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Abstract

This thesis details original experimental investigations in to the interaction of light with
the mobile electrons at the surface of metallic diffraction gratings. The gratings used in
this work to support the resultant trapped surface waves (surface plasmon polaritons),
may be divided into two classes: ‘crossed’ bigratings and ‘zigzag’ gratings.

Crossed bigratings are composed of two diffraction gratings formed of periodic
grooves in a metal surface, which are crossed at an angle relative to one another. While
crossed bigratings have been studied previously, this work focuses on symmetries which
have received comparatively little attention in the literature. The gratings explored in
this work possesses two different underlying Bravais lattices: rectangular and oblique.

Control over the surface plasmon polariton (SPP) dispersion on a rectangular
bigrating is demonstrated by the deepening of one of the two constituent gratings.
The resulting change in the diffraction efficiency of the surface waves leads to large
SPP band-gaps in one direction across the grating, leaving the SPP propagation in the
orthogonal direction largely unperturbed. This provides a mechanism to design surfaces
that support highly anisotropic propagation of SPPs.

SPPs on the oblique grating are found to mediate polarisation conversion of the
incident light field. Additionally, the SPP band-gaps that form on such a surface are
shown to not necessarily occur at the Brillouin Zone boundaries of this lattice, as the
BZ boundary for an oblique lattice is not a continuous contour of high-symmetry points.

The second class of diffraction grating investigated in this thesis is the new zigzag
grating geometry. This grating is formed of sub-wavelength (non-diffracting) grooves
that are ‘zigzagged’ along their length to provide a diffractive periodicity for visible
frequency radiation. The excitation and propagation of SPPs on such gratings is
investigated and found to be highly polarisation selective.

The first type of zigzag grating investigated possesses a single mirror plane. SPP
excitation to found to be dependant on which diffracted order of SPP is under polarised
illumination. The formation of SPP band-gaps is also investigated, finding that the
band-gap at the first Brillouin Zone boundary is forbidden by the grating’s symmetry.

The final grating considered is a zigzag grating which possesses no mirror symmetry.
Using this grating, it is demonstrated that any polarisation of incident light may
resonantly drive the same SPP modes. SPP propagation on this grating is found to be

forbidden in all directions for a range of frequencies, forming a full SPP band-gap.
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