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Abstract 
The continuum theory of elasticity has been used for more than a century and has applications in 

many fields of science and engineering. It is very robust, well understood and mathematically 

elegant. In the isotropic case elastic properties are easily represented, but for non-isotropic 

materials, even in the simple cubic symmetry, it can be difficult to visualise how properties such as 

Young’s modulus or Poisson’s ratio vary with stress/strain orientation. The ElAM (Elastic 

Anisotropy Measures) code carries out the required tensorial operations (inversion, rotation, 

diagonalisation) and creates 3D models of an elastic property’s anisotropy. It can also produce 2D 

cuts in any given plane, compute averages following diverse schemes and query a database of 

elastic constants to support meta-analyses.  
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Program Summary 
Program title: ElAM4.1 

Catalogue identifier:  

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ 

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland 

Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html 

No. of lines in distributed program: 3506 

No. of bytes in distributed program, including test data, etc.: 4,147,257 

Distribution format: .zip 

Programming language: Fortran90 

Computer: Any 

Operating system: Linux, Windows (XP, Vista) 

RAM: Depends chiefly on the size of the arrays representing elastic properties in 3D 

Nature of problem: Representation of elastic moduli and ratios, and of wave velocities, in 3D; 

automatic discovery of unusual elastic properties 

Solution method: Stiffness matrix (6×6) inversion and conversion to compliance tensor 

(3×3×3×3), tensor rotation, dynamic matrix diagonalisation, simple optimisation, postscript and 

VRML output preparation 

Running time: Dependent on angular accuracy and size of elastic constant database (from a few 

seconds to a few hours). 

PACS: 07.05.Rm  62.20.D-  91.60.Ba   

Keywords: Elastic properties, Anisotropy, Visualisation, Database 

1. INTRODUCTION 

In materials science, engineering or physics, the theory of elasticity is typical undergraduate fare: 

it has been around for a very long time, works very well, is linear, and is really not very 

complicated. It is also used to introduce interesting mathematical objects and, more often than not, 

students in physical sciences discover the magic of tensors in a course on crystalline elasticity. 

Despite its familiarity, this old theory has been rejuvenated in the last two decades as materials with 

odd elastic properties have been discovered and investigated. 

When a sample is stretched, it usually gets thinner, and materials behaving so familiarly have a 

positive Poisson’s ratio. While negative Poisson’s ratios (hereby NPR) are not theoretically 

prohibited, materials exhibiting them have only been produced or recognised recently. It is easy to 
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convince oneself of the theoretical possibility of NPR by considering the now canonical re-entrant 

honeycomb structure (see Figure 1a). 

(a) 

(b) 

 

Fig. 1: (a) 2D structure with positive (top) and negative 
(bottom) Poisson’s ratio; (b) 2D illustration of one 
mechanism of NTE, increasing thermal agitation of 
linked, rigid squares reduces total area 

 

The first NPR material to find wide recognition was of the re-entrant type, a polymeric foam 

which had been compressed to generate concavity[1]. Since then, many other materials have been 

observed or postulated, and it has been observed that many crystals exhibit NPR, including many 

cubic metals[2]. This last result is certainly striking, but it is even more surprising that it was only 

established in 1998. 

Some even rarer materials exhibit another unusual elastic property: when subjected to hydrostatic 

(isotropic) pressure, they expand in one direction[3, 4]. This property is referred to as Negative 

Linear Compressibility (NLC). It has been observed in only 14 materials. 

Finally, and even if not yet implemented in the present code, thermoelastic properties can also be 

surprising. Negative Thermal Expansion (NTE), where a material contracts in one, two or three 

directions as temperature increases, has received a lot interest[5] due to possible technological 

applications such as dental fillings that expand with the tooth or beams that do not change shape at 

all with temperature. Many mechanisms can generate it, and one of the simplest is illustrated in 

Figure 1b. 

One of the problems with the full anisotropic elasticity theory is that, while beautifully symmetric 

and compact, it is not especially visualisable. First, the link between the interesting properties 

(moduli and ratios) and the available data (usually the stiffness matrix) is not evident (it can be 

slightly more direct with the compliance matrix but only in the case of distortions on the principal 
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axes). Worst, for distortions in less symmetric directions, the calculations are too taxing to be 

carried by hand on a regular basis, and even exceed the potentiality of spreadsheet automation (for 

typical users). On the other hand, it is well adapted to programming as it is essentially linear 

algebra, for which many efficient algorithm are available. 

It is therefore very surprising to note that there is no easily available code that would transpose 

the somehow abstract numbers of the stiffness matrix into 3D or 2D representations of elastic 

properties. 2D figures of Poisson’s ratio have been published, but it is almost certain that they have 

been produced with spreadsheets (limitation to principal planes and perpendicular strains). There 

are also examples in the literature of 3D plots for the young’s modulus (by far the simplest 

property), but the authors do not indicate how they were produced[6, 7]. 

There lies the main motivation behind the present work: to offer a free, easy to use program, 

ElAM (Elastic Anisotropy Measures), capable of representing various elastic properties in any 

direction, for any crystal symmetry. A secondary goal is to allow the code to automatically query a 

database of elastic constants (as can be found in reviews such as [8]or [9]), in order to 

systematically investigate the occurrence of bizarre properties or possible correlations and trends. 

The Methodology section first introduces the tensorial formalism behind the crystalline theory of 

elasticity and establishes the convention used for angles. It also presents various averaging schemes. 

It then details the algorithm used to compute the principal properties, namely tensor rotation and 

dynamical matrix diagonalisation. The slightly more subtle case of the Poisson’s ratio and shear 

modulus, which requires some optimisation if the results are to be visualisable in 3D, are treated 

separately. 

We then describe the keywords and input files and present four cases studies, which illustrate 

some of ElAM capabilities. The first two focus on the visualisation aspect and show that the cubic 

symmetry can still surprise and that some materials (cristobalite, lanthanum niobate) have truly 

astonishing elastic properties. The last two examples display the database facilities by revisiting the 

NLC problem (identifying two new materials), and offering insight on how various definitions of 

elastic anisotropy are related. 

2. METHODOLOGY 

2.1. Elasticity Theory 

At its most basic, the theory of elasticity linearly relates stresses to strains. This section 

introduces the various quantities, but without delving into subtleties. The interested reader is invited 

to consult standards text[10, 11]. 

The stress describes the surface forces acting on volume element in a continuum. It can be 

represented by a 2nd order tensor, with 6 independent coordinates. 



 5 

The strain describes the state of deformation of a solid body. It can also be represented by a 2nd 

order tensor, with 6 independent coordinates. 

The stiffness tensor expresses the stress tensor in terms of the strain tensor: 

klijklij C HV  . (1) 

It is a property of the crystal, a tensor of 4th order, and its coordinates depend on the choice of 

axis. Eq. (1) is the generalised Hooke’s law. 

The compliance tensor is the inverse of the stiffness tensor and interprets the strain tensor in 

terms of the stress tensor: 

klijklij S VH  . (2) 

Young’s modulus, or modulus of elasticity, is defined as the ratio of normal stress to linear 

normal strain (both in the direction of applied load). 

The shear modulus, or modulus of rigidity, is defined as the ratio of shear stress to linear shear 

strain. 

Poisson's ratio is defined as the ratio of transverse strain (normal to the applied load), to axial 

strain (in the direction of the applied load). 

When the crystal is submitted to hydrostatic pressure, the linear compressibility is the ratio of the 

induced stretch, along a given line, by the pressure. Except in crystal of cubic symmetry, where 

compressibility is isotropic, it depends on the direction of the line. 

The long wavelength acoustic phonons, those which originates from WUDQVODWLRQ� DW� WKH� -point, 

correspond to strains. It is therefore possible to establish a parallel[12] between the atomistic (force 

constants, dynamical matrix) and continuum descriptions (stiffnesses, Christoffel equation). Out of 

these three acoustic waves, one is longitudinal, the other two are transverse. 

Due to translational and rotational symmetries, the number of independent coordinates of the 4th 

order tensor reduces to 21 –from 81– for the least symmetric case. Crystals (and more generally 3D 

periodic structures or space groups) can be grouped into 7 crystal systems, and the associated 

symmetries reduce the number of independent components for the 4th order tensors further: triclinic 

(21), monoclinic (15), orthorhombic (9), trigonal (7), tetragonal (5), hexagonal (5) and cubic (3).   

Six components are sufficient to describe stress and strain. A scheme due to Voigt[13] uses this 

fact and replaces the cumbersome 2nd and 4th order tensors in a 3 dimension vector space by vectors 

and matrices in a 6 dimension vector space. 

Tensor notation 11 22 33 23,32 31,13 12,21 

Voigt’s notation 1 2 3 4 5 6 
(3) 

These transformation rules apply directly for stress and stiffness, but the use of corrective 

coefficient is required for strain and compliances: 
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pii HH   pqijkl SS   if p and q are 1,2,3 only 

pij HH
2

1  if i and j are 

different 

pqijkl SS
2

1  if either p or q are 4,5,6 (and the other is 1,2 or 3) 

 
pqijkl SS

4
1  if p and q are 4,5,6 only 

(4) 

2.2. Tensor rotation, Euler angles 

A fourth order tensor transforms in a new basis set following the rule 

ijkliiii TrrrrT DDDDDEJG  / , (5) 

where Einstein’s summation rule is adopted and where the r L are the components of the rotation 

matrix (or direction cosines). They are expressed as the coordinates of the new basis set vectors in 

the old framework. 

 

Fig. 2: Definitions of angles used to describe directions in ElAM 
 

A direction in cartesian space, corresponding to an elastically significant distortion, for instance 

uniaxial stress or response to isotropic pressure, can be represented as a point on the unit sphere 

(unit vector), and advantageously by two angles. We choose it to be the first unit vector in the new 

basis set, a. It is fully characterised by the angles  ���� ��and ������ �� as illustrated in Fig. 2. The 

determination of some elastic properties (shear Modulus, Poisson’s ratio) requires another, 

perpendicular, direction. This is defined by another unit vector, b, perpendicular to the first, and 

characterised by the angle ������ �. 
The coordinates of the two vectors are  
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(6) 

By definition, the components of the first two columns of the rotation matrix are the coordinates 

of a and b. This is sufficient to obtain all the components of the fourth order in the subvectorial 

space defined by directions 1 and 2, for instance:  
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ijkllkjiijkllkji SbbaaSrrrrSS    2211
/
1122

/
12 , and 

ijkllkjiijkllkji SbabaSrrrrSS    2121
/
1212

/
66 . 

(7) 

But by scanning , , and  over the unit sphere, we can access all the components without 

having to take into account the third unit vector. 

2.3. Averaging schemes 

Traditionally, and for ease of manipulation, the elastic properties of an anisotropic material have 

been replaced by those of an “equivalent” isotropic material. These processes of averaging are 

especially important to treat materials consisting of crystalline grains of random orientation. There 

are four main schemes: Voigt[13], Reuss[14], Hill[15], and direct. 

The Voigt averaging scheme is based on the stiffness matrix (assuming a given uniform strain) 

and the bulk modulus K and the shear modulus G are given by 

3

2BA
KV

� , 
5

3CBA
GV

�� , 
 (8) 

where 

3
332211 CCC

A
��  

3
121323 CCC

B
��  

 (9) 

3
665544 CCC

C
�� . 

   

Conversely, the Reuss averaging scheme is based on the compliance matrix (assuming a given 

uniform stress) and: 

ba
KR 63

1

� , 
cba

GR 344

5

�� , 
 (10) 

where 

3
332211 SSS

a
��  

3
121323 SSS

b
��  

 (11) 

3
665544 SSS

c
�� .    

In both cases, the Young’s modulus E and the Poisson’s ratio  are given by 

1

9
1

3
1

�

¹̧
·

©̈
§ � 

KG
E , ¹̧

·
©̈
§

�� 
GK

G

3

3
1

2

1Q . 
 (12) 

The Hill average is the arithmetic average of the Voigt and Reuss values. 

The direct averaging scheme is non analytical and based on a numerical average of the calculated 

properties, it converges slowly with the mesh accuracy. 

2.4. Simple properties: Young’s modulus and linear compressibility 

Some properties can be simply expressed in terms of the compliance matrix. 
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The Young’s modulus can be obtained by using a purely normal stress in Eq. 2 in its vector form 

and is given by 

� � � � ijkllkji SaaaaS
E

1

,

1
,

/
11

  MTMT . 
(13) 

The linear compressibility follows a slightly different scheme but is even simpler to compute. It is 

obtained by applying an isotropic stress (corresponding to pressure p) in tensor form, so that 

ijkkij pS� H  and by considering that the extension in direction a is jiij aaH , and that therefore 

� � jiijkk aaS MTE , . (14) 

2.5. Shear modulus and Poisson’s ratio: optimisation 

Other properties depends on two directions (if perpendicular this corresponds to 3 angles), which 

makes them difficult to represent graphically. A convenient possibility is then to consider three 

representations: minimum, average and maximum. For each  and , the angle  is scanned and the 

minimum, average and maximum values are recorded for this direction. 

The shear ratio is obtained by applying a pure shear stress in the vector form of Eq. 2 and results 

in 

� � � �FMTFMT
,,4

1
,,

/
66S

G  . 
(15) 

Poisson’s ratio can be obtained by using a purely normal stress in Eq. 2 in its vector form and is 

given by 

� � � �� � ijkllkji

ijkllkji

Saaaa

Sbbaa

S

S � � MT
FMTFMTQ

,

,,
,,

/
11

/
12 . 

(16) 

2.6. Sound velocities: diagonalisation 

The dynamic matrix M , which describes the vibrational modes (phonons) in a crystal can be 

written in terms of the stiffness tensor (see for instance [12]) 

ljijklik kkCM  , (17) 

where � �zyx kkkk ,,  is the wave vector (coordinates). 

The dynamic matrix can be diagonalised, and its eigenvalues w are the square of the frequencies. 

From the � �kw  dependence, we can extract the sound wave velocities. 

3. Code structure 

The source code is written in Fortran90, makes use of modules and is divided, somehow 

artificially, in 6 files: elasticalculations.f90 , main.f90 , modules.f90 , ouvrir.f90 , 

printps.f90  and system.f90 . main.f90 contains the main program, which controls the scanning 
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loops and the calls to reading, calculating, and writing procedures. elasticalculations.f90  

contains procedures to calculate various elastic properties. These are called from main.f90 , and 

make uses of linear algebra subroutines from system.f90 . This last file contains diagonalisation 

subroutines from J. Kopp[16], and matrix inversion routines from T. Pang[17]. The subroutine in 

ouvrir.f90  interprets the input files. The procedures in printps.f90  deal with the creation of 

postscript output files, and are called by main.f90 . Finally, modules.f90  contains not only various 

modules used for data transfer between procedures, but also the vrml module, which creates the 

vrml output files. 

4. Operation and case studies 

This section introduces various ElAM input files, discusses parameters, and displays some of the 

results. It is hoped that the following examples will prove sufficiently explanatory for most users. 

The full list of keywords is given in Appendix A. 

4.1. Installation 

The code is distributed as a .rar file, which uncompresses into several directories: source , 

examples , doc and bin . 

The bin  directory contains a precompiled win32 executable for direct uses by windows user, and 

an accompanying .bat  for direct execution. 

The doc  directory contains a copy of this article, and the examples  directory contains the 

examples input and database files mentioned in section 4.2 and onward. 

Compilation in the source  directory consist of a straightforward g95.exe -o ElAM.exe *.f90  

(with the gnu fortran 95 compiler for instance). The code has been developed under a windows 

platform, and compiles under Compaq Fortran and Silversfrost FTN95. It has also been tested with 

gnu g95. 

For convenience under windows, the main input file must be called input.txt, but scripts can of 

course be used to allow command line or right-button control. In a directory containing an input.txt 

file, the code will run by executing ElAM.exe . The name for the output is controlled within the 

input file, see next section. 

4.2. Direct mode: basic operations 

One of the simplest input files is given in Ex. 1. The first line sets the crystal system (symmetry), 

the second line contains the corresponding stiffness constants, in the order given by the Landolt-

Börnstein tables (C11, C44, C12 for cubic, see appendix A for other crystal systems). The third line 

asks for Young’s modulus to be graphically represented, and the last line finishes the input (stop  

must be present). The program would still be running in the absence of a property requirement. The 
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order of the command is unimportant, with the obvious exception that if a keyword requires 

numerical values, these must be in the line immediately following it. 

cubi 
 12.20 4.46 9.20  
young 
stop 

Ex. 1: Basic ElAM input for Young’s modulus of silver. 
 

As is, this input produces two output files, ElAM.log  and ElAM_young.wrl . The first file is a text 

summary of the calculations. It starts with the stiffness and compliance matrices, which is useful to 

check that the order of elastic constants was correct. It then recalls the meshing parameters and 

finally summarises the elastic properties in terms of averages, minimum/maximum values and their 

directions. The second file is in VRML (virtual reality modelling language) format and can be 

visualised and explored with a VRML capable browser. A screen copy is shown in Fig. 3. 

 

Fig. 3: 3D representation of Young’s modulus of silver, using default setup. 
 

Fig. 3 is not an especially good figure, and for many reasons. In fact, the previous input makes 

use of many default values, which are perfectly fine to obtain averages and quick indications in the 

.log files, but lack detail to produce good figures. This can be improved, as in Ex. 2 and the 

resulting Fig. 4. The first four lines give a title and an output root name. While the title is relatively 

unimportant, the output root name eases the organisation of files, now called Ag_fcc.log  and 

Ag_fcc_young.wrl . The main difference with Ex. 1 is the refinement of the angular scanning steps: 

thet  and phi  controls the steps for the calculations of optimum values and average, while 3dth  and 

3dph  define the grid used for the graphical representation. The default values for these are 24, 24, 

12 and 12. The 3daxes  keyword facilitates orientation by adding arrows and labels for the three 

cartesian axes. Finally, the background color is changed to white with the color_bg  keyword. 

Generally speaking, colour is coded in ElAM with four values (0. to 1.), red, green, blue, and 

transparency. Transparency being meaningless for the background, it is ignored in that case. 
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Title 
Silver fcc 
output 
Ag_fcc 
cubi 
 12.20 4.46 9.20 
thet 
200 
phi 
200 
3dth 
99 
3dph 
99  
young 
3daxes 
color_bg 

1. 1. 1. 
Stop 

Ex. 2: Improved ElAM input for Young’s modulus of silver, with title, named output, finer angle mesh, white 
background and axes. 

 

  
Fig. 4: Improved 3D representation of Young’s modulus of silver, with finer angle mesh, white background and axes. 
 

The other property codes are shear , poisson , compress  and sound . The symmetry codes are self 

explanatory and are cubi , hexa , tetr , trig , orth , mono and tric . Each must be followed by a line 

containing the appropriate number of elastic constant values, 3 for cubi , 5 for hexa , 7 for tetr  and 

trig , 9 for orth , 13 for mono and 21 for tric .  

By default, the code interprets the elastic constants following the symmetry keyword as being 

components of the stiffness matrix. In order to force them to be components of the compliance 

matrix, one has to add the compli  keyword to the input. It is also possible to input the elastic 

constant directly in 6×6 matrix form, following the keyword C or S (note the capital). 

This type of input file is sufficient to explore the elastic properties of a given materials and can 

already shed light on some interesting phenomena. 

4.3. Case study 1: Poisson’s ratio of cubic crystals 

In 1998, Baughman et al. did show that around two thirds of cubic metals (and alloys) do have 

negative poisson’s ratios, in the (110) direction. Previously, this property had been considered very 
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rare. Fig. 5a and 5b displays screen copies of the VRML representation of Poisson’s ratio for two 

cubic metals, cesium and aluminium. 

The default ElAM colour convention (transparent blue, maximum; green, minimum if positive, 

red, minimum when negative) makes it clear that these two metals have different elastic behaviour. 

Not only does aluminium appear much more isotropic, it also does not show any sign of auxeticity, 

which is confirmed by the numerical summary in the .log  file. The convoluted shape for cesium is 

very interesting as it shows auxeticity, but also because it strongly hints that a visual inspection of 

this sort, even without the colour scheme could have identified negative Poisson’s ratio in cubic 

metals a lot earlier than 1998. 

The humble cubic symmetry is not without surprises, and the story does not stop here. From 

simple calculations, it was assumed that the extrema of Poisson’s ratio for the cubic symmetry were 

along the [110] directions and permutations (for instance see [2]). If we consider the AuCd alloy in 

Fig. 5c, we can see that the negative minimum surface is concave at [110], and that therefore this 

direction is not the one of minimum Poisson’s ratio. Recent analytic calculations[18, 19] have 

tackled this problem and pushed it even further, and shown that in some rare cases, the optima can 

occur in directions around [111]. Once again, this peculiarity (referred to as the “Ting & Chen 

effect”) could have been discovered much earlier, tipped off by graphical representations, such as 

Fig. 5d and 6d for InTl alloy (27% Tl). 

 

(a) (b) 

 
(c) (d) 

Fig. 5: 3D representation of Poisson’s ratio for aluminium (a), cesium (b), AuCd alloy (c) and InTl alloy (d). maximum 
(blue), minimum positive (green) and minimum negative (red). 
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4.4. Fine tuning and 2D graphics 

As previously mentioned, the simplest properties are easy to represent, and a two-colour scheme 

is enough. The shear modulus and Poisson’s ratio are more complex, with maximum, minimum and 

average surfaces. ElAM produces all four surfaces in a single VRML file, which could lead to 

overly rich 3D models. Control over which surfaces are represented is done by using the colour 

options. By default, the average surface colour is fully transparent and only maximum and 

minimum appear, minimum following the red/negative, green/positive convention, and maximum 

being blue and semi-transparent (to reveal the minimum surface underneath). The colour options are 

color_bg , color_axis , color_pos , color_neg , color_max , color_minp , color_minn , 

color_aven , and color_avep . They are followed by a line containing RGB numbers, and, with the 

exception of the first two, a transparency number (0 –opaque– to 1 –transparent–). 

It is also possible to plot sections of the curves, in postscript format. The principles are very 

similar to those of the 3D curves. Whether a property is plotted or not is controlled by the following 

keywords: 2dyoun , 2dshea , 2dpois , 2dcomp and 2dsoun . The plane in which the section is cut is 

defined by either plane_xy  followed by a line containing the miller indices, or by plane_an  

followed by two angles defining the unit vector perpendicular to the plane. Other related keywords 

are of the type 2dyoung_tick  and 2dyoung_circ ; they control the presence of ticks on the axes or 

of circles to guide the eyes (see Ex. 3 and Fig. 6). 

… 
2dpoisson 
2dpois_ticks 
.1 
2dpois_circle 
.2 
2dpois_scale 
.1 
2dshear 
2dcompressi 
2dyoung 
2dsound 
plane_xyz 
1 0 1 
2dtitlex 
[110] 
2dtitley 
[001] 
stop 

Ex. 3 :  Use of 2D keywords for postscript production, see Fig. 6. 
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(a) (b) 

  
(c) (d) 

Fig. 6: 2D representation of Poisson’s ratio in the (-110) plane for aluminium (a), cesium (b), AuCd alloy (c) and InTl 
alloy (d). maximum (blue), minimum positive (green) and minimum negative (red). 

4.5. Case study 2: extreme crystalline auxeticity 

Monoclinic lanthanum niobate is remarkable for being one of few materials exhibiting negative 

linear compressibility, but it is has also one of the lowest observed Poisson’s ratio (-3.01). It also 

has a very large maximum (3.96), interestingly in the same direction, along the y axis (see Fig. 7a). 

-cristobalite, a SiO2 polymorph, is also an auxetic crystal, as can be seen from Fig. 7b. The 

extreme values are more modest, at .10 and -.51, but for almost all directions, the absolute value for 

the minimum is larger than for the maximum (the reverse in transparency in Fig. 7b was achieved 

with the ElAM input from Ex. 3). 
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(a) (b) 

  
(c) (d) 

Fig. 7: 3D representation of Poisson’s ratio for ODQWKDQXP�QLREDWH��D��F��DQG� -cristobalite (b, d). The top figures (a, b) 
show the maximum and minimum curves for each direction, while the bottom ones (c, d) show the rotationally averaged 
value. The scale, indicated by the length of the axes, is conserved for each material. The standard colour convention is 
used (note the, forced, reverse in transparency –red– in b).  

 

… 
color_max 

0.  0. .8 0. 
Color_minp 
.0 .8 .0 .5 
color_minn 
.8 .0 .0 .5 
stop 

Ex. 4 : Use of colour keywords for transparency reversal. 
 

Both these crystals show extreme auxetic behaviour, yet their properties are strikingly different. 

Fig. 7c and 7d display the average Poisson’s ratio (using input shown in Ex. 5). This value gives an 

indication of whether the section perpendicular to the stretch increases or decreases in area. It can 

be that while for -cristobalite, stretches in any direction results in increasing section area, 

lanthanum niobate follows a much more normal pattern as the section area decreases for any stretch. 

Both materials are certainly interesting, but would have different applications. 

 

Title 
xtobal 
tetr 
59.4 42.4 67.2 25.7 3.8 -4.4 0.0 
… 
poisson 
3daxes 
color_bg 
 1. 1. 1. 
Color_max 
0. 0. .8 1. 
Color_minp 
.0 .8 .0 1. 
Color_minn 
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.8 .0 .0 1. 
Color_avep 
.0 .8 .0 0. 
Color_aven 
.8 .0 .0 0. 
Stop 

Ex.  5: Use of colour keyworGV�WR�UHYHDO�DYHUDJH�FXUYHV�� -cristobalite). 
 

4.6. Database mode 

This mode is geared towards the systematic discovery of unusual elastic properties. It does not 

use graphical representation; although the graphical keyword discussed previously can still be 

present, they will be ignored. The database mode requires an additional file, containing a list of 

materials name and elastic constants, as well as a list of properties to be tabulated. A simple input 

file is given in Ex. 6. The database  keyword triggers the database mode and is followed by the 

database file name. The data_prop  keyword is followed (on the same line) by the number of 

properties to appear in the output, and the next line contains their codes. The codes list is detailed in 

Appendix B. In this example, the minimum and maximum of Young’s modulus, linear 

compressibility, Poisson’s ratio, as well as the bulk compressibility (inverse of bulk modulus) are 

requested. 

Title 
TST_DATABASE 
database 
exampledb.txt 
data_prop 7 
110 120 304 310 320 410 420 
stop. 

Ex. 6: Typical database mode input file. 
 

Cristoballite C 5 59.4 42.4 67.2 25.7 3.8 
-4.4 0.0 
AuCd_Alloy C 7  110.8  40.7 104.9 
Ag_FCC C 7 122 45.5 92.0 
Cd_HCP C 6 114.1  49.9  19.0  41.0  40.3   
Aluminium_pentaiodate_sexahydrate  C  6  
42.9  38.7  16  15.7  21.9 
stop. 

Ex. 7: Database file 
 

The syntax of the database file is simple and is illustrated in Ex. 7. Each line contains first a 

identifier, then the type of data (C if stiffnesses, S if compliances), followed by a symmetry code 

and finally by the data (following the order convention in appendix A). Anything after the last 

elastic constant will be ignored by the program, but can be used for comments or references. The 

last line must be stop . 

ElAM has no sorting or parsing facilities, and the entirety of a database will be treated, which can 

take some time. We advise the user to keep their master database in a spreadsheet format to benefit 
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from superior editing and sorting capabilities, and to export the relevant section in a text file when 

required. 

Please note that the default value for the ,  grid is used (24, 24). If increased accuracy is 

desirable, thet  and phi  can still be used. 

4.7. Case study 3: negative linear compressibility 

In a pioneering article[3], Baughmann and coworkers used a primitive methodology to scan a 

database of known elastic constants in order to identify those materials which exhibit negative 

linear compressibility. Out of around five hundred compounds, they suggested that thirteen did 

show negative linear compressibility: two trigonal, two tetragonal, six orthorhombic and three 

monoclinic, but no triclinic. The procedure was strangely indirect and consisted in looking for linear 

compressibility that exceeds the bulk compressibility (sign of negative area compressibility in the 

perpendicular plane). The reasons for this choice are not clear, one can only postulate that as this 

method samples a full plane for the cost of one direction, it is efficient if only the principal axes are 

investigated (which is implied, but never spelt out in the article). We use ElAM to re-examine the 

data, with a full directional scan. We focus on the lower symmetry crystals, and show that out of six 

triclinic crystals present in the Landolt-Börnstein tables, two do clearly show negative linear 

compressibility: ammonium tetraoxalate dihydrate and potassium tetraoxalate dihydrate. These 

compounds had been missed by the computationally simpler but less complete previous 

methodology. The linear compressibility for ammonium tetroxalate dihydrate is shown in 3D and 

2D in Fig. 8 and 9.  

 

 

Fig. 8: 3D representation of linear compressibility for ammonium tetaoxalate dihydrate. 

 
Fig. 9: 2D representation of linear compressibility for ammonium tetraoxalate dihydrate in the x-z plane. 
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4.8. Case study 4: anisotropy measures 

The original motivation for (and reason for the acronym of) ElAM’s precursor was in fact an 

article by Ledbetter and Migliori[20] describing an extension to Zener’s anisotropy measure[21]. 

They describe a straightforward method where the anisotropy is described by the ratio of maximum 

transverse sound velocity to minimum transverse sound velocity (called A*), which corresponds to 

the Zener measure for cubic crystals (ratio of shear moduli), 

2
max

2
min*

Q
Q A . 

(18) 

But what is meant by elastic anisotropy? The Ledbetter definition is attractive for historical 

reasons as it links well with the Zener ratio, but also because it is of relevance in the field of 

geosciences, where transverse wave velocities in different rock layers help locating or predicting 

earthquakes[22] for instance. 

Other measures of anisotropy also suggests themselves, for instance a ratio of maximum and 

minimum of Young's or shear modulus. Are these measures correlated and does “elastic anisotropy” 

means anything in the absence of reference to a given property? A recent paper by Ranganathan and 

Ostoja-Starzewski[23] argues it does, and they propose a anisotropy measure based on the Reuss 

and Voigt averages, 

65 �� 
R

V

R

V

u
K

K

G

G
A . 

(19) 

They also compare this measure with A*, but their analysis is weakened by their inability to 

compute A* for low symmetry crystal systems. As the analytical mathematical derivations are 

feasible for the higher symmetry crystal systems, but are very difficult for hexagonal onwards, the 

database capabilities of ElAM provide a superior way to investigate the topic of elastic anisotropy. 

This general problem goes beyond the scope of this article, but to demonstrate ElAM capabilities 

we plot Au vs A* for 438 crystals, of all 7 crystal systems. Fig. 10 demonstrates that these two 

measures are in general agreement, even for low symmetry crystal systems. 
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Fig. 10: Comparison of recent elastic anisotropy measures Au  and A*. 
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5. CONCLUSION 

In this paper we have detailed the fortran90 code, ElAM, for manipulation and representation of 

elastic properties of anisotropic frameworks (chiefly crystals). We have presented the required 

elements of theory of elasticity, and the conventions for 3D representation. We have also given 

detailed installation and execution notes. The operations of the codes have been illustrated by 

examples of increasing complexity, but also of direct relevance to contemporary problems: 

direction for extreme values of elastic properties, identification of materials exhibiting extreme 

properties and elastic anisotropy. 

6. Appendix A: List of Keywords/options 

Keywords are either stand alone (SA), require data on the following line(s) (FL), or must be 

accompanied by an integer on the same line AND data on following lines (I+FL) 

6.1. A.1 Generic keywords 

Keyword Use Default 
titl FL, title of the study, only appears in .log file ‘’ 
outpu FL, root name for output files ‘ElAM’ 
verbose SA, triggers verbose mode and outputs too much information in .log False 
stiff SA, elastic constants are read as components of stiffness matrix True 
compli SA, elastic constants are read as components of compliance matrix False 
thet FL, number of steps of angle theta (fig. 2) for which properties are calculated 24 
phi FL, as above, for phi 24 
cubi FL, 3 elastic constants for cubic crystal system (C11, C44, C12) N/A 
hexa FL, 5 elastic constants for hexagonal crystal system (C11, C33, C44, C12, C13) N/A 
tetr FL, 7 elastic constants for tetragonal crystal system (C11, C33, C44, C66, C12, C13, 

C16) 
N/A 

trig FL, 7 elastic constants for trigonal crystal system (C11, C33, C44, C12, C13, C14, C15) N/A 
orth FL, 9 elastic constants for orthorombic crystal system (C11, C22, C33, C44, C55, C66, 

C12, C13, C23) 
N/A 

mono FL, 13 elastic constants for monoclinic crystal system (C11, C22, C33, C44, C55, C66, 
C12, C13, C23, C15, C25, C35, C46) 

N/A 

tric FL, 21 elastic constants for triclinic crystal system (C11, C12, C13, C14, C15, C16, 
C22, C23, C24, C25, C26, C33, C34, C35, C36, C44, C45, C46, C55, C56, C66) 

N/A 

C FL, stiffness matrix, 6 lines of 6 coordinates N/A 
S FL, compliance matrix, 6 lines of 6 coordinates N/A 
database SA, Triggers database mode False 
data_prop FL, list of output codes (Appendix B) N/A 
stop Last line of input N/A 

6.2. A.2 3D keywords 

Keyword Use Default 
young SA, generates a  3d representation of Young’s modulus False 
shear SA, as above, for Shear ratio False 
compress SA, as above, for linear compressibility False 
poisson SA, as bove, for Poisson’s ratio False 
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Sound SA, as above, for sound velocities False 
3dth FL, number of steps of angle theta for which properties are represented 12 
3dph As above, see fig. 2 and fig.3 12 
3daxes SA, includes XYZ axes in 3D files False 
color_bg FL, 3 colour code (RBG), background colour (0 0 0) 
color_front FL, 3 colour code, foreground colour (1 1 1) 
color_pos FL, 4 colour code (RBG+transparency), for positive values of non optimised 

elastic properties (Young’s modulus, compressibility) 
(0 .8 0 0) 

color_neg As above, for negative values (.8 0 0 0) 
color_max FL, 4 colour code, for maximum values of complex elastic properties ( (0 0 .8 .5) 
color_minp As above, but for minimum positive (.8 0 0 0) 
color_minn As above, but for minimum negative (0 .8 0 0) 
color_avep As above, but for average positive (0 0 0 1) 
color_aven As above, but for average negative (0 0 0 1) 

6.3. A.3 2D keywords 

Keyword Use Default 
plane_xy FL, 3 coordinates of a vector, select the plane in which a 2D cut is preformed 

(plane perpendicular to coordinates) 
N/A 

plane_an As above, but vector described by  and  N/A 
2dyoung SA, a postscript plot of Young’s modulus in the chosen plane will be created False 
2dyoung_tick FL, tick marks interval, output marks on axes of Young’s modulus plot 0 
2dyoung_circ FL, circles interval, output circles on Young’s modulus plot 0 
2dyoung_scale FL, scale interval, output scale on axes of Young’s modulus plot 0 
2dshear SA, a postscript plot of the shear modulus in the chosen plane will be created False 
2dshear_tick, 
2dshear_circ, 
2dshear_scale 

As the 2dyoung_  equivalents 0 

2dcomp SA, a postscript plot of the linear compressibility in the chosen plane will be 
created 

False 

2dcomp_tick, 
2dcomp_circ, 
2dcomp_scale 

As the 2dyoung_  equivalents 0 

2dpois SA, a postscript plot of Poisson’s ratio in the chosen plane will be created False 
2dpois_tick, 
2dpois_circ, 
2dpois_scale 

As the 2dyoung_  equivalents 0 

2dsound SA, a postscript plot of the sound velocities in the chosen plane will be created False 
2dsound_tick, 
2dsound_circ, 
2dsound_scale 

As the 2dyoung_  equivalents 0 

2dtitlex FL, character string, title of X axis ‘’ 
2dtitley FL, character string, title of Y axis ‘’ 

7. Appendix B: Elastic property codes 

The property codes used in the database modes range from 1 to 999. With few exceptions, they 

consist of a three figure code. The first number refers to the property itself, as in Table B1. 

The second two numbers refine the definition, see Table B2. 

The leading 0 must be omitted for the stifnesses and compliances. Codes 1 to 21 comprise the 

stiffnesses in order 11, … 16, 22, … 26, …66. Codes 51 to 1 are the equivalent for the compliances. 
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Table B1: First figure code definition, for a code of the form Xnn 

X=0 X=1 X=2 X=3 X=4 X=5 

Stiffnesses or 
compliances 

Young’s 
modulus 

Shear modulus Compressibility Poisson’s ratio Sound velocity 

 

Table B2: Second part code definition, for a code of the form Xnn 

nn=00 nn=01 nn=02 nn=03 nn=04     

Direct average Reuss 
average 

Voigt 
average 

Hill 
average 

Bulk compressibility 
(only 304) 

   

nn=10 nn=11 nn=12 nn=13 nn=14 nn=15 nn=16 nn=17 nn=18 

minimum 

(X=5: minimum 
transverse) 

direction of 
minimum: ,  

direction of minimum: x,y,z Miller indices for minimum  

nn=20 nn=21 nn=22 nn=23 nn=24 nn=25 nn=26 nn=27 nn=28 

maximum 

(X=5: maximum 
transverse) 

direction of 
maximum: ,  

direction of maximum: x,y,z Miller indices for maximum 

nn=30   nn=33 nn=34 nn=35 nn=36 nn=37 nn=38 

X=5 only: 
longitudinal 

  transverse direction at minimum 
(vector b): x,y,z (only for X=2 or 
4) 

transverse direction at minimum 
(vector b): Miller indices (only for 
X=2 or 4) 

   nn=43 nn=44 nn=45 nn=46 nn=47 nn=48 

    transverse direction at maximum 
(vector b): x,y,z (only for X=2 or 
4) 

transverse direction at maximum 
(vector b): Miller indices (only for 
X=2 or 4) 
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Figure Caption 

Fig. 1: (a) 2D structure with positive (top) and negative (bottom) Poisson’s ratio; (b) 2D illustration 

of one mechanism of NTE, increasing thermal agitation of linked, rigid squares reduces total area 

Fig. 2: Definitions of angles used to describe directions in ElAM 

Fig. 3: 3D representation of Young’s modulus of silver, using default setup. 

Fig. 4: Improved 3D representation of Young’s modulus of silver, with finer angle mesh, white 

background and axes. 

Fig. 5: 3D representation of Poisson’s ratio for aluminium (a), cesium (b), AuCd alloy (c) and InTl 

alloy (d). maximum (blue), minimum positive (green) and minimum negative (red). 

Fig. 6: 2D representation of Poisson’s ratio in the (-110) plane for aluminium (a), cesium (b), AuCd 

alloy (c) and InTl alloy (d). maximum (blue), minimum positive (green) and minimum negative 

(red). 

Fig. 7: 3D representation of Poisson’s ratio for ODQWKDQXP�QLREDWH� �D�� F��DQG� -cristobalite (b, d). 

The top figures (a, b) show the maximum and minimum curves for each direction, while the bottom 

ones (c, d) show the rotationally averaged value. The scale, indicated by the length of the axes, is 

conserved for each material. The standard colour convention is used (note the, forced, reverse in 

transparency –red– in b).  

Fig. 8: 3D representation of linear compressibility for ammonium tetaoxalate dihydrate. 

Fig. 9: 2D representation of linear compressibility for ammonium tetraoxalate dihydrate in the x-z 

plane. 

Fig. 10: Comparison of recent elastic anisotropy measures Au and A*. 
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Example captions 

Ex. 1: Basic ElAM input for Young’s modulus of Silver. 

Ex. 2: Improved ElAM input for Young’s modulus of silver, with title, named output, finer angle 

mesh, white background and axes. 

Ex. 3 :  Use of 2D keywords for postscript production, see Fig. 6. 

Ex. 4 : Use of colour keywords for transparency reversal. 

Ex. 5: Use of colour keyworGV�WR�UHYHDO�DYHUDJH�FXUYHV�� -cristobalite). 

Ex. 6: Typical database mode input file. 

Ex. 7: Database file 
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