.
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at a sensible solution, although it does not guarantee to result in an optimal criterion

subset. Exhaustive search for a four-criterion subset of the duplicated GUG09 data would

require
(
16
4

)
= 1820 function evaluations, and for the AP data this would be

(
27
4

)
= 17550.

Since the greedy algorithm is deterministic it is possible to examine which criteria remain

in the final Q-dimensional criterion subset. The hill climber is a stochastic process, so it

is not possible to evaluate the results in the same way. To resolve this, we consider an

approach taken by Li et al. [2002] in which they investigate which of 2000 possible features

are the most relevant for classifying cancer cases. Instead of running the hill climber once,

the population is randomly split into two equal halves and the hill climber run on each

split. This is repeated for some number of splits at the end of which we identify how often

each criterion was one of the Q selected criteria at the end of the optimisation in both

splits. The criteria which most often appear in both sets are then selected. An alternative

method is to simply count the number of times each criterion is selected in either set.

In addition to guarding against the stochastic nature of the hill-climber we note that

this splitting procedure also reduces the chance that a criterion will appear unrealistically

important because of a small number of individuals in the population.

The hill-climber was run on 500 splits of the both the original (8-criterion) GUG09 popu-

lation and the AP data. The top row of Figure 6.4 illustrates the coincident selections for

populations. In the case of the GUG09 population, there are two criteria which are clearly

the most important according to the hill-climber method (criteria 2 and 5, research qual-

ity and entry standards respectively). Five of the criteria in the AP data are also clearly

more important to determining the rank of an individual than the others. From examining

the bottom row of Figure 6.4 we can see that in general the same criteria are important,

however some of the criteria that were not selected in both splits of the data were still

selected independently. We note that while the examples shown here actually require more

than the
(
M
2

)
evaluations required for exhaustive search, the splitting procedure is more

beneficial when used to find criterion subsets larger than those shown here for which the

number of function evaluations required to do an exhaustive search becomes extremely

large.

6.5. Multi-objective Criterion Selection

A drawback of employing a hill-climber such as the one described previously is that the

user must decide a priori how to set the parameter Q, the maximum number of criteria to

retain in the low-dimensional data. A plot in the style of Figure 6.2 can be produced by

running the hill-climber for multiple settings of Q, but this requires multiple independent

runs of the algorithm. An alternative is to relax the constraint governing the size of Q

to an objective and employ a MOEA to simultaneously trade-off information loss and the

number of remaining criteria.
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Figure 6.4.: Plots showing the frequency that a criterion is selected in both splits of the
population in the Li et al. [2002] procedure, applied to the GUG09 population
((a) and (c)) and the AP data ((b) and (d)). The top row shows the number
of times that a criterion is selected in both splits of the population and the
bottom row shows the number of times a criterion is selected in either.

Evolutionary multi-objective optimisation is a popular method for selecting criteria from

a dataset, and has been used in a variety of applications including handwritten digit

and letter recognition [Oliveira et al., 2002; Morita et al., 2003], diagnosing faults in

industrial machinery [Emmanouilidis, 2002] and for improving the results of clustering

in unsupervised learning tasks [Mierswa and Wurst, 2006]. A variety of objectives have

been investigated. Usually, a pair of objectives includes some measure of the effect of

removing the redundant criteria, as well as a count of the remaining criteria [Oliveira

et al., 2002], however other approaches have optimised the receiver operating characteristic

(ROC) curve of a classifier [Emmanouilidis, 2002] and where the aim is to produce an

effective clustering of the data, the within- and between-class spread of the clusters has

been considered [Mierswa and Wurst, 2006; Morita et al., 2003].

We define the following multi-objective problem. The solution θ, representing the retained

166



6. Rank-based Dimension Reduction

Algorithm 7 Multi-objective Dimension Reduction

Require: Y, the initial population consisting of M criteria.
1: r := rank(Y)
2: θ := initialise(M) Select a random number of criteria
3: Z := Y(:,θ) Initially selected criteria
4: φ := f(θ) Evaluate initial selection
5: E := {θ} Initialise archive
6: repeat
7: θ′ := mutate(θ)
8: Z′ := Y(:,θ′) Select the active criteria
9: φ′ := f(θ′) Evaluate the objective functions

10: E := update(θ′,φ′)
11: θ,φ := select(E) Select a member of the archive at random
12: until stopping condition met

criteria, is again represented as a M -bit string, which now maps to a pair of objectives:

f1(θ) = δ(r, rank(Z)) (6.2)

f2(θ) =

M∑
m=1

θm. (6.3)

where Z in the first objective is a copy of the population Y described by the criteria

selected in θ. The first objective is the distance between permutations as before while

the second objective counts the number of remaining criteria. Algorithm 7 presents the

multi-objective criterion selection algorithm. As with the single-objective hill-climber,

the multi-objective version begins by initialising a random bit string (Line 2). As the

dimensionality is now an objective rather than a constraint, this is done by selecting a

random number of criteria. This solution is then evaluated against the two objectives, and

the evolutionary process begins. A slightly different mutation operator is employed which

flips bits with probability 1/M (Line 7). A archive E of solutions is maintained, which

contains all of the currently non-dominated solutions found by the algorithm. Once the

objective values of the new solution have been evaluated, it is compared to the solutions

in the archive. Any solutions which it is found to dominate are removed, and if the new

solution is not dominated by any solutions in the archive, it is added (Line 10). The

child solution for the next generation is then chosen by selecting a member of the elite

archive E at random (Line 11). This procedure continues until a stopping criterion is

reached, and the decision maker is provided with the estimated Pareto front from which

they must select a criterion subset. In the work reported here, the algorithm runs for 2000

generations which is ample to ensure convergence.

Figure 6.5 shows best attainment surfaces for the optimisation. Results for 10 independent

runs of each metric have been merged to produce a single archive containing all of the

non-dominated solutions found during the 10 runs. For brevity, the attainment surfaces

have been presented on the same plot, however as with earlier figures these plots have

separate ordinates corresponding to the metrics. It is therefore not possible to infer the
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(a) Duplicated data
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(b) Averaged data
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(c) AP data

Figure 6.5.: The trade-off curve produced by optimising the number of criteria against
the information loss as measured by one of the metrics. Note that since the
metrics are on different scales, we cannot infer that one front dominates the
other.
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dominance relationship between solutions on the two attainment surfaces.

By using the approximately Pareto optimal criterion subsets, we can compare the solu-

tions identified by the algorithm. In the duplicated GUG09 population, both Spearman’s

footrule and Kendall’s τ identify the same criterion subset in most cases. In the case

where Q = 8, where the information loss is minimised, the subset contains exactly one

instance of each criterion, either the original criterion or its copy. None of the solutions

for Q > 8 are included in the solution set for this multi-objective instance because they

are dominated by the Q = 8 solution.

For the averaged GUG09 population, the smaller subsets prefer to include the additional

criteria formed by averaging original criteria. We infer that this is because they were con-

structed from two of the original criteria, so that retaining a composite criterion preserves

more information about the rank structure of the data than either individual criterion.

As the size of the criterion subsets increase, there is sufficient influence from the original

criteria, and the averaged criteria are no longer included; they are only present when all of

the original criteria have been included. When Q = 8, the subset comprises all 8 original

GUG09 criteria. The results shown in Figure 6.5(c) show that the MOEA has identified

a similar trend to that of the repeated runs of the hill-climber for different values of Q.

Although it is not very pronounced, we note that a knee has started to form around the

criterion subset of size 5 in the estimated Pareto front.

Comparisons with Figure 6.2 show that distances which are at worst equivalent to those

identified by running the hill-climber for fixed values Q repeatedly are identified by the

MOEA. It is therefore unnecessary to repeat the hill-climber for each value of Q, which

could be prohibitively expensive for a large dataset as a more complete view of the trade-

off can be identified with a single run of the MOEA. That said, we note that there is less

of a computational advantage in using the multi-objective version of the hill-climber in

the populations we have presented here.

6.6. Conclusion

This chapter has introduced methods for revealing which criteria are most responsible

for the structure in a many-criterion population. We introduced a method in which the

structure of a population was quantified using the rank of individuals, which we sought

to preserve; criteria were discarded so that the distance between the average rank of the

full dataset and the selected criteria was minimised. We measured the distance between

different rankings of the population using Spearman’s footrule and Kendall’s τ which are

known to be well correlated and produced similar results. Unsurprisingly, a hill-climbing

algorithm outperforms a greedy backwards search, while a multi-objective algorithm allows

the full trade-off surface between fidelity of the selected criteria and the number of criteria
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to be located in a single evolutionary optimisation.

We have demonstrated the efficacy of the algorithm at removing redundant criteria. Ap-

plying the criterion selection process to the GUG09 population without synthetically re-

dundant criteria finds that the two most significant criteria, contributing the most to the

overall structure, are research quality and entry standards. In addition to providing an

understanding of the structure of the data, it also allows for a better visualisation; a vi-

sualisation of individuals in their Pareto shells is easier to interpret for a smaller number

of criteria.

A logical extension to this work would be to incorporate the rank-based approach pre-

sented in this chapter into the selection operator of an evolutionary algorithm tasked with

optimising a many-objective problem. It would also be useful to see how the proposed

algorithms fare when dealing with populations of criteria larger than the 27-criterion AP

data used as an illustration in this chapter.
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7.1. Introduction

This thesis has presented methods for visualising and understanding many-criterion pop-

ulations. This chapter summarises the main contributions in these two areas and gives

pointers to possible future avenues of exploration.

7.2. Visualising Many-criterion Populations

A common approach to understanding datasets is to use a visualisation technique and the

visualisation of high-dimensional data is known to be difficult; conventional visualisation

tools such as scatter plots do not work for datasets of more than three dimensions. In

this work we are interested in visualising many-criterion populations, and it is particularly

important for such a visualisation to convey a notion of the relative quality of individuals in

the population. We have developed techniques for presenting many-criterion populations

using the dominance relations that characterise them as well as the fact that the individuals

can be ranked according to the criteria.

In Chapter 3 we evaluated various methods for ranking many-criterion populations for the

purpose of visualisation. We used the Pareto sorting technique commonly used for ranking

populations of solutions in multi-objective evolutionary algorithms (MOEAs) as the basis

for visualising the individuals as a graph; each individual is sorted into a Pareto shell,

and dominance relations between individuals in adjacent shells are shown. To further

enhance the visualisation we explored other methods for ranking many-criterion popula-

tions (average rank, outflow, average shell, stationary distribution and the power index),

extending some of these methods into the multi-criterion domain with the introduction of

a generalised tournament matrix (on which the ranking methods are based) which uses

dominance to determine the outcome of tournaments. We note that future ranking meth-

ods based on a GTM will be applicable to multi-criterion populations as a result of this

development. Each of the additional ranking methods we investigated was used to colour

the nodes in the graph. This revealed additional information about the nature of the in-

dividuals in the population, such as identifying individuals who reside in a strong Pareto
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shell by specialising on a single criterion as opposed to those which have a good score on

the entire set of criteria. A shortcoming of the approach is its reliance on dominance for

arranging the graph. In a high-dimensional space dominance is unable to distinguish be-

tween the quality of individuals. All of the population therefore sorts into a single Pareto

shell and less structural information is revealed. That said, we have demonstrated that for

some many-criterion populations (our main example population, the GUG09 population,

comprises 8 criteria) it is possible to produce a useful visualisation. For that reason, and

because of the current interest in criterion reduction reported in Chapter 6, we do not

feel that such a shortcoming makes this an infeasible choice for visualising many-criterion

populations. A future area of study is to incorporate this method into an interactive visu-

alisation tool. We feel that the ability to observe how the dominance relationships between

individuals change as different combinations of the criteria comprising a population are

tested would be of value to a decision maker. Enabling the decision maker to change the

ranking method on which the nodes are coloured might also be a useful feature. The com-

putational complexity of the Pareto sorting, and the eigendecomposition required to rank

the population with the power index means that, even for relatively large populations, the

visualisation could be redrawn rapidly.

In investigating the character of a population of individuals it is natural to consider dis-

tances between pairs of individuals. We introduced a measure of distance that captures

the essence of the dominance relations between individuals. This distance has an embed-

ding in Euclidean space, and as such can be used to provide the basis for a visualisation.

A common approach to visualising high-dimensional data is to use metric MDS; Euclidean

distance is often used as the basis for the dimension reduction. We therefore used MDS

and the dominance distance to embed the population in a low-dimensional space so that

we could produce a scatter plot of the population in two dimensions. We demonstrated

this method on a range of populations and showed that the resulting mapping captures

the main trends in the power index or average rank of the individuals. Also, whereas

the Pareto shell visualisation does not scale to large numbers of criteria, this method

was shown to be suitable for visualising large populations; a useful visualisation of a 27-

criterion population was shown. Both the dominance distance and the MDS embedding

are computed in polynomial time, so it is feasible that this method could be used interac-

tively. Showing how the arrangement of individuals change with different combinations of

criteria will provide useful information about how the criteria of a population are related,

which will be useful as populations with larger numbers of criteria occur.

MDS is a linear dimension reduction technique, however various nonlinear dimension re-

duction techniques have been developed. These methods, such as locally linear embedding

[Roweis and Saul, 2000], isomap [Tenenbaum et al., 2000], Laplacian eigenmaps [Belkin

and Niyogi, 2001] and maximum variance unfolding [Weinberger and Saul, 2006] have

been shown to provide a more faithful representation of a dataset in some cases, and as

such future work will investigate the use of these methods in concert with the dominance
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distance for visualising many-criterion populations.

Another common visualisation technique is to present a dataset as a heatmap, representing

criterion values as coloured cells in a grid. In a heatmap visualisation of a many-criterion

population, each individual is represented as row and each criterion a column. A problem

with such a visualisation is that the arbitrary ordering of individuals and criteria can

make the heatmap difficult to interpret; we presented a spectral seriation method to

enhance the clarity of a heatmap which was shown to be quite effective on a range of

populations. Seriation uses a measure of similarity to place similar individuals and criteria

close together in a permutation, which is used to reorder the heatmap. One of the strengths

of this method is that a similarity measure can be chosen to suit any particular type

of population; we demonstrated similarity measures which take advantage of the fact

that the individual criteria in a population can be ranked. An additional advantage is

that by presenting two heatmaps side by side, parameter space and objective space, in

which solutions to a many-objective optimisation problem reside, can be visualised. We

demonstrated the trade-off between preferring individual ordering according to parameter

space or objective similarity and illustrated a simple technique for optimising the ordering

with respect to both. As many-objective algorithms mature, we expect that the ability of

this technique to illustrate large populations (in terms of the number of individuals and

criteria) will prove particularly useful for visualising the large number of solutions needed

to properly cover a many-objective Pareto front. As with the previous two visualisation

methods, the computational complexity of this method means that it can be recomputed

relatively rapidly. While we note that, as discussed in Chapter 2, research in the MCDM

literature has found that heatmaps are less well suited to interactive manipulation than

other methods (e.g., parallel coordinate plots), there is potential for interaction in allowing

the user to further rearrange the seriated individuals and criteria. Such a system might

also allow the user to seriate according to different similarity measures to evaluate the

difference.

The visualisation work presented in this thesis has concentrated on static populations,

such as a population of solutions in a single generation of an evolutionary algorithm,

or league table data describing university performance for a particular year. This work

could be extended to incorporate the temporal aspect of many-criterion populations. One

possibility would be to develop methods for visualising the lineage of solutions by extending

the 2-dimensional Pareto shell graph into a third dimension representing time. This would

prove useful in the maintenance application described in Chapter 3 in that an engineer

could see that not only is an individual exhibiting poor performance according to the KPIs

on which they are evaluated, but they could also see how long they have been performing

poorly to spot anomalies and trends more easily.
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7.3. Understanding Many-criterion Populations

In addition to visualising many-criterion populations we have also investigated methods

for exploring their structure. The structure of a many-criterion population can be char-

acterised in terms of the rank of individuals as well as the pairwise dominance relations

between individuals. The work presented in this thesis was particularly concerned with

identifying landmark individuals within the population as well as identifying the most

important criteria.

In Chapter 4 we presented three dominance-based candidate definitions for determining

which individuals are on the edge of a mutually non-dominating population. Identifying

which individuals are extreme on particular criteria provides a useful way of understanding

the structure of a population. Of the three methods, the first defined the edge in terms

of the attainment surface. While it was able to adequately find the edge of a concave

population, the geometry of a convex population meant that few of the individuals were

found. The second method defined the edge in terms of an embedding of the individuals in

the plane which was then rotated in order to find those which were non-dominated in the

embedding. This was able to find the edge of a multi-criterion population but it was not

scalable to many-criterion populations because of its use of dominance in a relatively high-

dimensional space. The final definition was in terms of criterion subsets. This method

was able to identify the edge of both multi- and many-criterion populations because of

the criterion subset approach taken, and was the most promising of the three candidate

definitions. Additional work is warranted to investigate methods for finding the edge of

a mutually non-dominating population, particularly where the individuals are described

by a large number of criteria. As discussed in Chapter 4, we believe a useful aspect of

this work might be its inclusion into the fitness assignment process of an evolutionary

algorithm, to ensure that the extent a search population is expanded to properly cover

the true Pareto front of a many-objective optimisation problem.

We have presented two approaches to understanding population structure with the rank

of individuals. The first was an investigation of the structural information provided by

ranking methods such as the power index. Through the visualisation methods described

above we were able to reveal similarities between individuals, as well as identify outliers

and fill in missing data. Some of the methods investigated, such as Pareto sorting and

average rank, were drawn from the evolutionary multi-objective optimisation literature.

The work presented in this thesis could be extended by applying novel methods, such as the

power index and dominance distance, to solving multi- and many-objective optimisation

problems. While it is likely that a selection operator based on the power index will result

in premature convergence and poor diversity in the estimated Pareto front because of

its similarity to average rank, which is known to cause the premature convergence of a

search population, the dominance distance might be used as a niching method by removing

solutions close to those which have already been selected.
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Our second rank-based approach to revealing the structure within a many-criterion popu-

lation involved using the change in an individual’s rank to identify redundant criteria. We

define a redundant criterion as one whose removal does not dramatically change the rank

of the individuals in the population. We demonstrated different criterion selection ap-

proaches (a greedy algorithm, a stochastic hill-climber and a multi-objective evolutionary

algorithm) and illustrated how the dimensionality can be reduced for the purposes of vi-

sualisation. We also provided a short discussion on its use in an evolutionary algorithm so

that standard dominance-based selection methods can be used to solve a many-objective

optimisation problem. An extension of this work would be to investigate such an approach,

applying it to both test problems and real-world optimisation problems.

7.4. Summary

This thesis has investigated the visualisation and understanding of many-criterion pop-

ulations, and we have provided a useful set of linear methods for understanding static

populations. We believe that there is much interesting work ahead in terms of investi-

gating nonlinear approaches, applying them to dynamic populations which incorporate a

notion of time and developing tools to facilitate the use of these methods interactively.
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The tables on the following pages reproduce the Times Good University Guide from 2009

[O’Leary, 2009], which has been a running example throughout this thesis.
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présence de points de vue multiple. Direction Scientifique, 1966.

M. Benito and R. Romera. Improving Quality Assessment of Composite Indicators in

University Rankings: a Case Study of French and German Universities of Excellence.

Scientometrics, 89(1):153–176, October 2011.

P. J. Bentley and J. P. Wakefield. Finding acceptable solutions in the Pareto-optimal range

using multiobjective genetic algorithms. In Soft Computing in Engineering Design and

Manufacturing, pages 231–240, 1998.

C. Berge. The Theory of Graphs. Methuen, London, 1962.

H-G. Beyer and H-P. Schwefel. Evolution Strategies – A Comprehensive Introduction.

Natural Computing: an international journal, 1:3–52, May 2002.

C. Bishop, M. Svensén, and C. Williams. GTM: The Generative Topographic Mapping.

Neural Computation, pages 215 – 235, 1998.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2007. ISBN

0387310738.

U. Biswas, U. Maulik, A. Mukhopadhyay, and M. Naskar. Multiobjective Evolutionary

Approach to Cost-effective Traffic Grooming in Unidirectional SONET/WDM rings.

Photonic Network Communications, 18:105–115, 2009.

182



Bibliography

L. Bradstreet, L. Barone, and L. While. Maximising Hypervolume for Selection in Multi-

objective Evolutionary Algorithms. In IEEE Congress on Evolutionary Computation,

pages 1744–1751, 2006.

J.P. Brans, Ph. Vincke, and B. Mareschal. How to select and how to rank projects: The

promethee method. European Journal of Operational Research, 24:228–238, 1986.

D. Brockhoff and E. Zitzler. Dimensionality Reduction in Multiobjective Optimization:

The Minimum Objective Subset Problem. In K. H. Waldmann and U. M. Stocker,

editors, Operations Research Proceedings 2006, pages 423–429. Springer, 2007a.

D. Brockhoff and E. Zitzler. Offline and Online Objective Reduction in Evolutionary

Multiobjective Optimization Based on Objective Conflicts. TIK Report 269, Computer

Engineering and Networks Laboratory (TIK), ETH Zurich, April 2007b.

D. Brockhoff, T. Friedrich, and F. Neumann. Analyzing Hypervolume Indicator Based

Algorithms. In G. Rudolph et al., editors, Conference on Parallel Problem Solving

From Nature (PPSN X), volume 5199 of LNCS, pages 651–660. Springer, 2008.

F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.

W. S. Cleveland. Elements of Graphing Data. AT & T Bell Laboratories, Murray Hill,

NJ, 1994.

C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen. Evolutionary Algorithms for

Solving Multi-Objective Problems (Genetic and Evolutionary Computation). Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 2007. ISBN 0387332545.

D. Corne and J. Knowles. Techniques for Highly Multiobjective Optimisation: Some

Nondominated Points are Better than Others. In Genetic and Evolutionary Computation

Conference, pages 773–780, London, UK, 2007.

Piotr Czyzak and Adrezej Jaszkiewicz. Pareto simulated annealinga metaheuristic tech-

nique for multiple-objective combinatorial optimization. Journal of Multi-Criteria De-

cision Analysis, 7(1):34–47, 1998.

D. Lowe and M. E. Tipping. NeuroScale: Novel Topographic Feature Extraction using

RBF Networks. In NIPS, pages 543–549, 1996.

I. Das and J. E. Dennis. A Closer Look at Drawbacks of Minimizing Weighted Sums of

Objectives for Pareto Set Generation in Multicriteria Optimization Problems. Structural

and Multidisciplinary Optimization, 14:63–69, 1997.

L. Davis. Applying Adaptive Algorithms to Epistatic Domains. In IJCAI, pages 162–164,

1985.

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:

Algorithms and Applications. Springer-Verlag, second edition, 2000.

183



Bibliography

K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley-Interscience

Series in Systems and Optimization. John Wiley & Sons, Chichester, 2001.

K. Deb and M. Goyal. A Combined Genetic Adaptive Search (GeneAS) for Engineering

Design. Computer Science and Informatics, 26:30–45, 1996.

K. Deb and D. Saxena. On Finding Pareto-Optimal Solutions Through Dimensional-

ity Reduction for Certain Large-Dimensional Multi-Objective Optimization Problems.

Technical Report 2005011, Indian Institute of Technology, 2005.

K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A Fast Elitist Non-Dominated Sort-

ing Genetic Algorithm for Multi-Objective Optimization: NSGA-II. KanGAL report

200001, Indian Institute of Technology, Kanpur, India, 2000.

K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable Test Problems for Evolutionary

Multi-Objective Optimization. Technical report, Computer Engineering and Networks

Laboratory (TIK), ETH Zurich, 2001.

K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable Multi-Objective Optimiza-

tion Test Problems. In Proceedings of IEEE Congress on Evolutionary Computation,

volume 1, pages 825–830, May 2002.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete

Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Method-

ological), 39(1):pp. 1–38, 1977.

F. di Pierro, S. T. Khu, and D. Savic. An Investigation on Preference Ordering Ranking

Scheme in Multiobjective Evolutionary Optimization. IEEE Transactions on Evolution-

ary Computation, 11(1):17–45, 2007.

P. Diaconis and R. L. Graham. Spearman’s Footrule as a Measure of Disarray. Journal

of the Royal Statistical Society, Series B, 39(2):262–268, 1977.

J. Ding and J. Qiu. An Approach to Improve the Indicator Weights of Scientific and

Technological Competitiveness Evaluation of Chinese Universities. Scientometrics, 86

(2):285–297, February 2011.
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gie. Birkhäuser Verlag, Basel, 1994.

H. K. Singh, A. Isaacs, and T. Ray. A Pareto Corner Search Evolutionary Algorithm and

Dimensionality Reduction in Many-Objective Optimization Problems. IEEE Transac-

tions on Evolutionary Computation, 15(4):539–556, 2011. ISSN 1089-778X.

G. Slutzki and O. Volij. Ranking Participants in Generalized Tournaments. International

Journal of Game Theory, 33(2):255–270, 06 2005.

K. I. Smith, R. M. Everson, J. E. Fieldsend, C. Murphy, and R. Misra. Dominance-Based

Multiobjective Simulated Annealing. IEEE Transactions on Evolutionary Computation,

12(3):323–342, 2008. ISSN 1089-778X.

C. Spearman. The Proof and Measurement of Association Between Two Things. American

Journal of Psychology, 15:72–101, 1904.

C. Spearman. “Footrule” for Measuring Correlation. British Journal of Psychology, 2:

89–108, 1906.

N. Srinivas and K. Deb. Multiobjective Optimization Using Nondominated Sorting in

Genetic Algorithms. Evolutionary Computation, 2(3):221–248, Fall 1994.

192



Bibliography

R. Storn and K. Price. Differential Evolution – A Simple and Efficient Heuristic for global

Optimization over Continuous Spaces. Journal of Global Optimization, 11:341–359,

1997.

P. Subbaraj, R. Rengaraj, and S. Salivahanan. Enhancement of Self-adaptive Real-coded

Genetic Algorithm Using Taguchi Method for Economic Dispatch Problem. Applied

Soft Computing, 11(1):83 – 92, 2011. ISSN 1568-4946.

S. Tarkkanen, K. Miettinen, and J. Hakanen. Interactive multiobjective optimization –

a new application area for visual analytics. In Proceedings of the IEEE Symposium on

Visual Analytics Science and Technology, 2009.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A Global Geometric Framework for

Nonlinear Dimensionality Reduction. Science, 290(5500):2319–2323, 2000.

Praveen Thokala. Multiple criteria decision analysis for health technology assessment.

Technical report, School of Health and Related Research, University of Sheffield, 2011.

E. Triantaphyllou, B. Shu, S. Nieto Sanchez, and T. Ray. Multi-criteria decision making:

An operations research approach. Encyclopedia of Electrical and Electronics Enginering,

15:175–186, 1998.

T. Tušar and B. Filipič. Visualizing 4D approximation sets of multiobjective optimizers

with prosections. In Proceedings of the 13th annual conference on Genetic and evolu-

tionary computation, GECCO ’11, pages 737–744, New York, NY, USA, 2011. ACM.

A. Usher and M. Savino. A World of Difference: A Global Survey of University League

Tables, 2006.

J. J. Valdés and A. J. Barton. Visualizing High Dimensional Objective Spaces for Multi-

objective Optimization: A Virtual Reality Approach. In IEEE Congress on Evolutionary

Computation, pages 4199–4206, 2007.

R. van den Brink and R. P. Gilles. The Outflow Ranking Method for Weighted Directed

Graphs. European Journal of Operational Research, 193:484–491, 2009.

D. A. Van Veldhuizen and G. B. Lamont. Evolutionary Computation and Convergence

to a Pareto Front. In John R. Koza, editor, Late Breaking Papers at the Genetic

Programming 1998 Conference, University of Wisconsin, Madison, Wisconsin, USA, jul

1998. Stanford University Bookstore.

R. Vetschera, J. Gettinger, E. Kiesling, and Christian Stummer. Visualization methods for

multi-criteria portfolio selection: An empirical study. In Proceedings of the 15th IFIP

WG 8.3 International Conference on Decision Support Systems (DSS 2010), pages 1–9,

2010.

U. von Luxburg. A Tutorial on Spectral Clustering. Statistics and Computing, 17(4):

395–416, December 2007. ISSN 0960-3174.

193



Bibliography

D. J. Walker, R. M. Everson, and J. E. Fieldsend. Visualisation and Ordering of Many-

objective Populations. In 2010 IEEE World Congress on Computational Intelligence

(WCCI2010), pages 3664–3671, CCIB, Barcelona, Spain, July 2010a. IEEE Service

Center.

D. J. Walker, R. M. Everson, and J. E. Fieldsend. Ordering Multi-objective Populations

with the Power Index. In 2010 Postgraduate Conference for Computing: Applications

and Theory (PCCAT2010), pages 3664–3671, Exeter, Devon, UK, June 2010b. Univer-

sity of Exeter.

D. J. Walker, R. M. Everson, and J. E. Fieldsend. Rank-based Dimension Reduction for

Many-criteria Populations. In Proceedings of the 13th annual conference on Genetic and

evolutionary computation, GECCO ’11, pages 1–2, New York, NY, USA, 2011. ACM.

D. J. Walker, R. M. Everson, and J. E. Fieldsend. Visualising Mutually Non-dominating

Solution Sets in Many-objective Optimisation. Transactions on Evolutionary Compu-

tation (in press), 2012a.

D. J. Walker, R. M. Everson, and J. E. Fieldsend. Visualising many-objective populations.

In Proceedings of the 3rd Workshop on Visualisation in Genetic and Evolutionary Com-

putation (VizGEC 2012), 2012b.

A. R. Webb. Statistical Pattern Recognition, 2nd Edition. John Wiley & Sons, October

2002.

T. Wei. The Algebraic Foundation of Ranking Theory. PhD thesis, Cambridge University,

Cambridge, UK, 1952.

K. Q. Weinberger and L. K. Saul. Unsupervised Learning of Image Manifolds by Semidef-

inite Programming. Int. J. Comput. Vision, 70(1):77–90, October 2006.

L. While, P. Hingston, L. Barone, and S. Huband. A Faster Algorithm for Calculating

Hypervolume. Evolutionary Computation, IEEE Transactions on, 10(1):29–38, 2006.

L. While, L. Bradstreet, and L. Barone. A Fast Way of Calculating Exact Hypervolumes.

IEEE Transactions on Evolutionary Computation, 16(1):86–95, 2012.

R. L. While. A New Analysis of the LebMeasure Algorithm for Calculating Hypervolume.

In Carlos A. Coello Coello, Arturo Hernández Aguirre, and Eckart Zitzler, editors, Evo-

lutionary Multi-Criterion Optimization, Third International Conference, EMO 2005,

Guanajuato, Mexico, March 9-11, 2005, Proceedings, volume 3410 of Lecture Notes in

Computer Science, pages 326–340. Springer, 2005.

L. D. Whitley, T. Starkweather, and D. Fuquay. Scheduling Problems and Traveling

Salesmen: The Genetic Edge Recombination Operator. In Proceedings of the 3rd Inter-

national Conference on Genetic Algorithms, pages 133–140, San Francisco, CA, USA,

1989. Morgan Kaufmann Publishers Inc.

194



Bibliography

L. Wilkinson and M. Friendly. The History of the Cluster Heat Map. The American

Statistician, 63(2):179–0184, 2009.

X. Yao, Y. Liu, and G. Lin. Evolutionary programming made faster. IEEE Transactions

on Evolutionary Computation, 3(2):82–102, 1999.

K Paul Yoon and Ching-Lai Hwang. Multiple attribute decision making: an introduction.

Number 104. SAGE Publications, Incorporated, 1995.

T. Yoshikawa, D. Yamashiro, and T. Furuhashi. A Proposal of Visualization of Multi-

objective Pareto Solutions - Development of Mining Technique for Solutions. In Pro-

ceedings of the 2007 IEEE Symposium on Computational Intelligence in Multicriteria

Decision Making (MCDM 2007), 2007.

E. K. Zavadskas, A. Zakarevicius, and J. Antucheviciene. Evaluation of ranking accuracy

in multi-criteria decisions. Informatica, 17(4):601–618, 2006.

Q. Zhang and H. Li. MOEA/D: A Multiobjective Evolutionary Algorithm Based on

Decomposition. IEEE Transactions on Evolutionary Computation, 11(6):712–731, dec.

2007.

K. Zhao, B. Liu, T.M. Tirpak, and A. Schaller. Detecting Patterns of Change Using

Enhanced Parallel Coordinates Visualization. In Data Mining, 2003. ICDM 2003. Third

IEEE International Conference on, pages 747–750, nov. 2003.

E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: a Comparative Case

Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Com-

putation, 3(4):257–271, 1999.

E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiobjective Evolutionary Algorithms:

Empirical Results. Evolutionary Computation, 8:173–195, 2000.

E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength Pareto Evolu-

tionary Algorithm. Technical Report 103, Computer Engineering and Networks Labo-

ratory (TIK), ETH Zurich, 2001.

195


