Show simple item record

dc.contributor.authorDmytriiev, O
dc.contributor.authorAl-Jarah, UAS
dc.contributor.authorGangmei, P
dc.contributor.authorKruglyak, VV
dc.contributor.authorHicken, RJ
dc.contributor.authorMahato, BK
dc.contributor.authorRana, B
dc.contributor.authorAgrawal, M
dc.contributor.authorBarman, A
dc.contributor.authorMátéfi-Tempfli, M
dc.contributor.authorPiraux, L
dc.contributor.authorMátéfi-Tempfli, S
dc.date.accessioned2016-06-13T13:32:03Z
dc.date.issued2013-05-28
dc.description.abstractThe static and dynamic magnetic properties of magnetic nanowire arrays with high packing density (>0.4) and wire diameter much greater than the exchange length have been studied by static and time-resolved magneto-optical Kerr effect measurements and micromagnetic simulations. The nanowires were formed by electrodeposition within a nanoporous template such that their symmetry axes lay normal to the plane of the substrate. A quantitative and systematic investigation has been made of the static and dynamic properties of the array, which lie between the limiting cases of a single wire and a continuous ferromagnetic thin film. In particular, the competition between anisotropies associated with the shape of the individual nanowires and that of the array as a whole has been studied. Measured and simulated hysteresis loops are largely anhysteretic with zero remanence, and the micromagnetic configuration is such that the net magnetization vanishes in directions orthogonal to the applied field. Simulations of the remanent state reveal antiferromagnetic alignment of the magnetization in adjacent nanowires and the formation of vortex flux closure structures at the ends of each nanowire. The excitation spectra obtained from experiment and micromagnetic simulations are in qualitative agreement for magnetic fields applied both parallel and perpendicular to the axes of the nanowires. For the field parallel to the nanowire axes, there is also good quantitative agreement between experiment and simulation. The resonant frequencies are initially found to decrease as the applied field is increased from remanence. This is the result of a change of mode profile within the plane of the array from nonuniform to uniform as the ground state evolves with increasing applied field. Quantitative differences between experimental and simulated spectra are observed when the field is applied perpendicular to the nanowire axes. The dependence of the magnetic excitation spectra upon the array packing density is explored, and dispersion curves for spin waves propagating within the array parallel to the nanowire axis are presented. Finally, a tunneling of end modes through the middle region of the nanowires was observed. The tunneling is more efficient for wires forming densely packed arrays, as a result of the extended penetration of the dynamic demagnetizing fields into the middle of the wires and due to the lowering of the tunneling barrier by the static demagnetizing field of the array. © 2013 American Physical Society.en_GB
dc.description.sponsorshipThe authors gratefully acknowledge the assistance of V.-A. Antohe and S. Tuilard with sample fabrication and M. Dvornik, M. Franchin, and H. Fangohr with micromagnetic simulations. The financial support from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreements No. 212257 MASTER (fabrication and experiment) and No. 233552 DYNAMAG (simulations) is gratefully acknowledged. We also gratefully acknowledge financial support from a UKIERI-DST standard research award (Grants No. SA 07-021 and No. DST/INT/UKIERI/SA/P- 2/2008) for travel between S. N. B. N. C. B. S., India, and the University of Exeter, United Kingdom. Finally, V.V.K. gratefully acknowledges funding received from the U.K. Engineering and Physical Sciences Research Council Project No. EP/E055087/1.en_GB
dc.identifier.citationPhys. Rev. B 87, 174429en_GB
dc.identifier.doi10.1103/PhysRevB.87.174429
dc.identifier.urihttp://hdl.handle.net/10871/22041
dc.language.isoenen_GB
dc.publisherAmerican Physical Societyen_GB
dc.relation.urlhttp://journals.aps.org/prb/abstract/10.1103/PhysRevB.87.174429en_GB
dc.rightsThis is the final version of the article. Available from American Physical Society via the DOI in this record.en_GB
dc.titleStatic and dynamic magnetic properties of densely packed magnetic nanowire arraysen_GB
dc.typeArticleen_GB
dc.date.available2016-06-13T13:32:03Z
dc.identifier.issn1098-0121
dc.descriptionPublisheden_GB
dc.descriptionJournal Articleen_GB
dc.identifier.eissn1550-235X
dc.identifier.journalPhysical Review B - Condensed Matter and Materials Physicsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record