An Agent-based Approach for Manufacturing Production Scheduling with Emission Consideration

Submitted by Ruiqiang Lu, to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Engineering In December 2012

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Signature: ...
In the current business climate with increasingly changing customer requirements and strong business competition, manufacturing organisations need to enhance their productivity and adaptability in order to survive in the current business environment and raise their competitiveness. As a result, the optimisation of production scheduling in manufacturing systems has attracted increasing attention by manufacturers. The optimisation of manufacturing scheduling can be simplified as an optimisation problem for minimising processing cost and time with a set of constraints reflecting the technical relationships between jobs or job features and the resource capability and capacity. Conventional optimisation approaches including mathematical approaches, dispatching rules, heuristics and meta-heuristics have been applied in this research area but optimal solutions cannot be achieved in a reasonable computational time. In this PhD research, an agent based approach is developed for solving the manufacturing production optimisation problem. There is an agent iterative bidding mechanism coordinated by a Genetic Algorithm (GA) which facilitates the search for optimal routing and sequencing solutions for processing an entire job with shared manufacturing resources. A shop agent in the system works as a mediator which announces bidding operations, collects bids and decides winner machines according to a weight-based function. Machine agents with specific technical capability calculate the total production cost and lead time for job operations according to the predesigned operational sequence, and decide whether to submit their bids based on local utility. Another agent self-adjusting mechanism is employed for resource agents updating the priorities of unprocessed jobs in their buffers. The objective of each machine agent is to maximise local utility, i.e., to increase individual profit. After genetic generations for updating parameters with agent self-adjusting, the near optimal schedule plans can be found.
On the other hand, the use of energy in all organisations has become a key issue worldwide. Carbon emissions from manufacturing processes of a company are under the pressure of government and also affect the public opinion. In the previous works from the literature, however, economic and environmental issues are not considered simultaneously in manufacturing production scheduling. Based on the basic agent based optimisation mechanisms, two extensive models with the consideration of the carbon emission during production are built in this research work, where the emission factor is set to be a constraint and another objective respectively. Numerical tests are utilised in order to examine the effectiveness and efficiency of the proposed approaches. Furthermore, two previous approaches from the literature for solving the same problems are rebuilt and results are compared for testing the comparative performance of the proposed approaches. Test results show that near optimal schedule plans can be achieved in a reasonable computational time.
CONTENTS

ABSTRACT ... 1

CONTENTS .. 3

LIST OF TABLES .. 7

LIST OF FIGURE ... 11

LIST OF ABBREVIATIONS .. 14

PUBLICATIONS ... 17

CHAPTER 1 ... 18

INTRODUCTION ... 18

1.1 Introduction .. 18

1.2 Research Background .. 18

1.3 Research Questions ... 21

1.4 Research Objectives ... 21

1.5 Thesis Organisation ... 22

CHAPTER 2 ... 25

A LITERATURE REVIEW ON MANUFACTURING PRODUCTION SCHEDULING AND
AGENT-BASED OPTIMISATION APPROACHES ... 25

2.1 Introduction .. 25

2.2 Manufacturing Production Scheduling ... 25

2.3 Conventional Approaches for Manufacturing Scheduling .. 27

2.3.1 Mathematical Approaches ... 27

2.3.2 Dispatching Rules ... 28

2.3.3 Heuristics and Meta-heuristics ... 30

2.4 Agents and Agent-based Optimising Approaches for Manufacturing Scheduling 33

2.4.1 Agents and Multi-Agent Systems ... 33
2.4.2 Design and Implementation of Agent Applications in Manufacturing Systems... 38
2.4.3 Agent-based Applications in Manufacturing Production Scheduling 40
2.5 Discussion.. 53
2.6 Summary... 56
CHAPTER 3... 57
AGENT BASED APPROACH FOR OPTIMISATION OF MANUFACTURING
PRODUCTION SCHEDULING.. 57
3.1 Introduction.. 57
3.2 Problem Formulation.. 57
3.3 Agent Bidding Mechanism.. 60
 3.3.1 Agent Based Iterative Bidding Mechanism... 61
 3.3.2 Agent Self-adjusting Mechanism... 67
3.4 Summary... 71
CHAPTER 4... 73
MULTI-AGENT MODELLING ARCHITECTURE... 73
4.1 Introduction.. 73
4.2 Modelling for Proposed Approach Based on Agents .. 73
4.3 Agent Types and Architectures.. 74
 4.3.1 Agent Types .. 75
 4.3.2 Agent Architectures ... 77
4.4 Summary... 80
CHAPTER 5.. 82
MANUFACTURING EMISSIONS... 82
5.1 Introduction.. 82
5.2 Background of Manufacturing Energy Consumption and Emission............................ 83
 5.2.1 Manufacturing Energy Consumption and Carbon Emissions................................. 83
 5.2.2 Policies Related to Manufacturing Emission ... 84
5.3 Methods for CO2 Emissions Measurement.. 85
5.4 Existing Approaches to Manufacturing Emission Reduction... 88
5.5 Discussion .. 91
5.6 Extended Model with Emission Consideration ... 92
 5.6.1 Emission as Constraint ... 93
 5.6.2 Emission as Objective ... 94
5.7 Summary .. 97

CHAPTER 6 .. 99
NUMERICAL TESTS .. 99
 6.1 Introduction .. 99
 6.2 System Layout and Setup parameters ... 99
 6.2.1 Product Order Information .. 100
 6.2.2 Manufacturing Resources .. 101
 6.2.3 Simulation Parameters ... 103
 6.3 Tests and Results .. 104
 6.3.1 Test 1: Emission as a Constraint .. 105
 6.3.2 Test 2: Emission as an Objective .. 114
 6.4 Discussion on Test Results .. 122
 6.5 Summary .. 124

CHAPTER 7 .. 125
COMPARATIVE EXPERIMENTATION ... 125
 7.1. Introduction .. 125
 7.2 Introduction and Modification of Two Previous Mechanisms 125
 7.2.1 Maione and Naso (2001) ... 125
 7.2.2 Zhang et al. (2007) ... 129
 7.3 Results of Comparison for Single-objective Problem ... 131
 7.4 Results of Comparison for Multi-objective Problem ... 134
 7.5 Discussion on Test Results .. 137
 7.6 Summary .. 138

CHAPTER 8 .. 140
CONCLUSIONS AND FUTURE WORK ... 140
8.1 Introduction .. 140
8.2 Research Conclusions .. 140
8.3 Research Contributions and Limitations .. 142
8.4 Future Work .. 143
APPENDIX A .. 145
INPUT DATA OF ALL MACHINES .. 145
APPENDIX B .. 155
MACHINE BUFFER LISTS OVER FIVE SIMULATION DAYS 155
APPENDIX C .. 158
ITERATIVE BIDDING RESULTS ... 158
APPENDIX D .. 169
RESULTS OF MULTI-OBJECTIVE OPTIMISATION .. 169
REFERENCES ... 190