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Incomplete understanding of three key properties of the cli-1

mate system—equilibrium climate sensitivity, rate of ocean2

heat uptake and historical aerosol forcing—and their underly-3

ing physical processes lead to uncertainties in our assessment4

of the global-mean temperature evolution in the twenty-first5

century1,2. Explorations of these uncertainties have so far6

relied on scaling approaches3,4, large ensembles of simpli-7

fied climate models1,2, or small ensembles of complex cou-8

pled atmosphere–ocean general circulation models5,6, which9

under-represent uncertainties in key climate system properties10

derived from independent sources7–9. Here we present results11

from a multi-thousand-member perturbed-physics ensemble12

of transient coupled atmosphere–ocean general circulation13

model simulations. We find that model versions that repro-14

duce observed surface temperature changes over the past15

50 years show global-mean temperature increases of 1.4–3K16

by 2050, relative to 1961–1990, under a mid-range forcing17

scenario. This range of warming is broadly consistent with18

the expert assessment provided by the Intergovernmental19

Panel on Climate Change Fourth Assessment Report10, but20

extends towards larger warming than observed in ensembles-21

of-opportunity5 typically used for climate impact assessments.22

From our simulations, we conclude that warming by the mid-23

dle of the twenty-first century that is stronger than ear-24

lier estimates is consistent with recent observed tempera-25

ture changes and a mid-range ‘no mitigation’ scenario for26

greenhouse-gas emissions.27

In the latest generation of coupled atmosphere–ocean general28

circulation models (AOGCMs) contributing to the Coupled Model

Q1

Q2
29

Intercomparison Project phase 3 (CMIP-3), uncertainties in key30

properties controlling the twenty-first century response to sustained31

anthropogenic greenhouse-gas forcing were not fully sampled,

Q3

32

partially owing to a correlation between climate sensitivity and33

aerosol forcing7,8, a tendency to overestimate ocean heat uptake11,1234

and compensation between short-wave and long-wave feedbacks9.35

This complicates the interpretation of the ensemble spread as36

a direct uncertainty estimate, a point reflected in the fact that37

the ‘likely’ (>66% probability) uncertainty range on the transient38

response was explicitly subjectively assessed as −40% to +60%39

A full list of affiliations appears at the end of the paper.

of the CMIP-3 ensemble mean for global-mean temperature in 40

2100, in the Intergovernmental Panel on Climate Change (IPCC) 41

Fourth Assessment Report (AR4). The IPCC expert range was 42

supported by a range of sources10, including studies using pattern 43

scaling3,4, ensembles of intermediate-complexity models1,2 and 44

estimates of the strength of carbon-cycle feedbacks13. From this 45

evidence it is clear that the CMIP-3 ensemble, which represents 46

a valuable expression of plausible responses consistent with our 47

current ability to explore model structural uncertainties, fails to 48

reflect the full range of uncertainties indicated by expert opinion 49

and other methods. 50

In the absence of uncertainty guidance or indicators at regional 51

scales, studies have relied on the CMIP-3 ensemble spread as a 52

proxy for response uncertainty14, or statistical post-processing to 53

correct and inflate uncertainty estimates15, at the risk of violating the 54

physical constraints provided by dynamical AOGCM simulations, 55

especially when extrapolating beyond the range of behaviour in 56

the raw ensemble. 57

Perturbed-physics ensembles6,16,17 offer a systematic approach to 58

quantify uncertainty in models of the climate system response to 59

external forcing. Here we investigate uncertainties in the twenty- 60

first century transient response in a multi-thousand-member 61

ensemble of transient AOGCMsimulations from1920 to 2080 using 62

HadCM3L, a version of the UKMetOffice UnifiedModel, as part of 63

the climateprediction.net British Broadcasting Corporation (BBC) 64

climate change experiment (CCE).We generate ensemble members 65

by perturbing the physics in the atmosphere, ocean and sulphur 66

cycle components, with transient simulations driven by a set of 67

natural forcing scenarios and the SRES A1B emissions scenario18, 68

and also control simulations to account for unforced model drifts 69

(Methods and Supplementary Fig. S1). 70

Figure 1 shows the evolution of global-mean surface tempera- 71

tures in the ensemble (relative to 1961–1990), each coloured by 72

the goodness-of-fit to observations of recent surface temperature 73

changes, as detailed below. The raw ensemble range (1.1–4.2 K 74

around 2050), primarily driven by uncertainties in climate sensitiv- 75

ity (Supplementary Information), is potentially misleading because 76

many ensemblemembers have an unrealistic response to the forcing 77

over the past 50 years. We compare model-simulated spatial aver- 78
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Figure 1 | Evolution of uncertainties in reconstructed global-mean
temperature projections under SRES A1B in the HadCM3L ensemble. Blue
colouring indicates goodness-of-fit between observations and ensemble
members, plotted in order of increasing agreement (light to dark blue).
Black line, the evolution of observations, and thick blue lines the ‘likely’
range (66% confidence interval) from the ensemble. Red bars show the
IPCC-AR4 expert ‘likely’ range around 2050 and 2080. All temperatures
are relative to the corresponding 1961–1990 mean. For consistency and to
account for the observational mask, global-means are reconstructed from
Giorgi+ocean region averages (0.2 K less on average).

ages (Giorgi regions and ocean basins, Supplementary Table S3 and1

Fig. S7) of five-year mean surface (1.5m) temperature changes over2

1961–2010 with observations19, all expressed as anomalies from3

the respective 1961 to 1990 mean. We test model versions against4

regional temperature changes over the past 50 years because they5

have been shown to correlate well with forecast future warming3,6

whereas mean temperatures do not20. We constrain the model base7

climatology by filtering the ensemble to retain only model versions8

requiring a global annual mean flux adjustment in the range9

±5Wm−2, comparable to estimates of observational uncertainty in10

top-of-atmosphere fluxes611

Assessing goodness-of-fit, which represents a limited expression12

of model error, requires a measure of the expected error13

between model simulations and observations due to sampling 14

uncertainty, assuming it is primarily from internally-generated 15

climate variability. We estimated variability using segments of long 16

pre-industrial control simulations from CMIP-3, filtered to retain 17

spatial scales on which AOGCM-based estimates of variability 18

are reliable (Supplementary Fig. S8). We focus on the range 19

of projections provided by model versions that satisfy a given 20

goodness-of-fit threshold, rather than explicitly weighting model 21

versions, given the sensitivity of results to noise in individual 22

simulations21 and parameter sampling design22. 23

Figure 2a shows that without a goodness-of-fit threshold, 24

hindcasts of 2001–2010 global-meanwarming relative to 1961–1990 25

show a wide range from 0 to 1.5 K. We define a ‘likely’ range 26

(66% confidence interval) by considering the range from ensemble 27

members with model error (y-axis) lower than the 66th percentile 28

of the distribution of model error arising from estimates of internal 29

variability alone (black crosses), giving a range of 0.3–0.9 K. This is 30

the range of warming to date that we estimate might have occurred 31

at this confidence level given the evidence of our ensemble and 32

estimates of modelled internal climate variability from CMIP-3. 33

The observed warming of 0.5 K is close to our best-fit model 34

version (not identical, as we use more than just global-mean 35

trend information in our goodness-of-fit measure), and 0.1 K 36

below the centre of our uncertainty range. This is consistent 37

with temperatures over 2001–2010 being slightly depressed by a 38

combination of internal variability23 and two factors not sampled 39

in our ensemble: stratospheric water vapour decreases24 and an 40

unusually low solar minimum25. Note that the grey bar represents 41

observational uncertainty in the warming that actually occurred, 42

while our constrained ensemble range represents the warming that 43

might have occurred over this period given internal variability and 44

response uncertainty. 45

On the assumption that models that simulate past warming 46

realistically are our best candidates for making estimates of the 47

future, we find a ‘likely’ range of 1.4–3K for warming around 2050 48

under the SRES A1B scenario (Fig. 2b). No ensemble members 49

warm by less than 1K by 2050 under this scenario, despite the large 50

size of the ensemble and allowance for natural forcing uncertainty: 51

we allow explicitly for future volcanic activity and include a scenario 52
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Figure 2 |Goodness-of-fit to recent temperature changes as a function of global-mean warming. a, 2001–2010 reconstructed hindcast; b, 2041–2060
forecast under SRES A1B for global-mean temperature, both as anomalies from 1961 to 1990. Coloured triangles, members of the HadCM3L
perturbed-physics ensemble, with colours denoting the corresponding slab model estimated equilibrium climate sensitivity. D symbols, standard physics
model configurations differing in natural forcing scenario and scaling on anthropogenic sulphate emissions. Black crosses, realizations of model error and
corresponding temperature changes arising from simulations of internal variability, with the horizontal line denoting the 66th percentile of the error
distribution. Vertical dotted lines, the range of the HadCM3L ensemble with errors lower than this percentile corresponding to a ‘likely’ range (66%
confidence interval). Grey triangles, simulations with global annual mean flux adjustments outside ±5Wm−2. Black vertical bar and grey band in a,
observations and ‘likely’ range. Horizontal bar in b, the expert IPCC-AR4 ‘likely’ range. Black filled circles CMIP-3 simulations, black open circles QUMP
HadCM3 simulations. Arrowed larger triangles refer to models highlighted in Fig. 3.
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Figure 3 | Surface temperature anomaly fields relative to 1961–1990 for 2001–2010 hindcast and 2041–2060 forecast for a low-response ensemble
member, A (!T2050 = 1.4K), and high-response ensemble member, B (!T2050 = 3K) labelled in Fig. 2. a, Observed 2001–2010 anomaly; b,dmodel A
anomaly for 2001–2010 and 2041–2060; c,emodel B anomaly. White regions in a–c indicate missing data, defined as >40% of yearly data missing over
1961–1990 or 2001–2010. The same mask is applied in b and c. Note the factor of two difference in colour-scale between a–c and d,e.

in which solar activity falls back to 1900 levels. This finding is1

compatible with energy balance calculations26, given the level of2

greenhouse-gas forcing by 2050 and the lower limit of climate3

sensitivity explored in the ensemble at approximately 2 K, close to4

the lower end of the range of sensitivities considered ‘likely’ by5

the IPCC-AR4 (ref. 10).6

The lower end of our ‘likely’ range for 2050 warming at 1.4 K is7

consistent with the lowest responses in the CMIP-3 ensemble (filled8

circles Fig. 2b), lower than the lowest realistic (on this measure)9

members of theUKMet-OfficeQUMPHadCM3perturbed-physics10

ensemble6 (open circles Fig. 2b), and higher than IPCC expert11

lower bound10 (the CMIP-3 ensemble-mean minus 40%). This is12

contingent evidence that the real-world response is likely to be13

at least as large as the lowest responses in the CMIP-3 ensemble,14

and that the IPCC-AR4 expert estimate of the lower bound was15

probably over-conservative. This comparison with the IPCC expert16

assessment is valid under the assumption of constant fractional17

uncertainty in the twenty-first century response3,8, given that the18

IPCC expert estimate was stated for 2100.19

At about 3 K, the upper end of our uncertainty range for 205020

warming is consistent with both the highest responses in the QUMP21

ensemble and the IPCC upper estimate of the CMIP-3 ensemble-22

mean plus 60% (ref. 10), but substantially higher than the highest23

responses of the CMIP-3 ensemble members that are generally used24

for impact assessment (one model did give a higher response, but25

was omitted in headline uncertainty ranges because of concerns26

about its stability). Thus uncertainty estimates based solely on27

ensembles-of-opportunity or small perturbed-physics ensembles28

are underestimated compared with independent studies2,3. We are29

reluctant to quote a more precise upper bound because of the30

small number of model versions in this region and the fact that31

goodness-of-fit does not deteriorate as rapidly as it does at the32

lower bound, possibly because of the inclusion of natural forcing33

uncertainty: we can, however, conclude that warming substantially34

greater than 3K by 2050 is unlikely unless forcing is substantially35

higher than the A1B scenario27. The higher upper bound compared36

to CMIP-3 is mostly due to our inclusion of a wider range of37

climate sensitivities but also partly to our wider range of natural38

forcing scenarios (Supplementary Figs S1 and S4). Towards the39

end of the century, we observe a similar relationship with the40

IPCC expert estimate (red bar, Fig. 1), although by that time41

the uncertainty could be larger if carbon-cycle feedbacks were 42

included in our ensemble13. 43

To the extent that policy makers require ‘a range of plausible 44

representations of future climate’28, providing uncertainty guidance 45

in this way can have an important role to play. Further observational 46

constraints may reduce uncertainty further, particularly those 47

relating to forced responses such as the seasonal cycle29, although 48

the use of seasonally varying flux adjustments here may distort any 49

relationship. We find little sensitivity in our results to varying the 50

flux adjustment threshold and removing this constraint entirely 51

adds approximately 0.4 K to the upper bound in 2050 through 52

admitting a number of high climate sensitivity model versions 53

(Supplementary Fig. S10). Conversely, we are likely to have 54

undersampled uncertainty in ocean heat uptake arising from ocean 55

physics through perturbing only a single, coarse-resolution, ocean 56

model structure6: more generally, sampling structural uncertainty 57

might allow for the impact of further observational constraints such 58

as ocean heat content changes. 59

Perhaps unexpectedly, we observe little relationship between 60

climate sensitivity and aerosol forcing (as measured through the 61

sulphate burden) in the constrained ensemble (Supplementary 62

Fig. S2). We attribute this to the choice of the 1961–1990 63

reference period for the transient-control anomaly, which removes 64

much of the spread across the ensemble arising from aerosol 65

forcing uncertainty (Supplementary Figs S3 and S4). Filtering 66

the ensemble based on a comparison of the modelled values 67

of the mean transient-control anomaly over 1961–1990 to the 68

observed warming between 1891–1910 (representative of the 69

control simulations in the ensemble) and 1961–1990, reduces 70

our upper bound to approximately 2.8 K. The design of the 71

experiment, whereby simulations were launched in 1920, precludes 72

us from applying this as a formal constraint given the difficulty 73

of comparing the control simulation like-for-like to any period in 74

the past, in addition to the paucity of observations at the start of 75

the twentieth century. 76

Unlike uncertainty estimates based on intermediate-complexity 77

models11, pattern-scaling4 or statistical emulation15, every member 78

of the BBC CCE is consistent with physical constraints as expressed 79

in the HadCM3L AOGCM, ensuring physical coherence of results 80

for investigating joint uncertainties. However, the BBC CCE 81

clearly does not sample model errors common to all of the 82
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current generation of AOGCMs that arise from limited process1

understanding and computational resources.2

Figure 3 shows surface warming in a low-response (Model3

A, global !T2050 = 1.4K) and high-response (Model B, global4

!T2050 = 3K) ensemble member. Model A and B show a5

larger difference in the contrast of Pacific equatorial warming—6

specifically the Niño 3.4 region—relative to the warming over the7

whole Pacific Ocean, when compared with the corresponding range8

observed in either the CMIP-3 or QUMP ensembles, providing9

evidence that perturbed-physics ensembles can sample spatial10

response uncertainty.11

Uncertainty estimates for the transient response are conditioned12

on a given emissions scenario10. For the SRES A1B scenario,13

we have shown that a more complete sampling of uncertainty14

in key climate system properties and forcings produces a wider15

range of projections for the coming century consistent with recent16

surface temperature observations than in the CMIP-3 ensemble17

used for regional projections in IPCC-AR4, and similar to the IPCC18

authors’ expert assessment of uncertainty in the global response.19

Reliance on the spread of responses in an ensemble-of-opportunity20

can underestimate uncertainties, particularly at the upper end21

of the range for twenty-first century warming. Our ensemble22

provides a set of physically coherent simulations consistent with23

recent observed warming, giving plausible worlds beyond the24

range generated by ensembles-of-opportunity which can aid the25

development of robust climate adaptation policies.26

Methods27

Model simulations. HadCM3L consists of a 3.75◦ longitude by 2.5◦ latitude28

atmosphere with interactive sulphur cycle coupled to a dynamical ocean of29

the same resolution30. Model physics parameters are perturbed through expert30

elicitation16, and informed for atmospheric and sulphur cycle physics perturbations31

by results from the climateprediction.net slab model experiment30, choosing32

between two and four values for each parameter (Supplementary Tables S133

and S2). Atmospheric configurations are initially chosen to span a wide range34

of equilibrium climate sensitivities (2–9K, estimated from the slab ocean35

model experiments) whilst still retaining an acceptable climatology, measured36

through the top-of-atmosphere flux imbalance relative to the standard physics37

settings (±10Wm−2).38

Flux adjustments are calculated for 10 ocean configurations through a39

200-year spin-up coupled to the standard atmosphere, and for each of 15340

perturbed atmospheres30, producing 1,530 possible model versions. For each41

model version the flux adjustments were applied in two initial condition42

ensembles of 160-year simulations: (1) control simulations with constant43

forcing (representative of 1880–1920 mean conditions) to check and allow for44

unforced drifts and (2) transient simulations from 1920 to 2080 forced with45

changes in greenhouse gases and a set of sulphate emissions under the SRES A1B46

emissions scenario18, together with a set of solar and volcanic forcing scenarios47

(Supplementary Fig. S1).48

In total 9,745 complete simulations were returned from the49

climateprediction.net participants. Given bandwidth and storage constraints50

in the distributed computing environment, we restrict our analysis to surface51

temperature data focussing on 22 Giorgi land regions and 6 major ocean basins for52

our comparison with observations (Supplementary Table S3).53

Data preparation. Of the 9,745 complete simulations there are 1,656 controls and54

8,089 transients. Model versions with absolute global-mean drifts in the control55

climate larger than 0.4 K/century are flagged, indicating the flux adjustment has56

not eliminated unforced drifts. Transient simulations are matched based on their57

parameters and natural forcing scenario. Initial condition ensemble averages58

are taken where possible to reduce noise in the model simulations. Controls are59

prepared identically, and matched to corresponding transients through the model60

parameters, giving a total of 2,752 distinct transient-control pairs. The 2,75261

transient-control pairs contain 809 of the original 1,530 possible model versions.62

Each transient-control pair is expressed as an anomaly from the 1961 to 1990 mean63

in each region. Observations, from HadCRUT3 (ref. 19), AOGCM simulations64

under the A1B scenario and CMIP-3 pre-industrial control segments are prepared65

identically (Supplementary Table S4). Finally, all data is temporally averaged to66

5-year mean resolution to reduce the impact of internal variability. For simplicity,67

coverage is assumed complete within Giorgi regions in this analysis of the model68

output: this introduces only small errors because the regions used have a high69

observational coverage (around 95% for each 5-year period) over the 1961–201070

period considered (Fig. 3a).71

Goodness-of-fit calculation. We calculate a goodness-of-fit statistic based on the 72

spatio-temporal pattern of surface temperature from 1961 to 2010 as 73

r2θ =
(
y−xθ

)T C−1
N

(
y−xθ

)
74

where y represents observations, xθ a transient-control pair of simulations 75

corresponding to parameters θ, and CN a covariance matrix which weights errors 76

corresponding to the estimated variability in components of y and xθ arising 77

from internal climate variability. Observations cannot accurately be used to 78

estimate CN without simplifying assumptions, and so standard practice is to use 79

segments of pre-industrial control simulations3. We use pre-industrial control 80

simulations from all available CMIP-3 models to account for variability in y, and 81

a 1,000 year HadCM3 control run to characterize variability in xθ . We find little 82

sensitivity in the results to scaling the variability associated with y over a wide range 83

(Supplementary Fig. S12). 84

Estimates of variability from AOGCMs are most reliable on large spatial 85

scales, so we focus on the leading Empirical Orthogonal Functions (EOFs) of 86

the HadCM3L ensemble over 1961–2010, the first three of which explain over 87

90% of the spatial variance across the ensemble (Supplementary Fig. S6). The 88

exact choice of truncation does not significantly impact results when using a 89

regularized covariance estimate (Supplementary Equation S19), and using a 90

separate physically-based dimension reduction technique does not change our 91

conclusions (Supplementary Fig. S11). 92

For a given confidence level, we compare r2θ with the corresponding percentile 93

of the distribution of r2 arising from estimates of internal variability alone using 94

the pre-industrial control segments. A schematic of the analysis is shown in 95

Supplementary Fig. S5. We use an independent set of control segments to CN to 96

remove the small sample size bias3. We test the null hypothesis that the model and 97

observations come from the same distribution and reject the model simulation if 98

r2θ is too large. In Fig. 2 we show goodness-of-fit as a weighted mean squared error 99

by normalizing r2θ by the number of degrees of freedom in y and xθ . For reference, 100

model simulations must explain at least 50% of the variance in filtered surface 101

temperature observations to pass the r2 test. 102

Received 11 August 2011; accepted 23 February 2012; 103

published online XXMonth XXXX 104

References 105

1. Forest, C. E., Stone, P. H., Sokolov, A. P., Allen, M. R. & Webster, M. D. 106

Quantifying uncertainties in climate system properties with the use of recent 107

climate observations. Science 295, 113–116 (2002). 108

2. Knutti, R., Stocker, T. F., Fortunat, J. & Plattner, G. K. Constraints on radiative 109

forcing and future climate change from observations and climate model 110

ensembles. Nature 416, 719–723 (2002). 111

3. Stott, P. A. et al. Observational constraints on past attributable warming and 112

predictions of future global warming. J. Clim. 19, 3055–3069 (2006). 113

4. Harris, G. R. et al. Frequency distributions of transient regional climate change 114

from perturbed-physics ensembles of general circulation model simulations. 115

Clim. Dynam. 27, 357–375 (2006). 116

5. Meehl, G. A. et al. TheWCRP CMIP3 multimodel dataset: A new era in climate 117

change research. Bull. Am. Meteorol. Soc. 88, 1383–1394 (2007). 118

6. Collins, M. et al. Climate model errors, feedbacks and forcings: A comparison 119

of perturbed-physics and multi-model ensembles. Clim. Dynam. 36, 120

1737–1766 (2010). 121

7. Kiehl, J. Twentieth century climate model response and climate sensitivity. 122

Geophys. Res. Lett. 34, L22710 (2007). 123

8. Knutti, R. Why are climate models reproducing the observed global surface 124

warming so well? Geophys. Res. Lett. 35, L18704 (2008). 125

9. Huybers, P. Compensation between model feedbacks and curtailment of 126

climate sensitivity. J. Clim. 23, 3009–3018 (2010). 127

10. Knutti, R. et al. A review of uncertainties in global temperature projections 128

over the twenty-first century. J. Clim. 21, 2651–2663 (2008). 129

11. Forest, C. E., Stone, P. H. & Sokolov, A. P. Constraining climate model 130

parameters from observed 20th century changes. Tellus A 60, 911–920 (2008). 131

12. Boé, J., Hall, A. & Qu, X. Deep ocean heat uptake as a major source of spread 132

in transient climate change simulations. Geophys. Res. Lett. 36, L22701 (2009). 133

13. Friedlingstein, P. et al. Climate-carbon cycle feedback analysis: Results from 134

the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006). 135

14. Milly, P. C. D., Dunne, K. A. & Vecchia, V. Global pattern of trends in stream 136

flow and water availability in a changing climate. Nature 428, 347–350 (2005). 137

15. Tebaldi, C. & Sansó, B. Joint projections of temperature and precipitation 138

change from multiple climate models: A hierarchical Bayesian approach. 139

J. R. Stat. Soc. A 172, 83–106 (2009). 140

16. Murphy, J. M. et al. Quantification of modelling uncertainties in a large 141

ensemble of climate change simulations. Nature 430, 768–772 (2004). 142

17. Jackson, C. S., Sen, M. K., Huerta, G., Deng, Y. & Bowman, K. P. 143

Error reduction and convergence in climate prediction. J. Clim. 21, 144

6698–6709 (2008). 145

4 NATURE GEOSCIENCE | ADVANCE ONLINE PUBLICATION | www.nature.com/naturegeoscience

http://www.nature.com/naturegeoscience
http://www.nature.com/doifinder/10.1038/ngeo1430


NATURE GEOSCIENCE DOI: 10.1038/NGEO1430 LETTERS
18. Nakicenovic, N. & Swart, R. Special Report on Emissions Scenarios (Cambridge1

Univ. Press, 2000).2

19. Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B. & Jones, P. D. Uncertainty3

estimates in regional and global observed temperature changes: A new data set4

from 1950. J. Geophys. Res. 111, D12106 (2006).5

20. Knutti, R., Furrer, R., Tebaldi, C., Cermak, J. & Meehl, G. A. Challenges6

in combining projections from multiple climate models. J. Clim. 23,7

2739–2758 (2010).8

21. Weigel, A. P., Knutti, R., Liniger, M. & Appenzeller, C. Risks of model9

weighting in multimodel climate projections. J. Clim. 23, 4175–4191 (2010).10

22. Frame, D. J. et al. Constraining climate forecasts: The role of prior assumptions.11

Geophys. Res. Lett. 32, L09702 (2005).12

23. Easterling, D. R. & Wehner, M. F. Is the climate warming or cooling?13

Geophys. Res. Lett. 36, L08706 (2009).14

24. Solomon, S. et al. Contributions of stratospheric water vapor to decadal15

changes in the rate of global warming. Science 327, 1219–1223 (2010).16

25. Lockwood, M. Solar change and climate: An update in the light of the current17

exceptional solar minimum. Phil. Trans. R. Soc. Lond. A 466, 303–329 (2010).18

26. Stone, D. A. & Allen, M. R. Attribution of global surface warming without19

dynamical models. Geophys. Res. Lett. 32, L18711 (2005).20

27. Betts, R. A. et al. When could global warming reach 4 ◦C. Phil. Trans. R.21

Soc. Lond. A 369, 67–84 (2011).22

28. Desaii, S., Hulme, M., Lempert, R. & Pielke, R. Jr Do we need better predictions23

to adapt to a changing climate? Eos 90, 111–112 (2009).24

29. Hall, A. & Qu, X. Using the current seasonal cycle to constrain snow albedo25

feedback in future climate change. Geophys. Res. Lett. 33, L03502 (2006).26

30. Frame, D. J. et al. The climateprediction.net BBC climate change experiment: 27

Design of the coupled model ensemble. Phil. Trans. R. Soc. Lond. A 367, 28

855–870 (2009). 29

Acknowledgements 30

We thank all participants in the climateprediction.net experiments, as well as the 31

academic institutions and the individuals who have helpedmake the experiment possible, 32

particularly D. Anderson for developing the Berkeley Open Infrastructure for Network 33

Computing. We also thank the Natural Environment Research Council (NERC), the 34

European Union FP6WATCH and ENSEMBLES projects, the OxfordMartin School, the 35

Smith School of Enterprise and the Environment andMicrosoft Research for support and 36

J. Renouf and co-workers at the BBC for their documentaries explaining and promoting 37

this experiment. D.J.R. was supported by a NERC PhD studentship with a CASE award 38

from the Centre for Ecology &Hydrology (CEH)Wallingford. 39

Author contributions 40

All authors contributed to the design and implementation of the experiment. D.J.R. 41

performed the analysis and wrote the paper, with significant contributions from D.J.F., 42

M.R.A. and N.M. All authors commented on the paper. 43

Additional information 44

The authors declare no competing financial interests. Supplementary information 45

accompanies this paper on www.nature.com/naturegeoscience. Reprints and permissions 46

information is available online at www.nature.com/reprints. Correspondence and 47

requests for materials should be addressed to D.J.R. 48

1Atmospheric, Oceanic & Planetary Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK, 2School of Geography and the
Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK, 3Centre for the Analysis of Time Series, London School of Economics, London
WC2A 2AE, UK, 4Smith School of Enterprise and the Environment, Hayes House, 75 George Street, Oxford OX1 2BQ, UK, 5MonashWeather and Climate,
Monash University, Clayton, Victoria 3800, Australia, 6Department of Meteorology, University of Reading, Earley Gate, Reading, RG6 6BB, UK, 7Oxford
e-Research Centre, Keble Road, Oxford OX1 3QG, UK, 8Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PU, UK, 9College of Engineering, Mathematics
and Physical Sciences, University of Exeter, Exeter, EX4 4QJ, UK, 10Department of Meteorology, Earth and Environmental Systems Institute, Pennsylvania
State University, University Park, Pennsylvania 16802, USA, 11Royal Meteorological Society, Reading, RG1 7LL, UK, 12BBC Science, BBCWhite City, 201
Wood Lane, LondonW12 7TS, UK, 13Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK, 14Abdus Salam International
Center for Theoretical Physics, Trieste, Italy, 15The American University of Paris, Paris, France, 16National Center for Atmospheric Research, 1850 Table
Mesa Dr, Boulder, Colorado 80305, USA, 17Pembroke College, Oxford University of Oxford, Oxford OX1 1DW, UK, 18Climate Systems Analysis Group,
University of Cape Town, South Africa, 19School of Geography, Politics and Sociology, Newcastle University, Newcastle on Tyne, NE1 7RU, UK.
*e-mail: rowlands@atm.ox.ac.uk.

NATURE GEOSCIENCE | ADVANCE ONLINE PUBLICATION | www.nature.com/naturegeoscience 5

http://www.nature.com/naturegeoscience
http://www.nature.com/doifinder/10.1038/ngeo1430
http://www.nature.com/naturegeoscience
http://www.nature.com/reprints
mailto:rowlands@atm.ox.ac.uk


Page 1

Query 1:
Please note that the title has been changed

according to style.
Query 2:

Please note that the first paragraph has been
edited according to style.
Query 3:

Please provide postcode for affiliations 14,15.


	Broad range of 2050 warming from an observationally constrained large climate model ensemble
	Methods
	Model simulations.
	Data preparation.
	Goodness-of-fit calculation.

	Figure 1 Evolution of uncertainties in reconstructed global-mean temperature projections under SRES A1B in the HadCM3L ensemble.
	Figure 2 Goodness-of-fit to recent temperature changes as a function of global-mean warming.
	Figure 3 Surface temperature anomaly fields relative to 1961--1990 for 2001--2010 hindcast and 2041--2060 forecast for a low-response ensemble member, A (Δ T2050=1.4 K ), and high-response ensemble member, B (Δ T2050=3 K ) labelled in [Fig.]f2.
	References
	Acknowledgements
	Author contributions
	Additional information

