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Abstract

This thesis details original experimental investigations in to the interaction of light with
the mobile electrons at the surface of metallic diffraction gratings. The gratings used in
this work to support the resultant trapped surface waves (surface plasmon polaritons),
may be divided into two classes: ‘crossed’ bigratings and ‘zigzag’ gratings.

Crossed bigratings are composed of two diffraction gratings formed of periodic
grooves in a metal surface, which are crossed at an angle relative to one another. While
crossed bigratings have been studied previously, this work focuses on symmetries which
have received comparatively little attention in the literature. The gratings explored in
this work possesses two different underlying Bravais lattices: rectangular and oblique.

Control over the surface plasmon polariton (SPP) dispersion on a rectangular
bigrating is demonstrated by the deepening of one of the two constituent gratings.
The resulting change in the diffraction efficiency of the surface waves leads to large
SPP band-gaps in one direction across the grating, leaving the SPP propagation in the
orthogonal direction largely unperturbed. This provides a mechanism to design surfaces
that support highly anisotropic propagation of SPPs.

SPPs on the oblique grating are found to mediate polarisation conversion of the
incident light field. Additionally, the SPP band-gaps that form on such a surface are
shown to not necessarily occur at the Brillouin Zone boundaries of this lattice, as the
BZ boundary for an oblique lattice is not a continuous contour of high-symmetry points.

The second class of diffraction grating investigated in this thesis is the new zigzag
grating geometry. This grating is formed of sub-wavelength (non-diffracting) grooves
that are ‘zigzagged’ along their length to provide a diffractive periodicity for visible
frequency radiation. The excitation and propagation of SPPs on such gratings is
investigated and found to be highly polarisation selective.

The first type of zigzag grating investigated possesses a single mirror plane. SPP
excitation to found to be dependant on which diffracted order of SPP is under polarised
illumination. The formation of SPP band-gaps is also investigated, finding that the
band-gap at the first Brillouin Zone boundary is forbidden by the grating’s symmetry.

The final grating considered is a zigzag grating which possesses no mirror symmetry.
Using this grating, it is demonstrated that any polarisation of incident light may
resonantly drive the same SPP modes. SPP propagation on this grating is found to be

forbidden in all directions for a range of frequencies, forming a full SPP band-gap.
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Chapter 1

Introduction

This thesis details original experimental investigations in to the interaction of light
with the mobile electrons at the surface of metallic diffraction gratings. The resulting
quantised surface waves, surface plasmon polaritons, have been investigated by optical
scientists for over a century, yet interest in the field has never been higher, and progress
has never been faster [1, 2]. This is due in large part to the relatively recent advances in
nano-fabrication techniques, which have allowed greater control over the surface wave
propagation and dispersion characteristic on metallic surfaces. This work endeavours
to extend the understanding of surface plasmon polaritons on diffraction gratings by
exploring their propagation along symmetries and structures that have not been reported

previously, and whose fabrication has only recently become achievable.

1.1 History

The phenomenon of diffraction from gratings has been reported by scientists since
Francis Hopkinson peered at a street lamp through a silk handkerchief in 1785 [3, 4].
The rainbow that is seen due to the dispersion of light through such fine structure was
recognised immediately as an incredibly useful optical property by Fraunhofer, and it
was not long before early diffraction gratings were being manufactured by scratching
fine grooves in to the surfaces of glasses and metals.

In 1902, it was these early forays into the structuring of metals that led to the first
recorded observations of surface plasmon polaritons’ interaction with light. Wood [5]
reported a bright band of enhanced reflection and a dark band of low reflection found
in the projected spectrum of a ruled speculum diffraction grating produced at John
Hopkins University [6]. Diffraction gratings produced by these early ruling engines were
finding a multitude of uses in physics at the time, particularly in the young field of

spectroscopy, and an explanation of Wood’s spectral anomalies was vigorously sought.
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Lord Rayleigh explained the observed dark band in his theory of diffraction gratings
in 1907 [7] as the wavelength of incident light at which a diffracted light ray will start,
or cease, to propagate. The redistribution of available propagating energy at this
point created a reflectivity feature corresponding to one of the two Wood’s anomalies.
Thereafter this was referred to as the ‘Rayleigh anomaly’ and today this is also called
the ‘diffraction edge’ or ‘pseudo-critical edge’.

Wood’s bright band was left unexplained for nearly thirty years until Strong [8],
attempting to improve the reflective efficiency of a set of gratings by coating them with
different types of metals, noticed the band shifted in energy depending on the metal
coating used. This dependence on the metal’s optical characteristics led Ugo Fano
[9-11], to the conclusion that this reflectivity anomaly was a signature of interactions
of light with a trapped surface wave, comprised in part by the metal’s conduction
electrons at the surface. He took the view that this represented a ‘zero-order’ waveguide
mode: a guided mode that could still exist localised to the surface when a hypothetical
supporting waveguide over-layer was decreased to zero thickness. Maxwell’s equations
provided Fano with a solution for such a wave, on the condition that one material was
a conductor and the other a dielectric*. Today we call this interface mode a surface
plasmon polariton (SPP) and it is defined as an electromagnetic surface wave bound to
the interface between a conductor and a dielectric.

While the first recorded observation of SPPs was on a diffraction grating, SPPs
are not unique to these devices alone, and are generally found in systems where a
conducting/dielectric interface exists. Once Fano had underpinned the physical origin
of this surface wave, and in particular the momentum requirements to resonantly drive
it, other methods by which to excite SPP on metal surfaces began to emerge. In the
late 1950s, Ritchie [14] and Ferrell [15] both predicted the excitation of SPPs on thin,
flat, metal films with accelerated electrons, with Ferrell also predicting the SPPs could
decay back into light. This prediction was confirmed experimentally by Steinmann [16]
two years later. Today, the use of electrons to excite SPPs has found application as a
very precise method of plasmonic investigation: electron energy loss spectroscopy [17].

In 1968, Otto [18] and simultaneously Kretschman & Raether [19] excited SPPs
using a prism geometry’. This technique used the evanescent ‘tail’ of light undergoing
total internal reflection in the prism to couple to SPPs on a metal/air interface, matching
the momentum of the SPP field through the classical tunnelling of the evanescent wave

originating from inside the high-index material. Their techniques for prism coupling are

*Unbeknownst to Fano, similar work had been pursued by Zenneck [12] and also Sommerfeld [13] in
their research on the transmission of radio-waves across large distances using trapped surface waves
between seawater and air.

fTurbadar [20] was the first to excite this wave using a prism geometry, but unfortunately failed to
connect his work to that of Fano or his observed phenomena to SPPs.
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still used today, particularly in SPP based sensors which can investigate a diverse range
of analytes, including the detection of fake tequila [21] and other spirits [22].

Research in to SPPs on diffraction gratings continued in parallel with the develop-
ment of these other excitation methods, with their observation and dispersion being
investigated in the 1960s [23-25]. Research in the 1970s and 1980s focussed on the
effect of deep grooves [26—29] and over-layer coatings [30, 31], driven in part by the
development of holographic methods for diffraction grating manufacture [32]. This was
followed by work in the 1990s that explained the influence of the grating shape on the
resonances [33], SPP’s role in polarisation conversion [34] and the physical origin of
observed SPP band interactions [35].

With the advances in nano-fabrication techniques, the development of detailed
theoretical treatments for diffraction problems [36] and the increasing affordability
and power of computers, increasingly complex diffraction grating geometries could be
explored. The combinations of all these factors also helped spawn the active research
field of ‘plasmonics’, and further improvements in all these areas continue to be a driving
force behind the latest SPP research.

SPPs on gratings have already found many applications, and in some cases are
already integral to commercial products. With the energy of a SPP resonance being
highly sensitive to the local environment at the surface, SPPs have been used very
successfully in sensing applications [37-39]; these have included the in-situ monitoring
of chemical reactions such as catalytic conversion [40, 41], non-contact determination of
surface structure [42, 43], and the measurement of optical constants of metals [44].

Coupled SPPs on gratings have also been used to enhance various optoelectronic
devices; improvements to photo-detectors [45], the enhancement of laser beams [46-49]
and the ability to improve the efficiency of solar cells [50-54] have all been reported in the
literature. Generation of radiation has also been achieved on metallic or semiconducting
gratings through SPP mediated second harmonic generation [55] or by SPPs stimulating
electron photo-emission leading to the production of terahertz scale radiation [56, 57].

Additionally, SPPs on gratings have been employed as optical elements including
colour filters [58], polarisation converters [59], and various surface optics for collimation
or achieving negative refraction [60, 61]. They have also been used for the novel demon-
stration of enhanced transmission through hole arrays [62-65] and the manipulation of
Magneto-optical effects such as Faraday and Kerr rotations [66]. The use of SPPs will
no doubt continue to find applications in the most recent of technologies, particularly
with very recent demonstration of their excitation on graphene [67].

This brief review of the investigations and applications of SPPs on gratings leads us
to the present day and the theme of this thesis. In this work, unconventional gratings

are used to couple to SPPs, and the propagation and dispersion of SPPs on such gratings
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S

) Rectangular b) Oblique
¢) Symmetric Zigzag d) Asymmetric Zigzag

Figure 1.1: The four types of grating geometry that are investigated in this thesis: (a)
The rectangular bigrating in chapter 5, (b) the oblique bigrating in chapter 6, (c) the
zigzag grating in chapter 7 and (d) the asymmetric zigzag grating in chapter 8.

is investigated. The experiments presented here are done to explore the properties of
SPPs on novel types of grating, and do not attempt to fit any particular application.
However, many possibilities for extensions or applications are possible, and these are

suggested in each chapter and summarised in the conclusions.

1.2 Scope and Outline of This Work

This thesis details experimental investigations into the propagation of SPPs on diffraction
gratings that possess novel structure or symmetries. Broadly it may be divided up in to
investigations of two types of diffraction grating; ‘crossed’ bigratings and a new type
of diffractive optical element: the ‘zigzag grating’. Since both these types of grating
possess two different diffractive periods in their surface geometry, they may both be
considered a type of the larger family of metallic ‘bigratings’. There are four diffraction
grating geometries investigated in this work, and these are summarised in figure 1.1.
They are; the rectangular bigrating, the oblique bigrating, the ‘zigzag grating’ and the
‘asymmetric zigzag grating’.

The background theory of SPPs on both planar films and on metallic diffraction

gratings is presented in chapter 2. This chapter covers the origin, coupling conditions
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and band-structure of SPPs on both planar and periodic surfaces. The methods by
which the optical response of the gratings under consideration have been calculated
theoretically are then explained in chapter 3.

Chapter 4 details the experimental methods used for the production and measure-
ments of gratings in this thesis. In addition to the standard experimental techniques
used, a new method by which to map the plasmonic analogue to the iso-frequency
‘Fermi-contours’ of the SPP band structure is presented. These iso-frequency contours
have been recorded using imaging scatterometry and this new technique, developed as
part of this body of work, is used extensively throughout this thesis.

Chapter 5 presents some experimental observations on the excited SPPs supported by
rectangular bigratings. These are gratings formed of two diffraction gratings of different
pitch, crossed relative to each other at an angle of 90°. The dispersion of these modes
on the surface and the formation of standing surface-wave states are experimentally
recorded and matched to a theoretical model. It is found that by deepening the grooves
of one of the constituent diffraction gratings, the propagation of SPPs along the surface
becomes highly anisotropic. Control over this effective mode index in different directions
along the surface could find application in surface-wave optics devices.

The work on ‘crossed’ bigratings continues in chapter 6, with the experimental
investigation of SPPs on a bigrating with the reduced symmetry of an oblique lattice.
The dispersion and scattering mechanisms on a fabricated oblique grating are recorded
experimentally and explained. SPP mediated polarisation conversion is also observed
on these gratings, as the scattered surface fields propagate along a surface of no mirror
symmetry. The lack of symmetry on such a grating leads to the observation of SPP
band gaps not forming at the Brillioun Zone (BZ) boundaries, and a general discussion
of the oblique symmetry constraints on SPPs is offered to explain why this is so.

Chapter 7 introduces a new type of diffraction grating, the ‘zigzag grating’. This
grating uses sub-wavelength structure in one direction to introduce an diffractive
periodicity in the orthogonal direction. It is found, experientially and theoretically, that
even-order diffracted fields only couple to SPPs for one linear polarisation of light, while
odd-order diffracted fields only couple to the other, orthogonally polarised light. Further,
it is shown that SPP band gaps are forbidden at the first BZ boundary by the symmetry
of the zigzag surface. Finally in this chapter, it is shown that the sub-wavelength grooves
on such a grating can lead to highly anisotropic SPP propagation. This anisotropy leads
to SPP propagation at certain frequencies in only one single direction, irrespective of
excitation angle. When combined with the lack of band gaps on such a symmetry, this
makes these gratings excellent candidates for surface wave collimation devices.

The final experimental results of the thesis are presented in chapter 8, which extends

the zigzag grating geometry to one with reduced symmetry. This relaxes the polarisation



1. Introduction

conditions of the previous zigzag grating, leading to any SPP being coupled to with
any incident polarisation of light, a result which could prove relevant to improving
the efficiency of many plasmonic devices. The band structure of the SPPs supported
by this grating is also experimentally investigated and the coupling to the different
standing wave states by light which occur at the first BZ boundary is explored. The SPP
anisotropy previously found for a zigzag grating is also found in this new asymmetric
zigzag grating case, and combined with the large band gaps which form at the first BZ
boundary, the grating is shown to support a full plasmonic band gap, for which SPP
propagation is forbidden in all directions.

The thesis is concluded in chapter 9 with a summary of the findings and suggested

future research which could extend the findings and applications of this work.



Chapter 2

Background Theory

2.1 Introduction

The interaction of light with metals has long proven to be a reliable path to striking
optical effects. The Lycurgus cup is an example of a 4th century plasmonic device;
a glass Roman goblet which uses colloidal gold and silver nano-particles to achieve a
dull green surface reflection, but glows blood red when illuminated from the inside
[68]. Resonant interaction between light and the electrons in these suspended metallic
nano-particles provide the mechanism for this vivid effect, the same effect found in the
majority of stained glass windows.

The topic of this thesis also concerns the coupling of light to electrons, specifically
the mobile electrons found at the interface between dielectric and a conductor. Surface
plasmon polaritons are electromagnetic surface waves coupled strongly to the longitudinal
oscillations of this free electron plasma at the interface. They are quantised surface
waves that propagate along the interface, evanescently decaying in the normal direction.
This chapter introduces the background electromagnetic theory of these surface waves
and their interaction with light.

Sections 2.2 and 2.3 deal with the origin and characteristics of surface plasmon
polaritons propagating along a flat interface. Metallic diffraction gratings provide a
mechanism by which to couple light to these surface waves. This coupling, and the
constraints placed upon surface waves on a such periodic surfaces, are detailed in section
2.4.

2.2 Surface Polaritons on Planar Surfaces

Surface plasmon polaritons (SPPs) can be categorized as a member of a larger family of

surface waves, broadly named ‘surface polaritons’. Surface polaritons are electromagnetic
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surface waves coupled strongly to an elementary excitation and bound evanescently to
the interface between two media. When a photon couples to the longitudinal oscillations
of the free-electron plasma on metal surfaces, the resulting surface polariton is called a
surface plasmon polariton. Surface polaritons also couple with surface lattice vibrations
(surface phonon polaritons) [69], surface electron-hole pairs in semiconductors (surface
exciton polaritons) [70] and collective excitations of surface electron spin (surface magnon
polaritons) [71]. More recently, the manufacture of resonant sub-wavelength structures,
or ‘metamaterials’, has allowed the design of surfaces with tailored resonances other
than such elementary excitations, which may couple strongly to photons and produce
surface polaritons [72, 73]. The resulting surface polaritons are often referred to as a
‘spoof’ surface plasmon polaritons.*

Solving Maxwell’s equations for an evanescently bound electromagnetic wave at an
interface leads to a similar relationship between energy and momentum for all surface
polaritons. The physical origin of the different types of surface excitations and their
coupling to light is expressed in terms of the dielectric and magnetic functions which
are frequency dependent and complex in general.

Fano [10] derived the dispersion relation for a trapped surface wave by first consider-
ing light propagating in a glass plate of finite thickness, bounded by semi-infinite vacuum
and metal half-spaces. In a simple waveguide such as this, total internal reflections
prevent the propagating light from escaping into the bounding medium. The necessary
continuity of electric field across a boundary for light undergoing total internal reflection
also requires non-propagating ‘evanescent’ waves extending into the bounding media,
which do not transfer any power. The question as posed by Fano [10] was then: ‘Is
there left any proper value when the thickness vanishes?”’. As the thickness of the glass
plate tends to zero, there is indeed still a valid solution to Maxwell’s equations for a
wave travelling along the surface, evanescently bound in the normal direction; a surface
polariton. In these terms, a surface polariton can be thought of as the lowest-order
waveguide mode.

The dispersion of the surface polariton considered in this thesis, the surface plasmon
polariton on a metal/dielectric interface, allows us to simplify the problem to that of
isotropic, non-magnetic media. The derivation of this relationship [74] is presented
below, and is also valid for other surface polaritons in isotropic non-magnetic media,
such as surface phonon polaritons.

A schematic diagram of the system is shown in figure 2.1. Light illuminates a
planar surface between two media of permittivities 1 and €5 in the xz plane, which we

define to be the plane of incidence. The wavevector of the light in the m** medium is

*although the inclusion of ‘plasmon’ is not strictly correct as the photon is not coupled to the free
electron plasma oscillations but more usually a sub-wavelength cavity resonance.
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Figure 2.1: A schematic representation of propagating electromagnetic fields at an
interface between two materials. The green rays illustrate the direction of the waves,
which are coincident with the wavevectors, k. The electric field is polarised in the
xz plane, represented by black arrows. The optical response of the two media are
characterised by their permativities, €1 and 3. The y-direction is out of the page and
the position z = 0 is at the interface.

ki, = kg, X + ks, 2 = [kg,,,0,kz,,], with no component in the y-direction (out of the
page). The light is then reflected back into medium 1 and refracted into medium 2.
For light polarised with the electric field parallel to the plane of incidence (Transverse

Magnetic, or TM polarised) the plane waves can be described as,

Em = [Ea:m, 0, Ezm] ei(km " Xtkm - Z) e_th

Hm _ [O,Hym’ 0] ez‘(km *x+km * 2) e—iwt

where w is the angular frequency of the light, ¢ is time and m is a subscript indicating
in which medium the field is propagating. H, is the component of magnetic field in
the y-direction and FE . is the component of electric field in the X and Z directions,
respectively. Since the surface polariton is a trapped surface wave, we set the incident
wave to zero. Setting Eq to zero, we are left with two sets of fields (electric and magnetic)

for the half-spaces above and below the interface,

E = [E,,,0,E ei(kzlaﬂ»kzlz) e iwt

N (2.1)
H, = [07 Hyuo] eilkzy 2tkz 2) o—iwt
E = [E,,,0,E ei(szfk,@z) e iwt

p<od B2 = B 0B (2.2)
H, = [07 Hyg, 0] ei(kIQackaz) e iwt

We may combine the equations for electric and magnetic field in the two half-spaces
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using Ampere’s law,
OE,,

ot

where €, is the permittivity in medium m. The relationships between the tangential

VxH,=¢n

electric and transverse magnetic fields in each material are then,

kz1Hy1 = —I—wlexl (2.3)
k’ZQHy2 = —wngm (2.4)

Having obtained expressions for the electromagnetic fields in both media, we must now
consider the continuity of these fields over the boundary. At the interface the boundary

conditions for the electromagnetic waves are expressed as,

Eacl = E:cg 2.5
Hy, = Hy, 2.6
e1B,, = eoF., (2.7)

These are the conditions that tangential electric fields, transverse magnetic fields and

the normal component of the electric displacement vector (D, = enE., ) must be

Zm
continuous across the boundary at z = 0. The continuity of the tangential electric field
(equation 2.5) allows us to combine equations 2.3 and 2.4,

k., k

LH =H, =0
£1 y1+62 Y2

and continuity of transverse magnetic field (equation 2.6) then yields*

b b

=0 2.8
el (2.8)

Finally, to obtain a relationship in terms of the momentum of the surface wave in the X-
direction (k,), we consider the conservation of momentum in both regions. Conservation
of tangential momentum requires that k,, = k;, = k, and so the expression for total

conserved momentum is,

K24k =en (%)2 (2.9)

Obtaining expressions for k., and k., using this conservation of momentum expression

and combining them with equation 2.8, we find the dispersion relation for the surface

*At this point, we also employ some mathematical sleight of hand to substitute the permittivity,
€m, for the relative permittivity (e, /e0) by cancelling the common factor of €¢ in €1 and e2. For clarity
we redefine €, as the relative permittivity for the remainder of this thesis.
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w E1€2
k, = —4/ 2.10
v c\ e1+¢eo ( )

This equation relates the angular frequency of the fiel