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Abstract: Gold nanoshells (GNS) are novel metal nanoparticles exhibiting 

attractive optical properties which make them highly suitable for 

biophotonics applications. We present a novel investigation using plasmon-

enhanced four wave mixing microscopy combined with coherent anti-

Stokes Raman scattering (CARS) microscopy to visualize the distribution of 

75 nm radius GNS within live cells. During a laser tolerance study we found 

that cells containing nanoshells could be exposed to < 2.5 mJ each with no 

photo-thermally induced necrosis detected, while cell death was linearly 

proportional to the power over this threshold. The majority of the GNS 

signal detected was from plasmon-enhanced four wave mixing (FWM) that 

we detected in the epi-direction with the incident lasers tuned to the silent 

region of the Raman spectrum. The cellular GNS distribution was visualized 

by combining the epi-detected signal with forwards-detected CARS at the 

CH2 resonance. The applicability of this technique to real-world 

nanoparticle dosing problems was demonstrated in a study of the effect of 

H2S on nanoshell uptake using two donor molecules, NaHS and GYY4137. 

As GYY4137 concentration was increased from 10 µM to 1 mM, the 

nanoshell pixel percentage as a function of cell volume (PPCV) increased 

from 2.15% to 3.77%. As NaHS concentration was increased over the same 

range, the nanoshell PPCV decreased from 12.67% to 11.47%. The most 

important factor affecting uptake in this study was found to be the rate of 

H2S release, with rapid-release from NaHS resulting in significantly greater 

uptake. 

©2011 Optical Society of America 
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1. Introduction 

Our understanding of the sub-cellular biological processes is largely founded upon 

microscopy-based investigations that require stains and tags such as fluorescent labels for 

contrast. Few traditional contrast agents provide the required resolution, specificity or 

sensitivity over sub-cellular length scales without adversely perturbing the chemical 

environment of the sample. Additional problems such as photobleaching and phototoxicity 

also hamper such experiments. Recent developments in nanotechnology have produced 

specialized gold nanoparticles (GNPs) that provide contrast at intensities equaling or in some 

cases surpassing that of fluorescent labels, without the associated drawbacks. 

GNPs are well suited to biological applications as they are non-toxic and their chemically 

unreactive properties make them highly stable in biological environments. There are 

numerous approaches to engineering GNPs of different morphologies such as nanostars [1], 

nanorods and nanoshells [2] with diverse potential biomedical applications including: drug-

delivery platforms [3], enhanced image contrast agents [4] and nanoscale probes that track the 

motion of cells and individual molecules [5]. Of these GNPs, it is perhaps gold nanoshells 

(GNS) that have attracted the most interest for use in biophotonics since they are highly 

reproducible and have appealing optical properties for biological applications. GNS are 

spherical nanoparticles that consist of a dielectric core surrounded with a continuous layer of 

gold that have nano-scale diameters. Their nanoscale size enables them to readily interact with 

cells, often in ways which do not alter the intrinsic biochemical processes [6,7], but perhaps 

even more interesting is their behavior under exposure to light. 
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Gold nanoshells can be tailored to efficiently absorb light under illumination wavelengths 

at or near to their plasmon resonance, a property exploited in a range of applications including 

photothermal treatment of cancer and subcellular pH sensing [8–10]. Because they may be 

engineered to preferentially absorb or scatter light in the near infrared, GNS can exploit the 

NIR “window” of optimal light penetration into tissue. Additionally, GNS have optical cross 

sections that may be up to 140 times greater than fluorescent beads, while emitting light at the 

same order of magnitude of brightness as nano-rods and up to twice that of CdSe QDs [11], 

with the added advantage that they do not experience photo-bleaching or “blinking”. The 

intense photoluminescence of GNS has been exploited in experiments using them as contrast 

agents both under linear excitation and non-linear regimes using Multiphoton Induced 

Luminescence (MIL) [12,13]. Non-linear excitation schemes offer many advantages for bio-

imaging as they typically employ near infrared wavelengths, they reduce photodamage and 

phototoxicity whilst allowing increased depth penetration into scattering media. Moreover, the 

nonlinear signal dependence provides intrinsic “confocal-like” spatial resolution. 

When investigating the cellular uptake of GNPs it is important to co-localize particle 

location with the cellular structure. Therefore, a single imaging modality for identifying and 

spatially localizing GNPs within live cells is desirable. However, signals from these 

nanoparticles have been estimated as being approximately three orders of magnitude brighter 

than intrinsic autoflourescence for cellular structures [4]. Relying on auto-fluorescence in such 

detection schemes therefore allows visualization of nanoparticles with only limited 

information regarding biological morphology. We demonstrate that with four wave mixing 

(FWM) microscopy it is possible to visualize the distribution of GNS whilst simultaneously 

generating label-free contrast of surrounding cellular structures. FWM is a third-order non-

linear optical process and is sensitive to χ
(3)

. In FWM microscopy, three incident fields with 

frequencies of ω1, ω2, ω3 interact with the material to generate a signal field at a frequency of 

ω4. FWM is sensitive to both the vibrational and electronic properties of the material. 

Vibrationally enhanced FWM is achieved when the wavenumber difference between the 

excitation fields matches a molecular vibration; this is used in coherent anti-Stokes Raman 

scattering (CARS). Electronically enhanced FWM occurs when one (or more) of the four 

fields is resonant with an electronic transition within the material. This effect is particularly 

significant in nanomaterials [14]. For experimental simplicity degenerate FWM is commonly 

employed in which ω2 = ω3 and the FWM signal, ωFWM = 2ω1 - ω2. In the case of degenerate 

CARS the vibrationally resonant signal, ωCARS, occurs when ω1 - ω2 matches a vibrational 

resonance. In this case ω1 and ω2 are referred to as the pump (ωp) and Stokes (ωS) frequencies 

respectively. 

Both CARS and FWM microscopy have been proved to be powerful tools for providing 

images of biological samples [15–17]. The information obtained in FWM images is dependent 

on the detection geometry. Phase matching criteria dictate that scatterers within the sample 

that are smaller than the incident wavelength may produce stronger FWM signals than bulk 

scatterers in the back-detected (epi) direction, whereas larger structures provide better contrast 

in forwards-detected FWM [17]. The suitability of epi-detected FWM for investigating 

nanoparticles within biological structures has already been demonstrated by Moger et al when 

imaging ZnO particles in fish gills using electronically resonant FWM [18]. Although 

chemically specific, the CARS signal exhibits a non-resonant component that is present both 

on and off the Raman-active resonance. This non-resonant background is significantly 

diminished in epi-detected CARS for aqueous samples since signal from the bulk water is 

effectively cancelled out by destructive interference [19]. We show that we can detect 

forwards-CARS contrast from live cells simultaneously with plasmon-enhanced epi-detected 

FWM signal from GNS, allowing the 3D distribution of GNS to be correlated with the cellular 

sub-structures. We investigate the dependence of nanoshell mediated photo-thermal induced 

cell damage on incident laser power and demonstrate that there exists a threshold incident 

power within which it is possible to image GNS inside cells without inducing damaging 
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photo-thermal effects. By imaging below the threshold, we were able to map the 3D spatial 

distribution of GNS within live cancer and macrophage cell cultures. 

In order to demonstrate the ability of FWM imaging to study factors affecting cellular 

uptake of nanoparticles, we determined the phagocytosis of GNS in macrophages under 

exposure to two chemicals that release hydrogen sulfide at different rates. Just as nitric oxide 

and carbon monoxide were once thought of merely as metabolic poisons but are now 

recognized as having important biological mediating properties, hydrogen sulfide (H2S) is 

now being regarded in the same light. Although H2S is known to be an important endogenous 

gas with cardiovascular signaling properties, there is much conflicting data on its exact role in 

inflammation. Experiments investigating the effects of H2S on inflammation, phagocytosis 

and other cellular processes have largely relied upon rapid-release donor molecules such as 

NaHS, which releases H2S immediately in aqueous solutions. This rapid release of H2S 

induces effects in cells that are not found in vivo, where the gas is typically released at much 

slower rates and at lower concentrations [20,21]. Recent investigations of an alternative water-

soluble H2S-releasing compound [morpholin-4-ium 4 methoxyphenyl(morpholino) 

phosphinodithioate (GYY4137)] have found that it releases H2S at rates comparable to those 

in vivo and that both the concentration and rate of release of H2S elicit different responses in 

inflammatory processes [20,21]. 

As yet there are no published studies on the effect of GYY4137 on particle uptake in cell 

cultures. We exposed macrophage cells to a range of concentrations of GYY4137 and NaHS 

before incubating with GNS and used FWM imaging to compare the relative volumes of cell 

cytoplasm containing GNS. We found that when exposed to the rapid-donor NaHS, the 

volume of cell cytoplasm containing FWM signal from GNS was between 3 and 5 times 

greater than when exposed to the slow-donor GYY4137. This study indicates that the rate of 

H2S release has an important role in phagocytosis and demonstrates the suitability of GNS for 

use as cellular contrast agents in FWM imaging. 

2. Materials and methods 

2.1 FWM microscopy 

The FWM optical setup is illustrated schematically in Fig. 1. For the pulsed laser source, a 

Levante OPO (Levante Emerald, APE, Berlin) pumped with a neodymium vanadate source. 

The Nd:Vanadate source (High-Q Picotrain, Hohenems, Austria) provides a 6 ps pulse width 

laser beam with a wavelength of 1064 nm which is frequency doubled to 532 nm. The power 

from this source is up to 10 W with a repetition rate of 76 MHz. The OPO converts the 

incoming 532 nm pump beam into two outputs (the signal and idler beams) which are required 

for CARS generation. These pump (signal) and Stokes (idler) beams are tunable from 690 to 

990 nm and 1150 to 2300 nm respectively. 

Imaging was achieved using modified commercial inverted microscope (IX71, Olympus 

UK) and confocal scan unit (FV300, Olympus UK). The pump and Stokes beams were 

focused on the sample using a water immersion objective lens (UPLSAPO 60 x 1.2 NA, 

Olympus, UK). The forward-propagating FWM signal was collected by an air condenser (NA 

= 0.55), band-pass filtered (HQ750/210, Chroma Technologies) to isolate the FWM signal and 

detected by a photomultiplier tube (R3896, Hamamatsu). The epi-FWM signal was collected 

using the objective lens, separated from the excitation beams by a long-wave pass dichroic 

mirror (z850rdc-xr, Chroma Technologies) and detected at the rear microscope port by a 

second PMT to perform imaging, or a spectrometer (Andor, Shamrock sr-303 and iDus CCD) 

to study the FWM emission spectra. 
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Fig. 1. Schematic diagram of the FWM microscopy optical layout. 

Since GNS could be found throughout the cell cytoplasm, it was necessary to image entire 

cell volumes in 3D. Three-dimensional data were acquired by taking stacks of 2D images in 

the x-y plane each separated by an increment in the z-direction, which was achieved by 

altering the height of the objective relative to the sample. The microscope stage was enclosed 

in a temperature-controlled environmental chamber (Life Imaging Services, Switzerland), 

maintained at a constant temperature of 37 °C in order to maintain cell viability during image 

acquisition. 

2.2. Gold nanoshells 

GNS (nanoComposix, San Diego) were supplied with an optical resonance at 785 nm (core 

diameter 120 nm, gold shell thickness 15 nm +/− 0.4 nm). Diameter and shell integrity were 

verified by Scanning Electron Microscopy (Hitachi, S-3200N). Absorption spectra of GNS 

suspended in cell culture medium were obtained on a UV/visible light spectrophotometer 

(Biochrom Ultrospec 4300 pro, Cambridge, England) with quartz cuvettes of 2 mm path 

length, using an identical cuvette containing culture medium alone as a control. 

2.3 Cell culture and nanoparticle exposure 

Mouse monocyte macrophage cells (RAW264.7, European Collection of Cell Cultures) were 

cultured in Dulbecco’s modified Eagle’s medium (DMEM, Lonza) supplemented with 10% 

Fetal Bovine Serum (FBS) (S1900/500, Biosera, UK) and 0.2% Gentamicin (G1397, Sigma 

Aldrich) by volume. RAW264.7 cells were cultured until 80% confluent, passaged and then 

split 1:4. After splitting and plating up onto Fluorodish cell culture dishes (World Precision 

Instruments, UK), cells were maintained at 37 °C and 5% CO2 for 24 hours prior to imaging. 

Human epidermoid carcinoma cells (A431, London School of Pharmacy, UK) were grown in 

DMEM supplemented with 10% FBS, 1% L-glutamine (Lonza), 1% minimal essential 

medium non-essential amino acids (MEMaa, Lonza) by volume at 37°C and 5% CO2 and 

were cultured on Fluorodishes using the same procedure as the macrophage cells. 

The GNS were supplied in an aqueous solution, aliquots of which were taken prior to 

experimentation and sonicated in a bath sonicator (Ultrawave, UK) for 20 minutes before 

being centrifuged at 4000 rpm for 5 minutes. GNS were then re-suspended in DMEM and 

sonicated again. Cell cultures were seeded overnight onto Fluorodishes containing 2 mL 

macrophage growth medium with 0.2 x 10
6
 cells per dish before exposure to GNS in DMEM. 

The medium was gently aspirated to facilitate even distribution of GNS throughout the culture 

dishes. Mouse macrophages were also exposed to 8µL lipopolysaccharide (LPS) (K-235, 

Sigma Aldrich) immediately after addition of GNS in order to activate phagocytic response. 
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Once the required inoculation time had lapsed, the cells were subsequently rinsed 5 times in 

fresh DMEM to remove excess GNS. 

Cultures exposed to GNS were examined under white light microscopy (Leica DMLFS 

upright microscope) for morphological changes, e.g. changes in cell division rates or 

membrane morphology, and were tested using Trypan blue stain (0.4%, Lonza) to determine 

any variation in the cell mortality rates. No significant changes were observed over a period of 

24 hours with GNS doses of up to 1 x 10
8
 GNS/mL, which corresponds to approximately 300 

GNS per cell. 

To investigate potential effects of excitation powers on cell viability, 2 mL of Trypan blue 

was added to the cell culture medium for 10 minutes after FWM imaging. The medium was 

then gently aspirated and replaced with fresh PBS. Further images were taken of the regions 

scanned under FWM using white light microscopy, in order to identify the cells that had taken 

up the Trypan blue. The percentage of cells containing the blue dye was determined by 

comparison of “before”, “during” and “after” images. 

Two H2S donors were used to investigate the effect of the rate of hydrogen disulfide 

release on particle phagocytosis. The first, a rapid-release donor, NaHS (Sigma Aldrich). The 

second, a slow-release donor, GYY4137, of molecular weight 367.5 was manufactured as 

described previously [20]. Briefly, morpholine (20 mMol) in methyl chloride (CH2Cl2, 6 mL) 

was added drop wise at room temperature to a CH2Cl2 solution (6 mL) of 2,4-bis(4-

methoxyphenyl)-2,4-dithioxo-1,3,2,4-dithiadiphosphetane (4.0 mMol). The reaction mixture 

was stirred at room temperature for 2 hours before the precipitate was filtered and washed 

several times with CH2Cl2. The GYY4137 product was a white solid (67% yield) and was 

pure as determined by 1H nuclear magnetic resonance. Working solutions of GYY4137 and 

NaHS were made immediately prior to experimentation and were sterile-filtered through a 20 

µm membrane (Lonza). 

2.4 Image analysis 

Since epi-detected signal arises from scatterers smaller than the incident wavelength [17], 

GNS signal was determined using epi-detected FWM images. To ensure the detected signal 

was from GNS alone and to avoid exciting detecting cellular contributions, the pump and 

Stokes beams were tuned to 2650 cm
−1

, away from the CH2 resonance in the so-called 

biological “silent region” [21]. In cells, there are no naturally occurring Raman-active 

molecular vibrations in the silent region, hence the strong signal detected in the epi-direction 

under these conditions that was significantly more intense than non-resonant cellular 

contributions was attributed to plasmon-enhanced FWM from GNS alone. 

In order to map the GNS signal onto the cellular components, CH2 contrast was recorded 

in the forwards direction to provide cell morphology information. The GNS and cell 

morphology data were then combined using the image analysis software package ImageJ 

(U.S. National Institutes of Health, U.S.A.) to illustrate the spatial distribution of GNS within 

the cells, relative to the membrane and other lipid-rich cellular organelles, such as lipid 

droplets and vesicles. 

To compare the relative cell cytoplasm volumes containing signal attributed to GNS, an 

analysis method was developed. The outlines of each cell membrane in each z-stack slice were 

determined using the CARS images and recorded in ImageJ using the polygon tool. These 

outlines were mapped onto the GNS signal image stacks in order to isolate GNS within the 

cells, and disregard the signal from extracellular GNS. The epi-CARS images taken at 2650 

cm
−1

 of GNS-free control cells were used to determine the non-resonant pixel threshold. The 

number of pixels within each cell with intensities above this threshold was compared with the 

cell’s total number of pixels to give the relative percentage of pixels associated with GNS as a 

function of cell volume. The energy per cell was calculated using the total pixel dwell time 

over all scans and the number of pixels within each cell, determined using the cell membrane 

outlines. 
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3. Results 

3.1 Verification of FWM signal from GNS 

SEM images (Hitachi S-3200N) confirmed the diameter and shell integrity of the GNS. Figure 

2(A) shows a typical SEM image of GNS spin-coated onto ITO-coated glass substrate. The 

outer gold shells were uniform and complete with no obvious defects, and the incidence of 

dimers or trimers was below 2% of the population. Figure 2(B) shows an emission spectrum 

of GNS illumination from pump and Stokes beams, obtained from a droplet of diluted gold 

nanoshells spun-coated onto a glass coverslip. The pump and Stokes wavelengths used to 

obtain spectra from the nanoshells were 924 nm and 1254 nm respectively. These values were 

chosen for consistency with the excitation wavelengths later used to generate CH2 contrast of 

cellular structures. The sample was raster scanned with a combined excitation power at the 

focus of approximately 3 µW. 

The spectrum consists of a broad luminescent background with a strong, narrow signal at 

732 nm, corresponding to expected position of the FWM signal at 2ωp – ωs. This result is 

consistent with previous investigations into emission from gold nanostructures in which a 

broad two-photon luminescent signal was observed with FWM signal at the anti-Stokes 

wavelength [22,23]. The GNS surface plasmon mode is sufficiently broad to be excited by the 

pump beam, resulting in enhanced local electro-magnetic fields. A wide range of linear and 

non-linear effects may be enhanced by coupling with surface plasmon modes. The enhanced 

fields can allow two-photon absorption, a process that is several orders of magnitude weaker 

in metals in the absence of a surface plasmon mode, exciting d-band electrons into the sp-band 

thus generating electron-hole pairs. When electron-hole recombination subsequently occurs, 

incoherent luminescence is produced. 

 

Fig. 2. (A) SEM image of a single gold nanoshell. (B) Luminescence emission spectra of gold 

nanoshells under excitation from Stokes at 1254 nm and pump at 924 nm simultaneously. (C) 

UV/vis spectrum of GNS suspended in culture medium. 

On the other hand, the coherent FWM signal arises from a plasmon-induced enhancement 

of gold’s third order nonlinear susceptibility [22]. This leads to an intense signal that can be 

readily isolated from any resonant CARS signals in the surrounding medium by tuning the 

pump and Stokes away from the resonant wavelengths, a property which makes GNS very 

attractive as contrast agents in biological samples. 

The average of three absorption spectra from GNS suspended in cell culture medium is 

shown in Fig. 2(C). This spectrum clearly illustrates the broad absorption peak centered at 

~785 nm. For both the two pump wavelengths used in FWM imaging (932 nm and 924 nm), 

the GNS absorbance was 54% and 51% of its peak level respectively. 
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3.2 Imaging GNS within live cells 

Figure 3 demonstrates the technique used to combine the thresholded plasmon-enhanced 

FWM signal (panels a and d) with the CH2 CARS signal (panels b and e) to produce a 

composite image (c and f) showing the location of GNS relative to the cells. The GNS signal 

was readily separated from non-resonant cell contributions in the epi-direction but not in the 

forwards direction. This result is as expected, since previous studies of CARS detection in the 

forwards direction found signal from smaller scatterers tends to be swamped by the signal 

from larger scatterers, whereas the reverse is true for the epi-direction, with scatterers smaller 

than the incident wavelengths providing the majority of the detected signal [17]. 

 

Fig. 3. Epi-detected FWM signal from GNS thresholded to show only pixels above the non-

resonant cellular contribution, using pump and Stokes beams tuned to 2650 cm−1 (a) and 

forwards-detected CARS with CH2 contrast (b) in live cultures of RAW 264.7 cells. Panel (c) is 

a red/green color composite image using (a) as the green channel and (b) as the red channel. 

Panels (d) – (f) were obtained in the same manner, using control RAW 264.7 cells that were not 

exposed to GNS. 

Figure 4 shows multi-planar visualizations of typical 3D CARS images stacks of 

RAW264.7 and A431 cells. Each 2D image consists of 512 x 512 pixels, with a 20 µs dwell 

time. Each stack consists of 30 images separated by 1 µm. The excitation wavelengths were 

924 and 1254 nm for the pump and Stokes beams respectively. The epi- and forwards- FWM 

images are overlaid (green and red). 

Clusters of GNS are visible throughout the cytoplasm of both RAW264.7 and A431 cells, 

however, none can be found within the nuclei. However, for the RAW264.7 cells GNS were 

in some cases to be associated with the perinuclear region. Vesicle-encapsulated clusters of 

GNS were found to range between 0.5 µm (the width of a single pixel) to 5 µm in diameter. 

Although the corresponding number of GNS comprised within these clusters could not be 

precisely determined (due to the resolution limit of the microscope and uncertainty associated 

with determining the signal per nanoshell in a cluster) these volumes give rise to a spatial limit 

on GNS packing within the clusters of between 19 and several thousand individual GNS. 
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Fig. 4. Spatial distribution of GNS in live cultures of RAW 264.7 (left, Media 1) and A431 

(right). Red contrast corresponds with forwards-detected CARS signal with pump and Stokes 

wavelengths tuned to excite the CH2 resonance (red). Green signal corresponds with GNS 

signal. Both bars are 10 µm. 

In order to determine the exposure conditions for which FWM imaging of GNS within 

cells would not induce phototoxic or photothermal effects, the laser power tolerance of cells 

exposed to the gold nanoshells was compared to that of undosed cells. A minimum of 50 cells 

were used for each laser power investigated. The total scan time per cell was calculated using 

the pixel dwell time multiplied by the number of pixels per cell, which in turn was used to 

determine the laser energy per cell. Control cell cultures that had not been exposed to GNS 

were imaged in an identical fashion. 

 

Fig. 5. Graph depicting the percentage of non-viable macrophage cells as a function of laser 

energy per cell (black line). The baseline mortality exhibited by GNS-free cells exposed to 

CARS up to 8 mJ per cell at the sample is also shown (red line). 

Figure 5 compares cell survival rates for dosed vs. undosed cells as a function of incident 

laser power. The linear relation between incident laser energy and the percentage of dead cells 

suggests that the photo-thermal mechanism of induced cell death occurs as a result of a near-

SPR single-photon absorption process in the GNS from the pump beam. Under these 

experimental conditions, we found that cells devoid of GNS were able to withstand exposure 

to up to 8 mJ per cell without significantly altering their survival rates, whereas cells exposed 

to GNS displayed a significant increase in cell necrosis over 2.5 mJ per cell. 
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3.3 The effect of H2S donor molecule on nanoparticle uptake in macrophage cells 

Of the candidate tissues for photothermal therapy with GNS, cancerous tumors are arguably 

the most medically relevant. Tumors have long been associated with inflammation and an 

increased number of white blood cells. Since H2S is known to play an important role in 

inflammation, we devised a study to demonstrate the applicability of our FWM imaging 

technique to determine the effect of two H2S-releasing molecules, NaHS and GYY4137, on 

the uptake of GNS in live macrophage cultures. We found that the addition of GYY4137 and 

NaHS to macrophages increased the percentage of the cells containing GNS, as illustrated in 

Fig. 6, indicating that an increase in H2S levels in the cell culture medium led to an increase in 

phagocytosis rates within the macrophages. However, this effect was noticeably more marked 

with NaHS, which suggests that phagocytosis is dependent on both the concentration and rate 

of release of H2S. 

 

Fig. 6. Effect of H2S donors on macrophage uptake of GNS. Control 1 corresponds with RAW 

264.7 cells unexposed to GNS; control 2 corresponds with RAW 264.7 cells exposed to LPS 

and GNS but not to any H2S donor molecules. Between 50 and 100 cells were used for each 

data point, error bars arise from the standard deviation. 

At a molar concentration of 10 µM, GYY4137 added to the cell culture medium resulted 

in an average GNS pixel percentage of 2.15% +/− 0.25%, which was not statistically 

significantly lower than the control group which was unexposed to GYY4137 whose GNS 

pixel percentage as a function of cell volume (PPCV) was 2.47% +/− 0.31%. However for 

GYY4137 concentrations at 100 µM, the GNS PPCV was 3.78% +/−0.46% (which was 

significantly greater than the control group, p< 0.01), at 1 mM the PPCV was 3.77% +/− 

0.38% (which was significantly greater than the control group, p< 0.01). This indicates that 

for GYY4137 levels below 100 µM there is no change in the macrophage’s uptake of GNS, 

whereas for concentrations over this level up to 1 mM there is an associated significant 

increase in GNS uptake. For all concentrations of NaHS, the increase in GNS PPCV over both 

the control groups and the GYY4137 groups was statistically significant (p<0.02). For NaHS 

at 10 µM the GNS PPCV was 12.67% +/− 0.15%, dropping to 11.47%. +/− 0.31% for 1 mM. 

4. Discussion 

Previous studies of gold nano-structures using FWM microscopy have found that the emission 

spectra obtained from these structures arises from two-photon enhanced luminescence 

combined with second harmonic generation and coherent anti-Stokes peaks [23]. Our results 
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indicated that the signal arose from a broad luminescent background with the addition of a 

strong coherent FWM peak when the GNS were exposed to both Stokes and pump beams. The 

epi-detected FWM signal from GNS was several orders of magnitude greater than signal 

arising from epi-detected CARS signal from scatterers smaller than the incident wavelength 

(such as lipid droplets), as a result of the plasmon-enhancement. This enabled the FWM GNS 

signal to be readily separated from nonresonant CARS by thresholding the images such that 

the minimum intensity matched that of the brightest nonresonant cell signal. Using this 

thresholding technique, multiphoton-induced luminescence from the GNS was not sufficiently 

intense to allow localization of the particles, whereas FWM signal from the GNS was. 

Although the nanoshells’ LSPR was tuned to an absorption peak of 785 nm, we found that 

the peak width was broad enough to enable excitation of plasmon-enhanced FWM using a 

range of pump and Stokes wavelengths probing Raman shifts at the CH2 resonance and within 

the “silent region”. We exploited this feature to verify GNS signal within cell cultures by 

taking sequential FWM images exciting first at the CH2 resonance to provide contrast from 

lipid-rich structures, followed by exciting Raman shifts in the “silent region”. The epi-

detected GNS FWM signal was significantly more intense than the non-resonant CARS 

contribution from cellular structures. By combining the FWM and CARS data, we were able 

to determine the spatial localization of GNS within the cells in relation to the lipid membrane 

and cell nuclei. Although the FWM signal from the GNS would have been greater had we 

used pump and Stokes beams closer to the plasmon resonance wavelength, the level of 

intensity achieved in our experiments was more than sufficient. Additionally, imaging with 

the pump beam at the plasmon resonance would reduce the damage threshold to the point 

where sufficient CARS contrast could not be obtained and could cause damage to the GNS. 

Hence, the limiting factor to the quality of our images was the intensity of CARS signal and 

not the FWM GNS signal. 

We chose a pixel dwell time of ~20 µs, giving scan rates of ~5 seconds per frame, as this 

was slow enough to provide sufficiently high levels of CARS and FWM contrast without 

causing damage to the cells, whilst being fast enough to reduce the potential of motion 

artifacts brought about by the cells moving between images. When imaging at these scan 

rates, we found signal from GNS within the cell cytoplasm enclosed in vesicles in clusters 

ranging from approximately 0.5 µm to 5 µm in diameter. When nanoshells cluster, they 

exhibit changes in their plasmon resonance wavelength that are dependent on the number of 

nanoshells and their spacing within the cluster. Previous studies of this effect in 3-D clusters 

have found a blue-shift of the resonance when the ratio of inter-particle spacing to particle 

diameter increases [24]. In our experiment this would manifest itself as a change in GNS 

FWM intensity. However, the shifts in plasmon resonance of clusters were not found to be 

sufficient to reduce the FWM signal to the point where it could no longer be separated from 

the nonresonant CARS signal. We found that macrophage cells tended to contain between 1 

and 5 clusters when exposed to GNS at a concentration of 6 x 10
7
 per mL in their cell culture 

medium for 24 hours prior to imaging. Cancer cells were found to contain fewer clusters, with 

a higher incidence of GNS-free cells than for macrophages. For both cell types, GNS were 

found throughout the cytoplasm and in the perinuclear region, but not within the nucleus 

itself. 

We demonstrated the applicability of the signal isolation technique to particle uptake 

investigations in a study of the effects of hydrogen sulfide. Hydrogen sulfide is a chemical 

produced in a variety of mammalian tissues, such as the liver, lung, pancreas, brain, colon etc. 

Much work is being undertaken to determine the biological roles of H2S, particularly 

regarding its role in inflammation. There are much conflicting data on this topic, further 

complicated by the ability of H2S to affect the bioavailability of another chemical involved in 

inflammation, NO. Traditional hydrogen sulfide donors, such as NaHS, release H2S rapidly in 

aqueous solution. Such high concentrations of H2S released over short time periods are 

unsuitable for determining the biological effects of H2S on live cells as they are not 
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comparable with conditions found within tissues where levels of H2S are only ever found to 

change slowly. 

We used FWM microscopy to investigate the effect of a slow-release H2S donor 

(GYY4137) and a fast-release H2S donor (NaHS) on the uptake of GNS into macrophage 

cells. GYY4137 is preferable to more “conventional” H2S donors such as NaHS, as it has been 

found to release H2S slowly in aqueous solution in vitro, producing biological effects that are 

more comparable to those arising from endogenous H2S. We found that nanoparticle uptake in 

white blood cells drastically increased relative to the control group when the cultures were 

exposed to NaHS, indicating that an increase in free H2S leads to an increased phagocytic 

response. An increase in nanoparticle uptake was also observed for the slow-release H2S 

donor GYY4137 although this was much less marked than for the rapid-release donor. These 

results suggest that both the rate of release and the concentration of H2S in the cell culture 

medium affect the rate of phagocytosis. 

Determining dose and uptake mechanisms at the cellular level is a crucial step towards 

bringing new nanoparticle-based therapies out of the laboratory and into the hospital. Our 

study has shown that using FWM microscopy it is possible to selectively determine relative 

gold nanoshell uptake in live cells and induce localized GNS-mediated photo-thermal effects 

leading to cell death. We found that the percentage of cells exhibiting membrane damage as a 

result of GNS-heating increased linearly with incident laser energy on the sample over a 

threshold. Moreover, we have demonstrated the applicability of this imaging system to 

investigations of factors affecting particle uptake in live cells. 

5. Conclusions 

Our experiments have shown that GNS make excellent contrast agents for FWM microscopy 

of live cell cultures. The signal obtained from GNS under FWM excitation conditions was 

found to arise from a broad multi-photon enhanced luminescence with a strong FWM peak at 

the anti-Stokes wavelength. Since GNS heat rapidly upon excitation at their plasmon 

resonance wavelength, a power study was performed to determine the optimum laser power 

for imaging cells containing GNS without causing membrane damage or cell death. We 

determined that when the total laser energy incident on each cell exceeded 2.5 mJ, the cells 

exhibited higher than background levels of cell death, as determined using a Trypan blue vital 

stain study. Above this threshold, the cell death levels were found to increase linearly with 

incident laser power. 

When imaging cell cultures exposed to GNS, the intensity of the GNS signal was found to 

be several orders of magnitude greater than that of the resonant CARS signal from lipid 

droplets within the cells. This enhanced GNS signal was therefore readily separable from the 

non-GNS signal using simple image thresholding techniques, thus allowing precise spatial 

localization of the GNS within each cell. This spatial localization method was used to 

determine the relative change in uptake of GNS for live macrophage cells exposed to one of 

two H2S donor molecules, NaHS and GYY4137. We found that the rapidly-releasing H2S 

donor molecule, NaHS resulted in GNS uptake levels that far exceeded those for the slowly-

releasing donor molecule, GYY4137. These findings have important implications for studies 

investigating the effect of H2S on phagocytosis of nanoparticles. 
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