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 2 

Abstract 22 

 23 

Marine turtles utilise terrestrial and marine habitats and several aspects of their life history are tied to 24 

environmental features that are altering due to rapid climate change. We overview the likely impacts 25 

of climate change on the biology of these species, which ultimately centre upon the thermal ecology 26 

of this taxonomic group. Then, focussing in detail on three decades of research on the loggerhead 27 

turtle (Caretta caretta), we describe how much progress has been made to date, and how future 28 

experimental and ecological focus should be directed. Key questions include: What are the current 29 

hatchling sex ratios from which to measure future, climate induced changes? What are wild adult sex 30 

ratios and how many males are necessary to maintain a fertile and productive population? How will 31 

climate change affect turtles in terms of their distribution? 32 

33 
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Introduction 34 

 35 

A changing world 36 

 37 

The earth’s climate is warming: increases in average air and ocean temperatures, melting of land and 38 

sea ice, as well as rising sea levels have been observed and are likely caused by increases in 39 

anthropogenic atmospheric emissions (Hansen et al., 2006; IPCC, 2007). The observed changes in 40 

the climate since 1996 have actually been greater than anticipated (Rahmstorf et al., 2007) leading to 41 

concern regarding the future environment. Global average surface temperatures have increased by 42 

0.8 °C over the last 100 years (Hansen et al., 2006), with greater increases in temperature over the 43 

land than sea surface (IPCC, 2007). Future surface temperature increases of 2-3 °C are expected by 44 

2100 (Hansen et al., 2006). Concurrent increases in sea level have been recorded at 1.8 mm per year 45 

over the last 42 years (IPCC, 2007), or at 3.4 mm per year per degree Celsius of warming observed 46 

(Rahmstorf, 2007). The majority of sea level rise is contributed by thermal expansion (57%), with 47 

another significant contribution (28%) from surface ice melting (IPCC, 2007) and may also be 48 

increasing faster than previously predicted (Rahmstorf, 2007). In addition, although an overall 49 

decrease in average rainfall is predicted (IPCC, 2007), an increase in heavy rainfall and ‘great flood’ 50 

events is expected (Milly et al., 2002). Both genesis and tracks of storms are predicted to move 51 

poleward, and may increase in intensity in some regions (Bengtsson et al., 2006). Finally, the uptake 52 

of atmospheric CO2 by the ocean since the industrial era has meant that ocean pH has decreased by 53 

0.1 pH units (IPCC, 2007). A further decrease of 0.35 pH units could occur over the next 100 years. 54 

 55 

It is recognized that climate change must be incorporated into species conservation planning (Araújo 56 

et al., 2004; Hannah et al., 2002), with spatial and temporal alterations to species ranges, in 57 

accordance with climate change patterns, observed in 84% of species investigated (Parmesan and 58 

Yohe, 2003). Indeed, species extinctions as a result of climate change have been already documented 59 

(Pounds et al., 1999) and some authors have suggested that as much as one fifth to a third of 60 

terrestrial species could be at risk of extinction (Thomas et al., 2004). It has also become apparent 61 

that marine species are likely to be impacted (Croxall et al., 2005; Gremillet and Bioulinier, In press; 62 

Hawkes et al., 2007b; MacLeod, 2009; Newson et al., 2009); although far fewer studies have been 63 

conducted in comparison with terrestrial species. 64 

 65 

Climate change in sea turtles 66 

 67 

Although climate change was identified as a potential problem to sea turtles in seminal papers by 68 

Mrosovsky (1984) and Davenport (1989), it is only recently that significant research effort has been 69 

expended on the field (reviewed by Hamann et al., (2007); Hawkes et al., (2009)). Although sea 70 
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turtles are exposed to climate change threats both at sea and on the nesting beach, it is at the beach 71 

where the majority of research effort has been focused as it provides opportunity for more 72 

logistically feasible work. One of the primary effects of climate change on nesting beaches is sea 73 

level rise, where higher water levels will directly decrease the availability of suitable nesting sites. 74 

Recent work suggests that up to half of current available nesting area could be lost with predicted sea 75 

level rise (Fish et al., 2005; Fish et al., 2008; Mazaris et al., 2009), particularly at islands where no 76 

retreat options exist (Baker et al., 2006) or where anthropogenic coastal fortification causes ‘coastal 77 

squeeze’ (Fish et al., 2008). This coastal squeeze may be exacerbated in the forthcoming decades by 78 

a growing population whose densities at the margins of the global land mass are considerably greater 79 

than the global land average (Small and Nicolls, 2003), potentially carrying fitness consequences for 80 

nesting female turtles (Pike, 2008). On available areas of nesting beach, incubating clutches could be 81 

at risk from an increasing sea level if water tables rise, effectively flooding the nest from below. 82 

Some species could be at greater risk than others, for example green turtles (Chelonia mydas) lay 83 

deeper nests than loggerhead turtles (Caretta caretta) (Hannan et al., 2007), and leatherback turtles 84 

(Dermochelys coriacea) tend to nest closer to the high tide line than green turtles or loggerhead 85 

turtles nesting on the same beach (Wetterer et al., 2009; Whitmore and Dutton, 1985) 86 

 87 

Turtles on the nesting beach are profoundly affected by temperature, such that temperature can 88 

influence nesting phenology (Hawkes et al., 2007b; Hays et al., 2002; Pike et al., 2006; Sato et al., 89 

1998; Webster and Cook, 2001; Weishampel et al., 2004), incubation success (Ackerman, 1997; 90 

Carthy et al., 2003), incubation duration (Matsuzawa et al., 2002; Mrosovsky et al., 1999; Pike et al., 91 

2006) and, as sex determination is by temperature, sex of offspring (Yntema and Mrosovsky, 1980). 92 

Increasing temperatures therefore have the potential to change current nest incubation regimes as 93 

well as skew sex ratios (Hawkes et al., 2007b). Alternatively, increasing temperatures may open up 94 

areas that were previously inaccessible to nesting. Indeed, nests are now being discovered 95 

increasingly further north (see Bentivegna et al. (2005); Sénégas et al.(2008); Tomas et al. (2008)). 96 

Incubating sea turtle clutches can also be damaged or lost due to storm activity (Van Houtan and 97 

Bass, 2007), including surges, wave action and sand wash out events. The effects to the incubating 98 

nest can range from reducing hatching success to total loss of clutches on a particular beach (Snow 99 

and Snow, 2009). 100 

 101 

The effects of climate change on turtles at large in the ocean are more challenging to study, because 102 

turtles range across entire ocean basins and are late maturing and long lived (Avise et al., 1992; Zug 103 

et al., 2002). There is compelling evidence from multiple species to suggest that the distribution and 104 

behaviour of chelonid sea turtles is influenced by temperature (Hawkes et al., 2007a; Sato et al., 105 

1998). Leatherback sea turtles are probably affected to a lesser extent by thermal conditions due to 106 

gigantothermy (Frair et al., 1972; Paladino et al., 1990) and anatomical adaptations (Davenport et al., 107 
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2009), and range further from the equator, such as into Canadian (James et al., 2005) waters and 108 

those of the Northeast Atlantic Ocean (Doyle et al., 2008; McMahon and Hays, 2006; Witt et al., 109 

2007a). We know that ocean currents play an important role in dispersing hatchling turtles (Bolten, 110 

2003; Lohmann and Lohmann, 2003; Witherington, 2002; Witt et al., 2007b) and that these currents 111 

may change in magnitude or direction (Rahmstorf, 1997; Stocker and Schmittner, 1997), which may 112 

influence future juvenile developmental phase durations (Hamann et al., 2003). In addition, changes 113 

to the pelagic community as a result of climate change could alter trophic dynamics (Edwards and 114 

Richardson, 2004) and juvenile growth rates and further alter developmental duration (Bjorndal et 115 

al., 2000; Verity et al., 2002). For adults, changes to thermal regimes and sea surface currents could 116 

alter current adult foraging habitat as well as the location and size of home ranges and diet (Bjorndal, 117 

1997; Davenport, 1998; Meylan, 1988; Polovina et al., 2004), which has ramifications for population 118 

breeding phenology and success. 119 

 120 

The loggerhead sea turtle 121 

 122 

Likely as a result of extensive presence within the waters of affluent nations such as USA, Japan, 123 

Australia and those of the Mediterranean, the loggerhead turtle (Caretta caretta) is one of the most 124 

studied sea turtle species, and we therefore select it for the focus of this review. For the purposes of 125 

this work we have taken an Atlantic and Mediterranean wide view of this species due to the wealth 126 

of published data describing reproductive biology, feeding ecology and population trends from long 127 

term studies available for populations from these two ocean basins. We consider several aspects of 128 

the thermal biology of loggerhead sea turtles in relation to projected climate change, highlighting the 129 

progress that has been made and the steps towards predicting and understanding impacts. 130 

  131 

The loggerhead turtle nests in tropical and sub-tropical regions. The largest known rookeries are in 132 

the southeast United States of America and Cape Verde (Figure 1a); with nesting also occurring 133 

along the Brazilian coast within the South Atlantic basin. In the Mediterranean Sea (Figure 1b), 134 

nesting is almost exclusively restricted to the eastern basin, with notable aggregations occurring in 135 

Cyprus, Greece and Turkey (Broderick et al., 2002; Margaritoulis et al., 2003).  136 

 137 

All species of sea turtle are thought to demonstrate some degree of natal philopatry (Bowen and Karl 138 

(2007), although with some variations, see Lee (2008)) returning as adults to their natal beach 139 

regions to breed. Females typically reproduce every 2-3 years (Miller, 1997), with the seasonal 140 

magnitude of nesting in any one year dependent upon trophic conditions encountered by female 141 

turtles in the years preceding breeding and nesting (Broderick et al., 2001b; Chaloupka et al., 2008). 142 

Following reproductive activity, while some female loggerhead turtles move to oceanic areas 143 

(Hawkes et al., 2006), most will undertake migrations of varying distances to neritic foraging 144 
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grounds (Girard et al., 2009; Godley et al., 2003; Plotkin and Spotila, 2002; Zbinden et al., 2008) 145 

demonstrating considerable levels of site fidelity (Broderick et al., 2007). During winter periods, 146 

their range appears to be thermally constrained (Hawkes et al., 2007a) and individuals apparently 147 

hibernate during the coolest months (Broderick et al., 2007; Hawkes et al., 2007a; Hochscheid et al., 148 

2005). 149 

 150 

Here we consider the thermal biology of sea turtles in relation to projected climate change, 151 

highlighting the progress that has been made and identifying the next key steps to understanding 152 

likely impacts.  153 

 154 

Hatchling sex ratios 155 

 156 

Temperature-dependent sex determination in sea turtles was first documented in loggerhead turtles 157 

by Yntema and Mrosovsky (1980), with warmer incubation temperatures producing more females, 158 

and cooler temperatures producing more males. Although early work was conducted under 159 

laboratory conditions, attention moved to field studies to assess whether hatchling sex ratios were 160 

different from 1:1 as predicted by Fisher (1930). Initial assessments of loggerhead turtle sex ratios 161 

suggested that sex ratios vary from beach to beach and also from month to month within a nesting 162 

season (Mrosovsky et al., 1984). Further work has been conducted by incubating eggs, from a variety 163 

of different populations from different latitudes, in controlled laboratory conditions, and has 164 

suggested that there is little variation in the pivotal temperature (Mrosovsky 1988, Mrosovsky and 165 

Pieau, 1991). Subsequent studies of laboratory incubation of loggerhead turtle eggs from Brazil and 166 

Greece have found similar pivotal temperatures - close to 29 °C, as have field-based estimates of 167 

pivotal temperature from the Mediterranean (Table 1). Thus variation in sex ratios observed in the 168 

wild (Figure 2) are thought to be driven largely by local environmental conditions, specifically egg 169 

temperatures during incubation (Godfrey and Mrosovsky, 2001).  170 

 171 

A major constraint in the study of loggerhead turtle sex ratios has been the challenge of assigning 172 

sex. Sea turtles do not have sexually dimorphic sex chromosomes, nor do they express visible 173 

external phenotypic differences between the sexes prior to adulthood. The only fully reliable method 174 

of assigning sex to hatchling loggerhead turtles has been through histological examination of the 175 

gonads (Yntema and Mrosovsky, 1980), which is labour intensive and destructive. Attempts to use 176 

dead-in-nest hatchlings for sexing are hampered by low sample sizes and possible influence of sex-177 

biased mortality. There have been attempts to develop other, non-destructive markers of phenotypic 178 

sex, with varying degrees of success, including assessing ratios of hormone titres in the 179 

chorioallantoic fluid remaining in eggs after hatching (Gross et al., 1995) and laparoscopy of 180 

hatchlings raised in captivity for several months (Wyneken et al., 2007). Regardless of their 181 
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reliability, these alternative methods of directly assigning sex present logistical challenges that would 182 

hamper studies of sex ratios on a large scale in the field.  183 

 184 

Other researchers have pursued methods that indirectly estimate sex ratios of hatchlings, most 185 

commonly by using environmental parameters such as sand and air temperature (Hawkes et al., 186 

2007b; Matsuzawa et al., 2002; Mrosovsky and Provancha, 1992). Some researchers have also used 187 

the incubation period of loggerhead nests as an indirect measure of sex ratio, because the rate of 188 

embryonic development is linked to temperature (Godfrey and Mrosovsky, 1997; Godley et al., 189 

2001b; Marcovaldi et al., 1997). While these methods of indirectly estimating sex ratios have helped 190 

generate larger datasets (Hawkes et al., 2007a), few have been validated (Mrosovsky et al., (1999)). 191 

Validation is especially important as most of these studies use pivotal temperature or pivotal 192 

incubation data from laboratory studies that also are based on few clutches using constant incubation 193 

temperatures. To date, there have been published pivotal temperature studies for only six different 194 

loggerhead nesting beaches in the Atlantic and Mediterranean Sea, with most pivotal values based on 195 

just two clutches (Table 1). More studies are needed to increase reliability of these values and 196 

illuminate the individual variation and capacity for adaptation in this trait. Indeed, pivotal 197 

temperature studies of freshwater turtles using many clutches suggest that pivotal temperatures are 198 

much more variable within a particular species, due either to intrinsic differences between and/or 199 

variability of maternal contributions (e.g. hormones) in the eggs (Bowden et al., 2000; Dodd et al., 200 

2006). The development of a non-destructive but accurate marker of phenotypic sex of hatchlings 201 

would also greatly facilitate the generation of hatchling sex ratio datasets, both directly and 202 

indirectly, although to date there has been little success in this endeavour (Wibbels, 2003). 203 

 204 

Despite the logistical challenges of accurately assigning sex to hatchling sea turtles, loggerhead 205 

turtles have been the focus of a number of sex ratio studies, based on either direct or indirect 206 

assessments of offspring sex. Within the Atlantic Ocean there is a general trend, although 207 

statistically insignificant, of more female biased hatchling sex ratios for rookeries located closer to 208 

the equator and more balanced sex ratios (i.e. closer to 1:1) at rookeries that are further away from 209 

the equator (Figure 3a, Spearman rank-order correlation using absolute latitude versus arc-sine 210 

transformed percentage of females produced at each rookery, n = 10, rho = -0.22, p = 0.54). In the 211 

case of the south-east USA, the more southerly rookeries in eastern Florida are estimated to produce 212 

nearly 90% female hatchlings (Hanson et al., 1998; Mrosovsky and Provancha, 1992), while more 213 

northerly rookeries in Georgia, South Carolina and North Carolina are thought to produce closer to 214 

55-60% female hatchlings (Hawkes et al., 2007b; Mrosovsky et al., 1984). There are exceptions to 215 

this trend, including reported 1:1 hatchling sex ratios on some smaller, vegetated beaches in western 216 

Florida (Foley et al., 2000). A similar latitudinal trend exists south of the equator in Brazil, where the 217 

more northerly populations of Sergipe and Bahia produce nearly all female hatchlings (Marcovaldi et 218 
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al., 1997; Naro-Maciel et al., 1999), while the more southerly rookery in Espirito Santo produce 219 

closer to 1:1 hatchling sex ratios (Baptistotte et al., 1999; Marcovaldi et al., 1997). Note that 220 

hatchling sex ratios studies have not been randomly designed, and there remain many nesting 221 

beaches both north and south of the equator, some of them major rookeries, that have not been 222 

adequately studied for hatchling sex ratio production (e.g. Yucatan Peninsula in Mexico, Rio de 223 

Janeiro state in Brazil). Therefore, caution is needed in interpreting large spatial scale trends based 224 

on limited available information. 225 

 226 

In the Mediterranean Sea most loggerhead nesting occurs in the eastern basin (Figure 1b), and 227 

loggerhead hatchling sex ratios (Figure 3b) are estimated to be female biased on most beaches 228 

(Godley et al., 2001b; Oz et al., 2004; Zbinden et al., 2006), with beaches of southerly latitude 229 

showing a general trend towards a greater female bias (Spearman rank-order correlation, n = 7, rho = 230 

-0.75, p = 0.06). Exceptional loggerhead nests laid on beaches of the central and western 231 

Mediterranean Sea (Sénégas et al., 2008; Tomas et al., 2008) may experience cooler incubation 232 

environments, and thus may produce male-biased hatchling sex ratios, although relative numbers of 233 

these nests are quite small.  234 

 235 

There are several issues that hamper our understanding of this important population parameter, 236 

including a) the lack of long-term datasets, which are needed to discern overall trends instead of 237 

short-term studies that may reflect temporary variations only; b) the lack of systematic sampling for 238 

sex ratios across nesting populations that encompass the entire nesting season, making it difficult to 239 

interpret available data; and c) a reliable, simple and non-destructive marker of phenotypic sex of 240 

hatchlings. More concentrated effort on issue c) would contribute towards resolving issues a) and b). 241 

In the meantime, more work should be focused on better refining currently employed techniques of 242 

indirectly estimating the sex of hatchlings, including temperature and duration of incubation. For 243 

instance, more pivotal temperature experiments, to capture (or rule out) spatio-temporal variability 244 

both within and among nesting beaches (e.g. variation with latitude), are needed, and should include 245 

information on the transitional range of temperature that produces both sexes (Hulin et al., 2009). 246 

Additionally, validation of indirect estimates against direct estimates (histological examination of the 247 

gonads) within the same study will help define rates of error associated with indirect estimates 248 

(Mrosovsky et al., 2009). Finally, long-term monitoring of index sites should be set up as soon as 249 

possible, to establish baselines against which to measure possible future changes to hatchling sex 250 

ratio induced by climate change. 251 

252 
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Predicting future hatchling sex ratios and nest death 253 

 254 

It is commonly acknowledged that average global air and sea surface temperatures will rise, and with 255 

them so will sand temperatures at nest depth on loggerhead nesting beaches. More effort is urgently 256 

needed to predict how such changes may impact future hatchling sex ratios of populations (Fuentes 257 

et al., In press). If sea turtles do not adapt by shifting their geographic ranges, phenology of breeding 258 

or pivotal temperatures, sex ratios, many of which are already highly female biased, will become 259 

further skewed. Some studies have recorded an earlier onset of loggerhead turtle nesting (e.g. Pike et 260 

al., (2006), Weishampel et al., (2004)) others have not (e.g. Hawkes et al., (2007b), Pike (2009)). 261 

Given that females may select cooler sites (e.g. shaded) to lay their clutch at existing or new 262 

locations, the recording of clutch temperatures will be the main indicator for monitoring adaptation 263 

(or lack thereof) to rising temperatures. 264 

 265 

Although some have inferred past sex ratios from historic air temperature (Hawkes et al., 2007b; 266 

Hays et al., 2003), there have been surprisingly few studies that have attempted to predict how future 267 

climate change may impact hatchling production of sea turtles and those that have addressed this 268 

issue have predicted sex ratios and hatching success at set elevated temperatures (Hawkes et al., 269 

2007b) as opposed to estimating future sex ratios under modelled climate change scenarios (IPCC, 270 

2000). For those clutches that normally produce at least some males, a rise in temperature within a 271 

clutch will most likely increase the proportion of females produced. If temperatures rise above the 272 

threshold for successful development for extended periods (~33°C) embryonic death will increase 273 

(Miller, 1997). 274 

 275 

To illustrate how variable predictions of hatchling sex ratios might be, we examined temporal trends 276 

in historic and global circulation model forecasts of sea surface temperature for the month of peak 277 

incubation at six loggerhead turtle nesting colonies (Figure 4). From this information alone one 278 

might predict that regions that are currently experiencing higher incubation temperatures might be 279 

most at risk from further increases, potentially leading to complete feminisation in hatchling 280 

production. From detailed studies in Cyprus we know, for example, that mean clutch temperatures 281 

during 1996 to 1999 (Godley et al., 2001a) were ~4 °C warmer than sea surface temperature, likely, 282 

at least in part, a result of sand albedo (Hays et al., 2001). In addition, other variables such as depth 283 

of clutch and clutch size have been shown to influence clutch temperature (Broderick et al., 2001a) 284 

but have been the focus of few sex ratio studies to date. Understanding how these variables influence 285 

clutch temperature is crucial for predicting nest fate for future climate scenarios. For sites at risk (i.e. 286 

those that are currently experiencing extreme bias in sex ratios and near-lethal temperatures), 287 

accurate predictions are needed and monitoring strategies with intervention plans put into place in 288 

case limited or no adaptation to climate change occurs. 289 
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Sex ratios in advanced demographic groups 290 

 291 

Less well understood are sex ratios of pelagic stage neonate turtles, older juveniles and adults 292 

(Blanvillain et al., 2008; Hawkes et al., 2009). Sex ratios of older size classes are an important 293 

component of population dynamics (Frankham, 1995), affecting both genetic variation within the 294 

population and mating systems. Given that effective population size (Ne) will seldom be twice that of 295 

the rarer sex (Milner-Gulland et al., 2003), populations with highly skewed sex ratios are likely to 296 

suffer negative impacts through random drift and loss of genetic variation, compromising their 297 

ability to respond to selection pressures and impeding population recovery. In order to understand 298 

juvenile and adult sex ratios, at-sea surveys to catch and sex wild turtles either laparoscopically: 299 

Blanvillain et al.,(2008), by hormonal assay (possible in individuals >2-3 years age): Braun-McNeill 300 

et al., (2007), or by secondary sexual features in mature individuals, have to be undertaken. 301 

Notwithstanding cost, such studies require expertise and need to be undertaken over a long period 302 

(>10 years). It is not surprising therefore that there exist few data in the peer-reviewed literature to 303 

elucidate whether skewed hatchling sex ratios are reflected in the wider population. 304 

 305 

Work that has been published for loggerhead turtles however, suggests that a female bias remains in 306 

the juvenile and adult population (approximately 2 females to 1 male; Table 2). A lag between 307 

hatchling sex ratio and older life stage turtles (large juveniles and adults) however, would be 308 

approximately 30 years (based on age to maturity estimates in Casale et al., (2009) and Heppell et 309 

al., (2003)), such that future juvenile and adult sex ratios could be more female biased than at 310 

present. Although marine turtle fertility levels remain quite robust even at very low rookery size 311 

(Bell et al., In press) it is conceivable that there will be a critical adult sex ratio beyond which 312 

fertility will become reduced. 313 

 314 

Distribution 315 

 316 

As satellite tracking data have become more widely integrated with oceanographic data (Godley et 317 

al., 2008), the parameters describing preferable habitat for loggerhead sea turtles (e.g. seabed depth 318 

preference, surface current strength, upper and lower thermal preference) have become clearer. 319 

Habitat suitability models, utilising some of these parameters (Hawkes et al., 2007a; McMahon and 320 

Hays, 2006), are now being developed and these will provide the foundation to which global 321 

circulation models, used to build climate change predictions, might be applied. The predominant 322 

variable used in bioclimatic envelope modelling is temperature, and as ectotherms it is likely a good 323 

descriptor of the fundamental niche of sea turtles. However, the realised niche may be somewhat 324 

smaller, as augmented by prey and predator distribution and inter and intra-specific competition. 325 

Therefore with further characterisation of these variables (Witt et al., 2007a), models might predict 326 
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available habitat under future climate change scenarios with greater specificity. In the absence of 327 

such data for loggerhead turtles, we limit our discussion to modelling the fundamental (thermal) 328 

niche. 329 

 330 

In order to investigate how climate change may alter current thermal ranges for loggerhead sea 331 

turtles, we integrated oceanographic habitat preferences for adult loggerhead turtles (temperatures 332 

warmer than 15°C) with historic and forecast monthly mean sea surface temperatures. For the 333 

Atlantic Ocean these data were used to model the past, present and future thermally accessible range 334 

(1970 to 2089, Figure 5). For the Mediterranean Sea we took an alternative approach, displaying the 335 

mean March 15°C isotherm over successive 20-y periods (Figure 6). Within the annual cycle of sea 336 

surface temperature in the Mediterranean Sea, March represents the coldest month when cheloniid 337 

sea turtles are most likely to be spatially constrained by temperature. Broadly, these simple thermal 338 

envelope (niche) models describe an increase in available habitat through time. For the Atlantic 339 

Ocean we see the 90% habitat suitability contour migrating poleward with greatest range extension 340 

in the mid North Atlantic and some 75 to 100 km poleward extension along the US Atlantic coast. 341 

This model represents habitat suitability using a year-round approach; however, during warmer 342 

summer months loggerhead turtle distribution regularly extends further north than the annualised 343 

90% habitat suitability contours. In the Mediterranean Sea, we see the western basin becoming 344 

increasing favourable to occupation during winter months, by 2089 only a small area of the 345 

Mediterranean Sea, south of France, will remain inaccessible to year round occupation. 346 

 347 

Despite the obvious utility of models such as ours in predicting and managing for future range 348 

changes, it should be noted that insufficient data describing the oceanographic parameters of habitat 349 

occupation have been published for the seven species of sea turtles. In particular, the habitat 350 

preferences of juvenile turtles and adult males are largely unknown and future tracking efforts need 351 

to address this shortcoming (Godley et al., 2008). These data are fundamental to both the 352 

development and accuracy of future models and at present it has not been possible to develop robust 353 

models for many major rookeries. These models do not, as yet, factor in potential habitat losses, if 354 

any, to exceptionally warm waters. Furthermore, they can not reasonably factor in predicted changes 355 

in prey distribution, given the generalist diet of the loggerhead turtle. Truly holistic predictive 356 

modelling for these species is far from trivial. However, when available, future habitat suitability 357 

models could be integrated with climate change predictions, using methodologies such as ours, to 358 

make and test predictions about range alterations. 359 

360 
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Conclusion 361 

 362 

In this review we have highlighted some of the primary threats from climate change faced by these 363 

species, the current knowledge of sex ratios, temperature-dependent sex determination, and species 364 

distribution and recommend future studies that will provide critical information for the prediction of 365 

the potential effects of climate change, which will inform possible adaptive management practices. 366 

These practices might include artificial nest shading or watering of nests to reduce incubation 367 

temperatures (e.g. Naro-Maciel et al. (1999)), translocation of clutches to cooler sites on current 368 

nesting beaches or reseeding populations to new locations (Hoegh-Guldberg et al., 2008). We do, 369 

however, urge that robust experiments be conducted to test the effectiveness of such practices (Pintus 370 

et al., 2009). In addition, further empirical studies, in particular the development of a non-destructive 371 

marker to identify hatchling sex, are urgently needed to aid accurate prediction of sex ratios and 372 

hence identify populations that may require mitigation activities. Finally, the threats from climate 373 

change experienced by these species of conservation concern are only part of a suite of other threats 374 

such as direct exploitation, fisheries bycatch and habitat loss that potentially hinder marine turtle 375 

population recovery. Targeting these latter threats will better engender resilience in marine turtle 376 

stocks while they adjust to changes in conditions as they have done in the past. 377 

378 
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Legends 
 

 

Figure 1. Distribution and abundance of loggerhead sea turtle nesting in (a) Atlantic Ocean 

and (b) Mediterranean Sea. Sources: USA and Bahamas (Conant et al., 2009); Brazil (Marcovaldi 

and Chaloupka, 2007); other Atlantic locations (Ehrhart et al., 2003); Mediterranean (Margaritoulis 

et al., 2003). 

 

Figure 2. Estimated proportion of male (black) and females (white) hatchling production at 

selected loggerhead sea turtle nesting rookeries in (a) Atlantic Ocean and (b) Mediterranean 

sea. Sources: 1. Hawkes et al., (2007b); 2. Bell (2003); 3. Mrosovsky et al., (1984); 4. Mrosovsky 

and Provancha (1992); 5. Hanson et al., (1998); 6. Schmid et al., (2008); 7. Foley et al., (2000); 8-10. 

Marcovaldi et al., (1997); 11. Houghton and Hays (2001); 12. Zbinden et al., (2006); 13. Rees and 

Margaritoulis (2004); 14. Godley et al., (2001b); 15. Kaska et al., (1998); 16 and 17. Oz et al., 

(2004). 

 

Figure 3. Relationship between latitude and percentage of female hatchlings produced at 

nesting rookeries in (a) Atlantic Ocean and (b) Mediterranean Sea. The latitudes of nesting 

rookeries with sex ratio data were expressed as absolute values. Arabic numbers indicate source 

literature as described in Figure 2. 

 

Figure 4. Historic and forecast near-shore sea surface temperature for loggerhead sea turtle 

nesting (a-f) rookeries for the predominant month of incubation. Historic sea surface 

temperature (filled squares, Jan. 1870 to May 2009; Hadley Ice and Sea Surface Temperature 

(HadISST) dataset; Rayner et al., (2003)). Forecast  sea surface temperature (open squares, Jun. 2009 

to Nov. 2089; Hadley Global Earth Model 1 (HadGEM1) using IPCC SRES A2 scenario (IPCC, 

2000; Johns et al., 2006) available from the World Climate Research Programme's (WCRP's) 

Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset (Meehl et al., 2007). 

Monthly gridded HadGEM1 data were spatially resampled and variance and trend adjusted 

(Sheppard, 2003) according to the temporal and spatial structure of HadISST data using Matlab 

(Version 7.8.0, MathWorks Inc, Natick, Massachusetts, US). Robust locally weighted scatter plot 

smooth (Cleveland, 1979) (solid line, r = 0.5). Reference line to aid visual interpretation (28°C, 

broken line). In Cyprus, nest temperatures are typically 4 °C greater than sea surface temperatures 

(see text for details). 

 

Figure 5. Historic and forecast loggerhead turtle habitat suitability for the Atlantic Ocean. 

Forecast sea surface temperature data (HadGEM1) were variance and trend adjusted and merged 

with historic (HadISST) data. Six 20-y duration sea surface temperature datasets were constructed. 

Each 20-y dataset comprised of 240 months of spatially gridded mean monthly SST data. Each pixel 

of each 20-y gridded SST dataset was scored as 0 or 1 according to thermal suitability (i.e. < 15°C = 

0 & ≥ 15°C =1), following the method of Hawkes et al., (2007a). The temporal availability of habitat 

was calculated by dividing the number of months that each cell was suitable against the total number 

of months analysed. The proportion of time that each cell(pixel) was thermally accessible was 

subsequently expressed as percentage. Isolines of 90% habitat suitability were derived using cubic 

interpolation using Matlab. 

 

Figure 6. Historic and forecast 20-y mean March sea surface temperature for the 

Mediterranean Sea with 20-y mean 15°C isotherm. Forecast sea surface temperature data 

(HadGEM1) were variance and trend adjusted and merged with historic (HadISST) data. Six 20-y 

duration sea surface temperature datasets were constructed. For each 20-y dataset the mean March 

position of the 15°C isotherm was identified (solid line) using  cubic interpolation. 
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Tables 

 

 

 

Table 1. Pivotal temperatures for loggerhead sea turtles in the Atlantic Ocean and Mediterranean 

Sea. 
1
Study used 2 clutches; 

2
Field-based; 

3
Two study clutches from one beach in Cyprus and six 

from four different beaches in Turkey combined to calculate pivotal. 

 

 

 

 

 

Table 2: Reported juvenile and adult sex ratios for loggerhead turtles. Method of sexing: 

laparoscopy (LAP), radioimmunoassay (RIA) or observation of gross anatomical features (OBS). 

Location Pivotal °C Latitude Longitude Source 

Cumberland Is., GA, USA 28.5 30.86 -81.42 Mrosovsky (1988)
1
 

Turkey / Cyprus 29.0 35.93 32.35 Kaska et al., (1998)
2,3

 

Jupiter Island, FL, USA 29.2 27.07 -80.12 Mrosovsky (1988)
1
 

Bald Head Is., NC, USA 29.2 33.84 -77.97 Mrosovsky (1988)
1
 

Bahia Brazil 29.2 -10.38 -37.67 Marcovaldi et al., (1997)
1
 

Kyparissia, Greece 29.3 37.25 21.66 Mrosovsky et al., (2002)
1
 

     

Location Life stage % ♀ Method Source 

Atlantic, USA Juvenile 67.7 LAP Braun-McNeill et al., (2007) 

Atlantic, USA Juvenile 74.5 RIA Braun-McNeill et al., (2007) 

Atlantic, USA Juvenile 66.0 OBS Stabenau et al., (1996) 

Atlantic, USA Juvenile 65.3 OBS Shoop et al., (1998) 

Mediterranean Adult 76.5 OBS Casale et al., (2005) 

Mediterranean Juvenile 54.2 OBS Casale et al., (2006) 
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Figure 4 

a) North Carolina, USA b) Florida, USA 

d) Cape Verde c) Mexico 

e) Greece f) Cyprus 



 27 

Figure 5 



 28 

Figure 6 

 


