Show simple item record

dc.contributor.authorAziz, Mustafa M.en_GB
dc.contributor.authorBelmont, M.R.en_GB
dc.contributor.authorWright, C. Daviden_GB
dc.date.accessioned2012-09-28T18:19:08Zen_GB
dc.date.accessioned2013-03-20T12:20:41Z
dc.date.issued2008-11-21en_GB
dc.description.abstractThis work presents an analytical study of the thermally activated amorphous-to-crystalline phase-change process when the heating source has a delta function temporal profile. This simulates the case of ultrafast heating where crystallization in the amorphous phase-change medium occurs during cooling. The study produced closed-form expressions that predict the necessary peak temperature, and hence energy density, in the phase-change medium for successful crystallization during ultrafast annealing as functions of the kinetic and thermal parameters of the medium. Closed-form expressions were also derived that provide estimates of the final crystalline mark widths and tail lengths when phase change has ceased. The analysis indicated the need to reduce the activation energy of crystallization and the thermal diffusivity of the medium to reduce the initial peak temperature, produced by the heating source, to avoid melting, to increase the crystallization rate, to achieve sufficient levels of crystalline fractions during cooling, and to reduce the size of recorded crystalline marks. Perturbation analysis was carried out to study the effects of latent heat of crystallization during the fast kinetics phase. The result was reductions in the cooling rate of the phase-change material, thus requiring lower peak temperatures to achieve higher volumes of crystalline fraction. Nevertheless, the effects of heat release during crystallization were found to be modest for the class of current phase-change material used in data storage.en_GB
dc.format.mediumElectronicen_GB
dc.identifier.citationVol. 104 (10), article 104912en_GB
dc.identifier.doi10.1063/1.3028269en_GB
dc.identifier.urihttp://hdl.handle.net/10036/3805en_GB
dc.language.isoEnglishen_GB
dc.publisherAmerican Institute of Physicsen_GB
dc.subjectultra-fast heatingen_GB
dc.subjectdata storageen_GB
dc.subjectphase-change materialsen_GB
dc.subjectannealingen_GB
dc.subjectcoolingen_GB
dc.subjectheat of crystallisationen_GB
dc.subjectperturbation theoryen_GB
dc.subjectrandom-access storageen_GB
dc.subjectthermal diffusivityen_GB
dc.titleUltrafast heating and resolution of recorded crystalline marks in phase-change mediaen_GB
dc.date.available2012-09-28T18:19:08Zen_GB
dc.date.available2013-03-20T12:20:41Z
dc.identifier.issn0021-8979en_GB
exeter.article-number104912en_GB
exeter.place-of-publicationUSen_GB
dc.descriptionCopyright © 2008 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Journal of Applied Physics 104 (2008) and may be found at http://link.aip.org/link/?JAPIAU/104/104912/1en_GB
dc.identifier.journalJournal of Applied Physicsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record