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OVERCONVERGENT
DE RHAM-WITT COHOMOLOGY

BY CHRISTOPHER DAVIS, ANDREAS LANGER AND THOMAS ZINK

ABSTRACT. — The goal of this work is to construct, for a smooth variety X over a perfect field k
of finite characteristic p > 0, an overconvergent de Rham-Witt complex WTQx /k as a suitable sub-
complex of the de Rham-Witt complex of Deligne-Illusie. This complex, which is functorial in X, is
a complex of étale sheaves and a differential graded algebra over the ring W(@x) of overconvergent
Witt-vectors. If X is affine one proves that there is a isomorphism between Monsky-Washnitzer coho-
mology and (rational) overconvergent de Rham-Witt cohomology. Finally we define for a quasiprojec-
tive X an isomorphism between the rational overconvergent de Rham-Witt cohomology and the rigid
cohomology.

RESUME. — Le but de ce travail est de construire, pour X une variété lisse sur un corps parfait k de
caractéristique finie, un complexe de de Rham-Witt surconvergent W' Q x /k comme un sous-complexe
convenable du complexe de de Rham-Witt de Deligne-Illusie. Ce complexe qui est fonctoriel en X est un
complexe de faisceaux étales et une algébre différentielle graduée sur "anneau W (0x) des vecteurs de
Witt surconvergents. Lorsque X est affine, on démontre qu’il existe un isomorphisme canonique entre
la cohomologie de Monsky-Washnitzer et la cohomologie (rationnelle) de de Rham-Witt surconver-
gente. Finalement on définit pour X quasi-projectif un isomorphisme entre la cohomologie rigide de
X et la cohomologie de de Rham-Witt surconvergente rationnelle.

Introduction

Let X be a smooth variety over a perfect field & of finite characteristic. The purpose of this
work is to define an overconvergent de Rham-Witt complex WTQ'X /k of sheaves on X. This
complex is a differential graded algebra contained in the de Rham-Witt complex W, /k of]
Illusie and Deligne.

If X is quasiprojective we define a canonical isomorphism from rigid cohomology of X
in the sense of Berthelot:

Hio(X/k) — H(X, W'y ) @ Q.

rig
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198 C. DAVIS, A. LANGER AND T. ZINK

In particular these are finite dimensional vector spaces over W (k) ® Q by [2]. We conjecture
that the image of the morphism

H' (X, Wiy ) — H(X, WTQy ) @ Q

is a finitely generated W (k)-module. If X is projective we expect that the image of|
H (X, WTQ‘X / ) under the comparison isomorphism between rigid cohomology and crys-
talline cohomology coincides with the image of crystalline cohomology.

In the case where X = Spec A is affine we obtain more precise results. The cohomology
groups of the individual sheaves WTQ])‘( /i Are Zero fori > 0. The complex H°(X, WTQ'X / %)

will be denoted by W€, /i Let A be a lifting of A to a smooth algebra A over W (k). We

denote by A' the weak completion of A in the sense of Monsky-Washnitzer. The absolute
Frobenius endomorphism on A lifts (non canonically) to AT. This defines a homomorphism
At — W(A). We show that the image of this map lies in WT(A). This defines morphisms

(1) Hi(QzT/W(k))éHi(WTQA/k), for i > 0.

We show that the kernel and cokernel of this map is annihilated by p?®, where
k = |log,dim A|. If we tensor the morphism (1) by Q it becomes independent of the
lift of the absolute Frobenius chosen.

We note that Lubkin [12] used another growth condition on Witt vectors. His bounded
Witt vectors are different from our overconvergent Witt vectors.

Let A = Kk[T1,...,Ty] be the polynomial ring. For each real ¢ > 0 we defined ([5])
the Gauss norm . on W(A). We extend them to the de Rham-Witt complex W, Sk A
Witt differential from W, Jk is called overconvergent if its Gauss norm is finite for some
e > 0. We denote the subcomplex of all overconvergent Witt differentials by WTQ'A Ik
Following the description in [10], W&, Jk decomposes canonically into an integral part
and an acyclic fractional part and this decomposition continues to hold for the complex of|
overconvergent Witt differentials. The integral part is easily identified with the de Rham
complex associated to the weak completion of the polynomial algebra W (k)[Ty, ..., Ty]
in the sense of Monsky and Washnitzer. This explains the terminology “overconvergent”
for Witt differentials. For an arbitrary smooth k-algebra B we choose a presentation
A — B. We define the complex of overconvergent Witt differentials WTQ'B /K @s the image
of WTQ'A Jk- This is independent of the presentation. It is a central result that the functor
which associates to a smooth affine scheme Spec B the group WTQ’E Ik is a sheaf for the étale
topology, and that H}_ (Spec B, Wfﬂg/k) = 0 for ¢ > 1. For this we generalize ideas of]
Meredith [13]. One also uses that the ring of overconvergent Witt vectors is weakly complete
in the sense of Monsky-Washnitzer [5] and the complex of overconvergent Witt differentials
satisfies a similar property of weak completeness. The étale sheaf property depends on an
explicit description - for a finite étale extension C/B - of WTQ'C /k in terms of W1y, =
The result is as nice as one can hope for. By a result of Kedlaya [9] any smooth variety
can be covered by affines which are finite étale over a localized polynomial algebra. It then
remains to show a localization property of overconvergence; namely a Witt differential of]
a localized polynomial algebra which becomes overconvergent after further localization is
already overconvergent. This requires a detailed study of suitable Gauss norms (that are all
equivalent) on the truncated de Rham-Witt complex of a localized polynomial algebra.
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OVERCONVERGENT DE RHAM-WITT COHOMOLOGY 199

In the final section we globalize the comparison with rigid cohomology from the affine
case. In our approach it is essential to use Grosse-Klonne’s dagger spaces [6]. Let Z be an
affine smooth scheme over k. Let Z — F a closed embedding in a smooth affine scheme over
W (k). We call (Z, F) a special frame. To a special frame we associate canonically a dagger
space | Z [;;. Its de Rham cohomology coincides with the rigid cohomology of Z:

RI(Z[%, = RDyi,(2).

21
If F'X gpec w(k)Spec k = Z the dagger space | Z [L is affinoid. Therefore the hypercohomology
is not needed

o ) — i o
We show that the latter is true for a big enough class of special frames. Then simplicial

methods allow a globalization to the quasiprojective case.

0. Definition of the overconvergent de Rham-Witt complex

Let R be an Fj,-algebra which is an integral domain. We consider the polynomial algebra
A = R[Ty,...,Ty]. Before we recall the de Rham-Witt complex, we review a few properties
of the de Rham complex Q4.

There is a natural morphism of graded rings

F:Qur — Qayr,

which is the absolute Frobenius on Q?L‘ /R and such that FdT; = T7 ~14T;. As shown in
[10], 24, has an R-basis of so called basic differentials. Their definition depends on certain
choices which we will fix now in a more special way than in loc. cit.
We consider functions k:[1,d] — Zso called weights. On the support

Supp k = {i1,...,i.} we fix an order iy, ..., i, with the following properties:

(1) ordpk;, <ordpk;, <---<ordyk;,.

(i) If ord, k;,, = ord, k then 4, < ip41.
Let # = {Io, I, ..., I;} be apartition of Supp k as in [10]. A basic differential is a differential
of the form:

dT*n diIl
k
(0.1) e(kw):T(pdk>(pdk>

It is shown in [10] Proposition 2.1 that the elements (0.1) form a basis of the de Rham com-
plex Q 4, as an R-module. The de Rham-Witt complex W24, has a similar description,

but now fractional weight functions are involved. More precisely, an element w € W', /R
has a unique decomposition as a sum of basic Witt differentials [10]

G419

(0.2) w=> ek ?),
k,?
where k : [1,d] — Zzo[%] is any weight ([10], 2.2) and & = {Iy, I1, ..., I} runs through all

partitions of Supp k. Moreover, the coefficients {;, » € W (R) satisfy a certain convergence
condition ([10], Theorem 2.8).
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200 C. DAVIS, A. LANGER AND T. ZINK

For each real number € > 0 we define the Gauss norm of w:
(0.3) Ye(w) = }c{lgf){ordv'fk,g) — ek}
We will also use the truncated Gauss norms for a natural number n > 0:
Ye[nl(w) = %I};{Ordvﬁk,w —elk| | ordv & 9 < n}.

The truncated Gauss norms factor over W,, ;1€ 4,r. We note that in the truncated case the
inf is over a finite set.

If 7. (w) > —o0, we say that w has radius of convergence ¢.

We call w overconvergent, if there is an £ > 0 such that w has radius of convergence ¢. It
follows from the definitions that

(0.4) Ye(wi + w2) = min (7e (w1), Ye(w2)) -

This inequality shows that the overconvergent Witt differentials form a subgroup of W4,

which is denoted by W1, z. We have WiQy,p = (JWQ4,r Where WEQ 4, g are the
€

overconvergent Witt differentials with radius of convergence ¢.
IfR = RU {oco} U {—oc}, then an R-valued function ¢ on an abelian group M which
satisfies (0.4), so that c¢(a + b) > min{c(a), ¢(b)}, is called an order function.

DEFINITION 0.5. — We say that w is homogeneous of weight k if in the sum
w=>Y e (§k,¢, k, @) the weight k is fixed. We write weight(w) = k.
If g € Q, then we can consider sums which are homogeneous of degree g, i.e.
w= Z e (&p ok, P) .
|k|=g,9
Then we define deg(w) = g. If w is homogeneous of a fixed degree, we define

ordy w = minord, & o.

Itiseasy to see that . (w) > —oc if and only if there are real constants Cy, Co, with C; > 0
such that for all weights k& occurring in w we have

(0.6) k| < Cyord, & 9 + Cs.

One can take Cy = 1.

Using this equivalent definition one can show that the product of two overconvergent Witt
differentials is again overconvergent, as follows: For two homogeneous forms wy, wo one has
ord, (w1 A wa) > max (ord, wy,ord, ws). This follows from a (rather tedious) case by case
calculation with basic Witt differentials.

We have deg(w; A ws) = degw; + deg ws.

Assume now that

degw < Chord, w + Cy
and

degw’ < Clord,w' + C}
for two homogeneous forms w, w’ of fixed degrees. Then

deg(w Aw') = degw + degw’ < (Cy + C}) ord, (w1 Aws) + Cy + C4.
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OVERCONVERGENT DE RHAM-WITT COHOMOLOGY 201

This implies that if w and w’ are overconvergent Witt differentials with radii of conver-

. . . . /
ence € and ¢’ then w A w’ is overconvergent with radius of convergence =%;. In the
e+te

special case ¢ = &’ we get that w A w' is overconvergent with radius of convergence § and
> ’Ys(w)"")’s(wl)
= 2

v (w A w') . This shows that W1Q 4 /g 1s a differential graded algebra over
the ring WT(A) of overconvergent Witt vectors.

We recall from [5] the definition of a pseudovaluation. An order function ¢ on a ring
M is called a pseudovaluation if in addition it satisfies: (i) ¢(1) = 0 and ¢(0) = oo;
(i) ¢(m) = ¢(—m) for all m € M; (iii) c(mimz) > c(mq) + c(mz) if ¢(m1) # —oo,
c(mg) # —o0.

In general, the Gauss norms 7y, form a set of pseudovaluations on the ring of Witt vectors,
i.e. in degree zero; however, from the formula V[Tp_l]dv [T] = pd[T] and

ord, (" [T771)) = ord, (4" [T1) = ord, (pd[T]) = 1,
we see that we cannot expect a formula

Ye(wr Awz) > Ye(wr) + 7e (wo).

Hence the Gauss norms do not extend to pseudovaluations in higher degrees.

PrOPOSITION 0.7. — Let R be an integral domain such that p- R = 0. Let
¢: R[Ty,...,Tq] — R|Uy,...,U] be a homomorphism. It induces a map
o« : WQg .. 1/R = WQRU,,... .01/ R-

Then there is a constant o > 0, such that for any € > 0 and any natural number n:

Yoz [P](paw) = Ye[n](w)-

The same inequality holds if [n] is removed. In particular, if w is overconvergent with radius off
convergence € then p.w is overconvergent with radius of convergence ae.

Proof. — We set Y; = [U;] and X; = [I;]. From Lemma 2.23 in [5] we obtain an
expansion:

0+ (Xi) = [Qi(Uy,...,U))] = Z aiY'",

|kl<c

where a;, € W(R). More generally we obtain for a monomial X! = Xil .. .Xfid, ly € Z>o
an expansion:

e (X = > bY*, b e W(R).
|k|<c|l|

Since ¢, commutes with the action of V' we find for [ not necessarily integral

o (Vnxt) =7 (. (nx'7"))
o

Z n-bkhYkl = Z Vu(nbk’)'yk~

K <cll]p® |kl <e-J1

From this we see immediately the following fact: Let w € WQg(r, . 1,/r be a Witt
differential which is homogeneous of degree I, and such that ordy w = m. Then p,w is a
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202 C. DAVIS, A. LANGER AND T. ZINK

V-convergent sum Y 7, of homogeneous Witt differentials of degree |k| < c|l| and such
that ordy n; > m. Assume that w = 3 w; is a sum of homogeneous differentials such that
OI‘qu.)l - 5|l| 2 D.

Then p.w; = > mk, where 7 is homogeneous of degree k, such that |k| < c¢|l| and

ordy ., > m. Therefore for 6 > 0,
ordym i, — d|k| > m — dcll|.
If 6 < £ the last expression is bounded below by D. This proves the proposition with
a=1/c O
By the proposition we obtain a map:

(0.8) WeQrr,,...t/r = W QR,,... 01/ R

PrOPOSITION 0.9. — Let ¢ : R[Th,...,Tq] — R[Uy,..., U] be an R-algebra
homomorphism. Then the induced map

0« : WQg .1/ = WQRW,,...11)/R

maps WTQR[TI’,,,,Td]/R fo WTQR[UM..‘,Uz]/R-
If, moreover, ¢ is surjective then

WIQgmr, . 1/r = WIQgu, v/

is surjective too.

Proof. — Only the last statement needs a verification. If ¢ is surjective we find a homo-
morphism
¥ : R[Uy,...,U] — R[TY,..., T4,
such that ¢ o ¢ = id. Then for n € WTQ R[UY,...,U1]/R> ¥ 1s overconvergent and therefore a
preimage of 7. O

We have seen that . fails to be a pseudovaluation on the ring WQ 4, 5. However we will
face a situation where we will need an inequality

Ve(fw) 2 7e(f) + 7 (w)

for certain f € W(A) and w € WQ,,g. For suitable f and overconvergent w we can even
achieve equality.

From now on, let R = k be a perfect field. Let A = k[T, ..., T,] be the polynomial ring.
The Teichmiiller of T; in W (A) is denoted by X;. For a Witt differential v € WQ 4/, we
define:

Vp(w) =max{a € Z | p~"w € W/}
Obviously we have that
vp(wiws) = vp(w1) + vp(w2)
for arbitrary Witt differentials.

Letw = e(&, k, P) be a basic Witt differential. Let p* be the denominator of the weight .

Then we have:
ordy w = ordy £ = vp(w) + w.
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OVERCONVERGENT DE RHAM-WITT COHOMOLOGY 203

For an arbitrary w € W 4 /5, we write the expansion:
(0.10) w=Y_ ek P).
k,?
Let £ > 0. We have the Gauss norm ~,:

7:() = inf{ordy (e(g, .k, 7)) = <lk}.

)

We also define the modified Gauss norm:

(0.1 e (@) = inf (v, (€(€x,, K, 7)) — el K]}

We note that:
Ye(W) = Fe(w).
Consider the polynomial algebra A = W (k)[X1, ..., X,]. For each real number ¢ > 0 we
define on A a valuation .. We write f € A. We will use the vector notation I = (i1, . . . ,iq)
and write

F=Y aXx’, ¢ eWk).
We write |I| =41 + - - - + iq. Then we set

7e(f) = min{ord,(cr) = e[I|)}-

We extend 7. to the differential forms 5 vy, . Wewrite a differential form as of degree r:

W= fadXa, A+ NdXa,, fo €A,

where o = (a1, . .., a,) runs over vectors with 1 < oy < -+ < a, < d. Then we set:
e (w) = min{7e(fo) - re}.
We have the following properties:
Ye(fw) =) +rw), fed

75(‘4)1 /\W2) > '75(“)1) + 75(“12); w; € QA/W(k)'

(0.12)

We may write w as a sum of p-basic elements [10] (2.3):

dXkn dXkn
pordp kry e P

LEmMMA 0.13. — Let us write w € QA/W(k) as a sum of p-basic differentials.:

w= Ze(ck’% k, P).

e(c,k, P) = cXFno

ord, kIl :

Then we have:
Ye(w) = min{ordy(cx,») — |kle}

Proof. — Clearly it is sufficient to consider the case where w belongs to the free W (k)-mod-
ule of forms of a given weight k (compare [10] proof of Prop. 2.1). Then w may be written:

w= by i X{" - Xkrdlog X;, A+ Adlog X;,.

The result follows because b;, .. ;, and ¢, ¢ are related by a unimodular matrix with coeffi-
cients in Zy, [10] 2.1. O
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204 C. DAVIS, A. LANGER AND T. ZINK

Consider the natural map A — W (A) which sends X; to the Teichmiiller representa-
tive [T;]. It induces a map:

(0.14) Qi wwy = Wayk-
The p-adic completion of the image of this map consists of the integral Witt differentials.

From Lemma 0.13 we obtain:

ProprosITION 0.15. — The map (0.14) is compatible with the Gauss norms ~. on both
sides.

COROLLARY 0.16. — Letw,n € WQy . Then we have:

Ye(wn) > Ye(w) + 7e(n) for w integral

Ye(wn) > Fe(w) + ve(n) for w arbitrary.

We note that for w integral, v.(w) = ¥ (w). Let f € A, then we have 5-([f]) = v-([f]). In
|particular we find for arbitrary w

(0.17) Ye([flw) = 7= ([f]) + 7e(w)-

Proof. — We begin with the first inequality. If n is integral too, we can apply (0.12). For
the general case we may assume thatp = V" 7 or = d" 7 where 7 is a primitive basic Witt
differential. We note that for primitive 7:

Ye(VIT) = u+ e ppu (7).
For integral w we have
Vesp (7 w) = Yo (w).
If w is not integral we have only the inequality:
Ye/p® (F”w) 2 Ye(w) — u.

Then we find using the integral case:

Ye(@V ) = e (VT (T wr) 2w e (7 w)
> uYespo (T 0) Yo ypo (1) = e (V1) + 7o (7 w0) 2 7 (V1) + 70 ().
The case 7 = d¥" 7 is reduced to the former case by the Leibniz rule:
wdV ' =dw"" 1) — (dw)V" 1.

\%4

Now we verify the second inequality. We may assume that w = V"7 orw = d""7 for a

primitive basic Witt differential. Then we have:

'v)’s(w) = Ve /pv (T)> and

V(M) =9V (7)) = u + Yoy (77 )

> w4 Ve (1) + 9 (5 0) = e (@) + 1+ e yp (7 1) > Fe(w) + 72(n).
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Finally we have to show that 7. ([f]) = J-([f]).- We denote by m = (m, ..., mg) a vector
of non negative integers and write:

(0.18) F=>anI TP => " anT™.
Let g be the total degree of f. Then we have

1=([f]) = —eg.
We enumerate the m with a,, # 0:

m(1l),...,m(t)
By Lemma 2.23 in [5] we find:

[fl= D g [T tmOk
kit +ke=1

If we take 5. of one summand it is bigger than the degree of this summand times —e:
e (athy i [T O > —e(jm(1) [k 4 - + [m(t) ke)
> —e(gki + -+ gki) = —eg.
This shows that . ([f]) > —eg = v:([f]). The other inequality is obvious. O

ProPOSITION 0.19. — Let f € W(A), f = (fo, f1,-..) be a Witt vector, such that fo # 0.
Let w € WQyy, be an element, whose decomposition into basic Witt differentials has the
following form:

(0.20) w="_ el gk P).

We assume that all weights k appearing in this decomposition have the same denominator p*
with w > 0, and the same degree k = |k|. Moreover we assume that only partitions P with
Iy # @ appear and that there is a weight k and a partition P such that ordy & o = u. The
last condition says that there is k and P such that e(§, 9, k, P) = V"1, for a primitive basic
Witt differential T.

We can write fw as a sum of basic Witt differentials:

(0.21) fw=">"e ph P

Then there is a summand e(&}, ,, h, P) such that ordy (&}, ») = w, such that h has denominator
p*, and such that Iy # @. Moreover if g is the degree of the polynomial fy, then the degree of
his |h| = g + k.

In particular we have the inequality:

Ye(fw) < 7e(w) — e deg fo.
Proof. — We write:
f=F+"p,

where £ is a polynomial in X; = [T1],..., X, = [Ty] with coefficients in W (k), which are
not divisible by p. The degrees of the polynomials fo and f are the same.

We set w = V"7, where 7 is an integral Witt differential with v,(7) = 1. Then we have:

(0.22) fw=(F+ ) 1 =V"(""F 4+ p pr).
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We write f = > f; as a sum of homogeneous polynomials of different degree g;. The
maximum of the g; is g. Then the Witt differential n; = ¥ f;7 is for each i an integral
homogeneous Witt differential of degree p“g; + p“x. By assumption the reduction of this
Witt polynomial in Q4 is not closed. The basic Witt differentials which appear in the
decomposition of n; have weights which are not divisible by p, because the weights appearing
in £ f are divisible by p but those appearing in 7 are not divisible by p. This shows that
primitive basic Witt differentials appear in the decomposition of each ;. These can’t be
destroyed by basic Witt differentials which appear in the decomposition of the last summand
in the brackets of (0.22), because of the factor p. If we apply V* we obtain the desired basic
Witt differential in the decomposition of fw. O

COROLLARY 0.23. — With the notations of the proposition consider a Witt differential of|
the form wy, = w + dn, and write

fpwl = Ze(éﬁ7g)7h7¢)'

Then there is a summand e(é e h, P) in the above sum, such that ordy é i o = u, such that h

has denominator p* and such that Iy # @. Moreover the degree of h is |iL| =pg + K.

PrOPOSITION 0.24. — Let fo € A = k[Ty,...,Ty] be a polynomial of degree g. Let
w € WQr . Then we have for the Gauss norm on A:

(0.25) Ve ([folw) = 7= ([fo]) + 7 (w).
Proof. — We write w as a sum of basic Witt differentials:
(0.26) w= Z €.
il

By continuity we may assume that the sum is finite. By Corollary 0.16 we have the inequality:

(0.27) '76([]00]"‘}) > v ([fol) + 7e(w).
We may therefore assume that in the sum (0.26)
(0.28) Ye(w) = 7=(e:)

for all s € I. We may further assume that v,(w) = 0.
Let us first consider the case where there is an integral basic Witt differential e;, in the
sum (0.26) such that v, (e;,) = 0. Then we decompose w into three parts:

w=n+uw +uw",

where 7 is the sum of those Witt differentials e; in (0.26) which are integral and such that
vp(e;) = 0, where o’ is the sum of those Witt differentials e; in (0.26) which are integral and
such that v,(e;) > 0, and where w” is the sum of those Witt differentials in (0.26) which are
not integral.

Let e; be a summand in 7 and let  be its degree. By assumption we find:

7e(w) = 7€) = vple:) — ek = —er.
It follows that all these e; have the same degree .

Consider the differential fo7 € 4/, which is the reduction of [fo]n. If we write
the reduction as a sum of basic differentials in €24/, it must clearly contain a basic Witt

4¢ SERIE — TOME 44 — 2011 = N° 2



OVERCONVERGENT DE RHAM-WITT COHOMOLOGY 207

differential of degree g+ k. In the decomposition of [ fo]n appears therefore an integral basic
Witt differential € of degree g + « such that v,(€) = 0. On the other hand all basic Witt
differentials which appear in the decomposition of [fo](w’ + w”) € VIWQ 4/ +dVIWQy /4,
are either integral with v, > 0 or nonintegral. Therefore they can’t destroy completely €. We
found in the decomposition of [ fo]w an integral basic Witt differential ¢’ of degree g+ «, such
that v, (€’') = 0. We conclude that

ve([folw) < 7=(e") = —e(g + K) = Yo ([fo]) + 7= ().
Since we know the opposite inequality we obtain the Equation (0.25) in the first case.

Let w be a Witt differential which doesn’t belong to the first case. Then we write:
(0.29) w=w(u) +w(du) + ' + "

where w’ is the sum of all e; in (0.26), such that v, (e;) > 0. There is a natural number v such
that the following holds:

(0.30) W' € VW Q4 + dVE T Wy
and each basic Witt differential appearing in the decomposition of w(u) is of the form V"7
for a primitive basic Witt differential ~ and any basic Witt differential which appears in w(du)

is of the form d¥ " 7. By our assumption (0.28) we find that for each of these 7:
Ye(W) = U+ Yeypu(T) = 4 — €k,

where « is obviously independent of 7.

Before proceeding we make a general remark: It suffices to show the equality (0.25) in the
case where f is a p-th power fy = gf. Indeed assuming this we have for arbitrary fo:

Ve([folw) = v ([f51) + 7 (@) = pre([fo] + Ye (w).

On the other hand we already know the inequality:

Ve ([f5]w) = (p — Dve([fo]) + 7=([fo]w)-
We conclude:
Ve ([fo])re(w) = 72 ([folw)-
Since we already know the opposite the inequality (0.25) follows.

We consider now the second case where w(u) # 0. By Proposition 0.19 the product
[fo]w(u) contains a basic Witt differential e(¢, k, &), where k is a weight of denominator
u > 0, such that |k| = g + x and ordy £ = u. This basic Witt differential can’t be destroyed
by any basic Witt differential appearing in [fo]w’, because v, > 0, or by any basic Witt
differential appearing in [fo]w”, because those have reduction 0 in W,,Q 4 /k. It can also not
cancel with an exact basic Witt differential appearing in [fo]w(du). Indeed since fj is a p-th
power those basic Witt differentials are either exact or have v, > 0. Therefore [ fy)w contains
as a summand a basic Witt differential e(n, k, ) where k is a weight of denominator u > 0,
such that |k| = g + « and ordy & = u. This proves the inequality:

Ye([folw) < u—e(g+ k) = v([fo) + 7= (W)

This gives the desired equality in the second case.
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Let us now consider the third and last case, where w(u) = 0in (0.29). Then we rewrite
(0.29) in the form:
w=d""oc+uw + ",
where o is a sum of primitive basic Witt differentials of the same degree p“x, where
Ye(w) = u — ex. We assume as above that fo = gf. We find:

(0.31) [fold"" o = d([g§]"" o) — plhol” ™" (d[ho])" " .

By Proposition 0.19 we know that [h5]"" o contains a non-closed basic Witt differential
e(&, k, P), where k is a weight of denominator v > 0, such that |k| = g+ x and ordy £ = u.
As before we see that the basic Witt differential de(&, k, P) can’t be destroyed by any basic
Witt differential which appears in [fo]w’ or [fo]w”. It can’t also be destroyed by a basic Witt
differential which appears in the last summand of (0.31), because for them v, is positive.
From this we conclude as before the desired equality (0.25). O

COROLLARY 0.32. — Let f € W(k[T, ..., T4]) = W(A) be an integral Witt vector with
radius of convergence €. Let w € WQy be an arbitrary Witt differential of radius of
convergence €. Then we have:

Ye(fw) = 'YE(f) + % (W)

Proof. — By Corollary 0.16 we have the inequality:

(0.33) Ye(fw) > Ye(f) + 7= (w).

For the opposite inequality we may assume that f is a polynomial by considering the trunca-
tions in Wy, 4,5, We write f= > f; as a sum of homogeneous polynomials f; of different
degrees g;. By the inequality (0.33) we may assume that y.(f) = ~.(f;) for each i. Moreover
we may clearly assume that v, ( f ) = 0. With these remarks the proof works in the same way
as above. O

1. Sheaf properties of the overconvergent de Rham-Witt complex

Let A = k[ty,...,t.] be a smooth finitely generated k-algebra, S = k[T4,...,T,] a
polynomial algebra. Then S — A, T; — ¢; induces a canonical epimorphism

A WQg/k — WQ;‘/k

of de Rham-Witt complexes.
DEerFINITION 1.1. — We set WTQ:‘/k = image (WTQQ/,C) under .

We have seen in Proposition 0.9 that this definition is independent from the choice of|
generators and the representation S — A. The same proposition shows that the assign-
ment A +— WTQ, /k-1s functorial. Indeed, given smooth finitely generated k-algebras
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A, B as above, and a presentation k[T%,...,T,.] — A, we extend this to a presentation
k[Ty,...,T.,Uy,...,U;] - B such that the following diagram commutes:
A » B

E[Ty,...,T,] = k[TY,...,T,,Uy,..., Ul

Then it is clear that the induced map W/, — W Qg /i, sends WiQ, /, — WiQg 4.
Forw € WQ$, /5 @ convergent sum of images of basic Witt differentials in WQY /i SO

w = Z € (gk,ﬁak7‘¢)v
(k,?)
we know that w is overconvergent iff there exist constants C; > 0,Cy € R such that
(0.6) |k| < Crord, & g + Cy forall (k, P).

We can also express overconvergence on W Q% Jk by using the Gauss norms {7, }.~¢ obtained
as quotient norms of the canonical Gauss norms on WQ¢ Ik that we defined before. An
w € WQy/y is overconvergent if there exist ¢ > 0,C € R such that v.(w) > C. If we
use another presentation S’ = k[Uy,...,U.~] — A, then the associated set of quotient
norms {dc }.~0 on W€, ;, is equivalent to the set {7 }.~o. Here, the notion of equivalence
is defined in the same way as for Witt vectors ([5] Definition 2.12).

ProrosITION 1.2. — (a) We denote by f € A an arbitrary element. Let d € 7 be
nonnegative. The presheaf
WTQgpeCA/k(Spec Af) = WTQzlf/k
is a sheaf for the Zariski topology on Spec A (compare [7]0, 3.2.2).
(b) The Zariski cohomology of these sheaves vanishes in degrees j > 0, i.e.

H%ar(SpecA, WTQ‘SipeCA/k) =0.

We fix generators t1,...,¢, of A and denote by [t1],..., [t,] the Teichmiiller representa-
tives in W (A). An elementary Witt differential in the variables [¢1], ..., [t;] is the image of a
basic Witt differential in variables [T1], .. ., [T,] under the map .

Before we prove the proposition, we need a special description of an overconvergent

element z in W*ij /i Let[f] € W (A) be the Teichmiiller representative. Hence ﬁ = [H

is the Teichmiiller of % in W (Ay). For the element z we have the following description.

PROPOSITION 1.3. — The element z € W‘LQif/,C can be written as a convergent series

oo 1 7
Z:ZWm

1=0
where W, is a finite sum of elementary Witt differentials ﬁl(t) in the variables [t1],...,[tr],
images of basic Witt differentials nl(t) in variables [T1], . .., [T,] with weights kj satisfying the

following growth condition:
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3C, > 0,C5 € R such that for each summand nl(t) we have
r + |klt| < Clordpnl(t) + Cs.
Furthermore we require that for a given K > 0,

min ordpnl(t) > K for almost all .

Proof. — We use here an extended version of basic Witt differentials to the localized
polynomial algebra k[Ty,...,T;,Y,Y 1] (compare [8]). A basic Witt differential « in
Wkt ,...1.,v,y -1/ has one of the following shapes:

I) «is a classical basic Witt differential in variables [T1],. .., [T;], [Y].

II) Let e(&x, o, k, P) be a basic Witt differential in variables [T1],. .., [T,]. Then
1) a=e( g,k P)dlog[Y]
I12) a=[Y]""e(é 9k, P) for somer > 0,7 € N
113) a=FdY]| 'e(& g, k, P) forsomel > 0,p{l,s>0.

v uk kg y g e —t(1q) )
) a = = (YR [T]P *0)d [T]P o, FtUag[T)P k14 (compare [10],
(2.15)).
In particular, for each such o we have a weight function k on variables [T3],. .., [T}] with
partition [y U---Ul; = P,u>0,ky €Z [%Lo’

u(ky) < u = max{u(ly),u(ky)} (notations as in [10]).
If Iy = &, we require v = max{u(l1),u(ky)}.
IV) a = do’ when o’ is as in III).

It follows from loc.cit. that each w € VVQ;[TI’MTT"),)YA]/,C is in a unique way a convergent

sum of basic Witt differentials. Here convergent is meant with respect to the canonical
filtration on the de Rham-Witt complex.

It is straightforward to show that w is overconvergent iff there exists a > 0, 6‘; € R, such
that the basic Witt differentials o appearing in the decomposition of w have the following
properties.

— If a of type I) or of type 11 1) occurs as a summand in w, we require
|k < Crord, &, 0 + Co.
— If ais of type II 2) or II 3) occurs as a summand in w then
r+ k| < aordp oo+ C, (withr = - p°® in case II 3).
— If ais of type III) or IV), then

d
lky |+ > |kr,| < Crord, (V€) + Ca
j=0
(here, |ky| = —ky,|k[j| = ZI: kz)
e 7

4¢ SERIE — TOME 44 — 2011 —N° 2



OVERCONVERGENT DE RHAM-WITT COHOMOLOGY 211

We have a surjective map of complexes:
WTQZ[TI,...,TT,Y,Yfl]/k - WTQ;&f/k-

We may represent the z of the proposition as the image of an overconvergent w, which is a
sum of basic Witt differentials as described above. To obtain the representation of z in the
proposition, we expand the images of the basic Witt differentials « separately.

In case of condition I1T) we consider the first factor V* (£[Y]P"v [T]P"k50 ). For simplicity
we assume [y = &; this does not affect the following calculations. Let —ky = ﬁ and
1 < p% < I+ 1 for an integer [. We have

BRI 1 (e
=7’ (ﬁmr-w) vy (5 G )

- [Y]1l+1 v (g[y](Hl)pu_T) :

Now consider the image of « in WQif /, Where
Y=, K=" [B-[]
The factor e V* (£[Y] (+Dp" =) is mapped to e Ve (gL,

fIHH
Represent f as a polynomial of degree g in ¢y, ..., ¢,.. Then it is easy to see that the image
of a in Wij Jk is of the form [f]%ﬁ where 77 is a (possibly infinite) sum of images of basic
Witt differentials #* in variables [T1], . . ., [T,] with weights k? satisfying

d
k| Sg(l+1—%)+2|k1j|
!

d
<g+Y kgl
j=0

The case da (type IV) is deduced from the case II1 by applying d to « and the Leibniz rule to
the image of da in Wij = So if the image of « as above is [ﬂ%ﬁ then the image of do is

1 -~ 1 ~

1 =
- e ,
where % is a sum of images of basic Witt differentials r:]t in variables [T1], . . ., [T] with weights
kt satisfying
d
K <29+ |k, -
j=0

We can also compute the images of a in W,/ where avis of type I or IT and obtain again
a representation

1 ~
7 forr > 0.

[
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These cases are easier and omitted.
Now we return to the original element z € WTQif Jk- We may write z as a convergent

sum
o0
c= > G,
m=0
where @w,, is an elementary Witt differential being the image of a basic Witt differential «,,,

in WQgr, .1 v,y-1/% of type L, 11, Il or IV.
In all cases we have a representation

G = 7
T
where 77, is the sum of images of basic Witt differentials 77%, in variables [T1], ..., [T}] with

weights k! such that
P+ || < Crord,, (i) + Cs +2(g + 1).

Now consider - for a given integer N - the element z modulo Fil", so the image z") of z
in
1
W%, =W, @Q Wa(4) [[f]} .
W (A)

b(N)
One then finds a lifting z2¥) of ") in WQ, , )y, such that zV) = 3 w,,, is a finite sum, i.c.

m=0
— 1 "
o g
where now 77, is a finite sum of images of basic Witt differentials ‘, in variables [T}], .. ., [T}]

satisfying the growth condition
T + [k < C1ordy (1) + Co

with Cy := Cy,Cy = Cy + 2(g + 1).
The elements z(™ can be chosen to be compatible for varying N and we have
z = limz®™). It is clear that the second condition of the lemma is also satisfied, this

finishes the proof of Proposition 1.3. O

REMARK. — It will later be convenient to express the assertion in Proposition 1.3 using
Gauss norms. Let {":}es0 be the set of Gauss norms on W 41, obtained as quotient norms
Jfrom the canonical Gauss norms on WSgy, using the presentation S — A. Let {0c}e>0
be the set of Gauss norms on WQa . jp obtained as quotient norms using the presentation
S = kETy,...,. T, Ul - Ap, T; — t;,, U — % We now define another set of Gauss norms as
Jollows. For w € Wy i, we consider the collection of all possible representations

(*) w =Y _[fI""m, for m € Wy,

1>0

such that for a given t, almost all n; are zero in Wiy 1Q 4 /1, We set

72" (w) = sup{inf{y. (m) — le}},
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where the sup is taken over all possible representations (*). Then Proposition 1.3 is equivalent
to the assertion that the set {y3"*}.so is equivalent to the set {6:}eso. Equally, we will
obtain an equivalent set of Gauss norms {y.}eso if in the above definition we only allow
representations such that the exponents of f are all divisible by p.

Now we are ready to prove Proposition 1.2.

As W* is a complex of Zariski sheaves we need to show—in order to prove part (a) of the
proposition—the following claim:

Letz € WQ4 /i, for some fixed d, let {f:}: be a collection of finitely many elements in A
that generate A as an ideal. Assume that for each ¢ the image z; of z in Wfo‘f/_ Jk is already
in WTQ‘j‘fi/k. Then z € WIQY ;.

Let [f;] be the Teichmiiller of f; with inverse ﬁ = [£].

LEMMA 1.4. — There are elements r; € WT(A) such that 3 r;[fi] = 1.
i=1

Proof. — Consider a relation f: a;fi = 1in A. Then Zn: [a:][fi] = 1+ Vn € Wi(A). By
Lemma 2.25 in [5], = y
(1+"Yn) "t e Wh(A).
Define r; = (1 + Vn)~! - [ay]. O

LEMMA 1.5. — For each t there are polynomials Q; ¢[T1, . . ., Tay] in 2n variables such that
(1) degreeQ;: < 3-nt
(2) Z:l Qi,t ([fl]a sy [fn]:"‘la .. 7TTL) [fl]t =1

For the proof of this lemma, compare [13].

We know that SpecA = U, D(f;). Foratuplel < i < -+ < iy < m,let
iy, = ﬂ;?””:lD(fij). Fix d € N and let

C™ = C™(Spec A, W*Qj/k)
N €B1§i1<---<z‘m§nwmii4filA.Afim /k
= ®1<iy<o<imenl Wiy i, WIQY 1)
Then consider the Cech complex
0-C"=C'—=(C%— ...
We have C° = W1Q¢ , and C° — C" is the restriction map W'Q4 , — WTQifi/k for all

1. It is then clear that Proposition 1.2 follows from the following.

PROPOSITION 1.6. — The complex C* is exact.
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Proof. — The proof is very similar to the proof of Lemma 7 in [13]. We fix as before
k-algebra generators t1,...,t. of A. Suppose 0 € C™,m > 2, is a cocycle. Then o has
components

ity € T(hiy i, WT QSpecA/k) wi QAfZ i, IR

Applying Proposition 1.3 we see that o;,. ;, has a representation as an overconvergent
sum of Witt differentials as follows: o, 4, = > ;72¢ M;* "™ with

Q1.4 1 i
Mrin = Z mnl(fl) i, afinitesum

where [fi, i 7 = [fi,l - [fi,. )% 771(1]1) i is a sum of images of basic Witt differentials

(Jt)

Ni..q invariables [T1],..., [T;], (T; — t;) and weights k'l(ff) satisfying

i) g+ kg, | < Clord, nl(ff in+1)

ii) I > ord, nl(“.)”im >1—
Notation: We say that Ml“"'i" has degree < C(I + 1).

We shall construct a cochain 7 so that 97 = o. The reduced complex

C*JFI"C® = C*({D(fi)}i, Wal% )
is exact. We will inductively construct a sequence of cochains
Tk = Z Tkiq..cim—1
1<i1 < <im—15n

such that the sum
o0
>
k=0
converges in C™~! to a coboundary of o. The 7, are chosen to satisfy the following proper-
ties:

(1) 8(42L 7)) = o modulo Fil* = ¢™

. k_
(2) Ti1.igy—1 € WTQAf . /k, and Thiq...im—1 < Fll2 ! WTQAfilu-f,-m /k for k > 1.

(3) This.ci € W [[fﬂ Aabi1sesms

fiq i 1]
1
(fir.ovipm_1]
being finite sums of elementary Witt differentials in [¢4], .. ., [t,] such that the total de-
gree (with [t1],...,[¢,] contributing to the degree via possibly fractional weights) is

bounded by 24nC2F. We write degree 7,4, _, < 24nC2F.

4) [fza]CQHITkn dmo1 € I/VQA/IC [[fl]v R [fn]a T1y-+-5Tn, [fAl]} with degree

R R PO S

] to be understood as a poly-

nomial in the “variables" [f1],..., [fn],71,.-.,7Ts and with the coefficients

2k+1

(i ]C% Thiy i, < C2FFL 4 24nC2F,

Then (2) implies that all the coefficients n of the polynomial representation (3) satisfy
ord, n > 2% — 1. Also (1) implies that 9(33 , 7) = 0. Using (2) and (3) we will show that
S re o Tk € C™71, ie. is overconvergent.
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Define elements og;,,._ i, € WQﬁf_ , forn>0by

1t
2811
Osin,ynyiy = E Mrtm,
a=0
o8+l
Then oy, 4, = 0i,...4, mod Fil*  and degree oy, ;. < C22tL.
Define the cochain 7p € C™~1 by

n
T0%1 b1 — Z Ofi,QC[fi]chOil,...,imi-
=1

Suppose we have constructed, for some integer s > 0, cochains 7, € C™ ! for 0 < k < s
satisfying (1)—(4). Then we construct 7 as follows: Let Vsir.im = Tsinooyim — o( Z;B Th )iy iy, -
We see that vs;,.. 4, € Fil> "1C™isa cocycle modulo Fil> *' ¢™ and degree Vg, 4, < 24nC257L.

Define

" s+1
Toirimy = O Qic2or [ Vsinooin aiv
i=1
Then Y ; _ 7% satisfies (1) by ([EGA], I11.1.2.4.). We have
[£19% Yatr i € Wiy, 0 Fil> T W1, g

=Fil* Wiy,

and therefore 7,;,. ;. _, satisfies (2) (we have used (4) for 7,k < s). Moreover, 7s;,. i, _,
has total degree bounded by

24nC2°~ 1 + 3nC2°T! + C2°T! < 24nC2°

and 7, satisfies (3). It is straightforward to show property (4) for 75. Therefore it remains
to show that >~ 7 is overconvergent. This will be derived from properties (2) and (3) as
follows.

It follows from (3) that 7, . ;,,_, can be written as a finite sum 75;,. 5, , = >.; rIM, 1,
where I runs through a finite set of multi-indices in N, ! = 731 - .72n for T = (Ay, ..., \y)
and M; ; is a finite sum of images of basic Witt differentials w? in variables [T1],..., [T}],
Y1],...,[Ys], [Z] with

1
[fi,]

(T 1), 5] [£), (2) = [

with weights k! satisfying
|I] + |k%| < 24nC2° = C'2°
(C" := 24nC) and

1
ordywt >2°—1=—(C'2°) -1

(*)

il

> = (| + k) — 1.

!’

Q

For fixed I and varying s we get a sum

Z’I"IMSJ = T‘I ZMS’I'

5
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Because of the condition (*), wy = Y M,  is overconvergent with radius of convergence
S
_ 1
€ = & and
V3, (wr) > |I |- 1.
Here 4. is the quotient norm of the canonical ny on WQyr, ..1.v1,...Yn, 2] /-

We now look again at the definition of r;. There exist liftings 77, 7; of ,7; in W1(S) and
a; of a; in S where 7 is a finite sum of homogeneous elements such that

Fo= (4 V) )
For 6 := &, there existse > 0, &; > e such that
7. (V71) = -9,
because we have a finite sum of homogeneous elements. By [5] Lemma 2.25,
~e(73) > —6 as well.
Let &y be a lifting of wy in WiQyr, 1. vy, v.,z)/% such that §-(w;) = ve(@). Then we
obtain by Corollary 0.16,
Ae(rfwr) > 7. (F&y)
> 7. (@r) + 7. (7)
= Je(wr) +7:(7)
> 41 (wr) + 1)
> I -1+ [I|(-6) = —1.

As this holds for all I, we see that E Tsiy .. is overconvergent with radius of convergence

e, and hence Proposition 1.6 follows and so does Proposition 1.2. O

Am—1

REMARK. — The above final arguments in the proof of Proposition 1.2 are very similar to
the proof that W1(A) is weakly complete in the sense of Monsky-Washnitzer (compare [14]
and Proposition 2.28 of [5]). Hence WTQi Jk satisfies a certain property of weak completeness
in positive degrees as well.

COROLLARY 1.7. — The complex WTQSpeC A/k» defined for each affine scheme as above,
extends to a complex of Zariski sheaves WTQX/kon any variety X /k.

In the remainder of this section and the next, we prove the following.

THEOREM 1.8. — Let X be a smooth variety. Then WTQ;(/,C defines a complex of étale
sheaves on X.

Proof. — AsWTQ% X7k is a complex of Zariski sheaves on X, the problem of being a sheaf|
on the étale site is local on X . By a result of Kedlaya [9] any smooth variety X has a covering
by affine smooth schemes Spec A which are finite étale over distinguished opens in an affine
space Ay. It therefore suffices to show that if A is a finite étale extension over a localized
polynomial algebra, A’ a standard étale extension of A, then an element z in WQ4 /i that
becomes overconvergent in WQ¢, Jk is already overconvergent over A. By localizing further
we may assume first that there is an element f in A such that A} is finite étale over A, ofl
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the form A’ = A¢[X]/(p(X)) for some monic irreducible polynomial p(X). The following
proposition reduces the argument to the case Ay = A}; hence we will need to show

WY, WG, =Wy .

PROPOSITION 1.9. — Let B be a finite étale and monogenic A-algebra, where A is smooth
over a perfect field of char p > 0. Let B = A[X]/ (f(X)) for a monic irreducible polynomial
f(X) of degree m = [B : A] such that f'(X) is invertible in B. Let [z] be the Teichmiiller off
the element X mod f(X) in W(B). Then we have for each d > 0 a direct sum decomposition
of WT(A)-modules

WmdB/k = WTQi/,c ® ij/k[m] ®--D nga/k[x]m—l.

Proof. — From Corollary 2.46 in [5] we know that this proposition is true for d = 0:
_ WT(B) is a finite WT(A)-module with basis 1, [z],..., [z]™ . There is a unique lifting
f(X) € WT(A)[X] of f(X) such that WT(B) = WT(A)[X]/f(X) and f’([z]) is invertible
in WT(B). In particular W1 (B) étale over WT(A).

Let f(X) = X"+ apm_1X™ L+ + a1 X + ag, with a; € WT(A) and

1
— :cm,l[x]m_l+--~+cl[ac]+00,

['[x]

with ¢; € WT(A).
When we consider an element 2 in W'Qg , with radius of convergence e > 0 we will
always assume that ¢ is small enough such thatall a;,c;, j =0,...,m — 1 are in W¢(A).
The equation

f([.’E]) = [Z.]m + am—l[x]m_l +---+ al[w] +ap=0

(note that f(X) is the minimal polynomial of [z] over W(A)) implies that

d f([z]) = 0.
Hence we get
() d[z] + dam—1[z]™ " + - + day[z] + dag = 0.
As (f'([z])) ! has coefficients in W#(A) and W< (A) is a ring we see that

1
dlz] = ———— (dam_1]z]™ " + - - + da;[z] + da
[] f,([x])( [#]™ " + -+ + das [2] + dao)
= mz: )\ldal[x]j with A\, a; € WE(A).
1,j=0

The elements a; € W¢(A) are homogeneous as they are elementary symmetric function in
the [t;], where [¢;],¢ =1,...,m are the roots off, lifting the roots ¢; of f.

We have A\;da; = d(a;\;) — a;d); by the Leibniz rule. The elements a;\; are in W¢(A),
hence d(a;\;) € WeQY, /i As a; is homogeneous, the element a;de; is in weQl i, as well
(Corollary 0.16). So we get

dlz] € Wy ) & -+ @ WEQ [z]™ 1.
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One proves similarly that
djz]' € W‘th/k D@ WEQh/k[x]m_l.
forallz, 1<i<m—1.

Let b1, ...,b, be generators of the k-algebra A and z € WTQ%  De an overconvergent
sum of elementary Witt differentials z; in variables [b1], ..., [by], [z] with v.(2;) > C for all
i. If in z; the variable [z] occurs with integral weight &k, we may assume 1 < k, < m — 1. If|
[z] belongs to the interval Iy with underlying partition & corresponding to z;, then evidently
zi = mny[z]*= with n; an elementary Witt differential in the variables [b1],...,[b,] with
Ye(ni) > C. If [z] occurs with integral weight k,, 1 < k, < m — 1 and belongs to the
interval I}, j > [, then after applying the Leibniz rule and the previous case we see that

2 = w; + md[m]k“’
with w; € Wsfol/k S RRRY:> WSfol/k[x]m_l andn; € WEQdA/i with v.(n;) > C. In addition,
all coefficients ng )in WEQj /k satisfy v, (wi(j )) > C. We may also assume that all coefficients
B9 of d[z])’ in WY, , forall 1 <i <m — 1 satisfy 7.(3")) > C. Then,

midlz]* e WiQ4 & - @ WIQG ) [z]™

and we have for all coefficients 50 ) ewsiqd %41, that occur in this representation of n;d[z]*=
that

5 (69 > C.

Now we use [5] Corollary 2.46. If o = E &zt € We(B) satisfies v.(a) > C then

& € We(A) with v.(&;) > C’ and C’ only depends on C and ¢; wlog C’ < C.
Assume that in an elementary Witt differential z; occurring in the overconvergent z we
have
=V dw
1 < i < m — 1. Then applying the

and [z] occurs in 1 with fractional weight k., k,
above fact we see that

zZ€W€QA/k @W QA/k[] m—1

and the coefficients 217/ satisfy v.(z")) > C’.

If [z] occurs with fractional weight k, in an interval I;, j > 1 of the underlying partition
of z;, then by combining the previous cases we see that

and all coefficients z(J ) satisfy v (zl(j )) > C'.
This implies that the original z € W<Q¢, /x With ve(2) > C has a representation

,_.

m—

= o] eW3IQY, © - @WIQY [a]™
=0

with ye (0;) > C' foralli =0,...,m — 1.
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On the other hand, by possibly applying the Leibniz rule repeatedly, it is clear that an
element in

wiQg - e Wiy o™ !
can be represented as an overconvergent sum of elementary Witt differentials in variables
[ba], .- ., [br], [z], and hence lies in WTQg, , . This finishes the proof of the proposition. [

REMARK. — Note that the isomorphism in the proposition is a restriction of the isomorphism

m—1
WQdB/k = W(B) ® WQflq/k = @ WQi/k[f‘U]Z
W (A) i=0

for the completed de Rham-Witt complex. As W (B) is finite étale over W (A) if B is finite étale
over A, this latter isomorphism is a consequence of étale base change for the de Rham-Witt
complex of finite level, by passing to the inverse limit (compare [10] Proposition 1.7 and
Corollary 2.46 in [5]).

To prove the theorem, it remains to show that
(1.10) W, nWieg = wieg

for a k-algebra B which is a finite étale extension over a localization A of a polynomial
algebra A = k[T, ...,Ty4], and some g € B. After possibly localizing again, we may assume
wlog that g itself is in the polynomial algebra. After applying Proposition 1.9 again, we
reduce the proof of the étale sheaf property to the case where B = Ay. That is, we need
to prove (1.10) in the special case B = Ay and g € A. This will follow from a further careful
study of the Gauss norm properties on the de Rham-Witt complex of the polynomial algebra
A and a localization Ay, done in the next section.

2. Gauss norm properties on the de Rham-Witt complex of localized polynomial algebras

We will consider the Gauss norms on the truncated de Rham-Witt complexes W19 4/
and W;11Q4, /1, (and also Wi 11Q4,, /&) and describe overconvergence on the completed de
Rham-Witt complexes via these truncated Gauss norms. Before we can do this, we need
to review a few more properties of the de Rham complex €2 4, for the polynomial algebra
A = k[Ty,...,T,] over a perfect field k of characteristic p > 0.

We recall the basic differentials e(k, ) from (0.1):
dT*n dT*n
(2.1 e(k, P) = T () (> )
pordskr, pode
A basic differential is called primitive if Iy # 0 and if the function & is not divisible by p.

PROPOSITION 2.2. — Let e(k, P) be a primitive basic differential. Then for all 1 < j < d
TYe(k, P)

is a linear combination of primitive basic differentials with values in k.
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Proof. — Let Iy = {i1,...,4}. Let I = {i1,...,is} C I be the subset of all indices iy,
such that ord, k;,, = 0. Let Ij be the complement of I} in I,. We have Ij) # @ but possibly
I =o.

Consider the case where j = i,, € Ij. We define &’ such that k& = k;,, +pand k = k;
for all other indices. Then Supp k = Supp k' and the chosen order on these sets is the same.
From this we see that

Tm

T7e(k, P) = e(K', P).

Now we consider the case where j doesn’t belong to Ij). We write

k k
ey ATy (T
J pordp kIl pordp kfz

as a linear combination of basic differentials e(h, &) for possibly different partitions ¢). Let
¢ be the weight such that «(j) = p and such that ¢ vanishes on the remaining indices. Then
h=k+..

Consider the subcase where ord, k; = 0. Then j must belong to one of the sets Iy, ..., I,
and therefore j must be bigger than any of the indices appearing in I). Then
"% e(h, Q)

is a primitive basic differential for each partition ¢. Its weight function k" is the sum of k),
(the restriction of k to I)) and h. That we obtain a basic differential follows from the fact
that for the order given by k" any element of I}, precedes any element in Supp h.

This last sentence is still true in the subcase ord, k; > 0, because this implies ord, h; > 0.
This finishes the proof. O

We consider 4/, throughout this section as an A-module via restriction of scalars by
F: A— A. We will say that we consider 2 45, as an A-F-module.

PROPOSITION 2.3. — Let P' C Q! Ji, be the k-subvector space generated by primitive basic
differentials. We have a direct decomposition:

(2.4) Q) =P @dP'" @ FQY .

Each summand on the right hand side is a free A-F-module which has a basis consisting of
basic differentials

Proof. — The decomposition (2.4) is direct because the second k-vector space is generated
by basic differentials whose weights are not divisible by p and such that we have Iy = @ in
the partition while FQ% Jk is generated by basic differentials whose weights are divisible by
p.

It follows from Proposition 2.2 that P! is an A-F-module. Then the other two summands
of (2.4) are clearly A-F-modules. Therefore all summands are projective A-F-modules. All
summands are graded by the absolute value of weights and are therefore graded A-F-mod-
ules. Let a be the ideal of A generated by T4, ...,T,;. A basis of the A-F-module P' is ob-
tained by lifting a basis of the (graded) k-vector space P!/ FaP'. This proves the last sentence
of the proposition. O
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Next we consider the de Rham-Witt complex W 4,,. We denote by Fil" the kernel of]
the canonical map W4/, — Wy, ,4/;. Itis an abelian group generated by the basic Witt
differentials e(¢, k, ) such that ordy £ > n (compare [10]). We set:

G™ =Fil" W ./ Fil" T wa, ;.

We consider it as a W (A)-F-module. Clearly the module structure factors via F' : W(A) — A.
We consider throughout this A-module structure on G*. On G° = Q, Jk it agrees with the
A-F-module structure considered above.

The A-module G™! has a direct decomposition into free A-modules:
GMt =V"Pl@pV" Pl e ... @p" P
(2.5) @ dV"P Tl @ pdvriPl g . @ pdP!
@ p"FQf4 Jk
This follows from Proposition 2.3 and the decompositon of W2, /;, defined by basic Witt
differentials. It is clear that each summand has a basis consisting of basic Witt differentials.

PROPOSITION 2.6. — For each n > 0 there is a family wg") € Fil" WQlA/k of basic Witt
differentials, where i runs through some finite index set J,,, satisfying the following.

For each n the elements wi(n) fori € J, form a basis of the A-module G™'.
A Witt differential w € Wt+1Q’A/k has a unique expression

t
2.7) w=%"3 P,

n=0:eJ,

where az(.n) c A.

Moreover the truncated Gauss norm ~y.[t] is given by the following formula:
29 1eli() = min o (af”) + 7)),
n,i€Jn

Proof. — For a fixed n and each of the summands of (2.5) we choose basic Witt differ-
entials in Fil” which form a basis of this summand as an A-module. Therefore we obtain a
basis w(™ . Then we write:

w= Z Fago)wz(o) modulo Fil' .
i€Jo
Then we consider the Witt differential
w(l) =w— Z F[aEO)]wEO) € Fil'.
i€Jo

Then we consider w(1) € GU! and express it by the chosen basis of this A-module. This
process may be continued to obtain the expression (2.7).

Finally we have to prove the assertion about the Gauss norm. We consider first the case
of a differential w € G™! € W, 4104 k- We decompose w according to the decomposition

(2.5):
w = Z W -
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Since the decomposition (2.5) is defined by a partition of the set of basic Witt differentials
we deduce the formula:

Al(3 wm) = min{e ()}

Let us denote by S an arbitrary summand of the decomposition (2.5). All nonzero elements
o € S have the same order ordy o = 0g. As explained, S is a free graded module over A:

S=s.,

such that S; has a basis of basic Witt differentials whose weights have absolute value t. We
find that for z € S, such that z # 0:

Ye[n](2) = 0g — et.

Now we assume that z = S° F agn)wgn). Since S is free we deduce from this the formula:

)" Falw{™) = min{y.(Fap) + 7. @™)}.

Now we consider the element w € W11 4, with the expansion (2.7). We set 7. [t](w) = C.
Then we have:

C < 7:[0)(w) = 7 [0)} "lai”1w;”) = min{re ("lai]) + 7 ()}
On the other hand we have the inequality:
el (™) 2 minoe (F[a”]) + 70 (@)}
We obtain that
el = 3 Flai1wf”) 2 re[f(w) = C.
Applying the same argument to w(l) = w — 3 F [ago)]wlgo) € Fil' we find that in the
decomposition (2.7) the following inequality holds:

e (T a™]) + 7. (™) > C.

But on the other hand we have:

C=1 ZZ [a{w™) > min {r("[a]) + 7e (@)}

n.ai€Jy
n=0:eJ,

This proves the last assertion. O

REMARK. — Let f = S oyT* € A, where ar € k is a polynomial. We set
f =S [ax][T1F € W(A). This is an integml Witt vector which lifts f. We can replace in the

=(n)

proof the Teichmiiller representatives [ ] by a; ’. and the element F[agn)] by the element

n
5 ). Then we obtain a unique expression.

t
(2.9 w=3" 3 Falu™,

n=0ieJ,

The Gauss norm is given by the Formula (2.8).

4¢ SERIE — TOME 44 — 2011 —N° 2



OVERCONVERGENT DE RHAM-WITT COHOMOLOGY 223

Our next aim is to prove a similar proposition for the localization A of the polynomial
algebra A = k[T, ..., Ty] for an element f € A. We write § = deg f.
Letw € Wi1Q4, k. We have seen that an admissible pseudovaluation ~.[t] on this de
Rham-Witt complex is obtained as follows. We consider all possible representations:
(2.10) w=> m/lfI"), wheren € Wir1Qu/k.
!
Then ~.[t](w) is the maximum over all possible numbers

min{~y [ty — elp}.
There is always a representation where this maximum is taken. Such representations will be
called optimal. The following inequalities are immediate:

Vet (w) < ALt — 1) (w)
V[t (w) < y5ltl(w)  fore >4
We could also consider all representations of the form w = 37,(n;/[f]!) without the extra
factor p. Then we denote by 4. (w) the maximum of the numbers min{~.[¢]n; — l}. We will
use this Gauss norm only for the Witt ring.
We write Fil}' = Fil™ Wy, . By étale base change Fil}* is obtained from Fil™ by
localizing with respect to [f].

LEMMA 2.11. — Let w € Fil}". Then there is an optimal representation (2.10) of w such
that n; € Fil™.

Proof. — The case m = 0 is trivial. We assume by induction that there is an opti-
mal representation such that 7, € Fil™ '. Consider the residue classes of 7; of 7; in
G™ 1 = @G~ = Fil™ ™!/ Fil™. We use the abbreviation 6. (7;) = 7.[i — 1](n). Clearly
we have that 6.(7;) > 7.[t](m). Then we have in G™~! the relation:

M

(2.12) > /(£ =o.

1=0

We may assume that 75 # 0 and that M is the minimal possible value for all optimal
representations. Then we have to show that M > 1 is impossible. We see that 7, is divisible
by [f]. Then we write:

v = [f]7.
We obtain that 6. (7) — e§ = J.(7ar). We may lift 7 to an element 7 € Fil” ! such that
Ve [t](T) = 6-(7). We write:
nv = [f]T+ p, where p € Fil™.

Since Y [t]([f]7) = 7e(T) — €6 = 6.(F) — €6 = 6:(m) > ~ve(na) we conclude that
Ye(p) > ve(nar). Now we consider the equation:

(mae /L) = (2 /LAMH) + (o/ LF1M).

Inserting this in (2.10) we obtain again an optimal expression, since:

Ye(m) = (M — 1)e > ve(mm) — Me
Ye(p) = Me > Ye(nar) — Me.
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Reducing this modulo Fil™ we see that the number M became smaller. O

LeEmMmA 2.13. — Letw € Gt C W14, k. Then w has a unique expression:

w= Zp[ci]wgt), c; € Ag.
Then we have:
P[0(w) = min{pi(e) + 7 ()}

Proof. — Since G' is a free A-F-module it is clear that the localization is a free A - F-mod-
ule with the same basis. From this it follows that such a decomposition exists.
We choose an optimal representation:

(2.14) w=Y(m/[fI").

1
By the last lemma we may assume that n; € G*. Then we find for 7; an expression:

m= Z Failwgt), a; € A.
Therefore we obtain by definition and Proposition 2.6:
(215)  7:[f](w) = min {2t O Fauw) —elp} = min{pye(air) + 7. (w) — elp}.
We set

1
" = (ag’ /1)
1
We can assume that this expression is optimal for 4.. Because in the other case we could

insert the optimal expression in the equation:

(2.16) w=Y_ (Z Faul f“’) w®.
l

This would make the right hand side of (2.15) bigger. But then (2.16) would again be an

optimal expression of the form (2.14).

We obtain 4/ (c{™) = min;{y.(a\}’) —el}. This shows the last formula of the lemma. [J

Let c € Ay be an element. We choose an optimal representation:

=Y (ai/f).

We set:

(2.17) e=> [al/[f]" € Wiya(Ay).
We find

(2.18) A

In the same way we obtain:

Indeed we have:
(2.19) L (Fe) = pil(c) force Ay.
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To see this we can reduce to the case, where f is regular with respect to one variable. Then
one uses that reduced representations are optimal.

ProrosITION 2.20. — With the same notation as in Proposition 2.6 consider a Witt
differential n € Wi 41Qa, /x. Then there is a unique decomposition:

=Y FEL o e Ay,

The truncated Gauss norm is given by the formula:

VLl (n) = mindpAL (") + 7= (™)}

Proof. — Since t is fixed we will set v, = ~.[t] Consider an expression in Fil™:
z= Z Fél(-m)wgm).
i
We claim that:
(221) 7e(2) = 72[m)(z) = min{y("&™) + 7o (™)}

Indeed, the second equality follows from Lemma 2.13. We see easily that . (z) is greater

than the right hand side of (2.21). Indeed, we choose optimal representations for c§m>:

™ = > au/f.
I

We obtain:

This shows that

7 (2) 2 min{e(Sslaalrw(™) — lpe}

= ming{mini{pye (air) + e (™)} = Ipe}.
The last equation follows from Proposition 2.6. By definition we have the equation:
Pie(ef™) = min{y.(aa) - le}.

This shows the inequality:

7 (z) 2 min{y,("e™) + 7. (w("™)}. = 1Lm](2)-
On the other hand we have v.(z) < v.[m](z), and this proves the equality (2.21).

As in the proof of Proposition 2.6 we find an expansion with the desired properties. [

REMARK. — Consider the natural map B = k[T, ..., T4, S] — Ay, which maps S to f=1.
We have defined the overconvergent Witt vectors Wiy, i, as the image of WQp i, by the
canonical map:

(222) WQB/k — WQAf/k'
Assume that we are given w € W4, /1., such that there is a constant C with

2.23) ftlw) > C

ANNALES SCIENTIFIQUES DE I’ECOLE NORMALE SUPERIEURE



226 C. DAVIS, A. LANGER AND T. ZINK

for allt > 0. We claim that w € WTQAf/k. By the unicity statement of the last proposition
we have an infinite expansion:
w = Z Fégn)wgn).
i,m

As in the proof above we take optimal representations:
= a1
1

Then we find a convergent sum in the Fil-topology:

w=3y_ (Z[m <">> /If1,

where py.(aly) — elp + %( ")) > C. But then

Z (Z[au]pw(n)> (5] € WQg i

l i

is clearly an overconvergent Witt differential which lifts w. Conversely the condition (2.23) is
clearly fullfilled for an overconvergent w, because . is equivalent to the quotient norm induced
by (2.22).

COROLLARY 2.24. — Forn € Wy 114,/ we have the equation:

YLt + 1] (pm) = 1+ L[t (n).

Proof. — We note that the proposition holds for each set w(") € WQ 4, of basic Witt

differentials which for each given n induce a basis of G™ as A-F-module. But clearly pw( n)

is part of a basis of G**! consisting of basic Witt differentials. This gives with the notations
of the proposition:

Telt+ 10 —v(ZF(") (’”>:min{ms<“>+%<pw<">>}.

This proves the result. O

PROPOSITION 2.25. — Let f,g € A be two non-zero elements without common divisors.
There is a constant QQ > 1 with the following property. Let t be a rational number and let € > 0
a real number. We denote by v, = ~_[t] the natural Gauss norm on Wy1Q 4, i, and by ~y_ the
natural Gauss normon Wy 1Q4; k.

We denote the image of a Witt differential w € Wi y1Qa, / in Wip1Qa,, /i by the same
letter. Then the following inequality holds:

7o) > Aw)

(2.26)
7o) > 7L(w).
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Proof. — We begin with the proof of the first inequality, which is the nontrivial one. We
may extend the ground field &£ and assume that & is infinite. After a coordinate change we
may assume that f and g are regular with respect to 77. Consider an element ¢ € Ay with
the reduced representation

c= Z ar/f.

If we regard c as an element of Ay, it has the reduced representation:

c=" (ug)/(f9)"
We have defined a lifting é € W(Ay) of ¢ (2.17). This coincides with the lifting ¢ € W (Ay,):

Y lal/1f) = (ag'D/ ()"

We set C' = v/ (w). By Proposition 2.20 we have the expansion:
(2.27) w=Y &, e Ay

Since the ¢ with respect to Ay and with respect to Ay, means the same (2.27) is also the
expansion of w with respect to Ay, according to Proposition 2.20.
Therefore we conclude that:

C = min{py” (™) + 7 (w™)}.

By Proposition 1.30 of [5] there are constants which depend only on deg f and deg g, such
that the pseudovaluation 4. on Ay (respectively 4 on As,) compare to the p-functions:

Qi (c) < 4(c) < Qap/(c) force Ay,
Q1p"(d) < 4Z(d) < Qo (d) for d € Ay,

If c € Ay has denominator f™, then cregarded as an element of A ¢, has denominator (fg)".
This shows the equality

We find the inequalities:
3¢ (e) < Q2p"(c) = Q2p' () < (Q2/Q1)7.(c).
We set Q = max{1, (Q1/Q2)} and rewrite the above inequality:
42 (e) < ’Ay;/Q(c), for c € Ay.
From this we find:
PALi(el™) + e sa@™) 2 A (™) + 7 (w™) = C.
Using Proposition 2.20 this implies the first inequality (2.26).

The second inequality is straightforward: We choose an optimal representation
of w € Wy 1124, /5 With respect to e

w=m/[fI", m € Wis1Qa /-

From the representation

w=mg"/[fg)"", m € Wi1Qask
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we obtain that: l
V@) = ve/q(mlg)?) — lpe/Q

= Yesq(m) — lpe(degg +1)/Q O

> ye(m) — elp = 7. (w).
Using the remark before Corollary 2.24, we see that Proposition 2.25 implies the claim in
(1.10) and finishes the proof of Theorem 1.8. O

COROLLARY 2.28. — With the notations of the proposition we have the inequality.

(2.29) Ve([9]Pw) < 7l jge(w) +pe/Q.
Let ¢ € Ay, such that ¢ # 0. Then there are constant C,Q € R,Q > 1 such that for every
w € Wt+1QAf/k~

Ye(lew) < %)qe(w) + Ce.
This shows in particular that an element w € WSy, . is overconvergent if for some
c € Ay, c # 0 the element [c|w is overconvergent.

Proof. — We begin to show the inequalities:
T hyw) 2 7L(w) ~ pe

Ye([fPlw) < vi(w) + pe.

To verify the first of these inequalities we choose an optimal representation:

(2.31) w=>_ m/lf]I".
l

(2.30)

After dividing by [f]? we conclude:
1 .
’Yé(ﬁw) > min{ye (m) = (I + Dpe} = 72(w) — pe.
From this we deduce formally the second inequality:

7 (w) = vgﬁm%) > o/ ([f]Pw) — pe.

Let h € A be arbitrary. If we multiply (2.31) by [h] we obtain the inequality.
(2.32) Ve([hlw) = ve(h) + 7L (w).
As above we obtain from this formally:

1
(2.33) o () <) =)
Using (2.30) for 4/ and the proposition we obtain:
7e0(9)'w) < 72jqWw) +pe/Q < 7z /g2 (w) + pe/Q.

But on the other hand the proposition shows:
v o(lglPw) > v ([g]Fw).
This shows (2.29).

For the last statement we remark that it is true for [¢], if there is an h such that the
statement is true for [hc]. Indeed this follows from (2.32). Therefore it suffices to assume that
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¢ = f™g, where g has no common divisor with f. This case is easily deduced from (2.29) and
(2.30). O

3. Comparison with Monsky-Washnitzer cohomology

Let B/k be a finitely generated, smooth algebra over a perfect field k of charp > 0. Let Bt
be the weak completion (in the sense of [14]) of a smooth finitely generated W (k)-algebra B
lifting B. To begin this section we prove the existence of a map o : Bt — W1 (B) which we
call an overconvergent Witt lift. It depends on a choice of Frobenius lift F' and is the same
as the map tp : Bt — W (B) described in [8]. We must prove that this map has image in
W1(B). We do this first for the case of a polynomial algebra (and any choice of Frobenius
lift), and deduce the general result easily by functoriality.

ProrosiTION 3.1. — Let A = k[Ty,..., Ty and AT = W (k) (Tl,...,Td>T. Fix a
Frobenius lift F on At. Then the map tg defined in [8] p. 509 (and recalled below) has image
in Wt(A).

Proof. — Leta € AT have the form

> apTit Ty
keNd

For ¢ > 0, we define a Gauss norm on A' by
Ye(a) = irlgf{ordp oy, — elkl|}.
We define
whAh := {(ao,a1,...) € WA | m + v_=_(am) > C, for some e > 0,C € R}.

P

The projection map pr : W(A') — W(A) induces a map WT(A") — WT(A).
For x € W(AT), write 2 = (ag,a1,...) and let w,,(z) € A! denote the mth ghost
component. Then we find

(wm(z)) > C.

e
™

m+7p%(am)20 = v

p

The map ¢ is defined as the composition
AT B wAh B wa),

where for any a € A, sp(a) is the unique element with ghost components (a, F(a), F2(a), .. .).
We claim that for any a € AT, there exist ¢, C' with Vo5 (F"(a)) = C for all m. From the
definition of s and the above equivalence, this will immediately show that s (a) € W1(A"),
and so by the remark in our first paragraph, t(a) € WT(A).

Abbreviate T for (T4, ...,Ty). Write F(T;) = TF + pf;(T) for each i. We can find ¢
sufficiently small such that v, (f;(T")) > —1 for each 4, and hence . (pf;(T")) > 0 for each s.
From now on abbreviate u; := pf;(T).

Assume 7. (a) > C. For k € N, let dya denote the partial derivative -2 o o Tt

k1
orT, ! aT,*

is clear that 7. (4 9ka) > 7<(a) > C. Itis also clear that for any h € AT,
o (LT}, ..., TD)) = v (h(Th, ..., Tq)).
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Assuming still v.(a) > C, we prove y=(F(a)) > C. The result v (F™(a)) = C then
follows by induction. We compute
F(a) = a(T} + u1,..., T + uq)
1
= Z ﬂék(a(Tf, o, TP U™,

SO,

13 (F(@) 2 inf (s (16u(a(TY, - TD)) + 75 (u))

> C,

£
P

as required. O

PRrOPOSITION 3.2. — For B/k a smooth, finitely generated algebra with lift Bt and
Frobenius lift F', the map

tF/ : ET — W(B)
has image in W1(B).
Proof. — Take a surjective map from a polynomial algebra ¢ : A — B and a lift of]

Frobenius F on At inducing F’. Then the result follows from the functoriality of the map
t7 and the fact that the natural projection W(A) — W (B) sends WT(A) — W1 (B). O

Let B/k be a finitely generated, smooth algebra over a perfect field k of char p > 0. We
have just shown that B admits an overconvergent Witt lift:
o:Bl— wi(B).
If we restrict o to the smooth W (k)-algebra B lifting B, we obtain an induced map
ol : B — Wi(B)

which we will call the underlying Witt lift associated to o. Conversely, if we assume that B
admits a Witt lift, o : B — W (B) such that image(c) C WT(B), then o extends canonically
to the weak completion of B, i.c. to an overconvergent Witt lift

(3.3) o: Bt - wi(B)

because W(B) is weakly complete (Proposition 2.28 in [5]). We derive from this a map of]
complexes, also denoted by o

(3.4) Q — Wy, C WOy .

Bt /W (k)
If B denotes the p-adic completion of B we also have a map

Y o = Pawa ~ WS/

In the following we show that o in (3.4) is a quasi-isomorphism if B is finite étale and
monogenic over a localized polynomial algebra Ay = k[T, ..., T,];.

4¢ SERIE — TOME 44 — 2011 —N° 2



OVERCONVERGENT DE RHAM-WITT COHOMOLOGY 231

Let f € A:= W (k)[Ty,...,T,] bea lifting of f and g}v:: W (k)[T1, - .. ,Tn]}v. B lifts to
a finite étale extension B over ﬁf~. If B = Ay[x], then B = Z};{x] We write u = [z] for the
Teichmiiller representative of z in W (B). Consider the canonical map
o:B—WHB)=Wi(A)[u]

which extends the canonical map gf~ — WT(Af). The existence of o is derived from
Hensel’s lemma [5] Proposition 2.30. Hence B has a canonical overconvergent Witt lift. Let
Bf, A;~ be the weak completions of B, A}v. Then Bt = A}{x] is finite étale over A}. Using

Proposition 1.9 we see that o extends to a comparison map

m—1
O _ 7t . tOe _ tOe i
(3.5) 0 5w =B Q% = W = D WY, e
at f =0
f

(here m = [B : Ay)).
We want to show that o is a quasi-isomorphism. First we treat the special case
B=A; =k[T1,...,T,]s. So we need to show:

o: QZL/W(IC) — WTQ;‘f/k is a quasi-isomorphism.
s

We also consider f; = image(f) in Wy (k)[T%,...,T,] =t A;. The A;-module structure in
W% /i Tespects the decomposition

Wi = W Wi

into integral and fractional part. This follows from [11] Lemma 4.
Hence we have a direct sum decomposition

Wi, = A [%] R WiQ
Ay
(36) ~ A 1 e,int e 1 e frac
~ 7, [Z] QWi @ A, [?J @ Wiy
A Ay
where the first isomorphism follows from the étale base change and the isomorphism
~ |1
Wi(4) Q) A, {N} = Wy(Ay).
a fl
1
When taking inverse limits, we put
. e 1 e,int .
im 30| 2| @winr — 02
y ¥
where X?is the p-adic completion of Z?. Then (3.6) yields a direct sum decomposition
. ~ e.,int e frac
(3.7) W, i = WQAf/kGBWQAf/k
into two parts which we denote again by the integral and fractional part. We can identify
WQ;{;“/tk with Q2. and we know that WQ% ™ is acyclic. With regards to WTQ;lf /& Weapply

Af/k
T i/

f
Proposition 1.3 and the remark after Proposition 1.3:
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Any z € WTQ;lf /1, can be written as a convergent series

<1
=2 [

=0

where 7; is a finite sum of basic Witt differentials nl(t), such that there are real numbers C and
€ > 0 with
Ye(m) —ery > C.
The supremum over all C for all possible representations of z is by definition v, (z), the Gauss
norm on the localization.
We can also define an order function on WQ;lf Jk by considering representations of z of]
the form

(3.8) z—E:;
=0

We call z convergent with radius e with respect to f if there is a representation and a constant
C € R, such that

(3.9) Ye(r) —er > C.

We denote the supremum over all C for all possible representations by fy(f )( ). We will also
express the last condition of convergence a little differently: We extend the function v, to
W, . [1/1] as follows:

f?e(w/fk) = 'Ye(w) Q k’}/e(f)
If 2 = 5,7 with z; € WQA/k[l/f], and if we denote by k; the denominator of z; in this

localization, it is easy to see that %(f ) (2) is the supremum over all constants C' such that for
a suitable representation z = ) z, we have

1
(3.10) ko < ——————= (Fe(2a) + ).
e(1+deg f)
We will prove that the notions of overconvergence and overconvergence with respect to f

are the same. We start with representations (3.8) such that (3.9) holds. We write

f=1l-e
It is enough to consider the case where € is small enough. Therefore we may assume that
~e(p) > €. We show that z is convergent with respect to 7.:

r_1 1
foolT=e
7 ”;;m
_ L n—1
-2l
Then = = 3 ap pm (p)™ " with a, € Z
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Then we find

1 1
Ye <Z [frl]n> = Ye Z Z amWTlp

l I m>r

We give an estimation for each summand separately:
fye(amﬁnpm_”) > Ye(mp™ ") —em > ye(T) +Fe(pTT) —em
> Ye(r) — e = (m = r)e + (m — ri — 1)7e(p) + Ye(p)-
The last inequality holds by [5] (2.22). Since ~.(p) > € we conclude:
el ™) 2 C o (m =i = D((p) = ) = €+ Hulp) 2 0= e(1 +deg ).
The last inequality was explained at the end of the proof of Corollary 0.13. Finally we obtain
7e(2) 2 910 (2) = (1 + deg f).
If we interchange the roles of [f] and f in the argument above we see that:
1D(2) 2 7e(2) - e(1 + deg ).
€2)

The Gauss norms ¢’/ are appropriate to study overconvergence on the integral and frac-
tional part of Wy, /. separately. More precisely let z € WQ;lf /k and let z = 21 + 29
according to the decomposition (3.7). We have just seen that v.(z) > —co & %(f )
for small e. We claim that

(2) > —o0

fyéf)(z) > —oo implies fyg)(zl) > —o0 and fye(f)(@) > —00.

Let 'yé(f ) (z) > C then there exists a representation
S|

=3

=0

i
such that
Ye(m) —ery > C.

Let 7, = 7} + 77 be the decomposition in integral and fractional part. Then

o0 [e )
E 1 1 E 1 1
zZ] = =T and z9 = =Ty
fr fr
=0 =0

As V(1) = min{7ye(7}), ve(r#)} the claim follows. Hence we obtain a direct sum decompo-
sition
tOe _ tO®,int t e, frac
(3.11) wies, = wieyh wiasy.
We will also consider the truncated Gauss norms /) [t] on

~ 1 o
At+1 |:chv:| ®Xt+1 Wt+1QA/k

A 1 e,in e 1 o, fr
= A Lf;} @, Wen Q) @ A L;} 97, Werr Q"
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1 e frac

We can define the Gauss norm 7. on ﬁtﬂ [?} Q Wiy /k in the same way as before.
Zt+1

We fixe > 0and C € R.
We define Wt+192§r7,:’8’c as the set of finite sums >, %—: € Wt+IQ;{§r7]: -

Ztﬂ [ﬂ @ Wit Qf}{"ﬁ satisfying the following. Let K be the largest integer divisible by

At
ip such that
1 w

3.10.1 Ko< — 3. (= )+C).
- ’ 6(1+degf)<€<l’“) )
Then we require the following two conditions:

() Ko=>0

(ii) k < Kp.

We know that the complex Ay, [%} X WtﬂQ;{?;C is acyclic. We show that fore > 0
Appa

sufficiently small Wy, ¢ ngc/; Y is acyclic.

Let us assume that f is regular in the variable T;. Let ¢ € Af. Then c has a unique reduced
representation:

(3.12) c=> alf,
l

where a; € A. Wewritea = Y oy, T* € A, withay, € k, and weseta = > [a][T]* € W(A).
Then we define
(3.13) g=> a/f

!

This is an integral element in W (Ay). In the following we consider still another admissible
Gauss norm on Wi 1194, k. Letw € Wi 1104, /5. Then we consider all possible expression
of the type:

w= Zm/flp» M € Wip1Qayg.
l
We forget our old notation and denote by +.[t](w) the maximum over all possible numbers

min{~.[£](n) — elp}.
It is easy to see that the condition . [t](w) > C forw € Wiy ngc/ . 1s equivalent to condition

frac,e,C
w € Wt+1QAf/k

We should remark that 4/[1] coincides with the formerly defined function. As before we
define a modified 4.[t]. Then we have 4.[t] = A [t]
We find the equalities:
AL @) =Alle),  L[t(©) = vi(o).
Indeed we verify the first equation as follows: By the representation (3.13) we find:
Aelt1(@) = min{re[t](@) — el} = min{ye(ar) = el} = 42 (c) = A[1](9)-

The other inequality is obvious.
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LeEmMMA 3.14. — Eachw € Wy11Q4, /i, has a unique representation:

(3.15) w=Y FaMu™.

This decomposition respects the non integral and the integral part, i.e. if w is integral (resp.
non integral) then all wfn) are integral (respectively non integral). For the Gauss norm we
have:

~Lt)(w) = min{pyl () + - (w™)}.

Proof. — The same as that of Proposition 2.20: The Lemmas 2.11 and 2.13 continue to
hold with F&\™ in place of ¥ [cl(-")], because the action of both elements is the same on the

K2

graded part G™. We need to verify that for fixed n:

V(S FaMw™) = min{~L[t](Fé <">> + 7 W™}
= min{p'?g(ci ) + ’76( z(n))}

It is clear from Lemma 2.13 that this is true for v.[n] in place of v.[¢]. We choose reduced

representations:
(n) Z a(n) /fl.

(3.16)

Then we find:

(ZF =(n) (n)> =[] (Z (ZF (n) (n)/fpl>>

From this we see that:

Al (Z F6§")w§”>> 2 min {re[t] (3 ("aPwi")) - <ir}

= min{o. [t)("a;y) + 7e (") — elp}
= min{7/[()("&") + (")}
This shows the Equation (3.16) because v.[t] < v.[n]. The rest of the proof of the lemma is

the same. O

PROPOSITION 3.17. — Let € € R be sufficiently small. Let w € Wy11Q4, x be a closed
Witt differential in the non integral part such that v.(w) > C. Then w = dn, where
n € Wiy1Q4, 1 is a Witt differential in the non integral part, such that v.(n) > C.

Proof. — The problem does not change if we make a finite extension of the base field k.
Therefore we may assume that f is regular in 77 as above.

Consider the residue class @ € W24,/ of w. Thisis a closed form in the fractional part,
i.e. is contained in the module:

(dv‘nPl—l)f ey (pdvn—lpl—l)f QD (pn—ldVPl)f

for n = 2. This means that all basic Witt differentials wi(l), which appear in the decom-
position (3.15) must be of the form w( ) = dngl) for some primitive basic Witt differential
771‘( ), such that Ve(w; @ )) Ye(n (1)) We set:

Z F~(1) (1)
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Clearly 7/ (1(1)) = min{p3.(;")) +7e(w;")} > 72 (w).

We will verify that for small e:
(3.18) Ye(dn(1)) = v(w).
Then we consider w(1) = w — dn(l). We conclude that v/ (w(1) > %.(w) and that
w(1) € Fil> Wy, 1Q4 ;/k- Then we expand w(1) in the form (3.15) and consider the reduction
in W3Q4,/x. We apply the same argument and find 7(2) with v.(n(2)) > ~/(w(1)) and
~v.(dn(2)) > 4L (w(1)). Continuing we obtain:

w=dn(1) + dn(2) + dn(3) +

This proves the result if we verify (3.18).

We set C = +.(w). By definition F&™ is a sum of expressions [u]?/f'? such that:

’L

pre([ul) — elp + 7. (n”) > C.
Here v is a monomial in the variables 7. We have to verify that
Y (d([u)nf /7)) > ©.

We write:

- - i o
d([u)Pn® /77) = (d([)Pn D)) /77 = tp(furn) fPrd )/ FEHVR.
Clearly «. of the first summand is greater than C. We have:

ye(plfulPn” FPraf ) FEDPY > py(fu]) — e+ 1)p + 7 (@) + pre(f) + 1.

The last expression is bigger C if

pre(f) +1—pe > 0.
But this is clearly fulfilled for small . O

£ . . .
Hence Wt+1920/’,i’c is acyclic. As the notions of overconvergence on Wy, /, and

overconvergence with respect to f are the same we can apply the remark preceding Corol-
lary 2.24. We see that the complex WTQijC/’Z consisting of elements w € WQfng/ . satisfying
~L[t](w) > C for some C independently of ¢ is exact as well. Hence

WTQ;frjg = lim ijjc/,j

is exact, as desired.

Now we can prove the following comparison result.

THEOREM 3.19. = Let f € k[Th,...,Ts) = A. Let B be finite étale and monogenic
over Ay.

Then the map o, explicitly given in 3.5, of complexes
T
(O QBT/W(k) =W QB/k

is a quasi-isomorphism.
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Proof. — We consider a lift A 7 of Ay over W (k) and a finite monogenic étale algebra B

over A 7 which lifts B. We write B=A 7lz]. We denote by Bt the weak completion of B. By
choosing a Frobenius on the weak completions we find morphisms

B—W(B), Aj— W(4y).

The elements
Lz,...,2m !

form a basis of the free A f~-module B. For any power p" the elements

n n

1,zP" 2" . g lp

form also a basis of B over A F-
We have the isomorphism of modules (not of complexes):
m—1
(3.20) WQg, =B® i, W = P =Wy, k-
i=0
Let v/ be the of Gauss norms on W4 s/ considered in Lemma 3.14. We consider the
product norms on the right hand side of 3.20. We write w € WQpg

(3.21) w=Y_ na'”.
Then we set
Ve(w) = min{y;(n;)}.
According to (3.20) we find:
m—1
dz™® = piz®? ldx = Z P,
7=0
where the 9;; € Q AW © WS4, i are integral differentials. We restrict our attention to
small e. Then we may assume that
7e(di5) > 0.
This is possible because the 1J;; are divisible by p and . (p) = 1. The last assumption ensures
that
Ye(dw) = ve(w).
We define the fractional part of WQp
WQES = B®z, WL
This is a subcomplex of W g /;,. We denote by WTQfé*ﬁ the overconvergent differentials in
Wﬂg/“kc. By the decompositions (3.5), (3.7), and (3.11), it remains to show that this complex
of overconvergent fractional differentials is acyclic.
From (3.20) we obtain decompositions for the filtrations:
m—1
(3.22) Fil" WO, = @ «77 Fil" Wi,
§=0
Consider a closed overconvergent Witt differential w € WQirac -

B/k
dw =0, ~(w)>-C.
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We will show that w = dn for 5 € Wﬂfgﬁ with v.(n) > —C. This implies that the complex
WTQIE, is acyclic.

We note that w € Fil' WO, = WO, Wesetw, = w. We construct inductively
fractional differentials w;, n; € Fil* Wﬂfgﬁc, such that v.(w;) > —C, v.(n;) > —C and

Wi = Wit1 + dn;.

We consider w; modulo Fil**t! WQ%%C i.e. as an element of griWQg";‘;C C Wi+1Qf§7°k. Then,
using (3.22), we may write:

wi=y 2o +d" py).
Since griWQf{;}‘;c is annihilated by p we have
0=dw; = ijpdviaj.
This shows that Viaj =0, forj=0,...,m — 1. We find for the truncated norms:

min{~y/[i](d"" p;)} = Yeli)(wi) > =C.

Using Proposition 3.17 we may assume after a possible modification of the p, that
Y [i)(V p;) > —C. We choose liftings V' p; € Wijjc/k, such that

(V' Bi) = A py) = —C.

Since d increases the product norm we find

e (43 aV ;) =3 (D 27V 5,) > —C.
We set
i = Zﬂfjpviﬁj, Wwit1 = w; — dn;.

This ends the induction and the proof of the proposition. O

For an arbitrary smooth algebra A, consider an overconvergent Witt lift
(3.23) P AT - wiA)

which is uniquely determined by a lifting of the Frobenius to A, (Compare Proposition 3.2.)
It induces a map of complexes, also denoted by 1,

’()[} : Q.ZT/W(IC) — WTQA/k.

Passing to cohomology we will prove the following comparison result.

PROPOSITION 3.24. — Let k = [log, dim A|. Then the kernel and cokernel of the induced
homomorphism

(UM Hi(QgT/W(k)) — H' (W'Q4,1)

are annihilated by p**.
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COROLLARY 3.25. — (a) Let dim A < p. Then 1, is an isomorphism.
(b) In general, there is a (rational) isomorphism
Hypw (A/K) = H*(WQa/ @w ) K)
between Monsky-Washnitzer cohomology and overconvergent de Rham-Witt cohomology.
(Here K = W(k)[%])
We will reduce the proof of the proposition to a local homotopy argument. The map ¢
induces a map of complexes of Zariski sheaves on Spec A :

Q% e W Qspec a/k-
i Od — i tOd — - . all s
As Hj, (Spec A’QXT/W(k)) = Hy, (W'Qg o 4,) = Oforalld > Oandalli > 0

(Proposition 1.2 and [13] Lemma 7), we have

RT'(Spec A, QZT/W(k)) = QXT/W(k)an

RT(Spec A, W Qspec asr) = Wiy,

d

hence we can reconstruct ¢ from 1:/; by applying RT'(Spec 4,.). Let {U;}; be a finite affine
covering of Spec A such that each Uj is finite étale and monogenic over a localized polyno-
mial algebra. By a result of Kedlaya [9], such a covering always exists. Let U; = Spec B; and

E;T the Monsky-Washnitzer lift of B;. Then we consider the “localization” v; of 4 to U;:
1/Jj : Q —>WTQBJ./]€.

We compare the map ¢; with the explicitly given comparison map o in (3.5) from which we
know it is a quasi-isomorphism and show the following.

B, /w (k)

PROPOSITION 3.26. — The maps p*i; and p*o are homotopic, hence induce the same map
on cohomology.

Before proving the proposition we finish the proof of Proposition 3.24. We know that
the kernel and cokernel of (p*;). are annihilated by p*. As Ker(¢;). C Ker(p*y;)
and Coker(%);)+ is a subquotient of Coker(p*; ), Ker(¢;), and Coker(t; ), are annihilated
by p* as well.

Define C* as the complex of Zariski sheaves obtained by taking the cokernel of QZ Then
one has an exact sequence of complexes of Zariski sheaves

O Toe .
OHQZT/W(]C) — W QspecA/k_’C — 0.

. 2K
The cohomology sheaves H¢(C*®) are annihilated by p>~. Hence the map C*® 2, C* induces
the zero map on cohomology. Therefore it is zero in the derived category. Applying the

functor RT" we see that R‘T'(Spec A, C*) LN R'T(Spec A, C*) is the zero map. This finishes
the proof of Proposition 3.24.

We now prove Proposition 3.26. It is implied by the following more general result. Let
B, C denote smoogl Ig:al gebras which are finite and étale over lgcahged polynomial algebras,
with smooth lifts B, C and corresponding weak completions BT, CT,
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PROPOSITION 3.27. — Let ¢1, ¢ : Bt — WT(C) denote two lifts of a map ¢ : B — C.
Then the induced maps

P 61,0 s : Q5 ww — WiQc )i

are chain homotopic, where k = |log, dim B].
We will closely follow the argument on pages 205-206 of [14].
Proof. — The chain homotopy we produce will factor through the following algebra.

DEFINITION 3.28. — Denote by D" (C) the differential graded algebra with ith graded
|piece
D"(C)' = W'Qg,, [[U]] @ WIQg L [[U]] A dU.
Denote by D'(C) the sub-differential graded algebra of D" (C') generated in degree zero by

terms
oo
-3
i=0

for which w; € p~*VW1(C) fori > 1 and such that there exist g, G with v.(w;) > G for all i.
For such a term f, we define

Ye(f) = irilf{'?/a(wi)}'

Note that D'(C)° is an algebra. The only non-obvious fact is that it is closed under
multiplication, and this follows from the property V (w,)V (wp) = pV (w,).
We now define a map

0:Q — D'(C)

BY/W (k)
as follows. Fix a presentation

B = Wk <x1, Y., ;>T 121/(P(2).

Our map will send
@i = ¢1(z) + Ulda(zi) — da(:)).

Because we have for a, b € D'(C)°, 4. (ab) > ve(a)+7:(b) and ve(a+b) > min(v.(a),v-(b)),
the proof of Proposition 2.28 in [5] can be mimicked to show that D’(C)° is weakly complete.
This immediately shows that ¢ extends to W (k)(zy,...,z,)!.

As g € W(k){(z1,...,z,)T, we have just shown p(g) € D'(C), and we must show this
element is invertible. Write ¢(g) = é1(g) + U, some f such that Uf € D'(C). Because
$1(g) is invertible in W1(C),

1 $1(9)~"
v(9)  1-U(=¢i(9)1 /)
so to show (g) is invertible it suffices to show that any 1 — Ug € D’(C)° is invertible. Write

§=Vwo+UpVwy +U?p*Vwy +--- .

It follows by a simple induction on k, starting with the base case k = 1, that

oo
gk — Z Uipk-l—’i—lvwi,
=0
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with v, (p*+1=1Vw;) > 0, same ¢ as above. Hence
1+Ug+U?3*+---€ D'(0),
as required.

Next we prove that ¢ extends to z.

LeEmMA 3.29. — There exists -
Y Ue;e D'(C)
i=0
which is a root of o(P)(2) = 2" + ¢(f1)2" "1 + -+ + o(fr)-

Proof. — Because D’(C) is weakly complete (with respect to (p)), by Hensel’s Lemma
(Proposition 2.30 in [5]) it suffices to find a root modulo p. Because the ideal (U%) C (p),
it will suffice for us to find a root modulo U?. Thus we need only find the terms ¢y and ¢;.
As usual, ¢y = ¢1(z). For ¢;, we simply set z = 322 U'c; in p(P)(2) = 2" + @(f1)2" " +
-+ 4 ¢(fr) = 0 and check that this forces

o1 = —(1(P) ()7 ((2(fr) = dr(F))eg " + -+ + ba(fr) — d1(fr)) - O

We have now shown the existence of a map ¢ : Bf — D (C)°. We extend it to a map, also
denoted by ¢, of complexes,
p: Qﬁt/W(k) — D'(C).
The chain homotopy promised in our proposition will factor through its image. This moti-
vates the following.

DEFINITION 3.30. — Let D(C) C D’(C) denote the image of .

We give now a more explicit description of what terms in D(C') look like.

LemMA 3.31. — (i) Let x denote some element of Q% . Write
Bt /W (k)
o(x) =+ UM + UdUW" + -

where i > 0. Then we may write w' = p™xG=4.0) . and w" = pmax(=d+1.0)p. yyith
pi,m; € Fil' WiQc 4.
(it) We may find e, G depending only on x such that ~.(w) > G for each coefficient w.

Proof. — (1) We prove this by induction on d. The base case d = 0 has already been shown.

Inductively assume the result for x of degree d — 1.

A term z in degree d may be written as a finite sum of terms bdz;, - - - dz;, with b € Bt
and z;; one of the generators of the polynomial algebra of which we have taken an ¢tale
extension. We will show the result for bdz; - - - dzg. Extending to other index sets is trivial,
and extending to finite sums is easy.

We are assuming the result for ¢(bdx; - - - dxg—_1), which is possibly just ¢(b). And we
know

o(dzg) = dd1(zq) + dUV (wg) + UdV (wg).
The result concerning the form of the coefficients now follows easily.

(if) We again may restrict to the case of a term bdz;, - --dz;,. Concerning ¢(b), we

already know the result. There are only finitely many nonzero terms of the form dz;, - - - dx;,
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(varying d allowed). Thus we can find £’, G’ such that every coefficient w appearing in some
term ¢(dx;, - - - dx;,) satisfies v.-(w) > G’. The result now follows from the fact that there
exist ¢”, G such that for any v.(n) > G, 7. (w) > G’ we have v (n Aw) > G". O

Let ho, h1 denote the maps of differential graded algebras D'(C) — WTQ¢ /k Which send
U — 0and U ~ 1, respectively. Our definition of D’(C')° immediately implies that the image
in degree zero really does land in WT(C), and hence the image lands there in every degree.
We also let hg, h; denote their restrictions to D(C).

Clearly we have hg o ¢ = ¢ and hy o ¢ = ¢o, because both sides agree in degree zero. We
define p*L : D(C)* — WTQ;;/; by setting

K
Py

j+1
and then extending to all of D(C) in the obvious way. Of course, it is not at all clear that our
map has image where we claim.

p"L(U'w;) = 0and p" L(U?dU A w;) =

LEMMA 3.32. — The map p*L has image in WQc .

Proof. — We first show it maps to W€2¢, and then establish overconvergence. For an

arbitrary z € Qz, Wk write

o(x)=-+U/dU Aw; + -+
as in the previous lemma. From the lemma, it suffices that
k + max(j —dim B +1,0) > [log,(j + 1)].

For the case j — dim B + 1 > 0, check the specific case ; = dim B, then note that the left
hand side grows faster with j than the right hand side. For the case j < dim B — 1, we want
to prove |log, dim B| > [log,(j + 1)], which in this case is obvious.

Now we must check overconvergence. We are done if we verify the existence of ¢/, G’
independent of j such that 751(’;1"{) > G'. For arbitrary w; € WiQ¢,y, with v.(w;) > G
this is not true. But as before we know that

m’ pHW‘ . : 1
p j+]1,wherem’2]—d1mB+n+1—Llogp(1+1)J~

There exists N depending only on dim B such that for j > N, m’ > |log,(j + 1)]. So the
following claim applies to all but finitely many terms in ¢(z).
CLAM. — Let wj € WTQC/k. If pliogs G+ | % and v.(p"w;) > G, then there exist

e', G’ depending only on e, G with . (’;1"1] ) > G

Proof. — It suffices to prove this for the equivalent norm +" of page 223. We shall prove
the result for (¢/, G”) = (5, %) Let I := log, (j + 1). Pick an n such that p?n = p*w;. Write
C := ~.(n). From Corollary 2.24 or rather its evident generalisation to finite étale extensions
over Ay we know 7. (p?'n) = C + 2I, so from our assumption C + 2/ > G. We also have
7’% (n) > %, and so

v

as claimed. O

| Q

11> ¢
_27

Njo
—~
EN
=
~
Vv
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This proves that for all but finitely many terms a in p* L(¢(z)), vz (a) > € . For the other
terms b in p” L(p(x)), we know . (b(j + 1)) > G, with j + 1 < N + 1. Thus we can find
e”,G" with 7.+ (a) > G” and .~ (b) > G” for all a,b as above, which covers everything.

This completes the proof that p” L(y(z)) is indeed overconvergent. O

Now we are basically done. It is trivial to check that p*L is a homotopy between p*hg
and p®hy. Thus p®L o ¢ is a homotopy between p*hg o ¢ = ¢ and p®h;p = ¢. For the
convenience of the reader, we state explicitly the sign convention:

d(wAn) =dwAn+ (=1)'wAdn,

where w is in degree 4. O

4. Comparison with rigid cohomology

Let X = Spec A be a smooth affine scheme over a perfect field & of characteristic p > 0.
In this section we define a canonical morphism from the rigid cohomology of X to the de
Rham-Witt cohomology.

Let W = W (k) be the ring of Witt vectors.

DEFINITION 4.1. — A special frame is a pair (X, F) such that F = Spec B is a smooth
affine scheme over W and X = Spec A is a smooth affine scheme over k which is a closed
subscheme of F'. The comorphism of this embedding is an epimorphism B — A. We will also
say that (A, B) is a special frame.

Assume moreover that we are given a homomorphism s : B — W (A) which lifts B — A.
Then we call (X, F, ) a Witt frame. If the image of s is contained in W1(A) the Witt frame
is called overconvergent.

Let (X, F, ») be a Witt frame. We denote by F' the formal scheme which is the completion
of F'in the ideal sheaf generated by p. Let ] X[ be the tubular neighborhood (Berthelot [1])
of X in the rigid analytic space Fx associated to the formal scheme F'. We will construct a
natural map

4.2) F(]X[ﬁwQ]X[ﬁ) — Wﬂx/k@)@.
It is enough to define a map
(4.3) L(X [z Ox1,) — W(A) @ Q.

From this we can deduce (4.2) by the universal property of Kihler differentials. Let F/ X
be the formal completion of F' along X. By [1] 1.1.4 (ii) the tubular neighborhood | X[
coincides with the rigid analytic space associated with the formal scheme F/ x. Let I be the
kernel of the homomorphism B — A. We denote by R the completion of B in the ideal . We
have F/ x = Spf R. The associated rigid analytic space is defined as follows: We choose a set
of generators fi, ..., fm, of I. For a natural number n we denote by R/ the p-adic completion
of
R, =R[Ty,....Tnl/(fi' =pT1,- .-, [y, — PTin)-
Then R, @ Q is an affinoid algebra and we have by definiton

L(X [z, Ox(,) =lim By @ Q.
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To define (4.3) it suffices to define a compatible system of maps
(4.4) R, — W(A).
for n large enough. The homomorphism > maps I to VIW(A). Since W (A) is complete in
the ideal VIV (A) the homomorphism » extends to a morphism
R — W(A).
Since s(f;) € VW(A) fori =1,...,m we obtain forn > 2:
x(fl") € p"TIVIW(A).

Since p is not a zero divisor in W (A) the element (1/p)»(f*) € W(A) is well defined.
Mapping T; to this element we obtain the desired compatible system of maps (4.4). This
finishes the definition of (4.3).

This construction is clearly functorial in the following sense: Assume we have a second
special frame (X1, Fy, ). We set X; = Spec A; and F; = Spec B;. Assume that we are
given a morphism of Witt frames

(45) (X,F,%)—>(X1,F1,%1).

This induces a morphism of formal schemes 13‘/ x — B /x, and therefore a morphism of the
tubular neighborhoods ] X[z —]X;[z. Our construction gives a commutative diagram

P(]Xl[ﬁ'l’@)]Xl[ﬁl —— W(A1)®Q

(4.6) | |
L(X[z Oxp) —— WA Q
This also establishes the functoriality of the morphism (4.2).
Let (X, F)) be a special frame. We choose an embedding F' C A}, in the affine space with
comorphism
W[Xy,...,X,] — B.
We write £ = AY;,. Let A, C P = P}, be the canonical embedding.
X —-FE—P

We see easily that | X[;=]X[,. We denote by Q the closure of F'in P. Let Y be the closure
of X in P. Let Q be the completion in the ideal p. Then

4.7) X>Y—Q

is a frame in the sense of rigid cohomology. By this we mean that the embeddings X — Y
and Y — @ satisfy the assumptions for the definition of the rigid cohomology groups of X
in [2] 1.3.

Our aim is to give an explicit description of a fundamental system of strict neighborhoods

Let us denote by F* the rigid analytic space associated to the scheme Fx. We have
F2r ¢ Q3 = Q. Tt is clear that FiN]Y [ is a strict neighborhood of | X [ ;. We propose
to give an intrinsic description of the strict neighborhoods which doesn’t depend on the
particular embedding F' C A},.
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It is enough to describe a fundamental system of strict neighborhoods of | X[=]X[p
in |Y[=]Y[s. The strict neighborhoods above are then obtained by intersecting with
QK C PK.

Let X = Speck[X1,...,X,]/(f1,---, fm)- Let f; € W[Xy,...,X,]forj =1,...,m
be liftings of the polynomials f;, such that d; = deg f; = deg f;. We take homogeneous
coordinates X; = T;/Tp fori = 1,...,n. Consider the homogeneous polynomials for
j=1,...,m:

Fi(Ty, ..., T,) = T f;(T1 /Ty, . .., Tn/Tp).
We denote by F the residue class modulo p. Then Y C P¥ is given by the equations:

Fy(Ty,...,T,) = 0.

We write a point (to,...,t,) of Px = P2" always in such a way that |t;| < 1 for all
i = 1,...,n and such that we have equality for at least one index. The tubular neighborhood
of Y is:

Y [= {(to,- - tn) € P | |Fj(to, ... tz)| < 1}.
For n < 1 we write:

1Y [,={(to,---+tn) € Px | |Fj(toy- - tn)| <1}
Let Z C Y denote the intersection of Y with the hyperplane {7, = 0}. We have disjoint
decompositions

Y=XUuZz JY[=X[U]Z[
We follow the notations of [1] 1.2. For A < 1 we have
1Zx=1Y [N{[to] < A}

Then U =|Y[\]Z[y is a strict neighborhood of | X[. We set Uy , =]Y[,NU;. We have the

inclusions
Uy, CUy,, for 1> 2>\ >0,

Uy CUS,, forl>n>n">0.
Let A = {\;} and n = {#;} two monotonically increasing sequences of real numbers which
converge to 1. Then we set

4.8) Usw = UU% -
By [1] the sets U} , form a fundamental system of strict neighborhoods of | X|.

Let E*» C Px = P* = (P%)* be the analytic variety associated to A%. We have
U, C E**. If B(0,1/)) denotes the closed ball of radius 1/ around 0 in E*" we can write

(4.9) UL =lY[NB(0,1/)), Us, =]Y[,nB(0,1/A).

We describe ]Y' [NE®" in affine coordinates. Consider a point (to,...,t,) € P§* withty # 0
and let (z1,...,,) be the affine coordinates. We find:

1/|to| = max{1,|z1|,..., |Tn|}-
Therefore the defining inequalities for Y| respectively Y[, become
Ifi (@1, .o, @) | < max{l,|z1|%, ... |2,|%},

(4.10)
|fj(xl’ . axn)l < nmax{]-a |‘Tlldj» ceey |xn|dj}7
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forj=1,...,m.
We set
Ur ={(z1,...,20) € B0, 1/X) | |fj(z1,...,2,)| <1, forj =1,...,m}.
We find Uy C Uy. We set Uy, = UxN]Y[,;. These are affinoid subsets of Uy ,.:
4.11) Usp={(z1,...,2,) € B(0,1/X) | |f(z1,...,20)| <1}
LEMMA 4.12. — For each real n < 1 there are reals A\g < 1 and ny < 1 such that

Uy C Unys for X> Xo, ' > 0.

Proof. — We choose )\ in such a way that |n| < )\gj for each index d;. Then we find for
A > Ao and |.Z‘,| < 1/)\ that

. X d;
i@ < n/A% <n/Ag <mo <1

for a suitable 7. This proves the assertion. O

LemMA 4.13. — We define Uy, for monotonic sequences A and n by replacing U by U in
(4.8). Then the Uy, are a fundamental system of strict neighborhoods of | X[in]Y].

Proof. — Because of the inclusions Uy, ,, C Uy, ,,. itis enough to show that Uy, is a
strict neighborhood of ] X|[. For each i € N we set 7j; = n;(1 + (1/i))~ < n;. We choose
1> )\; > \; such that i/ 5\? < 1); for each index d;. The proof of the last lemma shows that

/
US\i,f]i C Uximi-

Since ; < 1and \; < 1 are sequences which converge to 1 the set U! _ is a strict

]

neighborhood of | X[. The inclusion above shows that Uy , is a strict neighbo;}food of | X|.
O

PROPOSITION 4.14. — Let (X, F) be a special frame. Let F C E = A, be an embedding
in an affine space. Let Uy, C B be defined by (4.11).

Let X —Y — Q be associated to the embedding F C E (4.7). Then Van = Uny NFRis
a fundamental system of strict neighborhoods of | X[ in]Y [5.

Proof. — We just proved this in the case where F' = F is an affine space and P = @
is the projective space. In general one obtains the strict neighborhoods of | X[ in Y[, by
intersecting with the strict neighborhoods of ] X[ in ]Y'[5. This proves the proposition. []

It is easy to see that we end up with a cofinal system of neighborhoods if we replace in
the definition of the Uy, the polynomials f; by f; + ph;, where h; € W[Xy,...,X,] are
arbitrary polynomials. In other words, we may take for f; arbitrary liftings of f; and drop
the condition that deg f; = deg f;.

COROLLARY 4.15. — With the notations of the proposition let F ¢ E = Al be a second
embedding which gives rise to a second frame X — 'Y — Q. Then the two systems of
neighborhoods Vy , and Vy , of | X[ in Fi* are cofinal.
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Proof. — We begin with a special case. Assume we are given a closed immersion £ — E
whose comorphism is of the form

W(X1,... X0, Z] > WXy, ... X,],

where Z is mapped to a polynomial g(X7y, . .., X,,). Moreover we assume that the embedding

F — E is the composite F — E — E.
We consider the morphism of frames in the sense of rigid cohomology

X Y Q
(4.16) l l l
X Y P.

We obtain a fundamental system of strict neighborhoods of | X[ in F* by intersecting a
fundamental system of strict neighborhoods of | X[ in E% with Fg*. A similar remark
applies for E.

We will now compare strict neighborhoods with respect to the frames

(4.17) XY P
and
(4.18) XYV P

Let f1,...,fm € WI[Xy,...,X,] be polynomials whose reductions modulo p define the
closed subscheme X C A? = E,.

For positive real numbers A, 7 < 1 we have considered the affinoid subsets:
(4.19) Uxn, CB(0,1/X) C EY,
which are given by the inequalities
(4.20) |fi(@1yeen,xn)| <m, forj=1,...,m.

Next we consider strict neighborhoods V ¢ E32 with respect to (4.18). We will show that
V N E2" is a strict neighborhood of | X | £ with respect to (4.17). Moreover for each strict
neighborhood V of | X[, there is a strict neighborhood V of | X[z such that VNE® CV.
By the remark after (4.16) this would imply that the strict neighborhoods of | X| £ 0 FRE

are the same with respect to the frames X — Y — Qand X — YV — é This would prove
the proposition in the special case above.

Let us consider the open sets (4.19) for the frame (4.18):
U, = B(0,1/)) C E32.
They are given by the following inequalities
fi(@r,. )l <,
|z — g(z1,...,2z,)| < 1.

This shows immediately that
Uy D UA,n NE%.
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Therefore for each strict neighborhood V' = U, , we have found the strict neighborhood

V = Uy, such that V. N E3" C V. We have to show that V N E3" is a strict neighbor-
hood. Let ¢ be the total degree of the polynomial g. Let p > 1 be some real number. If|
|z1] < py ..., |zn| < p then we have

lg(@1, ... 20)| < ph.
This shows that

U

)\%W C UA,n~

We see that V N E3 is a strict neighborhood. This proves the proposition for the special case
we started with.

Now we consider an arbitrary second closed immersion F' — A!. We obtain a diagonal
embedding F — A™ Xgpecw Al. We take coordinates Y7, ..., Y, on Al. We compare the
comorphisms of the diagonal embedding with the comorphism of F' — A™:

W[Xi,... X0, Va,...,Y]

\
Xn]/

We find an epimorphism W [X;,... X,,,Y1,..., Y]] = W[X,..., X,], which maps X; to X
which makes this diagram commutative. We obtain a diagram

F— A™

d l

F— A" ><SpcscWI%a

B.

WXy,...,

where the vertical arrow on the right hand side is the closed immersion defined above. But
then the independence of strict neighborhoods in F* follows by induction from the case
done above. O

As a second corollary we prove the functoriality of strict neighborhoods.

COROLLARY 4.21. — Let (X1, F1) — (Xa, F2) be a morphism of special frames. Let
Vo C F3'x be a strict neighborhood of 1 X2 [Fz' Then the inverse image of Va by the map
Fe — F3% contains a strict neighborhood of 1 X1 in F1'.

Proof. — We may restrict to the case where the morphism of frames is of the following

type:
Xl E— ATVLV X A%}V - F1

l [

X2 = ATVLV = FQ.
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Consider the corresponding comorphisms
A1 — W[U],...,Un,Sl,...,Sl]

I I

A2 — W[Ul,,Un]

We choose polynomials f1, ..., fm € W[Uy,...,U,] whose reductions modulo p generate
the kernel of k[U7,...,U,] — As. Then we choose g1,...,g9x € W[Uy,...,Up, S1,...,SI]
such that the reductions of fi,..., fm,91,...,9r modulo p generate the kernel of|

k[U1,...,Un,S1,...,8] — Aj. Then Ujy, C B"(1/)) is the subset of this closed
ball given by the inequalities |f;| < nand g; < nforj=1,...mandi = 1,...,k. From
this we conclude immediately that
proj (Ui,x5) C Uz a0,
where proj : (A%)*" x (AL )®® — (A%)2" is the projection. This proves the functoriality. [
Let (X, F, ) be an overconvergent Witt frame. Let V' C F2" be a strict neighborhood of]

| X[ For a sheaf of abelian groups & on V Berthelot defines jTI. If W C V is an open
and quasicompact subset

L(W,j'9) = lim T(V' N W, 7).
v'cv

The rigid cohomology of X is by definition
(4.22) RT.i.(X) = RT(V, 57Q;).
In particular this is independent of the chosen V' ([2] (1.2.5)).
We will now define a map
L(V,5100) —» WiQy,, ® Q.
This will be compatible with the morphism (4.2)
L(V.j'Qv) —— Wix,®Q

I !

F(]X[paﬂ]x[ﬁ) — WQx,, ® Q.

We begin with the case where F' = F is the affine space. We use on W the p-adic absolute
value, such that |p| = 1/p. For n = p~'/" the affinoid algebra of Uy, ,, is

g = K()\X],,)\Xn,Tl,Tm>/(f{ —pTl,...,f;gL —me)
It consists of all power series
p= Z ar ; X'T7, arj€K,

such that limy7| 4|7/~ |ar,s|(1/A)] = 0. We have seen that there is a homomorphism
I — W(A) @ Qfor r > 2. It maps the X, to & € W(A). Clearly we have f;({1,...,6,) €
VW (A). We set

fils, &)= Yo, forj=1,...,m.
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For r > 3 the variable T} is mapped to

(Vo) /o =p"""(p})-
Then the power series p is mapped to
(423) ZaI,Jp(T_Q)lJlﬂl( V(BT))J‘

We have to show that this power series converges to an element in WT(A) ® Q. Almost all
coefticients a; y arein W. Therefore we may assume that all these coefficients are in W. Since
WT(A) is a weakly complete W -algebra we see immediately that the series (4.23) represents
an element of WT(A).

Altogether we find a homomorphism
(4.24) L(Uxn, Ouy,) = WHA) @ Q,
which exists for each A and each n with n > p~1/3.

Let V be a strict neighborhood of ] X[. It contains some Uy ,, with n > p~1/3. We have
the morphism

L(V,j"0v) — lim T(V' N Ux s Oviao, ,)-
VicV
For each V' we find A’ > XA and ' > nsuch that Uy ,,» C V'. Thisimplies Uy ,, C V'NUxy.
This gives the canonical map
L(V,j'0v) = im DUy, Oy, ) = WH(4) © Q.
)\/

By the universality of the de Rham complex we obtain a map

(4.25) I'(V,i'Qv) = Wi, ®Q,

where V' is any strict neighborhood of | X 4.
Now we consider the case of a general overconvergent Witt frame (X, F, »). We choose
a closed embedding F' C F in an affine space FE. Let

(4.26) W[Xy,...,X,] — B
be the corresponding comorphism as above. We obtain a commutative diagram
X—Y—Q
L
X—Y—P
We have a closed immersion
Y= Qxn 1Y [~ 5.

Let Uy, C E¥ as above. Then V3, = Uy, N FE" are exactly the neighborhoods “Uy ,,”
with respect to the frame X — Y — Q. The closed immersion of affinoids

Vi — Uxgps
is defined by the polynomials in the kernel of(4.26). Therefore we obtain an epimorphism

(U Ouy )= L (Vo Oy,
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whose kernel is generated by the elements in the kernel of (4.26). This shows that the
morphism

F(U)\,na @U/\,n) - WT(A) ® Q

factors through a morphism
F(V)\,Tlv QVA,n) - WT (A) ® Q
We conclude as above that for each strict neighborhood V' of | X[ we obtain a morphism
(4.27) L(V,j 0v) - Wi (4) ®Q,
and a comparison morphism
(4.28) L(V,j10,) — WTQ'A/k ® Q.
We will now show that the last morphism factors canonically through a morphism
(4.29) RI(V,j7Q;,) — WTQA/k ® Q.

Let V be a fixed strict neighborhood of | X[ in Fi* as above. We begin with the natural

restriction map
RI(V,j'0) — RT(Va 4, 5105, ).
Let V' C V be a strict neighborhood. We write ay : V' NV, , — Vy , for the canonical
immersion. By definition we have an isomorphism
iy, Zlimay.Qyay, .
VI
Because V) ,, is quasicompact the inductive limit commutes with cohomology. We obtain a
map:
RI(V, Q) = Uim R (Vi av Qi | )-
V/
Again for each V' we find X’ such that Vi ,, € V' NV, ,. The restriction to the affinoids
Vi finally gives a map
RI(V,510;) — lim RT (Voo i, ) 2 lim D(Va,y, iy, ) = Wi, Q.
Y Y

This completes the definition of the morphism (4.29). Taking into account (4.22) we obtain
for each overconvergent Witt frame (X, F, »r) a morphism

(4.30) RTyig(X) = WiQ, . ® Q.
This morphism is functorial in the triple (X, F, »r). We note that in the case where F' lifts
X,ie X =2 F Xgpeew Speck, the complex T'(V,51Q;,) = RI(V,; Qi) is by [2] (1.10

Proposition) quasi-isomorphic to the Monsky-Washnitzer complex associated to the weak
completion of B.

PROPOSITION 4.31. — The comparison morphism (4.29) for overconvergent Witt frames is

an isomorphism in the derived category. The induced isomorphism (4.30) is independent of the
overconvergent Witt frame we have chosen.
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Proof. — We begin to show the independence of (4.30). Let (A,B’,k’) be a sec-
ond overconvergent Witt frame. We set F' = SpecB’ and B” = B ®w ) B" and
F" = SpecB"” = F x F'. We obtain a overconvergent Witt frame B” — WT(A) by
taking the product of the overconvergent Witt lifts for B and B’. We consider the two
projections

F F" F'.
We may choose strict neighborhood V' C F§*, V! C Fi, V" C F}*" such that V" is
mapped to V respectively V' by the two projections. By the functoriality (4.29) this induces
a commutative diagram

RI(V, Q) RI(V",j1Q,)

\/

Wi, . ®Q.

This shows that the comparison morphisms (4.30) for the overconvergent Witt frames F' and
F"" are the same. Since the same is true for F’ we have shown the independence.
By Proposition 3.24 there are overconvergent frames (A4, A, 1) such that the associated
morphism
RTug(X) = H' Qg ©® Q) = H' (W'Qy 1) ©Q
is an isomorphism for each ¢ > 0. Therefore (4.29) is an isomorphism for arbitrarily chosen
overconvergent frames. O

To globalize our results we use dagger spaces [6]. We associate a dagger space to a special
frame (X, F'). We choose an embedding F' C E = A};,. We begin to describe the dagger
space structure on | X [4.

We have

X[pg=A{(z1,...,2m) € B(0,1) [ |fi(z1,...,2n)| <1},
with the notations introduced after (4.7). We choose a natural number v and we set
n. = p~/*. Then ] X[ is covered by the affinoids

Hy, = {(z1,.,2m) € BO,1) | |filer,..,20)| <7},

The affinoid algebra of H, is
Chp. =K <Xy, X0, 81,...,Sm > /(.. (f = pSi),-..)s

which over a suitable extension K of K becomes isomorphic to

K<Xi,. .., Xy Ty, ...,Tn> /(... (fi — pY*T3),...).
We consider for ¢ > u the open immersion

H,, — Uxng,,
(compare (4.11)). Over K it is given by a comorphism
K <Xt AX, T oo Tho> /oy (fi = M), . 0) — C

where A = p~!/? for an arbitrary chosen natural number v. The map sends the variables

AX; to p'/* X, and the variables T} — p(*/*)=(1/OT; This is an open immersion of H,, to
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the interior of Uy ,,, i.e. Hy, CC U4, in the sense of [3]. By [6] 2.21 this defines a dagger
space structure on each H,,, and hence on | X [;. We denote this dagger space by | X [E. Its
completion is the rigid space | X [.

From the definition of the dagger space structure H,T]u we conclude that
H(H} . 0) = H(U 0., 0).
We deduce an isomorphism for an arbitrary strict neighborhood U C E** of | X[,

HO(X[L, 0) = HW, j10),
(compare [6] §5).
Using the closed immersion Fi* C E7* we obtain also a dagger space structure on | X [ .

By definition this dagger structure depends only on the fundamental system of fundamental

neighborhoods V) , given by Proposition 4.14. It follows that the dagger space |.X [L is

functorial in (X, F'). If U C F&" we obtain an isomorphism

H(X[}, 0) = (U, 0).

By [6] we have moreover that
RI(x[L,0

]X[;) = RTyig(X).

We associate to each special frame (X, F') a specialization map. By [1] we have a morphism
of ringed spaces

where the right hand side is the completion of F' in the closed subscheme X. If we view this
as a morphism of Grothendieck topologies only we obtain a map

sp JX[L=]X[— X.

(see [6] Thm. 2.19 for the last equality.)

We rewrite the comparison morphism as defined before (4.28) in terms of dagger spaces
PAX[L Qxp) = Wi 0 Q,
F

where X = Spec A.
We have also a local version of this morphism

(432) SP, Q]X[L — VVJ[Q)(/]C ® Q

To see this we consider an open set U = Spec A C X, f € A. Let f € Balift of f, where
Spec B = F'. The open set |U[;C] X[ inherits the structure of a dagger space. To define
(4.32) it is enough to show that this dagger space structure coincides with that given by the
special frame (U, Spec By). Indeed, form the commutative diagram

U — SpecBy — A"xA — P x P

! ! ! !

X — SpecB ——s A", Pn
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This induces a map of frames in the sense of rigid cohomology

U Y’ Q'
[
U Y 0.

The last vertical arrow is proper and is an open immersion in a neighborhood of U. We
conclude by [1] Thm. 1.3.5 that the strict tubular neighborhoods associated to the two frames
are the same. This implies the desired isomorphism of dagger spaces.

Let now X be a smooth quasiprojective scheme over k. Our next aim is the definition of]
a comparison morphism

RT.(X) — RIO(X, W'Qx/1) ® Q.

DEFINITION 4.33. — Let R be a ring. We call A a standard smooth algebra over R if A
can be represented in the form

A=R[Xy,... X /(f1s e ),

where m < n and the determinant

312—) .~
det(an , o t,i=1,...m.

is a unit in A. We call Spec A a standard smooth scheme.

We remark that a localization of a standard smooth algebra by an element is again stan-
dard smooth. Since X is smooth over k it has a covering by standard smooth neighborhoods.

We choose an open embedding X — Projd, where  is a finitely generated graded
algebra over k. We consider finite coverings X = U;e; D7 (h;), where the h; €  are
homogeneous element which have all the same degree. If we choose the covering sufficiently
fine we may assume that all X; = D™ (h;) are standard smooth schemes over k. For a subset
J = {i1,...,4:} C I weset

X;=X;,N---NX,,.
We write X ; = Spec A;. Then Aj is a localization of A;, by a suitable element g € A,,.

Let A as in Definition 4.33. We choose arbitrary liftings fireesfm € W[Xy,...,X4].
Let B be a localization of W[X1, ..., X,]/(f1,. .., fm) with respect to det ({?)’;), where
i,j = 1,...m. Then B is a standard smooth algebra which lifts A over W.

We will choose for each A; a standard smooth lift B; as above. We set F; = Spec B; and
obtain special frames (X, F;) for i € I. For J C I we consider the closed embedding

(4.34) x;—[[F-
i€

This is a special frame.
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PROPOSITION 4.35. — Let us denote by () the dagger space which we introduced on the
tubular neighborhood 1X ;[ with respect to the special frame (4.34) and let sp : () — Xy be
the specialization morphism. Then the canonical map

sp. {2 — Rsp, )
is a quasiisomorphism.

Proof. — We will reduce this to a more special situation. The main ingredient is the strong
fibration theorem of [1] 1.3.5. In terms of dagger spaces it has the following consequence.

Let (Z, Fy) and (Z, F3) be special frames. We denote by ¢, and ¢); the corresponding
dagger spaces. Let v : F} — F5 be a morphism of frames which induces the identity on Z.
If v is étale in a neighborhood of Z in F} then v induces an isomorphism ¢; — ().

To see this we choose closed immersions F; — A}, and F; — AJ},. We consider the

commutative diagram
n m
F, —— A}, x Al

I
Fp — A,
We denote by P; the closure of Fy in Pfy, x Py}, and by P, the closure of F; in Pj;,. We note

that F} is open in P; and F5 is open in Ps. Let Y resp. Y3 be the closure of Z in P; resp. Ps.
Taking the p-adic completions we obtain a commutative diagram

VA Y; P
1] | |-
VA Y, b,.

Then u is proper and étale in a neighborhood of Z in P;. Therefore[1]is applicable and shows
that the obvious isomorphism ] Z[z —]Z[p, extends to an isomorphism of strict neighbor-
hoods. In particular the dagger spaces are the same.

This being said we continue the proof. We fix an index iy € J. If J = {io} the assertion
follows from the proof of [2] Prop. 1.10. By the choice of our covering A is the localization
of A;, by an element g € A;,. We take a lift § € B;, and we set B; = (B;,);. Then
F; = Spec B;_ is a standard smooth scheme over W which lifts X ;.

We set B = [[;czi2i, Fi- By the strong fibration theorem above the special frames
(X7, Fi, x E) and (X, Fj, x E) have isomorphic dagger spaces. It is enough to consider
the latter one. Since F is standard smooth we can choose an étale morphism £ — AJ;, for
some number n. Again by the strong fibration theorem it is enough to prove our proposition
for the special frame (X, F} x Aj,).

We may assume the map X ; — Aj};, induced by the last special frame factors over the zero
section Spec k — AJ},. Thisis seen by a simple coordinate change. Consider the comorphism
of the closed embedding X ; — F] x Af,:

(4.36) Bl [X1,...,Xa] > Aj.
We find elements b; € Bj such that v(b;) = v(X;). Since we may take X; = X; — b;,
i = 1,...,n as new indeterminates on the left hand side of (4.36) we see that our original
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special frame is isomorphic to one of the required form. Our proof will be finished by the
Corollary 4.38 of the following: O

PROPOSITION 4.37. — Let D = {z € K | |z| < 1} the open unit ball with its natural
dagger space structure. Let n be a natural number. Let Q) = Sp' A be a smooth affinoid dagger
space, such that ng is a free O-module. Then the following holds:

1. H%(Q,9;,) — H(Q x Dn,%xm)
2. The complex H'(Q) x D™,

! QXD") is acyclic.
3. Hi(Q x Dn’Q‘IQXDn) = 0/fori > 2andall q.

is a quasiisomorphism of complexes.

This Proposition is inspired by [2] Thm. 1.4. We postpone its proof to the end.

COROLLARY 4.38. — Let Z = Spec A be a smooth affine scheme over k. Let F = Spec B
be a smooth affine scheme which lifts A. Let ) =|Z [; be the tubular neighborhood with its
dagger space structure. We consider the constant map to the origin Z — AJ,,.

The dagger space associated to the special frame (Z, F x AY,) is @ x D™, Let

QxD"— Z

be the specialization map.
Then the natural morphism

sp, Q2 — Rsp, Q2

Qx Dn Qx Dn

is a quasiisomorphism.

Proof. — We consider the spectral sequence of hypercohomology
(4.39) FH(RP sp, N )= RF7sp, Q
For an affine subset U C Z the inverse image % C ¢ by sp : ¢ — Z is an affinoid dagger

space. Choose U sufficiently small, such that Q;, is free.

By Proposition 4.37 the complex H? (% x D", Q. n) is acyclic for p > 1. It follows that

are acyclic. Therefore the spectral sequence (4.39) degenerates.

Qx Dn QxDn*

the complexes R? sp,, Q'QX Pn
This proves the Corollary and Proposition 4.35. O

THEOREM 4.40. — Let X be a smooth quasiprojective scheme over k. Then we have a
natural quasiisomorphism
RT.ig(X) = RI(X,WiQx /) ® Q
Proof. — We choose a covering {X,};c; as above. We consider the simplicial scheme
Xe. = {Xs}scr and its natural augmentation € : X, — X. We set F;; = [[;c; Fi. Then

we obtain a simplicial object of frames (X ;, F';) which gives rise to a simplicial dagger space
Qe = {{s}. For each J C I we have the comparison morphism (4.32)

sp. 2y, —» Wiy, ©Q
This glues to a morphism of simplicial sheaves

sp. Qa, = W'z, Q.
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By Proposition 4.35 and Proposition 4.31 this gives a quasiisomorphism

Rsp, 2, » Wiy, 1 ®Q
(4.41) Re.RspQg, TR Wiy, 1 @ Q= WiQy, Q.
We will verify that the left hand side of (4.41) is a complex on X whose hypercohomology is
rigid cohomology. We consider a frame P : X — X — P which gives the rigid cohomology
of X. If P’ : X — X' — P'isa second frame we may form the product as follows: We

consider the closure X" of X in X’ x X". The we obtain a new frame X — X" — P x P'.
We denote this frame by P x P’.

By [4] we find a simplicial frame {P ;} where P is a frame for X ; with an augmentation
to P. To the frames (X, F;) we may associate functorially frames Q;. We obtain a
commutative diagram of simplicial schemes

P;xQ;, —— Qu
| |
P — X

Consider the corresponding diagram of dagger spaces. Since each of these dagger space gives
the rigid cohomology of X ; we obtain quasiisomorphisms

Rsp,Qq, «—— Rsp,Qlr, —— Rsp,Op,.

Here R ; denotes the dagger space associated with P ; x Q. But this implies that we obtain
quasiisomorphisms of simplicial sheaves too:

(4.42) R sp,2q, «— R sp,Qr, —— R sp, Op,.
If we apply RT'(Re., ?) to the last complex in (4.42) we obtain a quasiisomorphism with
RT.ig(X) by [4]. Together with (4.41) this proves the theorem. O

It remains to prove Proposition 4.37. Let § = Sp' A be a reduced affinoid dagger
space. Recall that A is a weakly complete finitely generated algebra tensored with Q [14].
We represent A as a quotient

kK< Xip,...Xm>T— A
The algebra on the left hand side is the union of the algebras for real numbers € > 0

K<Xi,.. Xy >={)_c;X' CK[[X1,... Xm]] | ordyer —€]I] — oo}
I

This is a Tate algebra if € € Q [3] 6.1.5. We denote by 4. the Gauss norm on this ring:

Fe <Z cIXI> = irllf{ordp cr — €I}
I

Let A, be the image of K < X, ... X,, > by k. We denote by ~, the quotient norm on A..
Since A, is reduced by assumption ~, is equivalent to the spectral norm o on A..

Let D = Sp! K < X >T be the closed dagger disc. We write
A<Ty, ..., Ty >":=T(Q x D", ).
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It follows from the definitions that A < Ti,...,T, >T consists of all power series
S ,a;T7 € (A ® Q)[[T1,...,T,]] such that there is an ¢ > 0 and a number C with
ay € Acforall J € ZZ, and such that

(4.43) oclay) —€lJ| > C.

In this condition we could replace o, by ..

LEMMA 4.44. — Let Q = Sp' A and let D be the open dagger disc. Then the algebra
T'(Q x D™) consists of all power series

ZGJTJ € (A Q)[T1,...,Tn]],
7

such that for each § > 0 there is an € > 0 and a constant C' such that for all J we have that
ay € A and that

oc(as) +6J| = C.

Proof. — Indeed, let Ds = {z € K | ord,z > &} be the closed dagger disc. Then
['(¢ x D}, O) consists of all power series 3 ; a ;T such that there is an € > 0 and a constant
C with

oe(ay)+0|J| —€lJ| > C.
This implies the result. O

LEMMA 4.45. — Let @ = Sp' A and let D be the closed dagger disc. Let
(4.46) An= €P T(QxD")dT; A---NdT;,
1< <ip
be the complex with the obvious differential.

Then the complex A — A, is acyclic.

Proof. — We consider A,, as a multicomplex with the partial differentials 9;,7 = 1, ..., n.
Let A,, C A, be the direct summands of 4.46 with iy, < n.

It suffices to show that the following complex is exact:
O—>An_1—>1~\n%>/~\n—>0.

The only nontrivial thing to show is that an expression fdX,,, with f € I'(¢ x D™) is the
partial differential of some g € T'(Q) x D™). Weset f = 3" ; a;T7. We denote by e the vector
(0,...,0,1) € Z™, and we denote by j, the last entry of the vector J. We have to show that

the power series
Z LTJ+6
7 In +1
isin ['(Q x D™).
By (4.43) we find € > 0 and C such that

clay) —elJ| > C.
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We take 0 < € < e. We note that A, C A, and that o.r > .. Since o, is multiplicative we
find

0 (5) = €1 4 o] = 0 (ay) — ordy (G +1) ~ (7] + 1)
> oc(as) —€(|J[+1) + (e = €)(|J| + 1) — ordp(jn + 1)
>C—e+(e—€)(n+1) —ord,(jn + 1).
It is clear that the last expression is bounded below independent of J. O

We have the same for the open disc D.

LeEmMA 4.47. — With the same notations as before let
(4.48) An= €P T(QxD")dT;, A---AdT;
i< <idg
be the complex with the obvious differential.

Then the complex A — A,, is acyclic.

Proof. — As in the proof of the last Lemma the only nontrivial thing to show is that an
expression fdX,,, with f € I'(¢) x D”) may be written fdX,, = 9,,g forsome g € I'(¢ x 13”)
We have to show that the power series
Z : aj lTJ+e

= Jn T+

isin I'(Q x 13"). We apply Lemma 4.44. Assume § > 0 is given. We take any ¢’ < §. Then
we find € > 0 and a constant C such that

oelay) + 8|7 > C.

We see that the following expression is bounded below:
ay
Jn+1

oc( )+ 0(]J +e|) = gelas) —ordp(jn + 1) + (6 = &) (|J| + 1)&'(|J[+1). O

We come now to the proof of Proposition 4.37. We write
pr=Ju
i=1
as a union of dagger balls of ascending radius. For an abelian sheaf & on D we define the
sheaves 6°(F) = €1(9):
V) =[[7W:nV).

t=1
We obtain a resolution of &

09 — 6T - EHT) -0

Hst = H(St - St+1)
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If  is a coherent 0, .,.-module the cohomology groups H? (¢ x Uy, &) vanish for p > 1

by Tate-acyclicity for affinoid dagger spaces [6]. Therefore RI'(Q x D™, ) is represented by
the global sections of the complex (4.49)

[12:1 (@ x Up) — [[321 (@ x U)
[1se = [1(st — se41)-

This proves already the third assertion of Proposition 4.37.

(4.50)

Let 7 : @ x U; — @ be the projection. We write
G} = (m"Qp) (2 x Uy).

This is a free module over H°(Q x Uy, ©) by assumption. With this notation the complex
H°(Q x Uy, Q) v,) is represented by the double complex with the components

CPUU) = @1y <..i, GFAT, A - N dT,,.

The map (4.50) induces a morphism of complexes

(4.51) Hcpq U,) — HC”q(Ut

t=1
The kernel resp. the cokernel of the induced map of total complexes are the complexes

HO(Q x D™, Q. n) TESD. HY(Q x D", Qo n)-

By Lemma 4.45 the complex CP'(U;) for fixed p is quasiisomorphic to H(Q, Q2 0) Te-
garded a a complex concentrated in degree zero. Therefore the total complex of CWI(Ut)
is quasiisomorphic to the complex H°((, Q).

We consider the projection 7 : ¢ x D" — @) and write
GP = (m"Q8)(Q x D™).

By assumption these are free modules over H?(Q) x Dn, D).
Then we may represent H°(Q x D™ ox pn) by the double complex with components

BP9 = @il<...iqépTi1 A= NdT;,.

Lemma 4.47 asserts that the total complex of BP9 is quasiisomorphic to the complex
HO(Q, Q). This proves the first assertion of Proposition 4.37.

We deduce finally that the complex H!(Q x D v

ox 5n) is quasiisomorphic to the total

complex of the triple complex
B — [[ ey — [[ cmew).
t=1 t=1

By what we already proved the last complex is quasiisomorphic to the total complex of the
double complex

HO(Q, ) HHH (Q,9) —’HH (2,9),

t=1 =

Hst'_’H (8t — 5¢11)
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where the first embedding is diagonal. But the total complex is acyclic because the double
complex is already acyclic with respect to the horizontal differential. This proves the second
assertion and finishes the proof of Proposition 4.37.
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