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OVERCONVERGENT
DE RHAM-WITT COHOMOLOGY

 C DAVIS, A LANGER  T ZINK

A. – The goal of this work is to construct, for a smooth variety X over a perfect field k
of finite characteristic p > 0, an overconvergent de Rham-Witt complex W †ΩX/k as a suitable sub-
complex of the de Rham-Witt complex of Deligne-Illusie. This complex, which is functorial in X, is
a complex of étale sheaves and a differential graded algebra over the ring W †( OX) of overconvergent
Witt-vectors. If X is affine one proves that there is a isomorphism between Monsky-Washnitzer coho-
mology and (rational) overconvergent de Rham-Witt cohomology. Finally we define for a quasiprojec-
tive X an isomorphism between the rational overconvergent de Rham-Witt cohomology and the rigid
cohomology.

R. – Le but de ce travail est de construire, pour X une variété lisse sur un corps parfait k de
caractéristique finie, un complexe de de Rham-Witt surconvergent W †ΩX/k comme un sous-complexe
convenable du complexe de de Rham-Witt de Deligne-Illusie. Ce complexe qui est fonctoriel en X est un
complexe de faisceaux étales et une algèbre différentielle graduée sur l’anneau W †( OX) des vecteurs de
Witt surconvergents. Lorsque X est affine, on démontre qu’il existe un isomorphisme canonique entre
la cohomologie de Monsky-Washnitzer et la cohomologie (rationnelle) de de Rham-Witt surconver-
gente. Finalement on définit pour X quasi-projectif un isomorphisme entre la cohomologie rigide de
X et la cohomologie de de Rham-Witt surconvergente rationnelle.

Introduction

LetX be a smooth variety over a perfect field k of finite characteristic. The purpose of this
work is to define an overconvergent de Rham-Witt complex W †Ω·X/k of sheaves on X. This
complex is a differential graded algebra contained in the de Rham-Witt complex WΩ·X/k of
Illusie and Deligne.

If X is quasiprojective we define a canonical isomorphism from rigid cohomology of X
in the sense of Berthelot:

Hi
rig(X/k)→ Hi(X,W †Ω·X/k)⊗Q.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
0012-9593/02/© 2011 Société Mathématique de France. Tous droits réservés



Ép
re

uv
e

SM
F

Ja
nu

ar
y

5,
20

11

198 C. DAVIS, A. LANGER AND T. ZINK

In particular these are finite dimensional vector spaces overW (k)⊗Q by [2]. We conjecture
that the image of the morphism

Hi(X,W †Ω·X/k)→ Hi(X,W †Ω·X/k)⊗Q

is a finitely generated W (k)-module. If X is projective we expect that the image of
Hi(X,W †Ω·X/k) under the comparison isomorphism between rigid cohomology and crys-
talline cohomology coincides with the image of crystalline cohomology.

In the case where X = SpecA is affine we obtain more precise results. The cohomology
groups of the individual sheaves W †ΩjX/k are zero for i > 0. The complex H0(X,W †Ω·X/k)

will be denoted by W †Ω·A/k. Let Ã be a lifting of A to a smooth algebra Ã over W (k). We

denote by Ã† the weak completion of Ã in the sense of Monsky-Washnitzer. The absolute
Frobenius endomorphism onA lifts (non canonically) to Ã†. This defines a homomorphism
Ã† →W (A). We show that the image of this map lies in W †(A). This defines morphisms

(1) Hi(Ω·
Ã†/W (k)

)→ Hi(W †Ω·A/k), for i ≥ 0.

We show that the kernel and cokernel of this map is annihilated by p2κ, where
κ = blogp dimAc. If we tensor the morphism (1) by Q it becomes independent of the
lift of the absolute Frobenius chosen.

We note that Lubkin [12] used another growth condition on Witt vectors. His bounded
Witt vectors are different from our overconvergent Witt vectors.

Let A = k[T1, . . . , Td] be the polynomial ring. For each real ε > 0 we defined ([5])
the Gauss norm γε on W (A). We extend them to the de Rham-Witt complex WΩ·A/k. A
Witt differential from WΩ·A/k is called overconvergent if its Gauss norm is finite for some
ε > 0. We denote the subcomplex of all overconvergent Witt differentials by W †Ω·A/k.
Following the description in [10], WΩ·A/k decomposes canonically into an integral part
and an acyclic fractional part and this decomposition continues to hold for the complex of
overconvergent Witt differentials. The integral part is easily identified with the de Rham
complex associated to the weak completion of the polynomial algebra W (k)[T1, . . . , Td]

in the sense of Monsky and Washnitzer. This explains the terminology “overconvergent”
for Witt differentials. For an arbitrary smooth k-algebra B we choose a presentation
A → B. We define the complex of overconvergent Witt differentials W †Ω·B/k as the image
of W †Ω·A/k. This is independent of the presentation. It is a central result that the functor
which associates to a smooth affine scheme SpecB the groupW †ΩmB/k is a sheaf for the étale
topology, and that Hi

Zar(SpecB,W †ΩmB/k) = 0 for i ≥ 1. For this we generalize ideas of
Meredith [13]. One also uses that the ring of overconvergent Witt vectors is weakly complete
in the sense of Monsky-Washnitzer [5] and the complex of overconvergent Witt differentials
satisfies a similar property of weak completeness. The étale sheaf property depends on an
explicit description - for a finite étale extension C/B - of W †Ω·C/k in terms of W †Ω·B/k.
The result is as nice as one can hope for. By a result of Kedlaya [9] any smooth variety
can be covered by affines which are finite étale over a localized polynomial algebra. It then
remains to show a localization property of overconvergence; namely a Witt differential of
a localized polynomial algebra which becomes overconvergent after further localization is
already overconvergent. This requires a detailed study of suitable Gauss norms (that are all
equivalent) on the truncated de Rham-Witt complex of a localized polynomial algebra.
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OVERCONVERGENT DE RHAM-WITT COHOMOLOGY 199

In the final section we globalize the comparison with rigid cohomology from the affine
case. In our approach it is essential to use Grosse-Klönne’s dagger spaces [6]. Let Z be an
affine smooth scheme over k. LetZ → F a closed embedding in a smooth affine scheme over
W (k). We call (Z,F ) a special frame. To a special frame we associate canonically a dagger
space ]Z[†

F̂
. Its de Rham cohomology coincides with the rigid cohomology of Z:

RΓ(]Z[†
F̂
,Ω·

]Z[†
F̂

) = RΓrig(Z).

IfF×SpecW (k)Spec k = Z the dagger space ]Z[†
F̂

is affinoid. Therefore the hypercohomology
is not needed

Γ(]Z[†
F̂
,Ω·

]Z[†
F̂

) = RΓ(]Z[†
F̂
,Ω·

]Z[†
F̂

).

We show that the latter is true for a big enough class of special frames. Then simplicial
methods allow a globalization to the quasiprojective case.

0. Definition of the overconvergent de Rham-Witt complex

Let R be an Fp-algebra which is an integral domain. We consider the polynomial algebra
A = R[T1, . . . , Td]. Before we recall the de Rham-Witt complex, we review a few properties
of the de Rham complex ΩA/R.

There is a natural morphism of graded rings

F : ΩA/R → ΩA/R,

which is the absolute Frobenius on Ω0
A/R and such that F dTi = T p−1

i dTi. As shown in
[10], ΩA/R has anR-basis of so called basic differentials. Their definition depends on certain
choices which we will fix now in a more special way than in loc. cit.

We consider functions k : [1, d]→ Z≥0 called weights. On the support
Supp k = {i1, . . . , ir} we fix an order i1, . . . , ir with the following properties:

(i) ordp ki1 ≤ ordp ki2 ≤ · · · ≤ ordp kir .
(ii) If ordp kin = ordp kin+1 , then in ≤ in+1.

Let P = {I0, I1, . . . , Il} be a partition of Supp k as in [10]. A basic differential is a differential
of the form:

(0.1) e(k, P) = T kI0

Ç
dT kI1

pordp kI1

å
· · ·

Ç
dT kIl

pordp kIl

å
.

It is shown in [10] Proposition 2.1 that the elements (0.1) form a basis of the de Rham com-
plex ΩA/R as an R-module. The de Rham-Witt complex WΩA/R has a similar description,
but now fractional weight functions are involved. More precisely, an element ω ∈ WΩrA/R
has a unique decomposition as a sum of basic Witt differentials [10]

(0.2) ω =
∑
k, P

e
(
ξk, P , k, P

)
,

where k : [1, d]→ Z≥0[ 1
p ] is any weight ([10], 2.2) and P = {I0, I1, . . . , Ir} runs through all

partitions of Supp k. Moreover, the coefficients ξk, P ∈ W (R) satisfy a certain convergence
condition ([10], Theorem 2.8).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



Ép
re

uv
e

SM
F

Ja
nu

ar
y

5,
20

11

200 C. DAVIS, A. LANGER AND T. ZINK

For each real number ε > 0 we define the Gauss norm of ω:

(0.3) γε(ω) = inf
k, P
{ordV ξk, P − ε|k|}.

We will also use the truncated Gauss norms for a natural number n ≥ 0:

γε[n](ω) = inf
k, P
{ordV ξk, P − ε|k| | ordV ξk, P ≤ n}.

The truncated Gauss norms factor over Wn+1ΩA/R. We note that in the truncated case the
inf is over a finite set.

If γε(ω) > −∞, we say that ω has radius of convergence ε.
We call ω overconvergent, if there is an ε > 0 such that ω has radius of convergence ε. It

follows from the definitions that

(0.4) γε(ω1 + ω2) ≥ min (γε(ω1), γε(ω2)) .

This inequality shows that the overconvergent Witt differentials form a subgroup ofWΩA/R
which is denoted by W †ΩA/R. We have W †ΩA/R =

⋃
ε
W εΩA/R where W εΩA/R are the

overconvergent Witt differentials with radius of convergence ε.
If R = R ∪ {∞} ∪ {−∞}, then an R-valued function c on an abelian group M which

satisfies (0.4), so that c(a+ b) ≥ min{c(a), c(b)}, is called an order function.

D 0.5. – We say that ω is homogeneous of weight k if in the sum
ω =

∑
e
(
ξk, P , k, P

)
the weight k is fixed. We write weight(ω) = k.

If g ∈ Q, then we can consider sums which are homogeneous of degree g, i.e.

ω =
∑
|k|=g, P

e
(
ξk, P , k, P

)
.

Then we define deg(ω) = g. If ω is homogeneous of a fixed degree, we define

ordp ω = min ordp ξk, P .

It is easy to see that γε(ω) > −∞ if and only if there are real constantsC1, C2, withC1 > 0

such that for all weights k occurring in ω we have

(0.6) |k| ≤ C1ordp ξk, P + C2.

One can take C1 = 1
ε .

Using this equivalent definition one can show that the product of two overconvergent Witt
differentials is again overconvergent, as follows: For two homogeneous forms ω1, ω2 one has
ordp (ω1 ∧ ω2) ≥ max (ordp ω1, ordp ω2). This follows from a (rather tedious) case by case
calculation with basic Witt differentials.

We have deg(ω1 ∧ ω2) = degω1 + degω2.
Assume now that

degω ≤ C1ordp ω + C2

and
degω′ ≤ C ′1ordp ω

′ + C ′2

for two homogeneous forms ω, ω′ of fixed degrees. Then

deg(ω ∧ ω′) = degω + degω′ ≤ (C1 + C ′1) ordp (ω1 ∧ ω2) + C2 + C ′2.

4 e SÉRIE – TOME 44 – 2011 – No 2
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OVERCONVERGENT DE RHAM-WITT COHOMOLOGY 201

This implies that if ω and ω′ are overconvergent Witt differentials with radii of conver-
gence ε and ε′ then ω ∧ ω′ is overconvergent with radius of convergence ε·ε′

ε+ε′ . In the
special case ε = ε′ we get that ω ∧ ω′ is overconvergent with radius of convergence ε

2 and

γ ε
2
(ω ∧ ω′) ≥ γε(ω)+γε(ω

′)
2 . This shows that W †ΩA/R is a differential graded algebra over

the ring W †(A) of overconvergent Witt vectors.

We recall from [5] the definition of a pseudovaluation. An order function c on a ring
M is called a pseudovaluation if in addition it satisfies: (i) c(1) = 0 and c(0) = ∞;
(ii) c(m) = c(−m) for all m ∈ M ; (iii) c(m1m2) ≥ c(m1) + c(m2) if c(m1) 6= −∞,
c(m2) 6= −∞.

In general, the Gauss norms γε form a set of pseudovaluations on the ring of Witt vectors,
i.e. in degree zero; however, from the formula V

[T p−1]d
V

[T ] = pd[T ] and

ordp
Ä
V

[T p−1]
ä

= ordp (d
V

[T ]) = ordp (pd[T ]) = 1,

we see that we cannot expect a formula

γε(ω1 ∧ ω2) ≥ γε(ω1) + γε(ω2).

Hence the Gauss norms do not extend to pseudovaluations in higher degrees.

P 0.7. – Let R be an integral domain such that p · R = 0. Let
ϕ : R[T1, . . . , Td]→ R[U1, . . . , Ul] be a homomorphism. It induces a map

ϕ∗ : WΩR[T1,...,Td]/R →WΩR[U1,...,Ul]/R.

Then there is a constant α > 0, such that for any ε > 0 and any natural number n:

γαε[n](ϕ∗ω) ≥ γε[n](ω).

The same inequality holds if [n] is removed. In particular, if ω is overconvergent with radius of
convergence ε then ϕ∗ω is overconvergent with radius of convergence αε.

Proof. – We set Yj = [Uj ] and Xi = [Ti]. From Lemma 2.23 in [5] we obtain an
expansion:

ϕ∗(Xi) = [Qi(U1, . . . , Ul)] =
∑
|k|<c

aikY
k,

where aik ∈ W (R). More generally we obtain for a monomial X l = X l1
1 . . . X ld

d , li ∈ Z≥0

an expansion:

ϕ∗(X
l) =

∑
|k|<c|l|

bkY
k, bk ∈W (R).

Since ϕ∗ commutes with the action of V we find for l not necessarily integral

ϕ∗
Ä
V uηX l

ä
=

V uÄ
ϕ∗

Ä
ηX l·pu

ää
=

V uÑ ∑
k′≤c|l|pu

η · bk′ · Y k
′

é
=

∑
|k|<c·|l|

V u

(ηbk′) · Y k.

From this we see immediately the following fact: Let ω ∈ WΩR[T1,...,Td]/R be a Witt
differential which is homogeneous of degree l, and such that ordV ω = m. Then ϕ∗ω is a

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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202 C. DAVIS, A. LANGER AND T. ZINK

V -convergent sum
∑
ηk of homogeneous Witt differentials of degree |k| < c|l| and such

that ordV ηk ≥ m. Assume that ω =
∑
ωl is a sum of homogeneous differentials such that

ordV ωl − ε|l| ≥ D.

Then ϕ∗ωl =
∑
ηl,k, where ηl,k is homogeneous of degree k, such that |k| ≤ c|l| and

ordV ηl,k ≥ m. Therefore for δ > 0,

ordV ηl,k − δ|k| ≥ m− δc|l|.

If δ < ε
c the last expression is bounded below by D. This proves the proposition with

α = 1/c.

By the proposition we obtain a map:

(0.8) W εΩR[T1,...,Td]/R →WαεΩR[U1,...,Ul]/R.

P 0.9. – Let ϕ : R[T1, . . . , Td] −→ R[U1, . . . , Ul] be an R-algebra
homomorphism. Then the induced map

ϕ∗ : WΩR[T1,...,Td]/R →WΩR[U1,...,Ul]/R

maps W †ΩR[T1,...,Td]/R to W †ΩR[U1,...,Ul]/R.
If, moreover, ϕ is surjective then

W †ΩR[T1,...,Td]/R →W †ΩR[U1,...,Ul]/R

is surjective too.

Proof. – Only the last statement needs a verification. If ϕ is surjective we find a homo-
morphism

ψ : R[U1, . . . , Ul]→ R[T1, . . . , Td],

such that ϕ ◦ ψ = id. Then for η ∈ W †ΩR[U1,...,Ul]/R, ψη is overconvergent and therefore a
preimage of η.

We have seen that γε fails to be a pseudovaluation on the ring WΩA/R. However we will
face a situation where we will need an inequality

γε(fω) ≥ γε(f) + γε(ω)

for certain f ∈ W (A) and ω ∈ WΩA/R. For suitable f and overconvergent ω we can even
achieve equality.

From now on, let R = k be a perfect field. Let A = k[T1, . . . , Td] be the polynomial ring.
The Teichmüller of Ti in W (A) is denoted by Xi. For a Witt differential ω ∈ WΩA/k we
define:

νp(ω) = max{a ∈ Z | p−aω ∈WΩA/k}.
Obviously we have that

νp(ω1ω2) ≥ νp(ω1) + νp(ω2)

for arbitrary Witt differentials.
Let ω = e(ξ, k, P) be a basic Witt differential. Let pu be the denominator of the weight k.

Then we have:
ordV ω = ordV ξ = νp(ω) + u.

4 e SÉRIE – TOME 44 – 2011 – No 2
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OVERCONVERGENT DE RHAM-WITT COHOMOLOGY 203

For an arbitrary ω ∈WΩA/k we write the expansion:

(0.10) ω =
∑
k, P

e(ξk, P , k, P).

Let ε > 0. We have the Gauss norm γε:

γε(ω) = inf
k, P
{ordV (e(ξk, P , k, P))− ε|k|}.

We also define the modified Gauss norm:

(0.11) γ̆ε(ω) = inf
k, P
{νp(e(ξk, P , k, P))− ε|k|}.

We note that:
γε(ω) ≥ γ̆ε(ω).

Consider the polynomial algebra Ã = W (k)[X1, . . . , Xd]. For each real number ε > 0 we
define on Ã a valuation γε. We write f ∈ Ã. We will use the vector notation I = (i1, . . . , id)

and write
f =

∑
cIX

I , cI ∈W (k).

We write |I| = i1 + · · ·+ id. Then we set

γε(f) = min{ordp(cI)− ε|I|)}.

We extend γε to the differential forms ΩÃ/W (k). We write a differential form as of degree r:

ω =
∑
α

fαdXα1 ∧ · · · ∧ dXαr , fα ∈ Ã,

where α = (α1, . . . , αr) runs over vectors with 1 ≤ α1 < · · · < αr ≤ d. Then we set:

γε(ω) = min
α
{γε(fα)− rε}.

We have the following properties:

(0.12)
γε(fω) = γε(f) + γε(ω), f ∈ Ã

γε(ω1 ∧ ω2) ≥ γε(ω1) + γε(ω2), ωi ∈ ΩÃ/W (k).

We may write ω as a sum of p-basic elements [10] (2.3):

e(c, k, P) = cXkI0
dXkI1

pordp kI1
· · · dX

kIl

pordp kIl
.

L 0.13. – Let us write ω ∈ ΩÃ/W (k) as a sum of p-basic differentials:

ω =
∑

e(ck, P , k, P).

Then we have:
γε(ω) = min{ordp(ck, P)− |k|ε}.

Proof. – Clearly it is sufficient to consider the case whereω belongs to the freeW (k)-mod-
ule of forms of a given weight k (compare [10] proof of Prop. 2.1). Then ω may be written:

ω =
∑

bi1...ilX
k1
1 · · ·Xkn

n d logXi1 ∧ · · · ∧ d logXil .

The result follows because bi1...il and ck, P are related by a unimodular matrix with coeffi-
cients in Zp, [10] 2.1.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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Consider the natural map Ã → W (A) which sends Xi to the Teichmüller representa-
tive [Ti]. It induces a map:

(0.14) ΩÃ/W (k) →WΩA/k.

The p-adic completion of the image of this map consists of the integral Witt differentials.
From Lemma 0.13 we obtain:

P 0.15. – The map (0.14) is compatible with the Gauss norms γε on both
sides.

C 0.16. – Let ω, η ∈WΩA/k. Then we have:

γε(ωη) ≥ γε(ω) + γε(η) for ω integral

γε(ωη) ≥ γ̆ε(ω) + γε(η) for ω arbitrary.

We note that for ω integral, γε(ω) = γ̆ε(ω). Let f ∈ A, then we have γ̆ε([f ]) = γε([f ]). In
particular we find for arbitrary ω

(0.17) γε([f ]ω) ≥ γε([f ]) + γε(ω).

Proof. – We begin with the first inequality. If η is integral too, we can apply (0.12). For
the general case we may assume that η = V uτ or η = dV

u

τ where τ is a primitive basic Witt
differential. We note that for primitive τ :

γε(
V uτ) = u+ γε/pu(τ).

For integral ω we have

γε/pu(F
u

ω) = γε(ω).

If ω is not integral we have only the inequality:

γε/pu(F
u

ω) ≥ γε(ω)− u.

Then we find using the integral case:

γε(ω
V uτ) = γε(

V u(F
u

ωτ)) ≥ u+ γε/pu(F
u

ωτ)

≥ u+ γε/pu(F
u

ω) + γε/pu(τ) = γε(
V uτ) + γε/pu(F

u

ω) ≥ γε(V
u

τ) + γε(ω).

The case η = dV
u

τ is reduced to the former case by the Leibniz rule:

ωdV
u

τ = d(ωV
u

τ)− (dω)V
u

τ.

Now we verify the second inequality. We may assume that ω = V uτ or ω = dV
u

τ for a
primitive basic Witt differential. Then we have:

γ̆ε(ω) = γε/pu(τ), and

γε(
V uτη) = γε(

V u(τF
u

η)) ≥ u+ γε/pu(τF
u

η)

≥ u+ γε/pu(τ) + γε(
Fuη) = γ̆ε(ω) + u+ γε/pu(F

u

η) ≥ γ̆ε(ω) + γε(η).

4 e SÉRIE – TOME 44 – 2011 – No 2
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Finally we have to show that γε([f ]) = γ̆ε([f ]). We denote by m = (m1, . . . ,md) a vector
of non negative integers and write:

(0.18) f =
∑
m

amT
m1
1 · · ·Tmdd =

∑
m

amT
m.

Let g be the total degree of f . Then we have

γε([f ]) = −εg.

We enumerate the m with am 6= 0:

m(1), . . . ,m(t).

By Lemma 2.23 in [5] we find:

[f ] =
∑

k1+···+kt=1

αk1,...,kt [T ]m(1)k1+···+m(t)kt .

If we take γ̆ε of one summand it is bigger than the degree of this summand times −ε:

γ̆ε(αk1,...,kt [T ]m(1)k1+···+m(t)kt) ≥ −ε(|m(1)|k1 + · · ·+ |m(t)|kt)
≥ −ε(gk1 + · · ·+ gkt) = −εg.

This shows that γ̆ε([f ]) ≥ −εg = γε([f ]). The other inequality is obvious.

P 0.19. – Let f ∈W (A), f = (f0, f1, . . . ) be a Witt vector, such that f0 6= 0.
Let ω ∈ WΩA/k be an element, whose decomposition into basic Witt differentials has the
following form:

(0.20) ω =
∑

e(ξk, P , k, P).

We assume that all weights k appearing in this decomposition have the same denominator pu

with u ≥ 0, and the same degree κ = |k|. Moreover we assume that only partitions P with
I0 6= ∅ appear and that there is a weight k and a partition P such that ordV ξk, P = u. The
last condition says that there is k and P such that e(ξk, P , k, P) = V uτ , for a primitive basic
Witt differential τ .

We can write fω as a sum of basic Witt differentials:

(0.21) fω =
∑

e(ξ′h, P , h, P).

Then there is a summand e(ξ′h, P , h, P) such that ordV (ξ′h, P) = u, such that h has denominator
pu, and such that I0 6= ∅. Moreover if g is the degree of the polynomial f0, then the degree of
h is |h| = g + κ.

In particular we have the inequality:

γε(fω) ≤ γε(ω)− εdeg f0.

Proof. – We write:
f = f̃ + V ρ,

where f̃ is a polynomial in X1 = [T1], . . . , Xd = [Td] with coefficients in W (k), which are
not divisible by p. The degrees of the polynomials f0 and f̃ are the same.

We set ω = V uτ , where τ is an integral Witt differential with νp(τ) = 1. Then we have:

(0.22) fω = (f̃ + V ρ)V
u

τ = V u(F
u

f̃ + pF
u−1

ρτ).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



Ép
re

uv
e

SM
F

Ja
nu

ar
y

5,
20

11
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We write f̃ =
∑
i f̃i as a sum of homogeneous polynomials of different degree gi. The

maximum of the gi is g. Then the Witt differential ηi = Fu f̃iτ is for each i an integral
homogeneous Witt differential of degree pugi + puκ. By assumption the reduction of this
Witt polynomial in ΩA/k is not closed. The basic Witt differentials which appear in the
decomposition of ηi have weights which are not divisible by p, because the weights appearing
in Fu f̃ are divisible by p but those appearing in τ are not divisible by p. This shows that
primitive basic Witt differentials appear in the decomposition of each ηi. These can’t be
destroyed by basic Witt differentials which appear in the decomposition of the last summand
in the brackets of (0.22), because of the factor p. If we apply V u we obtain the desired basic
Witt differential in the decomposition of fω.

C 0.23. – With the notations of the proposition consider a Witt differential of
the form ω1 = ω + dη, and write

fpω1 =
∑

e(ξ̂ĥ, P , ĥ, P).

Then there is a summand e(ξ̂ĥ, P , ĥ, P) in the above sum, such that ordV ξ̂ĥ, P = u, such that ĥ

has denominator pu and such that I0 6= ∅. Moreover the degree of ĥ is |ĥ| = pg + κ.

P 0.24. – Let f0 ∈ A = k[T1, . . . , Td] be a polynomial of degree g. Let
ω ∈WΩL/k. Then we have for the Gauss norm on A:

(0.25) γε([f0]ω) = γε([f0]) + γε(ω).

Proof. – We write ω as a sum of basic Witt differentials:

(0.26) ω =
∑
i∈I

ei.

By continuity we may assume that the sum is finite. By Corollary 0.16 we have the inequality:

(0.27) γε([f0]ω) ≥ γε([f0]) + γε(ω).

We may therefore assume that in the sum (0.26)

(0.28) γε(ω) = γε(ei)

for all i ∈ I. We may further assume that νp(ω) = 0.
Let us first consider the case where there is an integral basic Witt differential ei0 in the

sum (0.26) such that νp(ei0) = 0. Then we decompose ω into three parts:

ω = η + ω′ + ω′′,

where η is the sum of those Witt differentials ei in (0.26) which are integral and such that
νp(ei) = 0, where ω′ is the sum of those Witt differentials ei in (0.26) which are integral and
such that νp(ei) > 0, and where ω′′ is the sum of those Witt differentials in (0.26) which are
not integral.

Let ei be a summand in η and let κ be its degree. By assumption we find:

γε(ω) = γε(ei) = νp(ei)− εκ = −εκ.

It follows that all these ei have the same degree κ.
Consider the differential f0η̄ ∈ ΩA/k which is the reduction of [f0]η. If we write

the reduction as a sum of basic differentials in ΩA/k it must clearly contain a basic Witt
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differential of degree g+κ. In the decomposition of [f0]η appears therefore an integral basic
Witt differential ĕ of degree g + κ such that νp(ĕ) = 0. On the other hand all basic Witt
differentials which appear in the decomposition of [f0](ω′ + ω′′) ∈ VWΩA/k + dVWΩA/k
are either integral with νp > 0 or nonintegral. Therefore they can’t destroy completely ĕ. We
found in the decomposition of [f0]ω an integral basic Witt differential ĕ′ of degree g+κ, such
that νp(ĕ′) = 0. We conclude that

γε([f0]ω) ≤ γε(ĕ′) = −ε(g + κ) = γε([f0]) + γε(ω).

Since we know the opposite inequality we obtain the Equation (0.25) in the first case.

Let ω be a Witt differential which doesn’t belong to the first case. Then we write:

(0.29) ω = ω(u) + ω(du) + ω′ + ω′′

where ω′ is the sum of all ei in (0.26), such that νp(ei) > 0. There is a natural number u such
that the following holds:

(0.30) ω′′ ∈ V u+1WΩA/k + dV u+1WΩA/k

and each basic Witt differential appearing in the decomposition of ω(u) is of the form V uτ

for a primitive basic Witt differential τ and any basic Witt differential which appears inω(du)

is of the form dV
u

τ . By our assumption (0.28) we find that for each of these τ :

γε(ω) = u+ γε/pu(τ) = u− εκ,

where κ is obviously independent of τ .

Before proceeding we make a general remark: It suffices to show the equality (0.25) in the
case where f0 is a p-th power f0 = gp0 . Indeed assuming this we have for arbitrary f0:

γε([f
p
0 ]ω) = γε([f

p
0 ]) + γε(ω) = pγε([f0] + γε(ω).

On the other hand we already know the inequality:

γε([f
p
0 ]ω) ≥ (p− 1)γε([f0]) + γε([f0]ω).

We conclude:

γε([f0])γε(ω) ≥ γε([f0]ω).

Since we already know the opposite the inequality (0.25) follows.

We consider now the second case where ω(u) 6= 0. By Proposition 0.19 the product
[f0]ω(u) contains a basic Witt differential e(ξ, k, P), where k is a weight of denominator
u > 0, such that |k| = g + κ and ordV ξ = u. This basic Witt differential can’t be destroyed
by any basic Witt differential appearing in [f0]ω′, because νp > 0, or by any basic Witt
differential appearing in [f0]ω′′, because those have reduction 0 in WuΩA/k. It can also not
cancel with an exact basic Witt differential appearing in [f0]ω(du). Indeed since f0 is a p-th
power those basic Witt differentials are either exact or have νp > 0. Therefore [f0]ω contains
as a summand a basic Witt differential e(η, k, P) where k is a weight of denominator u > 0,
such that |k| = g + κ and ordV ξ = u. This proves the inequality:

γε([f0]ω) ≤ u− ε(g + κ) = γε([f0]) + γε(ω).

This gives the desired equality in the second case.
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Let us now consider the third and last case, where ω(u) = 0 in (0.29). Then we rewrite
(0.29) in the form:

ω = dV
u

σ + ω′ + ω′′,

where σ is a sum of primitive basic Witt differentials of the same degree puκ, where
γε(ω) = u− εκ. We assume as above that f0 = gp0 . We find:

(0.31) [f0]dV
u

σ = d([gp0 ]V
u

σ)− p[h0]p−1(d[h0])V
u

σ.

By Proposition 0.19 we know that [hp0]V
u

σ contains a non-closed basic Witt differential
e(ξ, k, P), where k is a weight of denominator u > 0, such that |k| = g + κ and ordV ξ = u.
As before we see that the basic Witt differential de(ξ, k, P) can’t be destroyed by any basic
Witt differential which appears in [f0]ω′ or [f0]ω′′. It can’t also be destroyed by a basic Witt
differential which appears in the last summand of (0.31), because for them νp is positive.
From this we conclude as before the desired equality (0.25).

C 0.32. – Let f̃ ∈ W (k[T1, . . . , Td]) = W (A) be an integral Witt vector with
radius of convergence ε. Let ω ∈ WΩA/k be an arbitrary Witt differential of radius of
convergence ε. Then we have:

γε(f̃ω) = γε(f̃) + γε(ω).

Proof. – By Corollary 0.16 we have the inequality:

(0.33) γε(f̃ω) ≥ γε(f̃) + γε(ω).

For the opposite inequality we may assume that f̃ is a polynomial by considering the trunca-
tions in WnΩA/k. We write f̃ =

∑
i f̃i as a sum of homogeneous polynomials f̃i of different

degrees gi. By the inequality (0.33) we may assume that γε(f̃) = γε(f̃i) for each i. Moreover
we may clearly assume that νp(f̃) = 0. With these remarks the proof works in the same way
as above.

1. Sheaf properties of the overconvergent de Rham-Witt complex

Let A = k[t1, . . . , tr] be a smooth finitely generated k-algebra, S = k[T1, . . . , Tr] a
polynomial algebra. Then S → A, Ti → ti induces a canonical epimorphism

λ : WΩ•S/k →WΩ•A/k

of de Rham-Witt complexes.

D 1.1. – We set W †Ω•A/k = image
Ä
W †Ω•S/k

ä
under λ.

We have seen in Proposition 0.9 that this definition is independent from the choice of
generators and the representation S → A. The same proposition shows that the assign-
ment A 7→ W †ΩA/k is functorial. Indeed, given smooth finitely generated k-algebras
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A,B as above, and a presentation k[T1, . . . , Tr] � A, we extend this to a presentation
k[T1, . . . , Tr, U1, . . . , Ul] � B such that the following diagram commutes:

A - B

k[T1, . . . , Tr]

6

- k[T1, . . . , Tr, U1, . . . , Ul].

6

Then it is clear that the induced map WΩA/k →WΩB/k sends W †ΩA/k →W †ΩB/k.
For ω ∈WΩ•A/k a convergent sum of images of basic Witt differentials in WΩ•S/k, so

ω =
∑
(k, P)

e
(
ξk, P , k, P

)
,

we know that ω is overconvergent iff there exist constants C1 > 0, C2 ∈ R such that

(0.6) |k| ≤ C1ordp ξk, P + C2 for all (k, P).

We can also express overconvergence onWΩ•A/k by using the Gauss norms {γε}ε>0 obtained
as quotient norms of the canonical Gauss norms on WΩ•S/k that we defined before. An
ω ∈ WΩA/k is overconvergent if there exist ε > 0, C ∈ R such that γε(ω) ≥ C. If we
use another presentation S′ = k[U1, . . . , Ur′ ] → A, then the associated set of quotient
norms {δε}ε>0 on WΩA/k is equivalent to the set {γε}ε>0. Here, the notion of equivalence
is defined in the same way as for Witt vectors ([5] Definition 2.12).

P 1.2. – (a) We denote by f ∈ A an arbitrary element. Let d ∈ Z be
nonnegative. The presheaf

W †ΩdSpecA/k(SpecAf ) := W †ΩdAf/k

is a sheaf for the Zariski topology on SpecA (compare [7] 0, 3.2.2).
(b) The Zariski cohomology of these sheaves vanishes in degrees j > 0, i.e.

Hj
Zar(SpecA,W †ΩdSpecA/k) = 0.

We fix generators t1, . . . , tr of A and denote by [t1], . . . , [tr] the Teichmüller representa-
tives in W (A). An elementary Witt differential in the variables [t1], . . . , [tr] is the image of a
basic Witt differential in variables [T1], . . . , [Tr] under the map λ.

Before we prove the proposition, we need a special description of an overconvergent
element z in W †ΩdAf/k. Let [f ] ∈W (A) be the Teichmüller representative. Hence 1

[f ] =
î

1
f

ó
is the Teichmüller of 1

f in W (Af ). For the element z we have the following description.

P 1.3. – The element z ∈W †ΩdAf/k can be written as a convergent series

z =
∞∑
l=0

1

[f ]rl
ηl

where ηl is a finite sum of elementary Witt differentials η(t)
l in the variables [t1], . . . , [tr],

images of basic Witt differentials η(t)
l in variables [T1], . . . , [Tr] with weights ktl satisfying the

following growth condition:
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∃C1 > 0, C2 ∈ R such that for each summand η(t)
l we have

rl + |ktl | ≤ C1ordpη
(t)
l + C2.

Furthermore we require that for a given K > 0,

min
t

ordpη
(t)
l > K for almost all l.

Proof. – We use here an extended version of basic Witt differentials to the localized
polynomial algebra k[T1, . . . , Tr, Y, Y

−1] (compare [8]). A basic Witt differential α in
WΩk[T1,...,Tr,Y,Y −1]/k has one of the following shapes:

I) α is a classical basic Witt differential in variables [T1], . . . , [Tr], [Y ].
II) Let e(ξk, P , k, P) be a basic Witt differential in variables [T1], . . . , [Tr]. Then

II 1) α = e(ξk, P , k, P) d log[Y ]

II 2) α = [Y ]−re(ξk, P , k, P) for some r > 0, r ∈ N
II 3) α = F sd[Y ]−le(ξk, P , k, P) for some l > 0 , p - l, s ≥ 0.

III) α =
V u(

ξ[Y ]p
ukY [T ]p

ukI0
)
d
V u(I1)

[T ]p
u(I1)kI1 . . . F−t(Id)d[T ]p

t(Id)kId (compare [10],
(2.15)).

In particular, for each such α we have a weight function k on variables [T1], . . . , [Tr] with
partition I0 ∪ · · · ∪ Id = P,u > 0, kY ∈ Z

î
1
p

ó
<0

,

u(kY ) ≤ u = max{u(I0), u(kY )} (notations as in [10]).

If I0 = ∅, we require u = max{u(I1), u(kY )}.

IV) α = dα′ when α′ is as in III).

It follows from loc.cit. that each ω ∈ WΩ•k[T1,...,Tr,Y,Y −1]/k is in a unique way a convergent
sum of basic Witt differentials. Here convergent is meant with respect to the canonical
filtration on the de Rham-Witt complex.

It is straightforward to show that ω is overconvergent iff there exists C̃1 > 0, C̃2 ∈ R, such
that the basic Witt differentials α appearing in the decomposition of ω have the following
properties.

– If α of type I) or of type II 1) occurs as a summand in ω, we require

|k| ≤ C̃1ordp ξk, P + C̃2.

– If α is of type II 2) or II 3) occurs as a summand in ω then

r + |k| ≤ C̃1ordp ξk, P + C̃2 (with r = l · ps in case II 3).

– If α is of type III) or IV), then

|kY |+
d∑
j=0

|kIj | ≤ C̃1ordp (V uξ) + C̃2

(here, |kY | = −kY ,|kIj | =
∑
i∈Ij

ki).
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We have a surjective map of complexes:

W †Ω•k[T1,...,Tr,Y,Y −1]/k →W †Ω•Af/k.

We may represent the z of the proposition as the image of an overconvergent ω, which is a
sum of basic Witt differentials as described above. To obtain the representation of z in the
proposition, we expand the images of the basic Witt differentials α separately.

In case of condition III) we consider the first factor V u
(
ξ[Y ]p

ukY [T ]p
ukI0

)
. For simplicity

we assume I0 = ∅; this does not affect the following calculations. Let −kY = r
pu and

l ≤ r
pu < l + 1 for an integer l. We have

V u
Ä
ξ[Y ]p

ukY
ä

= V u
Å
ξ

1

[Y ]r

ã
= V u

Å
ξ

1

[Y ]lpu
· 1

[Y ]r−lpu

ã
=

1

[Y ]l
V u

Å
ξ

1

[Y ]r−lpu

ã
=

1

[Y ]l
V u

Ç
ξ

[Y ]p
u−r+lpu

[Y ]pu

å
=

1

[Y ]l+1
V u

Ä
ξ[Y ](l+1)pu−r

ä
.

Now consider the image of α in WΩdAf/k where

[Y ]→ [f ], [Y −1]→ [f−1], [Ti]→ [ti].

The factor 1
[Y ]l+1V

u
(
ξ[Y ](l+1)pu−r) is mapped to 1

[f ]l+1V
u
(
ξ[f ](l+1)pu−r).

Represent f as a polynomial of degree g in t1, . . . , tr. Then it is easy to see that the image
of α in WΩdAf/k is of the form 1

[f ]l+1 η̃ where η̃ is a (possibly infinite) sum of images of basic
Witt differentials η̂t in variables [T1], . . . , [Tr] with weights kt satisfying

|kt| ≤ g

Å
l + 1− r

pu

ã
+

d∑
j=0

|kIj |

≤ g +
d∑
j=0

|kIj |.

The case dα (type IV) is deduced from the case III by applying d to α and the Leibniz rule to
the image of dα in WΩdAf/k. So if the image of α as above is 1

[f ]l+1 η̃ then the image of dα is

1

[f ]l+1
dη̃ − 1

[f ]l+2
· l d[f ]η̃ =

1

[f ]l+2

Ä
[f ]dη̃ − l d[f ]η̃

ä
=

1

[f ]l+2

˜̃η,
where ˜̃η is a sum of images of basic Witt differentials ˜̃η t in variables [T1], . . . , [Tr] with weights
kt satisfying

|kt| ≤ 2g +
d∑
j=0

|kIj |.

We can also compute the images of α inWΩAfi/k where α is of type I or II and obtain again
a representation

1

[f ]r
η̃ for r ≥ 0.
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These cases are easier and omitted.

Now we return to the original element z ∈ W †ΩdAf/k. We may write z as a convergent
sum

z =
∞∑
m=0

ω̃m,

where ω̃m is an elementary Witt differential being the image of a basic Witt differential αm
in WΩk[T1,...,Tr,Y,Y −1]/k of type I, II, III or IV.

In all cases we have a representation

ω̃m =
1

[f ]rm
η̃m

where η̃m is the sum of images of basic Witt differentials η̃tm in variables [T1], . . . , [Tr] with
weights ktm such that

rm + |ktm| ≤ C̃1 ord p
(
η̃tm
)

+ C̃2 + 2(g + 1).

Now consider - for a given integer N - the element z modulo FilN , so the image z(N) of z
in

WNΩdAf/k = WNΩdA/k
⊗

WN (A)

WN (A)

ï
1

[f ]

ò
.

One then finds a lifting z(N) of z(N) inWΩAf/k such that z(N) =
b(N)∑
m=0

ωm is a finite sum, i.e.

ωm =
1

[f ]rm
ηm

where now ηm is a finite sum of images of basic Witt differentials ηtm in variables [T1], . . . , [Tr]

satisfying the growth condition

rm + |ktm| ≤ C1 ordp(η
t
m) + C2

with C1 := C̃1,C2 = C̃2 + 2(g + 1).

The elements z(N) can be chosen to be compatible for varying N and we have
z = lim z(N). It is clear that the second condition of the lemma is also satisfied, this
finishes the proof of Proposition 1.3.

R. – It will later be convenient to express the assertion in Proposition 1.3 using
Gauss norms. Let {γε}ε>0 be the set of Gauss norms on WΩA/k obtained as quotient norms
from the canonical Gauss norms on WΩS/k using the presentation S → A. Let {δε}ε>0

be the set of Gauss norms on WΩAf/k obtained as quotient norms using the presentation
S̃ := k[T1, . . . , Tr, U ]→ Af , Ti 7→ ti, U 7→ 1

f . We now define another set of Gauss norms as
follows. For ω ∈WΩAf/k we consider the collection of all possible representations

(∗) ω =
∑
l≥0

[f ]−lηl, for ηl ∈WΩA/k,

such that for a given t, almost all ηl are zero in Wt+1ΩA/k. We set

γquot
ε (ω) = sup{inf

l
{γε(ηl)− lε}},

4 e SÉRIE – TOME 44 – 2011 – No 2



Ép
re

uv
e

SM
F

Ja
nu

ar
y

5,
20

11

OVERCONVERGENT DE RHAM-WITT COHOMOLOGY 213

where the sup is taken over all possible representations (*). Then Proposition 1.3 is equivalent
to the assertion that the set {γquot

ε }ε>0 is equivalent to the set {δε}ε>0. Equally, we will
obtain an equivalent set of Gauss norms {γ′ε}ε>0 if in the above definition we only allow
representations such that the exponents of f are all divisible by p.

Now we are ready to prove Proposition 1.2.

AsWΩ• is a complex of Zariski sheaves we need to show–in order to prove part (a) of the
proposition–the following claim:

Let z ∈ WΩdA/k for some fixed d, let {fi}i be a collection of finitely many elements in A
that generate A as an ideal. Assume that for each i the image zi of z in WΩdAfi/k

is already

in W †ΩdAfi/k
. Then z ∈W †ΩdA/k.

Let [fi] be the Teichmüller of fi with inverse 1
[fi]

= [ 1
fi

].

L 1.4. – There are elements ri ∈W †(A) such that
n∑
i=1

ri[fi] = 1.

Proof. – Consider a relation
n∑
i=1

aifi = 1 in A. Then
n∑
i=1

[ai][fi] = 1 + V η ∈ W †(A). By

Lemma 2.25 in [5],

(1 + V η)−1 ∈W †(A).

Define ri = (1 + V η)−1 · [ai].

L 1.5. – For each t there are polynomials Qi,t[T1, . . . , T2n] in 2n variables such that

(1) degreeQi,t ≤ 3 · nt
(2)

n∑
i=1

Qi,t ([f1], . . . , [fn], r1, . . . , rn) [fi]
t = 1.

For the proof of this lemma, compare [13].

We know that SpecA = ∪ni=1D(fi). For a tuple 1 ≤ i1 < · · · < im ≤ n, let
Ui1...im = ∩mj=1D(fij ). Fix d ∈ N and let

Cm = Cm(SpecA,W †ΩdA/k)

= ⊕1≤i1<···<im≤nW
†ΩdAfi1 ···fim /k

= ⊕1≤i1<···<im≤nΓ(Ui1...im ,W
†ΩdA/k).

Then consider the Čech complex

0→ C0 → C1 → C2 → · · ·

We have C0 = W †ΩdA/k and C0 → C1 is the restriction map W †ΩdA/k → W †ΩdAfi/k
for all

i. It is then clear that Proposition 1.2 follows from the following.

P 1.6. – The complex C• is exact.
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Proof. – The proof is very similar to the proof of Lemma 7 in [13]. We fix as before
k-algebra generators t1, . . . , tr of A. Suppose σ ∈ Cm,m ≥ 2, is a cocycle. Then σ has
components

σi1...im ∈ Γ(Ui1...im ,W
†ΩdSpecA/k) = W †ΩdAfi1 ···fim /k

.

Applying Proposition 1.3 we see that σi1...im has a representation as an overconvergent
sum of Witt differentials as follows: σi1...im =

∑∞
l=0M

i1...im
l with

M i1...im
l =

∑
j

1

[fi1...im ]j
η

(j)
li1...im

afinitesum

where [fi1...im ]j := [fi1 ]j · · · [fim ]j , η(j)
li1...im

is a sum of images of basic Witt differentials

η
(jt)
di1...im

in variables [T1], . . . , [Tr], (Ti → ti) and weights k(jt)
li1...im

satisfying

i) j + |k(jt)
li1...im

| ≤ C(ordp η
(jt)
li1...im

+ 1)

ii) l ≥ ordp η
(jt)
li1...im

≥ l − 1.

Notation: We say that M i1...ir
l has degree ≤ C(l + 1).

We shall construct a cochain τ so that ∂τ = σ. The reduced complex

C•/FilnC• = C•({D(fi)}i,WnΩ•A/k)

is exact. We will inductively construct a sequence of cochains

τk =
∑

1≤i1<···<im−1≤n
τki1...im−1

such that the sum
∞∑
k=0

τk

converges in Cm−1 to a coboundary of σ. The τk are chosen to satisfy the following proper-
ties:

(1) ∂(
∑l−1
k=0 τk) = σmodulo Fil2

l−1 Cm

(2) τ0i1...im−1 ∈W †ΩAfi1 ···fim /k, and τki1...im−1 ∈ Fil2
k−1W †ΩAfi1 ···fim /k

for k ≥ 1.

(3) τki1...im−1
∈WΩfin

A/k

[
[f1], . . . , [fn], r1, . . . , rn,

1
[fi1...im−1

]

]
to be understood as a poly-

nomial in the “variables" [f1], . . . , [fn], r1, . . . , rn and 1
[fi1...im−1

] with the coefficients

being finite sums of elementary Witt differentials in [t1], . . . , [tr] such that the total de-
gree (with [t1], . . . , [tr] contributing to the degree via possibly fractional weights) is
bounded by 24nC2k. We write degree τki1...im−1 ≤ 24nC2k.

(4) [fiα ]C2k+1

τki1...im−1
∈ WΩfin

A/k

ñ
[f1], . . . , [fn], r1, . . . , rn,

1
[f
i1...îα...im−1

]

ô
with degree

[fiα ]C2k+1

τki1...im−1
≤ C2k+1 + 24nC2k.

Then (2) implies that all the coefficients η of the polynomial representation (3) satisfy
ordp η ≥ 2k − 1. Also (1) implies that ∂(

∑∞
k=0 τk) = σ. Using (2) and (3) we will show that∑∞

k=0 τk ∈ Cm−1, i.e. is overconvergent.
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Define elements σsi1,...,im ∈WΩdAfi1 ...fim
for n ≥ 0 by

σsi1,...,im =
2s+1−1∑
α=0

M i1...im
α .

Then σsi1,...,im ≡ σi1,...,im mod Fil2
s+1

and degree σsi1,...,im ≤ C22+1.
Define the cochain τ0 ∈ Cm−1 by

τ0i1...im−1 =
n∑
i=1

αi,2C [fi]
2Cσ0i1,...,imi.

Suppose we have constructed, for some integer s > 0, cochains τk ∈ Cm−1 for 0 ≤ k < s

satisfying (1)–(4). Then we construct τs as follows: Let γsi1...im = σsi1,...,im − ∂(
∑s−1
k=0 τk)i1...im .

We see that γsi1...im ∈ Fil2
s−1 Cm is a cocycle modulo Fil2

s+1 Cm and degree γsi1...im ≤ 24nC2s−1.

Define

τsi1...im−1
=

n∑
i=1

Qi,C2s+1 [fi]
C2s+1

γsi1...im−1i.

Then
∑s
k=0 τk satisfies (1) by ([EGA], III.1.2.4.). We have

[fi]
C2s+1

γsi1...im−1i ∈W †ΩAfi1 ···fim−1
∩ Fil2

s−1W †Ωfi1 ···fim/k

= Fil2
s−1W †ΩAfi1 ···fim−1

and therefore τsi1...im−1
satisfies (2) (we have used (4) for τk, k < s). Moreover, τsi1...im−1

has total degree bounded by

24nC2s−1 + 3nC2s+1 + C2s+1 ≤ 24nC2s

and τs satisfies (3). It is straightforward to show property (4) for τs. Therefore it remains
to show that

∑∞
k=0 τk is overconvergent. This will be derived from properties (2) and (3) as

follows.
It follows from (3) that τsi1...im−1

can be written as a finite sum τsi1...im−1
=
∑
I r

IMs,I ,
where I runs through a finite set of multi-indices in Nn0 , rI = rλ1

1 · · · rλnn for I = (λ1, . . . , λn)

and Ms,I is a finite sum of images of basic Witt differentials ωts in variables [T1], . . . , [Tr],
[Y1], . . . , [Yn], [Z] with

[Tj ] 7→ [tj ], [Yj ] 7→ [fj ], [Z] 7→
m−1∏
j=1

1

[fij ]

with weights kts satisfying
|I|+ |kts| ≤ 24nC2s = C ′2s

(C ′ := 24nC) and

ordp ω
t
s ≥ 2s − 1 =

1

C ′
(C ′2s)− 1

≥ 1

C ′
(|I|+ |kts|)− 1.

(∗)

For fixed I and varying s we get a sum∑
s

rIMs,I = rI
∑
s

Ms,I .
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Because of the condition (*), ωI =
∑
s
Ms,I is overconvergent with radius of convergence

ε = 1
C′ and

γ̂ 1
C′

(ωI) ≥
1

C ′
|I| − 1.

Here γ̂ε is the quotient norm of the canonical γε on WΩk[T1,...,Tr,Y1,...,Yn,Z]/k.

We now look again at the definition of ri. There exist liftings η̃, r̃i of η, ri in W †(S) and
ãi of ai in S where η̃ is a finite sum of homogeneous elements such that

r̃i = (1 + V η̃)−1[ãi].

For δ := 1
C′ , there exists ε > 0, 1

C′ > ε such that

γ̆ε
Ä
V η̃

ä
≥ −δ,

because we have a finite sum of homogeneous elements. By [5] Lemma 2.25,

γ̆ε(r̃i) ≥ −δ as well.

Let ω̃I be a lifting of ωI in W †Ωk[T1,...,Tr,Y1,...,Yn,Z]/k such that γ̂ε(ωI) = γε(ω̃I). Then we
obtain by Corollary 0.16,

γ̂ε(r
IωI) ≥ γε(r̃

I ω̃I)

≥ γε(ω̃I) + γ̆ε(r̃
I)

= γ̂ε(ωI) + γ̆ε(r̃
I)

≥ γ̂ 1
C′

(ωI) + γ̆ε(r̃
I)

≥ δ|I| − 1 + |I|(−δ) = −1.

As this holds for all I, we see that
∞∑
s=0

τsi1...im−1 is overconvergent with radius of convergence

ε, and hence Proposition 1.6 follows, and so does Proposition 1.2.

R. – The above final arguments in the proof of Proposition 1.2 are very similar to
the proof that W †(A) is weakly complete in the sense of Monsky-Washnitzer (compare [14]
and Proposition 2.28 of [5]). HenceW †ΩdA/k satisfies a certain property of weak completeness
in positive degrees as well.

C 1.7. – The complex W †ΩSpecA/k, defined for each affine scheme as above,
extends to a complex of Zariski sheaves W †ΩX/kon any variety X/k.

In the remainder of this section and the next, we prove the following.

T 1.8. – Let X be a smooth variety. Then W †Ω•X/k defines a complex of étale
sheaves on X.

Proof. – As W †Ω•X/k is a complex of Zariski sheaves on X, the problem of being a sheaf
on the étale site is local onX. By a result of Kedlaya [9] any smooth varietyX has a covering
by affine smooth schemes SpecA which are finite étale over distinguished opens in an affine
space Ank . It therefore suffices to show that if A is a finite étale extension over a localized
polynomial algebra, A′ a standard étale extension of A, then an element z in WΩdA/k that
becomes overconvergent in WΩdA′/k is already overconvergent over A. By localizing further
we may assume first that there is an element f in A such that A′f is finite étale over Af , of
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the form A′f = Af [X]/(p(X)) for some monic irreducible polynomial p(X). The following
proposition reduces the argument to the case Af = A′f ; hence we will need to show

WΩdA/k ∩W
†ΩdAf/k = W †ΩdA/k.

P 1.9. – Let B be a finite étale and monogenic A-algebra, where A is smooth
over a perfect field of char p > 0. Let B = A[X]/ (f(X)) for a monic irreducible polynomial
f(X) of degree m = [B : A] such that f ′(X) is invertible in B. Let [x] be the Teichmüller of
the element X mod f(X) in W (B). Then we have for each d ≥ 0 a direct sum decomposition
of W †(A)-modules

W †ΩdB/k = W †ΩdA/k ⊕W
†ΩdA/k[x]⊕ · · · ⊕W †ΩdA/k[x]m−1.

Proof. – From Corollary 2.46 in [5] we know that this proposition is true for d = 0:

W †(B) is a finite W †(A)-module with basis 1, [x], . . . , [x]m−1. There is a unique lifting
f̃(X) ∈ W †(A)[X] of f(X) such that W †(B) = W †(A)[X]/f̃(X) and f̃ ′([x]) is invertible
in W †(B). In particular W †(B) étale over W †(A).

Let f̃(X) = Xm + am−1X
m−1 + · · ·+ a1X + a0, with ai ∈W †(A) and

1

f̃ ′[x]
= cm−1[x]m−1 + · · ·+ c1[x] + c0,

with ci ∈W †(A).

When we consider an element z in W †ΩdB/k with radius of convergence ε > 0 we will
always assume that ε is small enough such that all aj , cj , j = 0, . . . ,m− 1 are in W ε(A).

The equation

f̃([x]) = [x]m + am−1[x]m−1 + · · ·+ a1[x] + a0 = 0

(note that f̃(X) is the minimal polynomial of [x] over W †(A)) implies that

d f̃([x]) = 0.

Hence we get
f̃ ′([x])d[x] + dam−1[x]m−1 + · · ·+ da1[x] + da0 = 0.

As (f̃ ′([x]))−1 has coefficients in W ε(A) and W ε(A) is a ring we see that

d[x] = − 1

f̃ ′([x])

(
dam−1[x]m−1 + · · ·+ da1[x] + da0

)
=

m−1∑
l,j=0

λldal[x]j with λl, al ∈W ε(A).

The elements al ∈ W ε(A) are homogeneous as they are elementary symmetric function in
the [ti], where [ti], i = 1, . . . ,m are the roots of f̃ , lifting the roots ti of f .

We have λldal = d(alλl) − aldλl by the Leibniz rule. The elements alλl are in W ε(A),
hence d(alλl) ∈ W εΩ1

A/k. As al is homogeneous, the element aldcl is in W εΩ1
A/k as well

(Corollary 0.16). So we get

d[x] ∈W εΩ1
A/k ⊕ · · · ⊕W

εΩ1
A/k[x]m−1.
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One proves similarly that

d[x]i ∈W εΩ1
A/k ⊕ · · · ⊕W

εΩ1
A/k[x]m−1.

for all i, 1 ≤ i ≤ m− 1.

Let b1, . . . , br be generators of the k-algebra A and z ∈ W †ΩdB/k be an overconvergent
sum of elementary Witt differentials zi in variables [b1], . . . , [br], [x] with γε(zi) > C for all
i. If in zi the variable [x] occurs with integral weight kx we may assume 1 ≤ kx ≤ m− 1. If
[x] belongs to the interval I0 with underlying partition P corresponding to zi, then evidently
zi = ηi[x]kx with ηi an elementary Witt differential in the variables [b1], . . . , [br] with
γε(ηi) > C. If [x] occurs with integral weight kx, 1 ≤ kx ≤ m − 1 and belongs to the
interval Ij , j ≥ l, then after applying the Leibniz rule and the previous case we see that

zi = ωi + ηid[x]kx

with ωi ∈W εΩdA/k⊕· · ·⊕W
εΩdA/k[x]m−1 and ηi ∈W εΩd−1

A/k with γε(ηi) > C. In addition,

all coefficients ω(j)
i inW εΩdA/k satisfy γε(ω

(j)
i ) > C. We may also assume that all coefficients

β
(j)
i of d[x]i in W εΩ1

A/k for all 1 ≤ i ≤ m− 1 satisfy γε(β
(j)
i ) > C. Then,

ηid[x]kx ∈W ε
2 ΩdA/k ⊕ · · · ⊕W

ε
2 ΩdA/k[x]m−1

and we have for all coefficients δ(j)
i ∈ W ε

2 ΩdA/k that occur in this representation of ηid[x]kx

that

γ ε
2
(δ

(j)
i ) > C.

Now we use [5] Corollary 2.46. If α =
m−1∑
i=0

ξix
i ∈ W ε(B) satisfies γε(α) > C then

ξi ∈W ε(A) with γε(ξi) > C ′ and C ′ only depends on C and ε; wlog C ′ < C.

Assume that in an elementary Witt differential zi occurring in the overconvergent z we
have

zi = V tη · dω
and [x] occurs in η with fractional weight kx, kx = i

pt , 1 ≤ i ≤ m − 1. Then applying the
above fact we see that

zi ∈W εΩdA/k ⊕ · · · ⊕W
εΩdA/k[x]m−1

and the coefficients z(j)
i satisfy γε(z

(j)
i ) > C ′.

If [x] occurs with fractional weight kx in an interval Ij , j ≥ 1 of the underlying partition
of zi, then by combining the previous cases we see that

zi ∈W
ε
2 ΩdA/k ⊕ · · · ⊕W

ε
2 ΩdA/k[x]m−1

and all coefficients z(j)
i satisfy γ ε

2
(z

(j)
i ) > C ′.

This implies that the original z ∈W εΩdB/k with γε(z) > C has a representation

z =
m−1∑
i=0

σi[x]i ∈W ε
2 ΩdA/k ⊕ · · · ⊕W

ε
2 ΩdA/k[x]m−1

with γ ε
2
(σi) > C ′ for all i = 0, . . . ,m− 1.
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On the other hand, by possibly applying the Leibniz rule repeatedly, it is clear that an
element in

W †ΩdA/k ⊕ · · · ⊕W
†ΩdA/k[x]m−1

can be represented as an overconvergent sum of elementary Witt differentials in variables
[b1], . . . , [br], [x], and hence lies in W †ΩdB/k. This finishes the proof of the proposition.

R. – Note that the isomorphism in the proposition is a restriction of the isomorphism

WΩdB/k
∼= W (B)

⊗
W (A)

WΩdA/k
∼=
m−1⊕
i=0

WΩdA/k[x]i

for the completed de Rham-Witt complex. AsW (B) is finite étale overW (A) ifB is finite étale
over A, this latter isomorphism is a consequence of étale base change for the de Rham-Witt
complex of finite level, by passing to the inverse limit (compare [10] Proposition 1.7 and
Corollary 2.46 in [5]).

To prove the theorem, it remains to show that

(1.10) WΩdB/k ∩W
†ΩdBg/k = W †ΩdB/k

for a k-algebra B which is a finite étale extension over a localization Af of a polynomial
algebraA = k[T1, . . . , Td], and some g ∈ B. After possibly localizing again, we may assume
wlog that g itself is in the polynomial algebra. After applying Proposition 1.9 again, we
reduce the proof of the étale sheaf property to the case where B = Af . That is, we need
to prove (1.10) in the special case B = Af and g ∈ A. This will follow from a further careful
study of the Gauss norm properties on the de Rham-Witt complex of the polynomial algebra
A and a localization Af , done in the next section.

2. Gauss norm properties on the de Rham-Witt complex of localized polynomial algebras

We will consider the Gauss norms on the truncated de Rham-Witt complexes Wt+1ΩA/k
and Wt+1ΩAf/k (and also Wt+1ΩAfg/k) and describe overconvergence on the completed de
Rham-Witt complexes via these truncated Gauss norms. Before we can do this, we need
to review a few more properties of the de Rham complex ΩA/k for the polynomial algebra
A = k[T1, . . . , Td] over a perfect field k of characteristic p > 0.

We recall the basic differentials e(k, P) from (0.1):

(2.1) e(k, P) = T kI0

Ç
dT kI1

pordp kI1

å
· · ·

Ç
dT kIl

pordp kIl

å
.

A basic differential is called primitive if I0 6= 0 and if the function k is not divisible by p.

P 2.2. – Let e(k, P) be a primitive basic differential. Then for all 1 ≤ j ≤ d

T pj e(k, P)

is a linear combination of primitive basic differentials with values in k.
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Proof. – Let I0 = {i1, . . . , it}. Let I ′0 = {i1, . . . , is} ⊂ I0 be the subset of all indices im,
such that ordp kim = 0. Let I ′′0 be the complement of I ′0 in I0. We have I ′0 6= ∅ but possibly
I ′′0 = ∅.

Consider the case where j = im ∈ I ′0. We define k′ such that k′im = kim + p and k′j = kj
for all other indices. Then Supp k = Supp k′ and the chosen order on these sets is the same.
From this we see that

T pj e(k, P) = e(k′, P).

Now we consider the case where j doesn’t belong to I ′0. We write

T pj T
kI′′

0

Ç
dT kI1

pordp kI1

å
· · ·

Ç
dT kIl

pordp kIl

å
as a linear combination of basic differentials e(h, Q) for possibly different partitions Q. Let
ι be the weight such that ι(j) = p and such that ι vanishes on the remaining indices. Then
h = k + ι.

Consider the subcase where ordp kj = 0. Then j must belong to one of the sets I0, . . . , Ir
and therefore j must be bigger than any of the indices appearing in I ′0. Then

T
kI′

0 e(h, Q)

is a primitive basic differential for each partition Q. Its weight function k′′ is the sum of k|I′0
(the restriction of k to I ′0) and h. That we obtain a basic differential follows from the fact
that for the order given by k′′ any element of I ′0 precedes any element in Supph.

This last sentence is still true in the subcase ordp kj > 0, because this implies ordp hj > 0.
This finishes the proof.

We consider ΩA/k throughout this section as an A-module via restriction of scalars by
F : A→ A. We will say that we consider ΩA/k as an A-F -module.

P 2.3. – Let P l ⊂ ΩlA/k be the k-subvector space generated by primitive basic
differentials. We have a direct decomposition:

(2.4) ΩlA/k = P l ⊕ dP l−1 ⊕ FΩlA/k.

Each summand on the right hand side is a free A-F -module which has a basis consisting of
basic differentials

Proof. – The decomposition (2.4) is direct because the second k-vector space is generated
by basic differentials whose weights are not divisible by p and such that we have I0 = ∅ in
the partition while FΩlA/k is generated by basic differentials whose weights are divisible by
p.

It follows from Proposition 2.2 that P l is anA-F -module. Then the other two summands
of (2.4) are clearly A-F -modules. Therefore all summands are projective A-F -modules. All
summands are graded by the absolute value of weights and are therefore graded A-F -mod-
ules. Let a be the ideal of A generated by T1, . . . , Td. A basis of the A-F -module P l is ob-
tained by lifting a basis of the (graded) k-vector spaceP l/FaP l. This proves the last sentence
of the proposition.
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Next we consider the de Rham-Witt complex WΩA/k. We denote by Filn the kernel of
the canonical map WΩA/k → WnΩA/k. It is an abelian group generated by the basic Witt
differentials e(ξ, k, P) such that ordV ξ ≥ n (compare [10]). We set:

Gn,l = FilnWΩlA/k/Filn+1WΩlA/k.

We consider it as a W (A)-F -module. Clearly the module structure factors via F : W (A)→ A.
We consider throughout this A-module structure on Gn. On G0 = ΩlA/k it agrees with the
A-F -module structure considered above.

The A-module Gn,l has a direct decomposition into free A-modules:

(2.5)

Gn,l = V nP l ⊕ pV n−1P l ⊕ · · · ⊕ pnP l

⊕ dV nP l−1 ⊕ pdV n−1P l−1 ⊕ · · · ⊕ pndP l

⊕ pnFΩlA/k.

This follows from Proposition 2.3 and the decompositon of WΩA/k defined by basic Witt
differentials. It is clear that each summand has a basis consisting of basic Witt differentials.

P 2.6. – For each n ≥ 0 there is a family ω(n)
i ∈ FilnWΩlA/k of basic Witt

differentials, where i runs through some finite index set Jn, satisfying the following:

For each n the elements ω(n)
i for i ∈ Jn form a basis of the A-module Gn,l.

A Witt differential ω ∈Wt+1ΩlA/k has a unique expression

(2.7) ω =
t∑

n=0

∑
i∈Jn

F [a
(n)
i ]ω

(n)
i ,

where a(n)
i ∈ A.

Moreover the truncated Gauss norm γε[t] is given by the following formula:

(2.8) γε[t](ω) = min
n,i∈Jn

{pγε(a(n)
i ) + γε(ω

(n)
i )}.

Proof. – For a fixed n and each of the summands of (2.5) we choose basic Witt differ-
entials in Filn which form a basis of this summand as an A-module. Therefore we obtain a
basis ω(n)

i . Then we write:

ω =
∑
i∈J0

Fa
(0)
i ω

(0)
i modulo Fil1 .

Then we consider the Witt differential

ω(1) = ω −
∑
i∈J0

F [a
(0)
i ]ω

(0)
i ∈ Fil1 .

Then we consider ω(1) ∈ G1,l and express it by the chosen basis of this A-module. This
process may be continued to obtain the expression (2.7).

Finally we have to prove the assertion about the Gauss norm. We consider first the case
of a differential ω ∈ Gn,l ⊂ Wn+1ΩA/k. We decompose ω according to the decomposition
(2.5):

ω =
∑

ωm.
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Since the decomposition (2.5) is defined by a partition of the set of basic Witt differentials
we deduce the formula:

γε[n](
∑

ωm) = min
m
{γε(ωm)}.

Let us denote by S an arbitrary summand of the decomposition (2.5). All nonzero elements
σ ∈ S have the same order ordV σ = oS . As explained, S is a free graded module over A:

S =
⊕

St,

such that St has a basis of basic Witt differentials whose weights have absolute value t. We
find that for z ∈ St, such that z 6= 0:

γε[n](z) = oS − εt.

Now we assume that z =
∑ Fa

(n)
i ω

(n)
i . Since S is free we deduce from this the formula:

γε[n](
∑

Fa
(n)
i ω

(n)
i ) = min{γε(Fani ) + γε(ω

(n)
i )}.

Now we consider the element ω ∈Wt+1ΩA/k with the expansion (2.7). We set γε[t](ω) = C.
Then we have:

C ≤ γε[0](ω) = γε[0](
∑

F [a
(0)
i ]ω

(0)
i ) = min

i
{γε(F [a

(0)
i ]) + γε(ω

(0)
i )}.

On the other hand we have the inequality:

γε[t](
∑

F [a
(0)
i ]ω

(0)
i ) ≥ min

i
{γε(F [a

(0)
i ]) + γε(ω

(0)
i )}.

We obtain that

γε[t](ω −
∑

F [a
(0)
i ]ω

(0)
i ) ≥ γε[t](ω) = C.

Applying the same argument to ω(1) = ω −
∑ F [a

(0)
i ]ω

(0)
i ∈ Fil1 we find that in the

decomposition (2.7) the following inequality holds:

γε(
F [a

(n)
i ]) + γε(ω

(n)
i ) ≥ C.

But on the other hand we have:

C = γε(
t∑

n=0

∑
i∈Jn

F [a
(n)
i ]ω

(n)
i ) ≥ min

n.i∈Jn
{γε(F [a

(n)
i ]) + γε(ω

(n)
i )}.

This proves the last assertion.

R. – Let f =
∑
αkT

k ∈ A, where αk ∈ k is a polynomial. We set
f̃ =

∑
[ak][T ]k ∈ W (A). This is an integral Witt vector which lifts f . We can replace in the

proof the Teichmüller representatives [a
(n)
i ] by ã(n)

i . and the element F [a
(n)
i ] by the element

F ã
(n)
i . Then we obtain a unique expression:

(2.9) ω =
t∑

n=0

∑
i∈Jn

F ã
(n)
i ω

(n)
i ,

The Gauss norm is given by the Formula (2.8).
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Our next aim is to prove a similar proposition for the localization Af of the polynomial
algebra A = k[T1, . . . , Td] for an element f ∈ A. We write δ = deg f .

Let ω ∈ Wt+1ΩAf/k. We have seen that an admissible pseudovaluation γ′ε[t] on this de
Rham-Witt complex is obtained as follows. We consider all possible representations:

(2.10) ω =
∑
l

(ηl/[f ]lp), where ηl ∈Wt+1ΩA/k.

Then γ′ε[t](ω) is the maximum over all possible numbers

min{γε[t]ηl − εlp}.

There is always a representation where this maximum is taken. Such representations will be
called optimal. The following inequalities are immediate:

γ′ε[t](ω) ≤ γ′ε[t− 1](ω)

γ′ε[t](ω) ≤ γ′δ[t](ω) for ε ≥ δ.

We could also consider all representations of the form ω =
∑
l(ηl/[f ]l) without the extra

factor p. Then we denote by γ̂′ε(ω) the maximum of the numbers min{γε[t]ηl − εl}. We will
use this Gauss norm only for the Witt ring.

We write Filmf = FilmWΩAf/k. By étale base change Filmf is obtained from Film by
localizing with respect to [f ].

L 2.11. – Let ω ∈ Filmf . Then there is an optimal representation (2.10) of ω such
that ηl ∈ Film.

Proof. – The case m = 0 is trivial. We assume by induction that there is an opti-
mal representation such that ηl ∈ Film−1. Consider the residue classes of η̄l of ηl in
Gm−1 = ⊕lGm−1,l = Film−1/Film. We use the abbreviation δε(η̄l) = γε[i− 1](η). Clearly
we have that δε(η̄l) ≥ γε[t](ηl). Then we have in Gm−1 the relation:

(2.12)
M∑
l=0

(η̄l/[f ]l) = 0.

We may assume that η̄M 6= 0 and that M is the minimal possible value for all optimal
representations. Then we have to show that M ≥ 1 is impossible. We see that η̄M is divisible
by [f ]. Then we write:

η̄M = [f ]τ̄ .

We obtain that δε(τ̄) − εδ = δε(η̄M ). We may lift τ̄ to an element τ ∈ Film−1 such that
γε[t](τ) = δε(τ̄). We write:

ηM = [f ]τ + ρ, where ρ ∈ Film .

Since γε[t]([f ]τ) = γε(τ) − εδ = δε(τ̄) − εδ = δε(η̄m) ≥ γε(ηM ) we conclude that
γε(ρ) ≥ γε(ηM ). Now we consider the equation:

(ηM/[f ]M ) = (τ/[f ]M−1) + (ρ/[f ]M ).

Inserting this in (2.10) we obtain again an optimal expression, since:

γε(τ)− (M − 1)ε ≥ γε(ηM )−Mε

γε(ρ)−Mε ≥ γε(ηM )−Mε.
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Reducing this modulo Film we see that the number M became smaller.

L 2.13. – Let ω ∈ Gt ⊂Wt+1ΩAf/k. Then ω has a unique expression:

ω =
∑

F [ci]ω
(t)
i , ci ∈ Af .

Then we have:
γ′ε[t](ω) = min

i∈Jn
{pγ̂′ε(ci) + γε(ω

(t)
i )}.

Proof. – SinceGt is a freeA-F -module it is clear that the localization is a freeAf -F -mod-
ule with the same basis. From this it follows that such a decomposition exists.

We choose an optimal representation:

(2.14) ω =
∑
l

(ηl/[f ]pl).

By the last lemma we may assume that ηl ∈ Gt. Then we find for ηl an expression:

ηl =
∑

Failω
(t)
i , ail ∈ A.

Therefore we obtain by definition and Proposition 2.6:

(2.15) γ′ε[t](ω) = min
il

¶
γε[t]

Ä∑
Failω

(t)
i

ä
− εlp

©
= min

il
{pγε(ail) + γε(ω

(t)
i )− εlp}.

We set
c
(n)
i =

∑
l

(a
(n)
il /f

l).

We can assume that this expression is optimal for γ̂′ε. Because in the other case we could
insert the optimal expression in the equation:

(2.16) ω =
∑
i

(∑
l

Fail/f
lp

)
ω

(t)
i .

This would make the right hand side of (2.15) bigger. But then (2.16) would again be an
optimal expression of the form (2.14).

We obtain γ̂′ε(c
(n)
i ) = minl{γε(a(n)

il )−εl}. This shows the last formula of the lemma.

Let c ∈ Af be an element. We choose an optimal representation:

c =
∑

(al/f
l).

We set:

(2.17) ĉ =
∑

[al]/[f ]l ∈Wt+1(Af ).

We find
γ̂′ε[t](ĉ) ≥ γ̂′ε(c).

But the other inequality is obvious since γ̂′ε[t](ĉ) ≤ γ̂′ε[1](ĉ). Therefore we have an equation:

(2.18) γ̂′ε[t](ĉ) = γ̂′ε(c).

In the same way we obtain:
γ′ε[t](ĉ) = γ′ε(c).

Indeed we have:

(2.19) γ′ε(
F c) = pγ̂′ε(c) for c ∈ Af .
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To see this we can reduce to the case, where f is regular with respect to one variable. Then
one uses that reduced representations are optimal.

P 2.20. – With the same notation as in Proposition 2.6 consider a Witt
differential η ∈Wt+1ΩAf/k. Then there is a unique decomposition:

η =
∑
i,n

F ĉ
(n)
i ω

(n)
i , c

(n)
i ∈ Af .

The truncated Gauss norm is given by the formula:

γ′ε[t](η) = min
i,n
{pγ̂′ε(c

(n)
i ) + γε(ω

(n)
i )}.

Proof. – Since t is fixed we will set γ′ε = γ′ε[t] Consider an expression in Film:

z =
∑
i

F ĉ
(m)
i ω

(m)
i .

We claim that:

(2.21) γ′ε(z) = γ′ε[m](z) = min
i
{γ′ε(F ĉ

(m)
i ) + γε(ω

(m)
i )}.

Indeed, the second equality follows from Lemma 2.13. We see easily that γ′ε(z) is greater
than the right hand side of (2.21). Indeed, we choose optimal representations for c(m)

i :

c
(m)
i =

∑
l

ail/f
l.

We obtain:

z =
∑
l,i

[ail]
pω

(m)
i /[f ]lp =

∑
l

(∑
i

[ail]
pω

(m)
i

)
/[f ]lp.

This shows that
γ′ε(z) ≥ minl{γε(

∑
i[ail]

pω
(m)
i )− lpε}

= minl{mini{pγε(ail) + γε(ω
(m)
i )} − lpε}.

The last equation follows from Proposition 2.6. By definition we have the equation:

pγ̂ε(c
(m)
i ) = min{γε(ail)− lε}.

This shows the inequality:

γ′ε(z) ≥ min{γ′ε(F ĉ
(m)
i ) + γε(ω

(m)
i )}. = γ′ε[m](z).

On the other hand we have γ′ε(z) ≤ γ′ε[m](z), and this proves the equality (2.21).
As in the proof of Proposition 2.6 we find an expansion with the desired properties.

R. – Consider the natural map B = k[T1, . . . , Td, S]→ Af , which maps S to f−1.
We have defined the overconvergent Witt vectors W †ΩAf/k as the image of W †ΩB/k by the
canonical map:

(2.22) WΩB/k →WΩAf/k.

Assume that we are given ω ∈WΩAf/k, such that there is a constant C with

(2.23) γ′ε[t](ω) ≥ C
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for all t ≥ 0. We claim that ω ∈ W †ΩAf/k. By the unicity statement of the last proposition
we have an infinite expansion:

ω =
∑
i,n

F ĉ
(n)
i ω

(n)
i .

As in the proof above we take optimal representations:

c
(n)
i =

∑
l

a
(n)
il /f

l.

Then we find a convergent sum in the Fil-topology:

ω =
∑
l

(∑
i

[anil]
pω

(n)
i

)
/[f ]lp,

where pγε(anil)− εlp+ γε(ω
(n)
i ) ≥ C. But then

∑
l

(∑
i

[anil]
pω

(n)
i

)
[S]lp ∈WΩB/k

is clearly an overconvergent Witt differential which lifts ω. Conversely the condition (2.23) is
clearly fullfilled for an overconvergent ω, because γ′ε is equivalent to the quotient norm induced
by (2.22).

C 2.24. – For η ∈Wt+1ΩAf/k we have the equation:

γ′ε[t+ 1](pη) = 1 + γ′ε[t](η).

Proof. – We note that the proposition holds for each set ω(n)
i ∈ WΩA/k of basic Witt

differentials which for each given n induce a basis of Gn as A-F -module. But clearly pω(n)
i

is part of a basis of Gn+1 consisting of basic Witt differentials. This gives with the notations
of the proposition:

γ′ε[t+ 1](η) = γ′ε

(∑
i,n

F ĉ
(n)
i (pω

(n)
i )

)
= min{pγ̂ε(c(n)

i ) + γε(pω
(n)
i )}.

This proves the result.

P 2.25. – Let f, g ∈ A be two non-zero elements without common divisors.
There is a constantQ > 1 with the following property. Let t be a rational number and let ε > 0

a real number. We denote by γ′ε = γ′ε[t] the natural Gauss norm on Wt+1ΩAf/k and by γ′′ε the
natural Gauss norm on Wt+1ΩAfg/k.

We denote the image of a Witt differential ω ∈ Wt+1ΩAf/k in Wt+1ΩAfg/k by the same
letter. Then the following inequality holds:

(2.26)
γ′ε/Q(ω) ≥ γ′′ε (ω)

γ′′ε/Q(ω) ≥ γ′ε(ω).
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Proof. – We begin with the proof of the first inequality, which is the nontrivial one. We
may extend the ground field k and assume that k is infinite. After a coordinate change we
may assume that f and g are regular with respect to T1. Consider an element c ∈ Af with
the reduced representation

c =
∑

al/f
l.

If we regard c as an element of Afg it has the reduced representation:

c =
∑

(alg
l)/(fg)l.

We have defined a lifting ĉ ∈W (Af ) of c (2.17). This coincides with the lifting ĉ ∈W (Afg):∑
[al]/[f ]l =

∑
([alg

l])/([fg])l.

We set C = γ′′ε (ω). By Proposition 2.20 we have the expansion:

(2.27) ω =
∑
i,n

ĉ
(n)
i ω

(n)
i , cni ∈ Af .

Since the ĉ with respect to Af and with respect to Afg means the same (2.27) is also the
expansion of ω with respect to Afg according to Proposition 2.20.

Therefore we conclude that:

C = min{pγ̂′′ε (c
(n)
i ) + γε(ω

(n)
i )}.

By Proposition 1.30 of [5] there are constants which depend only on deg f and deg g, such
that the pseudovaluation γ̂′ε on Af (respectively γ̂′′ε on Afg) compare to the µ-functions:

Q1µ
′(c) ≤ γ̂′ε(c) ≤ Q2µ

′(c) for c ∈ Af ,
Q1µ

′′(d) ≤ γ̂′′ε (d) ≤ Q2µ
′′(d) for d ∈ Afg.

If c ∈ Af has denominator fn, then c regarded as an element ofAfg has denominator (fg)n.
This shows the equality

µ′(c) = µ′′(c).

We find the inequalities:

γ̂′′ε (c) ≤ Q2µ
′′(c) = Q2µ

′(c) ≤ (Q2/Q1)γ̂′ε(c).

We set Q = max{1, (Q1/Q2)} and rewrite the above inequality:

γ̂′′ε (c) ≤ γ̂′ε/Q(c), for c ∈ Af .

From this we find:

pγ̂′ε/Q(c
(n)
i ) + γε/Q(ω

(n)
i ) ≥ pγ̂′′ε (c

(n)
i ) + γε(ω

(n)
i ) ≥ C.

Using Proposition 2.20 this implies the first inequality (2.26).

The second inequality is straightforward: We choose an optimal representation
of ω ∈Wt+1ΩAf/k with respect to ε

ω = ηl/[f ]lp, ηl ∈Wt+1ΩA/k.

From the representation

ω = ηlg
lp/[fg]lp, ηl ∈Wt+1ΩA/k
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we obtain that:
γ′′ε/Q(ω) ≥ γε/Q(ηl[g]lp)− lpε/Q

= γε/Q(ηl)− lpε(deg g + 1)/Q

≥ γε(ηl)− εlp = γ′ε(ω).

Using the remark before Corollary 2.24, we see that Proposition 2.25 implies the claim in
(1.10) and finishes the proof of Theorem 1.8.

C 2.28. – With the notations of the proposition we have the inequality:

(2.29) γ′ε([g]pω) ≤ γ′ε/Q2(ω) + pε/Q.

Let c ∈ Af , such that c 6= 0. Then there are constant C,Q ∈ R, Q > 1 such that for every
ω ∈Wt+1ΩAf/k.

γ′ε([c]ω) ≤ γ′ε/Q2(ω) + Cε.

This shows in particular that an element ω ∈ WΩAf/k is overconvergent if for some
c ∈ Af , c 6= 0 the element [c]ω is overconvergent.

Proof. – We begin to show the inequalities:

(2.30)
γ′ε(

1
[fp]ω) ≥ γ′ε(ω)− pε

γ′ε([f
p]ω) ≤ γ′ε(ω) + pε.

To verify the first of these inequalities we choose an optimal representation:

(2.31) ω =
∑
l

ηl/[f ]lp.

After dividing by [f ]p we conclude:

γ′ε(
1

[fp]
ω) ≥ min

l
{γε(ηl)− (l + 1)pε} = γ′ε(ω)− pε.

From this we deduce formally the second inequality:

γ′ε(ω) = γ′ε(
1

[fp]
[f ]pω) ≥ γ′ε([f ]pω)− pε.

Let h ∈ A be arbitrary. If we multiply (2.31) by [h] we obtain the inequality.

(2.32) γ′ε([h]ω) ≥ γε(h) + γ′ε(ω).

As above we obtain from this formally:

(2.33) γ′ε

Å
1

[fp]
ω

ã
≤ γ′ε(ω)− γε([f ]p).

Using (2.30) for γ′′ε and the proposition we obtain:

γ′′ε/Q([g]pω) ≤ γ′′ε/Q(ω) + pε/Q ≤ γ′ε/Q2(ω) + pε/Q.

But on the other hand the proposition shows:

γ′′ε/Q([g]pω) ≥ γ′ε([g]pω).

This shows (2.29).
For the last statement we remark that it is true for [c], if there is an h such that the

statement is true for [hc]. Indeed this follows from (2.32). Therefore it suffices to assume that
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c = fmg, where g has no common divisor with f . This case is easily deduced from (2.29) and
(2.30).

3. Comparison with Monsky-Washnitzer cohomology

LetB/k be a finitely generated, smooth algebra over a perfect field k of char p > 0. Let ‹B†
be the weak completion (in the sense of [14]) of a smooth finitely generated W (k)-algebra ‹B
lifting B. To begin this section we prove the existence of a map σ : ‹B† → W †(B) which we
call an overconvergent Witt lift. It depends on a choice of Frobenius lift F and is the same
as the map tF : ‹B† → W (B) described in [8]. We must prove that this map has image in
W †(B). We do this first for the case of a polynomial algebra (and any choice of Frobenius
lift), and deduce the general result easily by functoriality.

P 3.1. – Let A = k[T1, . . . , Td] and Ã† = W (k) 〈T1, . . . , Td〉†. Fix a
Frobenius lift F on Ã†. Then the map tF defined in [8] p. 509 (and recalled below) has image
in W †(A).

Proof. – Let a ∈ Ã† have the form∑
k∈Nd

αkT
k1
1 · · ·T

kd
d .

For ε > 0, we define a Gauss norm on Ã† by

γε(a) = inf
k
{ordp αk − ε|k|}.

We define

W †(Ã†) := {(a0, a1, . . . ) ∈W (Ã†) | m+ γ ε
pm

(am) ≥ C, for some ε > 0, C ∈ R}.

The projection map pr : W (Ã†)→W (A) induces a map W †(Ã†)→W †(A).
For x ∈ W (Ã†), write x = (a0, a1, . . . ) and let wm(x) ∈ Ã† denote the mth ghost

component. Then we find

m+ γ ε
pm

(am) ≥ C ⇐⇒ γ ε
pm

(wm(x)) ≥ C.

The map tF is defined as the composition

Ã†
sF→W (Ã†)

pr→W (A),

where for any a ∈ Ã†, sF (a) is the unique element with ghost components (a, F (a), F 2(a), . . . ).
We claim that for any a ∈ Ã†, there exist ε, C with γ ε

pm
(Fm(a)) ≥ C for all m. From the

definition of sF and the above equivalence, this will immediately show that sF (a) ∈W †(Ã†),
and so by the remark in our first paragraph, tF (a) ∈W †(A).

Abbreviate T for (T1, . . . , Td). Write F (Ti) = T pi + pfi(T ) for each i. We can find ε

sufficiently small such that γε(fi(T )) > −1 for each i, and hence γε(pfi(T )) > 0 for each i.
From now on abbreviate ui := pfi(T ).

Assume γε(a) ≥ C. For k ∈ Nd, let ∂ka denote the partial derivative ∂k1

∂T
k1
1

· · · ∂
kd

∂T
kd
d

a. It

is clear that γε( 1
k!∂ka) ≥ γε(a) ≥ C. It is also clear that for any h ∈ Ã†,

γ ε
p
(h(T p1 , . . . , T

p
d )) = γε(h(T1, . . . , Td)).
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Assuming still γε(a) ≥ C, we prove γ ε
p
(F (a)) ≥ C. The result γ ε

pm
(Fm(a)) ≥ C then

follows by induction. We compute

F (a) = a(T p1 + u1, . . . , T
p
d + ud)

=
∑ 1

k!
δk(a(T p1 , . . . , T

p
d ))uk;

so,

γ ε
p
(F (a)) ≥ inf{γ ε

p
(

1

k!
δk(a(T p1 , . . . , T

p
d ))) + γ ε

p
(uk)}

≥ C,

as required.

P 3.2. – For B/k a smooth, finitely generated algebra with lift ‹B† and
Frobenius lift F ′, the map

tF ′ : ‹B† →W (B)

has image in W †(B).

Proof. – Take a surjective map from a polynomial algebra φ : A → B and a lift of
Frobenius F on Ã† inducing F ′. Then the result follows from the functoriality of the map
tF and the fact that the natural projection W (A)→W (B) sends W †(A)→W †(B).

Let B/k be a finitely generated, smooth algebra over a perfect field k of char p > 0. We
have just shown that B admits an overconvergent Witt lift:

σ : ‹B† →W †(B).

If we restrict σ to the smooth W (k)-algebra ‹B lifting B, we obtain an induced map

σ|
B̃

: ‹B →W †(B)

which we will call the underlying Witt lift associated to σ. Conversely, if we assume that B
admits a Witt lift, σ : ‹B →W (B) such that image(σ) ⊆W †(B), then σ extends canonically
to the weak completion of ‹B, i.e. to an overconvergent Witt lift

(3.3) σ : ‹B† →W †(B)

because W †(B) is weakly complete (Proposition 2.28 in [5]). We derive from this a map of
complexes, also denoted by σ

(3.4) Ω
B̃†/W (k)

→W †Ω•B/k ⊂WΩ•B/k.

If B̂ denotes the p-adic completion of ‹B we also have a map

lim
←−

Ω•
B̃n/Wn(k)

=: Ω•
B̂/W (k)

→WΩ•B/k.

In the following we show that σ in (3.4) is a quasi-isomorphism if B is finite étale and
monogenic over a localized polynomial algebra Af = k[T1, . . . , Tn]f .
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OVERCONVERGENT DE RHAM-WITT COHOMOLOGY 231

Let f̃ ∈ Ã := W (k)[T1, . . . , Tn] be a lifting of f and Ã
f̃

:= W (k)[T1, . . . , Tn]
f̃

. B lifts to

a finite étale extension ‹B over Ã
f̃

. If B = Af [x], then ‹B = Ã
f̃
[x]. We write u = [x] for the

Teichmüller representative of x in W (B). Consider the canonical map

σ : ‹B →W †(B) = W †(Af )[u]

which extends the canonical map Ã
f̃
→ W †(Af ). The existence of σ is derived from

Hensel’s lemma [5] Proposition 2.30. Hence B has a canonical overconvergent Witt lift. Let‹B†, Ã†
f̃

be the weak completions of ‹B, Ã
f̃

. Then ‹B† = Ã†
f̃
[x] is finite étale over Ã†

f̃
. Using

Proposition 1.9 we see that σ extends to a comparison map

(3.5) σ : Ω
B̃†/W (k)

= ‹B†⊗
Ã†

f̃

Ω•
Ã†

f̃

/W (k)
→W †Ω•B/k =

m−1⊕
i=0

W †Ω•Af/kx
i

(here m = [B : Af ]).
We want to show that σ is a quasi-isomorphism. First we treat the special case

B = Af = k[T1, . . . , Tn]f . So we need to show:

σ : Ω
Ã†

f̃

/W (k)
→W †Ω•Af/k is a quasi-isomorphism.

We also consider f̃l = image(f̃) in Wl(k)[T1, . . . , Tn] =: Ãl. The Ãl-module structure in
WlΩ

•
A/k respects the decomposition

WlΩ
•
A/k = WlΩ

•,int
A/k ⊕WlΩ

•,frac
A/k

into integral and fractional part. This follows from [11] Lemma 4.
Hence we have a direct sum decomposition

(3.6)

WlΩ
•
Af/k

∼= Ãl

[
1

f̃l

] ⊗̃
Al

WlΩ
•
A/k

∼= Ãl

[
1

f̃l

] ⊗̃
Al

WlΩ
•,int
A/k

⊕
Ãl

ï
1

f̃ l

ò ⊗̃
Al

WlΩ
•,frac
A/k

where the first isomorphism follows from the étale base change and the isomorphism

Wl(A)
⊗
Ãl

Ãl

ñ
1

f̃l

ô
∼= Wl(Af ).

When taking inverse limits, we put

lim
←−

Ãl

ñ
1

f̃l

ô⊗
Ãl

WlΩ
•,int
A/k = Ω•“‹A

f̃

,

where ̂̃A
f̃

is the p-adic completion of Ã
f̃

. Then (3.6) yields a direct sum decomposition

(3.7) WΩ•Af/k
∼= WΩ•,int

Af/k
⊕WΩ•,frac

Af/k

into two parts which we denote again by the integral and fractional part. We can identify
WΩ•,int

Af/k
with Ω•“‹A

f̃

and we know thatWΩ•,frac
Af/k

is acyclic. With regards toW †Ω•Af/k we apply

Proposition 1.3 and the remark after Proposition 1.3:
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232 C. DAVIS, A. LANGER AND T. ZINK

Any z ∈W †Ω•Af/k can be written as a convergent series

z =
∞∑
l=0

1

[f ]rl
ηl

where ηl is a finite sum of basic Witt differentials η(t)
l , such that there are real numbersC and

ε > 0 with
γε(ηl)− εrl ≥ C.

The supremum over allC for all possible representations of z is by definition γε(z), the Gauss
norm on the localization.

We can also define an order function on WΩ•Af/k by considering representations of z of
the form

(3.8) z =
∞∑
l=0

1

f̃rl
τl.

We call z convergent with radius εwith respect to f̃ if there is a representation and a constant
C ∈ R, such that

(3.9) γε(τl)− εrl ≥ C.

We denote the supremum over all C for all possible representations by γ(f̃)
ε (z). We will also

express the last condition of convergence a little differently: We extend the function γε to
WΩ•A/k[1/f̃ ] as follows:

γ̃ε(ω/f̃
k) = γε(ω)− kγε(f̃).

If z =
∑
l zl with zl ∈ WΩ•A/k[1/f̃ ], and if we denote by kl the denominator of zl in this

localization, it is easy to see that γ(f̃)
ε (z) is the supremum over all constants C such that for

a suitable representation z =
∑
zα we have

(3.10) kα ≤
1

ε(1 + deg f̃)
(γ̃ε(zα) + C) .

We will prove that the notions of overconvergence and overconvergence with respect to f̃
are the same. We start with representations (3.8) such that (3.9) holds. We write

f̃ = [f ]− ρ.

It is enough to consider the case where ε is small enough. Therefore we may assume that
γε(ρ) ≥ ε. We show that z is convergent with respect to γε:

1

f̃
=

1

[f ]

1

1− 1
[f ]ρ

=
1

[f ]

Ñ
1 +

∑
n≥1

1

[f ]n
(ρ)n

é
=
∑
n≥1

1

[f ]n
(ρ)n−1.

Then 1

f̃k
=
∑
m≥k

am
1

[f ]m (ρ)m−k with am ∈ Z.
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OVERCONVERGENT DE RHAM-WITT COHOMOLOGY 233

Then we find

γε

(∑
l

1

[f̃rl ]
τl

)
= γε

Ñ∑
l

∑
m≥rl

am
1

[f ]m
τlρ

m−rl

é
.

We give an estimation for each summand separately:

γε(am
1

[f ]m
τlρ

m−rl) ≥ γε(τlρm−rl)− εm ≥ γε(τl) + γ̆ε(ρ
m−rl)− εm

≥ γε(τl)− rlε− (m− rl)ε+ (m− rl − 1)γε(ρ) + γ̆ε(ρ).

The last inequality holds by [5] (2.22). Since γε(ρ) ≥ ε we conclude:

γε(am
1

[f ]m
τlρ

m−rl) ≥ C + (m− rl − 1)(γε(ρ)− ε)− ε+ γ̆ε(ρ) ≥ C − ε(1 + deg f).

The last inequality was explained at the end of the proof of Corollary 0.13. Finally we obtain

γε(z) ≥ γ(f̃)
ε (z)− ε(1 + deg f).

If we interchange the roles of [f ] and f̃ in the argument above we see that:

γ(f̃)
ε (z) ≥ γε(z)− ε(1 + deg f).

The Gauss norms γ(f̃)
ε are appropriate to study overconvergence on the integral and frac-

tional part of WΩAf/k separately. More precisely let z ∈ WΩ•Af/k and let z = z1 + z2

according to the decomposition (3.7). We have just seen that γε(z) > −∞⇔ γ
(f̃)
ε (z) > −∞

for small ε. We claim that

γ(f̃)
ε (z) > −∞ implies γ(f̃)

ε (z1) > −∞ and γ(f̃)
ε (z2) > −∞.

Let γ(f̃)
ε (z) ≥ C then there exists a representation

z =
∞∑
l=0

1

f̃rl
τl

such that
γε(τl)− εrl ≥ C.

Let τl = τ1
l + τ2

l be the decomposition in integral and fractional part. Then

z1 =
∞∑
l=0

1

f̃rl
τ1
l and z2 =

∞∑
l=0

1

f̃rl
τ1
2 .

As γε(τl) = min{γε(τ1
l ), γε(τ

2
l )} the claim follows. Hence we obtain a direct sum decompo-

sition

(3.11) W †Ω•Af/k = W †Ω•,int
Af/k

⊕
W †Ω•,frac

Af/k
.

We will also consider the truncated Gauss norms γ(f̃)
ε [t] on

Ãt+1

ñ
1

f̃

ô
⊗
Ãt+1

Wt+1Ω•A/k

= Ãt+1

ñ
1

f̃

ô
⊗
Ãt+1

Wt+1Ω•,int
A/k ⊕ Ãt+1

ñ
1

f̃

ô
⊗
Ãt+1

Wt+1Ω•,frac
A/k .
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234 C. DAVIS, A. LANGER AND T. ZINK

We can define the Gauss norm γ̃ε on Ãt+1

[
1

f̃

] ⊗̃
At+1

Wt+1Ω•,frac
A/k in the same way as before.

We fix ε > 0 and C ∈ R.
We define Wt+1Ω•,frac,ε,C

Af/k
as the set of finite sums

∑
k
ηk

f̃k
∈Wt+1Ω•,frac

Af/k
=

Ãt+1

[
1

f̃

] ⊗̃
At+1

Wt+1Ωfrac
A/k satisfying the following. Let K0 be the largest integer divisible by

p such that

(3.10.1) K0 ≤
1

ε(1 + deg f̃)

Ç
γ̃ε

Ç
w

f̃kl

å
+ C

å
.

Then we require the following two conditions:

(i) K0 ≥ 0

(ii) k ≤ K0.

We know that the complex Ãt+1

[
1

f̃

] ⊗̃
At+1

Wt+1Ω•,frac
A/k is acyclic. We show that for ε > 0

sufficiently small Wt+1Ωfrac,ε,C
Af/k

is acyclic.
Let us assume that f is regular in the variable T1. Let c ∈ Af . Then c has a unique reduced

representation:

(3.12) c =
∑
l

al/f
l,

where al ∈ A. We write a =
∑
αkT

k ∈ A, with αk ∈ k, and we set ã =
∑

[αk][T ]k ∈W (A).
Then we define

(3.13) c̃ =
∑
l

ãl/f̃
l.

This is an integral element in W (Af ). In the following we consider still another admissible
Gauss norm on Wt+1ΩAf/k. Let ω ∈Wt+1ΩAf/k. Then we consider all possible expression
of the type:

ω =
∑
l

ηl/f̃
lp, ηl ∈Wt+1ΩA/k.

We forget our old notation and denote by γ′ε[t](ω) the maximum over all possible numbers

min{γε[t](ηl)− εlp}.

It is easy to see that the condition γ′ε[t](ω) ≥ C forω ∈Wt+1Ωfrac
Af/k

is equivalent to condition

ω ∈Wt+1Ωfrac,ε,C
Af/k

.

We should remark that γ′ε[1] coincides with the formerly defined function. As before we

define a modified γ̂′ε[t]. Then we have γ̂′ε[t] = γ
(f̃)
ε [t]

We find the equalities:

γ̂′ε[t](c̃) = γ̂′ε(c), γ′ε[t](c̃) = γ′ε(c).

Indeed we verify the first equation as follows: By the representation (3.13) we find:

γ̂′ε[t](c̃) ≥ min{γε[t](ãl)− εl} = min
l
{γε(al)− εl} = γ̂′ε(c) = γ̂′ε[1](c̃).

The other inequality is obvious.
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L 3.14. – Each ω ∈Wt+1ΩAf/k has a unique representation:

(3.15) ω =
∑

F c̃
(n)
i ω

(n)
i .

This decomposition respects the non integral and the integral part, i.e. if ω is integral (resp.
non integral) then all ω(n)

i are integral (respectively non integral). For the Gauss norm we
have:

γ′ε[t](ω) = min{pγ̂′ε(cni ) + γε(ω
(n)
i )}.

Proof. – The same as that of Proposition 2.20: The Lemmas 2.11 and 2.13 continue to
hold with F c̃

(n)
i in place of F [c

(n)
i ], because the action of both elements is the same on the

graded part Gn. We need to verify that for fixed n:

(3.16)
γ′ε[t](

∑
i
F c̃

(n)
i ω

(n)
i ) = min{γ′ε[t](F c̃

(n)
i ) + γε(ω

(n)
i )}

= min{pγ̂ε(c(n)
i ) + γε(ω

(n)
i )}.

It is clear from Lemma 2.13 that this is true for γ′ε[n] in place of γ′ε[t]. We choose reduced
representations:

c
(n)
i =

∑
l

a
(n)
i,l /f

l.

Then we find:

γ′ε[t]

(∑
i

F c̃
(n)
i ω

(n)
i

)
= γ′ε[t]

(∑
l

(∑
i

F ã
(n)
i,l ω

(n)
i /f̃pl

))
.

From this we see that:

γ′ε[t]

(∑
i

F c̃
(n)
i ω

(n)
i

)
≥ min

¶
γε[t]

Ä∑ Ä
F ã

(n)
i,l ω

(n)
i

ää
− εlp

©
= min{γε[t](F ã(n)

i,l ) + γε(ω
(n)
i )− εlp}

= min{γ′ε[t](F c̃
(n)
i ) + γε(ω

(n)
i )}.

This shows the Equation (3.16) because γ′ε[t] ≤ γ′ε[n]. The rest of the proof of the lemma is
the same.

P 3.17. – Let ε ∈ R be sufficiently small. Let ω ∈ Wt+1ΩAf/k be a closed
Witt differential in the non integral part such that γ′ε(ω) ≥ C. Then ω = dη, where
η ∈Wt+1ΩAf/k is a Witt differential in the non integral part, such that γ′ε(η) ≥ C.

Proof. – The problem does not change if we make a finite extension of the base field k.
Therefore we may assume that f is regular in T1 as above.

Consider the residue class ω̄ ∈W2ΩAf/k of ω. This is a closed form in the fractional part,
i.e. is contained in the module:

(dV nP l−1)f ⊕ (pdV n−1P l−1)f ⊕ · · · ⊕ (pn−1dV P l)f

for n = 2. This means that all basic Witt differentials ω(1)
i , which appear in the decom-

position (3.15) must be of the form ω
(1)
i = dη

(1)
i for some primitive basic Witt differential

η
(1)
i , such that γε(ω

(1)
i ) = γε(η

(1)
i ). We set:

η(1) =
∑

F c̃
(1)
i η

(1)
i .
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236 C. DAVIS, A. LANGER AND T. ZINK

Clearly γ′ε(η(1)) = min{pγ̂′ε(c
(1)
i ) + γε(ω

(1)
i )} ≥ γε(ω).

We will verify that for small ε:

(3.18) γ′ε(dη(1)) ≥ γ′ε(ω).

Then we consider ω(1) = ω − dη(1). We conclude that γ′ε(ω(1) ≥ γ′ε(ω) and that
ω(1) ∈ Fil2Wt+1ΩAf/k. Then we expand ω(1) in the form (3.15) and consider the reduction
in W3ΩAf/k. We apply the same argument and find η(2) with γ′ε(η(2)) ≥ γ′ε(ω(1)) and
γ′ε(dη(2)) ≥ γ′ε(ω(1)). Continuing we obtain:

ω = dη(1) + dη(2) + dη(3) + · · ·

This proves the result if we verify (3.18).

We set C = γ′ε(ω). By definition F c̃
(n)
i is a sum of expressions [u]p/f̃ lp such that:

pγε([u])− εlp+ γε(η
(1)
i ) ≥ C.

Here u is a monomial in the variables T . We have to verify that

γ′ε(d([u]pη
(1)
i /f̃ lp)) ≥ C.

We write:

d([u]pη
(1)
i /f̃ lp) = (d([u]pη

(1)
i ))/f̃ lp

+
− lp([u]pη

(1)
i f̃p−1df̃)/f̃ (l+1)p.

Clearly γ′ε of the first summand is greater than C. We have:

γ′ε(pl[u]pη
(1)
i f̃p−1df̃/f̃ (l+1)p) ≥ pγε([u])− ε(l + 1)p+ γε(ω

(1)
i ) + pγε(f̃) + 1.

The last expression is bigger C if

pγε(f̃) + 1− pε ≥ 0.

But this is clearly fulfilled for small ε.

Hence Wt+1Ωfrac,ε,C
Af/k

is acyclic. As the notions of overconvergence on WΩAf/k and

overconvergence with respect to f̃ are the same we can apply the remark preceding Corol-
lary 2.24. We see that the complex W †Ωfrac,ε

Af/k
consisting of elements ω ∈WΩfrac

Af/k
satisfying

γ′ε[t](ω) ≥ C for some C independently of t is exact as well. Hence

W †Ω•,frac
Af/k

= lim
ε→0

W †Ωfrac,ε
Af/k

is exact, as desired.

Now we can prove the following comparison result.

T 3.19. – Let f ∈ k[T1, . . . , Td] = A. Let B be finite étale and monogenic
over Af .

Then the map σ, explicitly given in 3.5, of complexes

σ : Ω
B̃†/W (k)

∼= W †ΩB/k

is a quasi-isomorphism.
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Proof. – We consider a lift Ãf̃ of Af over W (k) and a finite monogenic étale algebra B̃

over Ãf̃ which liftsB. We write B̃ = Ãf̃ [x]. We denote by ‹B† the weak completion of B̃. By
choosing a Frobenius on the weak completions we find morphisms

B̃ →W (B), Ãf̃ →W (Af ).

The elements
1, x, . . . , xm−1

form a basis of the free Ãf̃ -module B̃. For any power pn the elements

1, xp
n

, x2pn . . . , x(n−1)pn

form also a basis of B̃ over Ãf̃ .
We have the isomorphism of modules (not of complexes):

(3.20) WΩB/k = B̃ ⊗Ãf̃ WΩAf/k =
m−1⊕
i=0

xipWΩAf/k.

Let γ′ε be the of Gauss norms on WΩAf/k considered in Lemma 3.14. We consider the
product norms on the right hand side of 3.20. We write ω ∈WΩB/k:

(3.21) ω =
∑

ηjx
jp.

Then we set
γε(ω) = min{γ′ε(ηj)}.

According to (3.20) we find:

dxip = pixip−1dx =
m−1∑
j=0

xjpϑij ,

where the ϑij ∈ ΩÃf̃/W (k) ⊂WΩAf/k are integral differentials. We restrict our attention to

small ε. Then we may assume that
γ′ε(ϑij) > 0.

This is possible because the ϑij are divisible by p and γε(p) = 1. The last assumption ensures
that

γε(dω) ≥ γε(ω).

We define the fractional part of WΩB/k:

WΩfrac
B/k = B̃ ⊗Ãf̃ WΩfrac

Af/k
.

This is a subcomplex of WΩB/k. We denote by W †Ωfrac
B/k the overconvergent differentials in

WΩfracB/k . By the decompositions (3.5), (3.7), and (3.11), it remains to show that this complex
of overconvergent fractional differentials is acyclic.

From (3.20) we obtain decompositions for the filtrations:

(3.22) FilnWΩfrac
B/k =

m−1⊕
j=0

xjp FilnWΩfrac
Af/k

.

Consider a closed overconvergent Witt differential ω ∈WΩfrac
B/k:

dω = 0, γε(ω) ≥ −C.
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238 C. DAVIS, A. LANGER AND T. ZINK

We will show that ω = dη for η ∈ WΩfrac
B/k with γε(η) ≥ −C. This implies that the complex

W †Ωfrac
B/k is acyclic.

We note that ω ∈ Fil1WΩfrac
B/k = WΩfrac

B/k. We set ω1 = ω. We construct inductively

fractional differentials ωi, ηi ∈ FiliWΩfrac
B/k, such that γε(ωi) ≥ −C, γε(ηi) ≥ −C and

ωi = ωi+1 + dηi.

We consider ωi modulo Fili+1WΩfrac
B/k i.e. as an element of griWΩfrac

B/k ⊂Wi+1Ωfrac
B/k. Then,

using (3.22), we may write:

ωi =
∑

xjp(V
i

σj + dV
i

ρj).

Since griWΩfrac
B/k is annihilated by p we have

0 = dωi =
∑

xjpdV
i

σj .

This shows that V
i

σj = 0, for j = 0, . . . ,m− 1. We find for the truncated norms:

min{γ′ε[i](dV
i

ρj)} = γε[i](ωi) ≥ −C.

Using Proposition 3.17 we may assume after a possible modification of the ρj that
γ′ε[i](

V iρj) ≥ −C. We choose liftings V
i

ρ̃j ∈WΩfrac
Af/k

, such that

γ′ε(
V i ρ̃j) = γ′ε[i](

V iρj) ≥ −C.

Since d increases the product norm we find

γε
Ä
d
∑

xjpV
i

ρ̃j
ä
≥ γε

Ä∑
xjpV

i

ρ̃j
ä
≥ −C.

We set

ηi =
∑

xjpV
i

ρ̃j , ωi+1 = ωi − dηi.

This ends the induction and the proof of the proposition.

For an arbitrary smooth algebra A, consider an overconvergent Witt lift

(3.23) ψ : Ã† →W †(A)

which is uniquely determined by a lifting of the Frobenius to Ã†. (Compare Proposition 3.2.)
It induces a map of complexes, also denoted by ψ,

ψ : Ω
Ã†/W (k)

→W †ΩA/k.

Passing to cohomology we will prove the following comparison result.

P 3.24. – Let κ = blogp dimAc. Then the kernel and cokernel of the induced
homomorphism

ψ∗ : Hi(Ω
Ã†/W (k)

)→ Hi(W †ΩA/k)

are annihilated by p2κ.

4 e SÉRIE – TOME 44 – 2011 – No 2



Ép
re

uv
e

SM
F

Ja
nu

ar
y

5,
20

11

OVERCONVERGENT DE RHAM-WITT COHOMOLOGY 239

C 3.25. – (a) Let dimA < p. Then ψ∗ is an isomorphism.
(b) In general, there is a (rational) isomorphism

H∗MW(A/K) ∼= H∗(W †ΩA/k ⊗W (k) K)

between Monsky-Washnitzer cohomology and overconvergent de Rham-Witt cohomology.
(Here K = W (k)[ 1

p ].)

We will reduce the proof of the proposition to a local homotopy argument. The map ψ
induces a map of complexes of Zariski sheaves on SpecA :

ψ̃ : Ω̃
Ã†/W (k)

→W †ΩSpecA/k.

As Hi
Zar(SpecA, Ω̃d

Ã†/W (k)
) = Hi

Zar(W
†ΩdSpecA/k) = 0 for all d ≥ 0 and all i > 0

(Proposition 1.2 and [13] Lemma 7), we have

RΓ(SpecA, Ω̃•
Ã†/W (k)

) = Ω•
Ã†/W (k)

and

RΓ(SpecA,W †ΩSpecA/k) = W †ΩA/k,

hence we can reconstruct ψ from ψ̃ by applying RΓ(SpecA, .). Let {Uj}j be a finite affine
covering of SpecA such that each Uj is finite étale and monogenic over a localized polyno-
mial algebra. By a result of Kedlaya [9], such a covering always exists. LetUj = SpecBj and

B̃j
†

the Monsky-Washnitzer lift of Bj . Then we consider the “localization” ψj of ψ to Uj :

ψj : Ω‹Bj†/W (k)
→W †ΩBj/k.

We compare the map ψj with the explicitly given comparison map σ in (3.5) from which we
know it is a quasi-isomorphism and show the following.

P 3.26. – The maps pκψj and pκσ are homotopic, hence induce the same map
on cohomology.

Before proving the proposition we finish the proof of Proposition 3.24. We know that
the kernel and cokernel of (pκψj)∗ are annihilated by pκ. As Ker(ψj)∗ ⊆ Ker(pκψj)∗
and Coker(ψj)∗ is a subquotient of Coker(pκψj)∗, Ker(ψj)∗ and Coker(ψj)∗ are annihilated
by pκ as well.

Define C• as the complex of Zariski sheaves obtained by taking the cokernel of ψ̃. Then
one has an exact sequence of complexes of Zariski sheaves

0→ Ω̃•
Ã†/W (k)

→W †Ω•SpecA/k → C• → 0.

The cohomology sheaves Hi(C•) are annihilated by p2κ. Hence the map C•
p2κ→ C• induces

the zero map on cohomology. Therefore it is zero in the derived category. Applying the

functor RΓ we see that RiΓ(SpecA,C•)
p2κ→ RiΓ(SpecA,C•) is the zero map. This finishes

the proof of Proposition 3.24.

We now prove Proposition 3.26. It is implied by the following more general result. Let
B,C denote smooth k-algebras which are finite and étale over localized polynomial algebras,
with smooth lifts ‹B, ‹C and corresponding weak completions ‹B†, ‹C†.
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P 3.27. – Let φ̃1, φ̃2 : ‹B† → W †(C) denote two lifts of a map φ : B → C.
Then the induced maps

pκφ̃1, p
κφ̃2 : Ω

B̃†/W (k)
→W †ΩC/k

are chain homotopic, where κ = blogp dimBc.

We will closely follow the argument on pages 205-206 of [14].

Proof. – The chain homotopy we produce will factor through the following algebra.

D 3.28. – Denote by D′′(C) the differential graded algebra with ith graded
piece

D′′(C)i = W †ΩiC/k[[U ]]⊕W †Ωi−1
C/k[[U ]] ∧ dU.

Denote by D′(C) the sub-differential graded algebra of D′′(C) generated in degree zero by
terms

f =
∞∑
i=0

U iωi

for which ωi ∈ pi−1VW †(C) for i ≥ 1 and such that there exist ε,G with γε(ωi) ≥ G for all i.
For such a term f , we define

γε(f) = inf
i
{γε(ωi)}.

Note that D′(C)0 is an algebra. The only non-obvious fact is that it is closed under
multiplication, and this follows from the property V (wa)V (wb) = pV (wc).

We now define a map
ϕ : Ω

B̃†/W (k)
→ D′(C)

as follows. Fix a presentation‹B† = W (k)

≠
x1, . . . , xn,

1

g

∑†
[z]/(P (z)).

Our map will send
ϕ : xi 7→ φ̃1(xi) + U(φ̃2(xi)− φ̃1(xi)).

Because we have for a, b ∈ D′(C)0, γε(ab) ≥ γε(a)+γε(b) and γε(a+b) ≥ min(γε(a), γε(b)),
the proof of Proposition 2.28 in [5] can be mimicked to show thatD′(C)0 is weakly complete.
This immediately shows that ϕ extends to W (k)〈x1, . . . , xn〉†.

As g ∈ W (k)〈x1, . . . , xn〉†, we have just shown ϕ(g) ∈ D′(C), and we must show this
element is invertible. Write ϕ(g) = φ̃1(g) + Uf , some f such that Uf ∈ D′(C). Because
φ̃1(g) is invertible in W †(C),

1

ϕ(g)
=

φ̃1(g)−1

1− U(−φ̃1(g)−1f)
,

so to show ϕ(g) is invertible it suffices to show that any 1−Ug̃ ∈ D′(C)0 is invertible. Write

g̃ = V w0 + UpV w1 + U2p2V w2 + · · · .

It follows by a simple induction on k, starting with the base case k = 1, that

g̃k =
∞∑
i=0

U ipk+i−1V wi,
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with γε(pk+i−1V wi) ≥ 0, same ε as above. Hence

1 + Ug̃ + U2g̃2 + · · · ∈ D′(C),

as required.
Next we prove that ϕ extends to z.

L 3.29. – There exists
∞∑
i=0

U ici ∈ D′(C)

which is a root of ϕ(P )(z) = zr + ϕ(f1)zr−1 + · · ·+ ϕ(fr).

Proof. – Because D′(C) is weakly complete (with respect to (p)), by Hensel’s Lemma
(Proposition 2.30 in [5]) it suffices to find a root modulo p. Because the ideal (U2) ⊆ (p),
it will suffice for us to find a root modulo U2. Thus we need only find the terms c0 and c1.
As usual, c0 = φ̃1(z). For c1, we simply set z =

∑∞
i=0 U

ici in ϕ(P )(z) = zr + ϕ(f1)zr−1 +

· · ·+ ϕ(fr) = 0 and check that this forces

c1 = −(φ̃1(P )′(z))−1
Ä
(φ̃2(f1)− φ̃1(f1))cr−1

0 + · · ·+ φ̃2(fr)− φ̃1(fr)
ä
.

We have now shown the existence of a map ϕ : ‹B† → D′(C)0. We extend it to a map, also
denoted by ϕ, of complexes,

ϕ : Ω
B̃†/W (k)

→ D′(C).

The chain homotopy promised in our proposition will factor through its image. This moti-
vates the following.

D 3.30. – Let D(C) ⊆ D′(C) denote the image of ϕ.

We give now a more explicit description of what terms in D(C) look like.

L 3.31. – (i) Let x denote some element of Ωd
B̃†/W (k)

. Write

ϕ(x) = · · ·+ U i+1w′ + U idUw′′ + · · ·

where i ≥ 0. Then we may write w′ = pmax(i−d,0)µi and w′′ = pmax(i−d+1,0)ηi with
µi, ηi ∈ Fil1W †ΩC/k.

(ii) We may find ε,G depending only on x such that γε(w) ≥ G for each coefficient w.

Proof. – (i) We prove this by induction on d. The base case d = 0 has already been shown.
Inductively assume the result for x of degree d− 1.
A term x in degree d may be written as a finite sum of terms bdxi1 · · · dxid with b ∈ ‹B†

and xij one of the generators of the polynomial algebra of which we have taken an étale
extension. We will show the result for bdx1 · · · dxd. Extending to other index sets is trivial,
and extending to finite sums is easy.

We are assuming the result for ϕ(bdx1 · · · dxd−1), which is possibly just ϕ(b). And we
know

ϕ(dxd) = dφ̃1(xd) + dUV (wd) + UdV (wd).

The result concerning the form of the coefficients now follows easily.
(ii) We again may restrict to the case of a term bdxi1 · · · dxid . Concerning ϕ(b), we

already know the result. There are only finitely many nonzero terms of the form dxi1 · · · dxid
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(varying d allowed). Thus we can find ε′, G′ such that every coefficient w appearing in some
term ϕ(dxi1 · · · dxid) satisfies γε′(w) ≥ G′. The result now follows from the fact that there
exist ε′′, G′′ such that for any γε(η) ≥ G, γε′(w) ≥ G′ we have γε′′(η ∧ w) ≥ G′′.

Let h0, h1 denote the maps of differential graded algebras D′(C)→W †ΩC/k which send
U 7→ 0 andU 7→ 1, respectively. Our definition ofD′(C)0 immediately implies that the image
in degree zero really does land in W †(C), and hence the image lands there in every degree.
We also let h0, h1 denote their restrictions to D(C).

Clearly we have h0 ◦ϕ = φ̃1 and h1 ◦ϕ = φ̃2, because both sides agree in degree zero. We
define pκL : D(C)• →W †Ω•−1

C/k by setting

pκL(U jωj) = 0 and pκL(U jdU ∧ ωj) =
pκωj
j + 1

,

and then extending to all ofD(C) in the obvious way. Of course, it is not at all clear that our
map has image where we claim.

L 3.32. – The map pκL has image in W †ΩC/k.

Proof. – We first show it maps to WΩC/k, and then establish overconvergence. For an
arbitrary x ∈ Ω

B̃†/W (k)
, write

ϕ(x) = · · ·+ U jdU ∧ ωj + · · ·

as in the previous lemma. From the lemma, it suffices that

κ+ max(j − dimB + 1, 0) ≥ blogp(j + 1)c.

For the case j − dimB + 1 > 0, check the specific case j = dimB, then note that the left
hand side grows faster with j than the right hand side. For the case j ≤ dimB − 1, we want
to prove blogp dimBc ≥ blogp(j + 1)c, which in this case is obvious.

Now we must check overconvergence. We are done if we verify the existence of ε′, G′

independent of j such that γε′(
pκωj
j+1 ) ≥ G′. For arbitrary ωj ∈ W †ΩC/k with γε(ωj) ≥ G

this is not true. But as before we know that

pm
′
∣∣∣∣ pκωjj + 1

, where m′ ≥ j − dimB + κ+ 1− blogp(j + 1)c.

There exists N depending only on dimB such that for j ≥ N , m′ ≥ blogp(j + 1)c. So the
following claim applies to all but finitely many terms in ϕ(x).

C. – Let ωj ∈ W †ΩC/k. If pblogp(j+1)c | p
κωj
j+1 and γε(pκωj) ≥ G, then there exist

ε′, G′ depending only on ε,G with γε′(
pκωj
j+1 ) ≥ G′.

Proof. – It suffices to prove this for the equivalent norm γ′ of page 223. We shall prove
the result for (ε′, G′) = ( ε2 ,

G
2 ). Let l := logp(j+ 1). Pick an η such that p2lη = pκωj . Write

C := γ′ε(η). From Corollary 2.24 or rather its evident generalisation to finite étale extensions
over Af we know γ′ε(p

2lη) = C + 2l, so from our assumption C + 2l ≥ G. We also have
γ′ε

2
(η) ≥ C

2 , and so

γ′ε
2
(plη) ≥ C

2
+ l ≥ G

2
,

as claimed.
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This proves that for all but finitely many terms a in pκL(ϕ(x)), γ ε
2
(a) ≥ G

2 . For the other
terms b in pκL(ϕ(x)), we know γε(b(j + 1)) ≥ G, with j + 1 ≤ N + 1. Thus we can find
ε′′, G′′ with γε′′(a) ≥ G′′ and γε′′(b) ≥ G′′ for all a, b as above, which covers everything.
This completes the proof that pκL(ϕ(x)) is indeed overconvergent.

Now we are basically done. It is trivial to check that pκL is a homotopy between pκh0

and pκh1. Thus pκL ◦ ϕ is a homotopy between pκh0 ◦ ϕ = φ̃1 and pκh1ϕ = φ̃2. For the
convenience of the reader, we state explicitly the sign convention:

d(ω ∧ η) = dω ∧ η + (−1)iω ∧ dη,

where ω is in degree i.

4. Comparison with rigid cohomology

Let X = SpecA be a smooth affine scheme over a perfect field k of characteristic p > 0.
In this section we define a canonical morphism from the rigid cohomology of X to the de
Rham-Witt cohomology.

Let W = W (k) be the ring of Witt vectors.

D 4.1. – A special frame is a pair (X,F ) such that F = SpecB is a smooth
affine scheme over W and X = SpecA is a smooth affine scheme over k which is a closed
subscheme of F . The comorphism of this embedding is an epimorphism B → A. We will also
say that (A,B) is a special frame.

Assume moreover that we are given a homomorphism κ : B → W (A) which lifts B → A.
Then we call (X,F,κ) a Witt frame. If the image of κ is contained in W †(A) the Witt frame
is called overconvergent.

Let (X,F,κ) be a Witt frame. We denote by F̂ the formal scheme which is the completion
of F in the ideal sheaf generated by p. Let ]X[F̂ be the tubular neighborhood (Berthelot [1])
of X in the rigid analytic space F̂K associated to the formal scheme F̂ . We will construct a
natural map

(4.2) Γ(]X[F̂ ,Ω]X[F̂
)→WΩX/k ⊗Q.

It is enough to define a map

(4.3) Γ(]X[F̂ , O]X[F̂
)→W (A)⊗Q.

From this we can deduce (4.2) by the universal property of Kähler differentials. Let F̂/X
be the formal completion of F along X. By [1] 1.1.4 (ii) the tubular neighborhood ]X[F̂
coincides with the rigid analytic space associated with the formal scheme F̂/X . Let I be the
kernel of the homomorphismB → A. We denote byR the completion ofB in the ideal I. We
have F̂/X = Spf R. The associated rigid analytic space is defined as follows: We choose a set
of generators f1, . . . , fm of I. For a natural numbernwe denote byR∧n the p-adic completion
of

Rn = R[T1, . . . , Tm]/(fn1 − pT1, . . . , f
n
m − pTm).

Then R∧n ⊗Q is an affinoid algebra and we have by definiton

Γ(]X[F̂ , O]X[F̂
) = lim←−R

∧
n ⊗Q.
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To define (4.3) it suffices to define a compatible system of maps

(4.4) Rn →W (A).

for n large enough. The homomorphism κ maps I to VW (A). Since W (A) is complete in
the ideal VW (A) the homomorphism κ extends to a morphism

R→W (A).

Since κ(fi) ∈ VW (A) for i = 1, . . . ,m we obtain for n ≥ 2:

κ(fni ) ∈ pn−1VW (A).

Since p is not a zero divisor in W (A) the element (1/p)κ(fni ) ∈ W (A) is well defined.
Mapping Ti to this element we obtain the desired compatible system of maps (4.4). This
finishes the definition of (4.3).

This construction is clearly functorial in the following sense: Assume we have a second
special frame (X1, F1,κ1). We set X1 = SpecA1 and F1 = SpecB1. Assume that we are
given a morphism of Witt frames

(4.5) (X,F,κ)→ (X1, F1,κ1).

This induces a morphism of formal schemes F̂/X → F̂1/X1
and therefore a morphism of the

tubular neighborhoods ]X[F̂→]X1[F̂ . Our construction gives a commutative diagram

(4.6)

Γ(]X1[F̂1
, O)]X1[F̂1

−−−−→ W (A1)⊗Qy y
Γ(]X[F̂ , O]X[F̂

) −−−−→ W (A)⊗Q.

This also establishes the functoriality of the morphism (4.2).
Let (X,F ) be a special frame. We choose an embedding F ⊂ AnW in the affine space with

comorphism
W [X1, . . . , Xn]→ B.

We write E = AnW . Let AnW ⊂ P = PnW be the canonical embedding.

X → E → P.

We see easily that ]X[Ê=]X[P̂ . We denote by Q the closure of F in P . Let Y be the closure
of X in P . Let Q̂ be the completion in the ideal p. Then

(4.7) X → Y → Q̂

is a frame in the sense of rigid cohomology. By this we mean that the embeddings X → Y

and Y → Q̂ satisfy the assumptions for the definition of the rigid cohomology groups of X
in [2] 1.3.

Our aim is to give an explicit description of a fundamental system of strict neighborhoods
[1] (1.2.1) of ]X[Q̂=]X[F̂ in ]Y [Q̂.

Let us denote by F an
K the rigid analytic space associated to the scheme FK . We have

F an
K ⊂ Qan

K = Q̂K . It is clear that F an
K ∩]Y [Q̂ is a strict neighborhood of ]X[F̂ . We propose

to give an intrinsic description of the strict neighborhoods which doesn’t depend on the
particular embedding F ⊂ AnW .

4 e SÉRIE – TOME 44 – 2011 – No 2



Ép
re

uv
e

SM
F

Ja
nu

ar
y

5,
20

11

OVERCONVERGENT DE RHAM-WITT COHOMOLOGY 245

It is enough to describe a fundamental system of strict neighborhoods of ]X[=]X[P̂
in ]Y [=]Y [P̂ . The strict neighborhoods above are then obtained by intersecting with
Q̂K ⊂ P̂K .

Let X = Spec k[X1, . . . , Xn]/(f̄1, . . . , f̄m). Let fj ∈ W [X1, . . . , Xn] for j = 1, . . . ,m

be liftings of the polynomials f̄j , such that dj = deg f̄j = deg fj . We take homogeneous
coordinates Xi = Ti/T0 for i = 1, . . . , n. Consider the homogeneous polynomials for
j = 1, . . . ,m:

Fj(T0, . . . , Tn) = T
dj
0 fj(T1/T0, . . . , Tn/T0).

We denote by F̄j the residue class modulo p. Then Y ⊂ Pnk is given by the equations:

F̄j(T0, . . . , Tn) = 0.

We write a point (t0, . . . , tn) of P̂K = P an
K always in such a way that |ti| ≤ 1 for all

i = 1, . . . , n and such that we have equality for at least one index. The tubular neighborhood
of Y is:

]Y [= {(t0, . . . , tn) ∈ P̂K | |Fj(t0, . . . , tn)| < 1}.
For η < 1 we write:

]Y [η= {(t0, . . . , tn) ∈ P̂K | |Fj(t0, . . . , tn)| ≤ η}.

Let Z ⊂ Y denote the intersection of Y with the hyperplane {T0 = 0}. We have disjoint
decompositions

Y = X t Z, ]Y [=]X[ t ]Z[.

We follow the notations of [1] 1.2. For λ < 1 we have

]Z[λ=]Y [∩{|t0| < λ}.

Then U ′λ =]Y [ \ ]Z[λ is a strict neighborhood of ]X[. We set U ′λ,η =]Y [η∩U ′λ. We have the
inclusions

U ′λ,η ⊂ U ′λ′,η, for 1 > λ > λ′ > 0,

U ′λ,η′ ⊂ U ′λ,η, for 1 > η > η′ > 0.

Let λ = {λi} and η = {ηi} two monotonically increasing sequences of real numbers which
converge to 1. Then we set

(4.8) U ′λ,η =
⋃
U ′λi,ηi .

By [1] the sets U ′λ,η form a fundamental system of strict neighborhoods of ]X[.

Let Ean ⊂ P̂K = P an = (PnK)an be the analytic variety associated to AnK . We have
U ′λ ⊂ Ean. If B(0, 1/λ) denotes the closed ball of radius 1/λ around 0 in Ean we can write

(4.9) U ′λ =]Y [∩B(0, 1/λ), U ′λ,η =]Y [η∩B(0, 1/λ).

We describe ]Y [∩Ean in affine coordinates. Consider a point (t0, . . . , tn) ∈ P an
K with t0 6= 0

and let (x1, . . . , xn) be the affine coordinates. We find:

1/|t0| = max{1, |x1|, . . . , |xn|}.

Therefore the defining inequalities for ]Y [ respectively ]Y [η become

(4.10)
|fj(x1, . . . , xn)| < max{1, |x1|dj , . . . , |xn|dj},
|fj(x1, . . . , xn)| ≤ ηmax{1, |x1|dj , . . . , |xn|dj},
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for j = 1, . . . ,m.
We set

Uλ = {(x1, . . . , xn) ∈ B(0, 1/λ) | |fj(x1, . . . , xn)| < 1, forj = 1, . . . ,m}.

We find Uλ ⊂ U ′λ. We set Uλ,η = Uλ∩]Y [η. These are affinoid subsets of U ′λ,η:

(4.11) Uλ,η = {(x1, . . . , xn) ∈ B(0, 1/λ) | |f(x1, . . . , xn)| ≤ η}.

L 4.12. – For each real η < 1 there are reals λ0 < 1 and η0 < 1 such that

U ′λ,η ⊂ Uλ,η′ , for λ > λ0, η
′ > η0.

Proof. – We choose λ0 in such a way that |η| < λ
dj
0 for each index dj . Then we find for

λ > λ0 and |xi| ≤ 1/λ that

η|xi|dj ≤ η/λdj < η/λ
dj
0 < η0 < 1

for a suitable η0. This proves the assertion.

L 4.13. – We define Uλ,η for monotonic sequences λ and η by replacing U ′ by U in
(4.8). Then the Uλ,η are a fundamental system of strict neighborhoods of ]X[ in ]Y [.

Proof. – Because of the inclusions Uλi,ηi ⊂ U ′λi,ηi it is enough to show that Uλ,η is a
strict neighborhood of ]X[. For each i ∈ N we set η̃i = ηi(1 + (1/i))−1 < ηi. We choose
1 > λ̃i > λi such that η̃i/λ̃

dj
i < ηi for each index dj . The proof of the last lemma shows that

U ′
λ̃i,η̃i

⊂ Uλi,ηi .

Since η̃i < 1 and λ̃i < 1 are sequences which converge to 1 the set U ′
λ̃,η̃

is a strict

neighborhood of ]X[. The inclusion above shows that Uλ,η is a strict neighborhood of ]X[.

P 4.14. – Let (X,F ) be a special frame. Let F ⊂ E = AnW be an embedding
in an affine space. Let Uλ,η ⊂ Ean

K be defined by (4.11).

Let X → Y → Q̂ be associated to the embedding F ⊂ E (4.7). Then Vλ,η = Uλ,η ∩ F an
K is

a fundamental system of strict neighborhoods of ]X[Q̂ in ]Y [Q̂.

Proof. – We just proved this in the case where F = E is an affine space and P = Q

is the projective space. In general one obtains the strict neighborhoods of ]X[Q̂ in ]Y [Q̂ by
intersecting with the strict neighborhoods of ]X[P̂ in ]Y [P̂ . This proves the proposition.

It is easy to see that we end up with a cofinal system of neighborhoods if we replace in
the definition of the Uλ,η the polynomials fj by fj + phj , where hj ∈ W [X1, . . . , Xn] are
arbitrary polynomials. In other words, we may take for fj arbitrary liftings of f̄j and drop
the condition that deg fj = deg f̄j .

C 4.15. – With the notations of the proposition let F ⊂ Ẽ = AlW be a second
embedding which gives rise to a second frame X → Ỹ → Q̃. Then the two systems of
neighborhoods Vλ,η and Ṽλ,η of ]X[F̂ in F an

K are cofinal.
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Proof. – We begin with a special case. Assume we are given a closed immersion E → Ẽ

whose comorphism is of the form

W [X1, . . . Xn, Z]→W [X1, . . . Xn],

whereZ is mapped to a polynomial g(X1, . . . , Xn). Moreover we assume that the embedding
F → Ẽ is the composite F → E → Ẽ.

We consider the morphism of frames in the sense of rigid cohomology

(4.16)

X −−−−→ Y −−−−→ Q̂y y y
X −−−−→ Y −−−−→ P̂ .

We obtain a fundamental system of strict neighborhoods of ]X[F̂ in F an
K by intersecting a

fundamental system of strict neighborhoods of ]X[Ê in Ean
K with F an

K . A similar remark
applies for Ẽ.

We will now compare strict neighborhoods with respect to the frames

(4.17) X → Y → P̂

and

(4.18) X → Ỹ → ˆ̃P.

Let f1, . . . , fm ∈ W [X1, . . . , Xn] be polynomials whose reductions modulo p define the
closed subscheme X ⊂ Ank = Ek.

For positive real numbers λ, η < 1 we have considered the affinoid subsets:

(4.19) Uλ,η ⊂ B(0, 1/λ) ⊂ Ean
K ,

which are given by the inequalities

(4.20) |fj(x1, . . . , xn)| ≤ η, for j = 1, . . . ,m.

Next we consider strict neighborhoods Ṽ ⊂ Ẽan
K with respect to (4.18). We will show that

Ṽ ∩ Ean
K is a strict neighborhood of ]X[Ê with respect to (4.17). Moreover for each strict

neighborhood V of ]X[Ê there is a strict neighborhood Ṽ of ]X[ ˆ̃E
such that Ṽ ∩ Ean

K ⊂ V .
By the remark after (4.16) this would imply that the strict neighborhoods of ]X[F̂K in F an

K

are the same with respect to the frames X → Y → Q̂ and X → Ỹ → ˆ̃Q. This would prove
the proposition in the special case above.

Let us consider the open sets (4.19) for the frame (4.18):

Ũλ,η = B(0, 1/λ) ⊂ Ẽan
K .

They are given by the following inequalities

|fj(x1, . . . , xn)| ≤ η,
|z − g(x1, . . . , xn)| ≤ η.

This shows immediately that

Uλ,η ⊃ Ũλ,η ∩ Ean
K .
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Therefore for each strict neighborhood V = Uλ,η we have found the strict neighborhood

Ṽ = Ũλ,η such that Ṽ ∩ Ean
K ⊂ V . We have to show that Ṽ ∩ Ean

K is a strict neighbor-
hood. Let t be the total degree of the polynomial g. Let ρ > 1 be some real number. If
|x1| ≤ ρ, . . . , |xn| ≤ ρ then we have

|g(x1, . . . , xn)| ≤ ρt.

This shows that

U
λ

1
t ,η
⊂ Ũλ,η.

We see that Ṽ ∩Ean
K is a strict neighborhood. This proves the proposition for the special case

we started with.

Now we consider an arbitrary second closed immersion F → Al. We obtain a diagonal
embedding F → An ×SpecW Al. We take coordinates Y1, . . . , Yl on Al. We compare the
comorphisms of the diagonal embedding with the comorphism of F → An:

W [X1, . . . Xn, Y1, . . . , Yl]

((
B.

W [X1, . . . , Xn]

66

We find an epimorphismW [X1, . . . Xn, Y1, . . . , Yl]→W [X1, . . . , Xn], which mapsXi toXi

which makes this diagram commutative. We obtain a diagram

F −−−−→ An

id

y y
F −−−−→ An ×SpecW Al,

where the vertical arrow on the right hand side is the closed immersion defined above. But
then the independence of strict neighborhoods in F an

K follows by induction from the case
done above.

As a second corollary we prove the functoriality of strict neighborhoods.

C 4.21. – Let (X1, F1) → (X2, F2) be a morphism of special frames. Let
V2 ⊂ F an

2,K be a strict neighborhood of ]X2[F̂2
. Then the inverse image of V2 by the map

F an
1,K → F an

2,K contains a strict neighborhood of ]X1[F̂1
in F an

1,K .

Proof. – We may restrict to the case where the morphism of frames is of the following
type:

X1 −−−−→ AnW × AlW = F1y yproj

X2 −−−−→ AnW = F2.
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Consider the corresponding comorphisms

A1 ←−−−− W [U1, . . . , Un, S1, . . . , Sl]x x
A2 ←−−−− W [U1, . . . , Un].

We choose polynomials f1, . . . , fm ∈W [U1, . . . , Un] whose reductions modulo p generate
the kernel of k[U1, . . . , Un] → A2. Then we choose g1, . . . , gk ∈ W [U1, . . . , Un, S1, . . . , Sl]

such that the reductions of f1, . . . , fm, g1, . . . , gk modulo p generate the kernel of
k[U1, . . . , Un, S1, . . . , Sl] → A1. Then U1,λ,η ⊂ Bn+l(1/λ) is the subset of this closed
ball given by the inequalities |fi| ≤ η and gj ≤ η for j = 1, . . .m and i = 1, . . . , k. From
this we conclude immediately that

proj (U1,λ,η) ⊂ U2,λ,η,

where proj : (AnK)an×(AlK)an → (AnK)an is the projection. This proves the functoriality.

Let (X,F,κ) be an overconvergent Witt frame. Let V ⊂ F an
K be a strict neighborhood of

]X[F̂ . For a sheaf of abelian groups F on V Berthelot defines j† F . If W ⊂ V is an open
and quasicompact subset

Γ(W, j† F ) = lim
−→

V ′⊂V
Γ(V ′ ∩W, F ).

The rigid cohomology of X is by definition

(4.22) RΓrig(X) = RΓ(V, j†Ω·V ).

In particular this is independent of the chosen V ([2] (1.2.5)).

We will now define a map

Γ(V, j†ΩV )→W †ΩX/k ⊗Q.

This will be compatible with the morphism (4.2)

Γ(V, j†ΩV ) −−−−→ W †ΩX/k ⊗Qy y
Γ(]X[F̂ ,Ω]X[F̂

) −−−−→ WΩX/k ⊗Q.

We begin with the case where F = E is the affine space. We use on W the p-adic absolute
value, such that |p| = 1/p. For η = p−1/r the affinoid algebra of Uλ,η is

T = K〈λX1, . . . , λXn, T1, . . . Tm〉/(fr1 − pT1, . . . , f
r
m − pTm).

It consists of all power series

p =
∑

aI,JX
IT J , aI,J ∈ K,

such that lim|I|+|J|→∞ |aI,J |(1/λ)|I| = 0. We have seen that there is a homomorphism
T → W (A) ⊗ Q for r ≥ 2. It maps the Xi to ξi ∈ W (A). Clearly we have fj(ξ1, . . . , ξn) ∈
VW (A). We set

fj(ξ1, . . . , ξn) = V ρj , for j = 1, . . . ,m.
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For r ≥ 3 the variable Tj is mapped to

( V ρj)
r/p = pr−2 V (ρrj).

Then the power series p is mapped to

(4.23)
∑

aI,Jp
(r−2)|J|ηI( V (ρr))J .

We have to show that this power series converges to an element in W †(A) ⊗ Q. Almost all
coefficients aI,J are inW . Therefore we may assume that all these coefficients are inW . Since
W †(A) is a weakly complete W -algebra we see immediately that the series (4.23) represents
an element of W †(A).

Altogether we find a homomorphism

(4.24) Γ(Uλ,η, OUλ,η )→W †(A)⊗Q,

which exists for each λ and each η with η ≥ p−1/3.
Let V be a strict neighborhood of ]X[. It contains some Uλ,η with η ≥ p−1/3. We have

the morphism
Γ(V, j† OV )→ lim

−→
V ′⊂V

Γ(V ′ ∩ Uλ,η, OV ′∩Uλ,η ).

For each V ′ we find λ′ > λ and η′ > η such that Uλ′,η′ ⊂ V ′. This implies Uλ′,η ⊂ V ′∩Uλ,η.
This gives the canonical map

Γ(V, j† OV )→ lim
−→
λ′

Γ(Uλ′,η, OUλ′,η )→W †(A)⊗Q.

By the universality of the de Rham complex we obtain a map

(4.25) Γ(V, j†ΩV )→W †ΩA/k ⊗Q,

where V is any strict neighborhood of ]X[Ê .
Now we consider the case of a general overconvergent Witt frame (X,F,κ). We choose

a closed embedding F ⊂ E in an affine space E. Let

(4.26) W [X1, . . . , Xn]→ B

be the corresponding comorphism as above. We obtain a commutative diagram

X //

��

Y //

��

Q

��
X // Y // P.

We have a closed immersion

]Y [Q̂= Q̂K∩ ]Y [P̂→]Y [P̂ .

Let Uλ,η ⊂ Ean
K as above. Then Vλ,η = Uλ,η ∩ F an

K are exactly the neighborhoods “Uλ,η”
with respect to the frame X → Y → Q. The closed immersion of affinoids

Vλ,η → Uλ,η,

is defined by the polynomials in the kernel of(4.26). Therefore we obtain an epimorphism

Γ(Uλ,η, OUλ,η )→ Γ(Vλ,η, OVλ,η )
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whose kernel is generated by the elements in the kernel of (4.26). This shows that the
morphism

Γ(Uλ,η, OUλ,η )→W †(A)⊗Q

factors through a morphism

Γ(Vλ,η, OVλ,η )→W †(A)⊗Q.

We conclude as above that for each strict neighborhood V of ]X[F̂ we obtain a morphism

(4.27) Γ(V, j† OV )→W †(A)⊗Q,

and a comparison morphism

(4.28) Γ(V, j†Ω·V ) → W †Ω·A/k ⊗Q.

We will now show that the last morphism factors canonically through a morphism

(4.29) RΓ(V, j†Ω·V )→ W †Ω·A/k ⊗Q.

Let V be a fixed strict neighborhood of ]X[F̂ in F an
K as above. We begin with the natural

restriction map

RΓ(V, j†Ω·V )→ RΓ(Vλ,η, j
†Ω·Vλ,η ).

Let V ′ ⊂ V be a strict neighborhood. We write αV ′ : V ′ ∩ Vλ,η → Vλ,η for the canonical
immersion. By definition we have an isomorphism

j†Ω·Vλ,η
∼= lim
−→
V ′

αV ′∗Ω
·
V ′∩Vλ,η .

Because Vλ,η is quasicompact the inductive limit commutes with cohomology. We obtain a
map:

RΓ(V, j†Ω·V )→ lim
−→
V ′

RΓ(Vλ,η, αV ′∗Ω
·
V ′∩Vλ,η ).

Again for each V ′ we find λ′ such that Vλ′,η ⊂ V ′ ∩ Vλ,η. The restriction to the affinoids
Vλ′,η finally gives a map

RΓ(V, j†Ω·V )→ lim
−→
λ′

RΓ(Vλ′,η,Ω
·
Vλ′,η

) ∼= lim
−→
λ′

Γ(Vλ′,η,Ω
·
Vλ′,η

)→W †Ω·A/k ⊗Q.

This completes the definition of the morphism (4.29). Taking into account (4.22) we obtain
for each overconvergent Witt frame (X,F,κ) a morphism

(4.30) RΓrig(X)→W †ΩA/k ⊗Q.

This morphism is functorial in the triple (X,F,κ). We note that in the case where F lifts
X, i.e. X ∼= F ×SpecW Spec k, the complex Γ(V, j†Ω·V ) ∼= RΓ(V, j†Ω·V ) is by [2] (1.10
Proposition) quasi-isomorphic to the Monsky-Washnitzer complex associated to the weak
completion of B.

P 4.31. – The comparison morphism (4.29) for overconvergent Witt frames is
an isomorphism in the derived category. The induced isomorphism (4.30) is independent of the
overconvergent Witt frame we have chosen.
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Proof. – We begin to show the independence of (4.30). Let (A,B′, κ′) be a sec-
ond overconvergent Witt frame. We set F ′ = SpecB′ and B′′ = B ⊗W (k) B

′ and
F ′′ = SpecB′′ = F × F ′. We obtain a overconvergent Witt frame B′′ → W †(A) by
taking the product of the overconvergent Witt lifts for B and B′. We consider the two
projections

F ←−−−− F ′′ −−−−→ F ′.

We may choose strict neighborhood V ⊂ F an
K , V ′ ⊂ F ′ an

K , V ′′ ⊂ F ′′ an
K such that V ′′ is

mapped to V respectively V ′ by the two projections. By the functoriality (4.29) this induces
a commutative diagram

RΓ(V, j†Ω·V )

''

// RΓ(V ′′, j†Ω·V ′′)

vv
W †Ω·A/k ⊗Q.

This shows that the comparison morphisms (4.30) for the overconvergent Witt frames F and
F ′′ are the same. Since the same is true for F ′ we have shown the independence.

By Proposition 3.24 there are overconvergent frames (A, Ã, ψ) such that the associated
morphism

RiΓrig(X) ∼= Hi(Ω·
Ã†/W

⊗Q)→ Hi(W †Ω·A/k)⊗Q
is an isomorphism for each i ≥ 0. Therefore (4.29) is an isomorphism for arbitrarily chosen
overconvergent frames.

To globalize our results we use dagger spaces [6]. We associate a dagger space to a special
frame (X,F ). We choose an embedding F ⊂ E = AnW . We begin to describe the dagger
space structure on ]X[Ê .

We have
]X[Ê= {(x1, . . . , xm) ∈ B(0, 1) | |fi(x1, . . . , xn)| < 1},

with the notations introduced after (4.7). We choose a natural number u and we set
ηu = p−1/u. Then ]X[Ê is covered by the affinoids

Hηu = {(x1, . . . , xm) ∈ B(0, 1) | |fi(x1, . . . , xn)| ≤ ηu},

The affinoid algebra of Hηu is

Cηu = K < X1, . . . , Xn, S1, . . . , Sm > /(. . . , (fui − pSi), . . . ),

which over a suitable extension K̃ of K becomes isomorphic to

K̃ < X1, . . . , Xn, T1, . . . , Tm > /(. . . , (fi − p1/uTi), . . . ).

We consider for t > u the open immersion

Hηu → Uλ,ηt ,

(compare (4.11)). Over K̃ it is given by a comorphism

K̃ < λX1, . . . , λXn, T
′
1, . . . , T

′
m > /(. . . , (fi − p1/tT ′i ), . . . )→ Cηu

where λ = p−1/v for an arbitrary chosen natural number v. The map sends the variables
λXi to p1/vXi and the variables T ′i → p(1/u)−(1/t)Ti. This is an open immersion of Hηu to
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the interior of Uλ,ηt , i.e. Hηu ⊂⊂ Uλ,ηt in the sense of [3]. By [6] 2.21 this defines a dagger
space structure on each Hηu and hence on ]X[Ê . We denote this dagger space by ]X[†

Ê
. Its

completion is the rigid space ]X[Ê .

From the definition of the dagger space structure H†ηu we conclude that

H0(H†ηu , O) = H0(Uλ,ηt , j
† O).

We deduce an isomorphism for an arbitrary strict neighborhood U ⊂ Ean of ]X[Ê

H0(]X[†
Ê
, O) = H0(U, j† O),

(compare [6] §5).

Using the closed immersion F an
K ⊂ Ean

K we obtain also a dagger space structure on ]X[F̂ .
By definition this dagger structure depends only on the fundamental system of fundamental
neighborhoods Vλ,η given by Proposition 4.14. It follows that the dagger space ]X[†

F̂
is

functorial in (X,F ). If U ⊂ F an
K we obtain an isomorphism

H0(]X[†
F̂
, O) = H0(U, j† O).

By [6] we have moreover that

RΓ(]X[†
F̂
,Ω]X[†

F̂

) = RΓrig(X).

We associate to each special frame (X,F ) a specialization map. By [1] we have a morphism
of ringed spaces

]X[F̂→ F̂/X ,

where the right hand side is the completion of F in the closed subscheme X. If we view this
as a morphism of Grothendieck topologies only we obtain a map

sp : ]X[†
F̂

=]X[F̂→ X.

(see [6] Thm. 2.19 for the last equality.)

We rewrite the comparison morphism as defined before (4.28) in terms of dagger spaces

Γ(]X[†
F̂
,Ω]X[†

F̂

)→W †ΩA/k ⊗Q,

where X = SpecA.

We have also a local version of this morphism

(4.32) sp∗ Ω]X[†
F̂

→W †ΩX/k ⊗Q.

To see this we consider an open set U = SpecAf̄ ⊂ X, f̄ ∈ A. Let f ∈ B a lift of f̄ , where
SpecB = F . The open set ]U [F̂⊂]X[F̂ inherits the structure of a dagger space. To define
(4.32) it is enough to show that this dagger space structure coincides with that given by the
special frame (U,SpecBf ). Indeed, form the commutative diagram

U −−−−→ SpecBf −−−−→ An × A −−−−→ Pn × Py y y y
X −−−−→ SpecB −−−−→ An −−−−→ Pn.
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This induces a map of frames in the sense of rigid cohomology

U −−−−→ Y ′ −−−−→ Q̂′y y y
U −−−−→ Y −−−−→ Q̂.

The last vertical arrow is proper and is an open immersion in a neighborhood of U . We
conclude by [1] Thm. 1.3.5 that the strict tubular neighborhoods associated to the two frames
are the same. This implies the desired isomorphism of dagger spaces.

Let now X be a smooth quasiprojective scheme over k. Our next aim is the definition of
a comparison morphism

RΓrig(X)→ RΓ(X,W †ΩX/k)⊗Q.

D 4.33. – Let R be a ring. We call A a standard smooth algebra over R if A
can be represented in the form

A = R[X1, . . . Xn]/(f1, . . . fm),

where m ≤ n and the determinant

det

Å
∂fi
∂Xj

ã
, i, j = 1, . . .m.

is a unit in A. We call SpecA a standard smooth scheme.

We remark that a localization of a standard smooth algebra by an element is again stan-
dard smooth. SinceX is smooth over k it has a covering by standard smooth neighborhoods.

We choose an open embedding X → Proj S, where S is a finitely generated graded
algebra over k. We consider finite coverings X = ∪i∈ID+(hi), where the hi ∈ S are
homogeneous element which have all the same degree. If we choose the covering sufficiently
fine we may assume that allXi = D+(hi) are standard smooth schemes over k. For a subset
J = {i1, . . . , it} ⊂ I we set

XJ = Xi1 ∩ · · · ∩Xit .

We write XJ = SpecAJ . Then AJ is a localization of Ai1 by a suitable element ḡ ∈ Ai1 .

Let A as in Definition 4.33. We choose arbitrary liftings f̃1, . . . , f̃m ∈ W [X1, . . . , Xn].

Let B be a localization of W [X1, . . . , Xn]/(f̃1, . . . , f̃m) with respect to det
(
∂f̃i
∂Xj

)
, where

i, j = 1, . . .m. Then B is a standard smooth algebra which lifts A over W .

We will choose for each Ai a standard smooth lift Bi as above. We set Fi = SpecBi and
obtain special frames (Xi, Fi) for i ∈ I. For J ⊂ I we consider the closed embedding

(4.34) XJ →
∏
i∈J

Fi.

This is a special frame.
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P 4.35. – Let us denote by Q the dagger space which we introduced on the
tubular neighborhood ]XJ [ with respect to the special frame (4.34) and let sp : Q → XJ be
the specialization morphism. Then the canonical map

sp∗Ω·Q → Rsp∗Ω·Q

is a quasiisomorphism.

Proof. – We will reduce this to a more special situation. The main ingredient is the strong
fibration theorem of [1] 1.3.5. In terms of dagger spaces it has the following consequence.

Let (Z,F1) and (Z,F2) be special frames. We denote by Q1 and Q1 the corresponding
dagger spaces. Let ν : F1 → F2 be a morphism of frames which induces the identity on Z.
If ν is étale in a neighborhood of Z in F1 then ν induces an isomorphism Q1 → Q2.

To see this we choose closed immersions F1 → AmW and F2 → AnW . We consider the
commutative diagram

F1 −−−−→ AnW × AmW
ν

y pr

y
F2 −−−−→ AnW

We denote by P1 the closure of F1 in PnW × PmW and by P2 the closure of F2 in PnW . We note
that F1 is open in P1 and F2 is open in P2. Let Y1 resp. Y2 be the closure of Z in P1 resp. P2.
Taking the p-adic completions we obtain a commutative diagram

Z −−−−→ Y1 −−−−→ P̂1

‖
y y yu
Z −−−−→ Y2 −−−−→ P̂2.

Thenu is proper and étale in a neighborhood ofZ in P̂1. Therefore [1] is applicable and shows
that the obvious isomorphism ]Z[F̂1

→]Z[F̂2
extends to an isomorphism of strict neighbor-

hoods. In particular the dagger spaces are the same.
This being said we continue the proof. We fix an index i0 ∈ J . If J = {i0} the assertion

follows from the proof of [2] Prop. 1.10. By the choice of our covering AJ is the localization
of Ai0 by an element g ∈ Ai0 . We take a lift g̃ ∈ Bi0 and we set B′i0 = (Bi0)g̃. Then
F ′i0 = SpecB′i0 is a standard smooth scheme over W which lifts XJ .

We set E =
∏
i∈J,i 6=i0 Fi. By the strong fibration theorem above the special frames

(XJ , Fi0 × E) and (XJ , F
′
i0
× E) have isomorphic dagger spaces. It is enough to consider

the latter one. Since E is standard smooth we can choose an étale morphism E → AnW for
some number n. Again by the strong fibration theorem it is enough to prove our proposition
for the special frame (XJ , F

′
i0
× AnW ).

We may assume the mapXJ → AnW induced by the last special frame factors over the zero
section Spec k → AnW . This is seen by a simple coordinate change. Consider the comorphism
of the closed embedding XJ → F ′i0 × AnW :

(4.36) B′i0 [X1, . . . , Xn]
γ→ AJ .

We find elements bi ∈ B′i0 such that γ(bi) = γ(Xi). Since we may take X ′i = Xi − bi,
i = 1, . . . , n as new indeterminates on the left hand side of (4.36) we see that our original
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special frame is isomorphic to one of the required form. Our proof will be finished by the
Corollary 4.38 of the following:

P 4.37. – Let D̆ = {z ∈ K̄ | |z| < 1} the open unit ball with its natural
dagger space structure. Let n be a natural number. Let Q = Sp†A be a smooth affinoid dagger
space, such that Ω1

Q is a free O-module. Then the following holds:

1. H0( Q,Ω·Q)→ H0( Q × D̆n,Ω·
Q×D̆n) is a quasiisomorphism of complexes.

2. The complex H1( Q × D̆n,Ω·
Q×D̆n) is acyclic.

3. Hi( Q × D̆n,Ωq
Q×D̆n

) = 0 for i ≥ 2 and all q.

This Proposition is inspired by [2] Thm. 1.4. We postpone its proof to the end.

C 4.38. – Let Z = SpecA be a smooth affine scheme over k. Let F = SpecB

be a smooth affine scheme which lifts A. Let Q =]Z[†
F̂

be the tubular neighborhood with its
dagger space structure. We consider the constant map to the origin Z → AnW .

The dagger space associated to the special frame (Z,F × AnW ) is Q × D̆n. Let

Q × D̆n → Z

be the specialization map.
Then the natural morphism

sp∗Ω·Q×D̆n → Rsp∗Ω·Q×D̆n

is a quasiisomorphism.

Proof. – We consider the spectral sequence of hypercohomology

(4.39) H q(Rp sp∗ Ω·Q×D̆n)⇒ Rp+q sp∗Ω·Q×D̆n .

For an affine subset U ⊂ Z the inverse image U ⊂ Q by sp : Q → Z is an affinoid dagger
space. Choose U sufficiently small, such that Ω·U is free.

By Proposition 4.37 the complexHp( U× D̆n,Ω·
U×D̆n) is acyclic for p ≥ 1. It follows that

the complexesRp sp∗Ω·
Q×D̆n are acyclic. Therefore the spectral sequence (4.39) degenerates.

This proves the Corollary and Proposition 4.35.

T 4.40. – Let X be a smooth quasiprojective scheme over k. Then we have a
natural quasiisomorphism

RΓrig(X)→ RΓ(X,W †ΩX/k)⊗Q

Proof. – We choose a covering {Xi}i∈I as above. We consider the simplicial scheme
X• = {XJ}J⊂I and its natural augmentation ε : X• → X. We set FJ =

∏
i∈J Fi. Then

we obtain a simplicial object of frames (XJ , FJ) which gives rise to a simplicial dagger space
Q• = { QJ}. For each J ⊂ I we have the comparison morphism (4.32)

sp∗Ω·QJ →W †ΩXJ/k ⊗Q

This glues to a morphism of simplicial sheaves

sp∗ΩQ• →W †ΩX•/k ⊗Q.
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By Proposition 4.35 and Proposition 4.31 this gives a quasiisomorphism

Rsp∗ΩQ• →W †ΩX•/k ⊗Q

R ε∗R sp ΩQ•
∼= R ε∗W

†ΩX•/k ⊗Q ∼= W †ΩX/k ⊗Q.(4.41)

We will verify that the left hand side of (4.41) is a complex on X whose hypercohomology is
rigid cohomology. We consider a frame P : X → X̄ → P̂ which gives the rigid cohomology
of X. If P′ : X → X̄ ′ → P̂ ′ is a second frame we may form the product as follows: We
consider the closure X̄ ′′ of X in X̄ ′ × X̄ ′′. The we obtain a new frame X → X̄ ′′ → P̂ × P̂ ′.
We denote this frame by P×P′.

By [4] we find a simplicial frame {PJ} where PJ is a frame for XJ with an augmentation
to P. To the frames (XJ , FJ) we may associate functorially frames QJ . We obtain a
commutative diagram of simplicial schemes

PJ ×QJ −−−−→ QJy y
PJ −−−−→ XJ .

Consider the corresponding diagram of dagger spaces. Since each of these dagger space gives
the rigid cohomology of XJ we obtain quasiisomorphisms

R sp∗ΩQJ
←−−−− R sp∗ ΩRJ

−−−−→ R sp∗ ΩPJ .

Here RJ denotes the dagger space associated with PJ ×QJ . But this implies that we obtain
quasiisomorphisms of simplicial sheaves too:

(4.42) R sp∗ ΩQ• ←−−−− R sp∗ΩR• −−−−→ R sp∗ ΩP• .

If we apply R Γ(Rε∗, ?) to the last complex in (4.42) we obtain a quasiisomorphism with
RΓrig(X) by [4]. Together with (4.41) this proves the theorem.

It remains to prove Proposition 4.37. Let Q = Sp†A be a reduced affinoid dagger
space. Recall that A is a weakly complete finitely generated algebra tensored with Q [14].
We represent A as a quotient

κ : K < X1, . . . Xm >†→ A.

The algebra on the left hand side is the union of the algebras for real numbers ε > 0

K < X1, . . . Xm >ε= {
∑
I

cIX
I ⊂ K[[X1, . . . Xm]] | ordp cI − ε|I| → ∞}.

This is a Tate algebra if ε ∈ Q [3] 6.1.5. We denote by γ̃ε the Gauss norm on this ring:

γ̃ε

(∑
I

cIX
I

)
= inf

I
{ordp cI − ε|I|}.

Let Aε be the image of K < X1, . . . Xm >ε by κ. We denote by γε the quotient norm on Aε.
Since Aε is reduced by assumption γε is equivalent to the spectral norm σε on Aε.

Let D = Sp†K < X >† be the closed dagger disc. We write

A < T1, . . . , Tn >
†:= Γ( Q ×Dn, O).
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It follows from the definitions that A < T1, . . . , Tn >† consists of all power series∑
J aJT

J ∈ (A ⊗ Q)[[T1, . . . , Tn]] such that there is an ε > 0 and a number C with
aJ ∈ Aε for all J ∈ Zn≥0 and such that

(4.43) σε(aJ)− ε|J | ≥ C.

In this condition we could replace σε by γε.

L 4.44. – Let Q = Sp†A and let D̆ be the open dagger disc. Then the algebra
Γ( Q × D̆n) consists of all power series∑

J

aJT
J ∈ (A⊗Q)[[T1, . . . , Tn]],

such that for each δ > 0 there is an ε > 0 and a constant C such that for all J we have that
aJ ∈ Aε and that

σε(aJ) + δ|J | ≥ C.

Proof. – Indeed, let Dδ = {z ∈ K̄ | ordp z ≥ δ} be the closed dagger disc. Then
Γ( Q×Dn

δ , O) consists of all power series
∑
J aJT

J such that there is an ε > 0 and a constant
C with

σε(aJ) + δ|J | − ε|J | ≥ C.

This implies the result.

L 4.45. – Let Q = Sp†A and let D be the closed dagger disc. Let

(4.46) Λn =
⊕

i1<···<ik

Γ( Q ×Dn)dTi1 ∧ · · · ∧ dTik

be the complex with the obvious differential.

Then the complex A→ Λn is acyclic.

Proof. – We consider Λn as a multicomplex with the partial differentials ∂i, i = 1, . . . , n.
Let Λ̃n ⊂ Λn be the direct summands of 4.46 with ik < n.

It suffices to show that the following complex is exact:

0→ Λn−1 → Λ̃n
∂n→ Λ̃n → 0.

The only nontrivial thing to show is that an expression fdXn, with f ∈ Γ( Q × Dn) is the
partial differential of some g ∈ Γ( Q×Dn). We set f =

∑
J aJT

J . We denote by e the vector
(0, . . . , 0, 1) ∈ Zn, and we denote by jn the last entry of the vector J . We have to show that
the power series ∑

J

aJ
jn + 1

T J+e

is in Γ( Q ×Dn).

By (4.43) we find ε > 0 and C such that

σε(aJ)− ε|J | ≥ C.
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We take 0 < ε′ < ε. We note that Aε ⊂ Aε′ and that σε′ ≥ σε. Since σε is multiplicative we
find

σε′(
aJ

jn + 1
)− ε′|J + e| = σε′(aJ)− ordp(jn + 1)− ε′(|J |+ 1)

≥ σε(aJ)− ε(|J |+ 1) + (ε− ε′)(|J |+ 1)− ordp(jn + 1)

≥ C − ε+ (ε− ε′)(jn + 1)− ordp(jn + 1).

It is clear that the last expression is bounded below independent of J .

We have the same for the open disc D̆.

L 4.47. – With the same notations as before let

(4.48) Λ̆n =
⊕

i1<···<ik

Γ( Q × D̆n)dTi1 ∧ · · · ∧ dTik

be the complex with the obvious differential.

Then the complex A→ Λ̆n is acyclic.

Proof. – As in the proof of the last Lemma the only nontrivial thing to show is that an
expression fdXn, with f ∈ Γ( Q×D̆n) may be written fdXn = ∂ng for some g ∈ Γ( Q×D̆n).
We have to show that the power series∑

J

aJ
jn + 1

T J+e

is in Γ( Q × D̆n). We apply Lemma 4.44. Assume δ > 0 is given. We take any δ′ < δ. Then
we find ε > 0 and a constant C such that

σε(aJ) + δ′|J | ≥ C.

We see that the following expression is bounded below:

σε(
aJ

jn + 1
) + δ(|J + e|) = σε(aJ)− ordp(jn + 1) + (δ − δ′)(|J |+ 1)δ′(|J |+ 1).

We come now to the proof of Proposition 4.37. We write

D̆n =
∞⋃
i=1

Ui

as a union of dagger balls of ascending radius. For an abelian sheaf F on D̆ we define the
sheaves C0( F ) = C1( F ):

C i( F )(V ) =
∞∏
t=1

F (Ut ∩ V ).

We obtain a resolution of F

(4.49)
0→ F → C0( F )→ C1( F )→ 0∏

st 7→
∏

(st − st+1)
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If F is a coherent O Q×D̆n -module the cohomology groups Hp( Q × Ut, F ) vanish for p ≥ 1

by Tate-acyclicity for affinoid dagger spaces [6]. Therefore RΓ( Q× D̆n, F ) is represented by
the global sections of the complex (4.49)

(4.50)

∏∞
t=1 F ( Q × Ut)→

∏∞
t=1 F ( Q × Ut)∏

st 7→
∏

(st − st+1).

This proves already the third assertion of Proposition 4.37.

Let π : Q × Ut → Q be the projection. We write

Gpt = (π∗ΩpQ)( Q × Ut).

This is a free module over H0( Q × Ut, O) by assumption. With this notation the complex
H0( Q × Ut,Ω·Q×Ut) is represented by the double complex with the components

Cp,q(Ut) = ⊕i1<...iqG
p
t dTi1 ∧ · · · ∧ dTiq .

The map (4.50) induces a morphism of complexes

(4.51)
∞∏
t=1

Cp,q(Ut)→
∞∏
t=1

Cp,q(Ut).

The kernel resp. the cokernel of the induced map of total complexes are the complexes
H0( Q × D̆n,Ω·

Q×D̆n) resp. H1( Q × D̆n,Ω·
Q×D̆n).

By Lemma 4.45 the complex Cp,·(Ut) for fixed p is quasiisomorphic to H0( Q,ΩpQ) re-
garded a a complex concentrated in degree zero. Therefore the total complex of Cp,q(Ut)
is quasiisomorphic to the complex H0( Q,Ω·Q).

We consider the projection π : Q × D̆n → Q and write

G̃p = (π∗ΩpQ)( Q × D̆n).

By assumption these are free modules over H0( Q × D̆n, O).

Then we may represent H0( Q × D̆n,Ω Q×D̆n) by the double complex with components

Bp,q = ⊕i1<...iqG̃pTi1 ∧ · · · ∧ dTiq .

Lemma 4.47 asserts that the total complex of Bp,q is quasiisomorphic to the complex
H0( Q,Ω·Q). This proves the first assertion of Proposition 4.37.

We deduce finally that the complex H1( Q × D̆n,Ω·
Q×D̆n) is quasiisomorphic to the total

complex of the triple complex

Bp,q →
∞∏
t=1

Cp,q(Ut)→
∞∏
t=1

Cp,q(Ut).

By what we already proved the last complex is quasiisomorphic to the total complex of the
double complex

H0( Q,Ω·Q)→
∞∏
t=1

H0( Q,Ω·Q)→
∞∏
t=1

H0( Q,Ω·Q),∏
st 7→

∏
(st − st+1)
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where the first embedding is diagonal. But the total complex is acyclic because the double
complex is already acyclic with respect to the horizontal differential. This proves the second
assertion and finishes the proof of Proposition 4.37.
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