Show simple item record

dc.contributor.authorLand, PE
dc.contributor.authorShutler, JD
dc.contributor.authorSmyth, TJ
dc.date.accessioned2017-11-15T13:42:09Z
dc.date.issued2017-12-04
dc.description.abstractThe highly reflective nature of high particulate inorganic carbon (PIC) from calcifying plankton, such as surface blooms of Emiliana-huxleyi in the latter stages of their life cycle, can cause the saturation of the MODerate resolution Imaging Spectrometer (MODIS) visible spectrum ocean colour bands. This saturation results in errors in the standard MODIS oceanic PIC product, resulting in the highest PIC levels being represented as cloud-like gaps (missing data) in daily level 2 data, and as either gaps or erroneously low PIC values in temporally averaged data (e.g. 8 day level 3 data). A method is described to correct this error and reconstruct the missing data in the ocean color band data, by regressing the 1 km spatial resolution ocean color bands against MODIS higher-resolution (500 m spatial resolution) bands with lower sensitivities. The method is applied to all North Atlantic MODIS data from 2002 to 2014. This shows the effect on mean PIC concentration over the whole North Atlantic to be less than 1% annually and 2% monthly, but with more significant regional effects, exceeding 10% in peak months in some coastal shelf regions. Effects are highly localised and tend to annually reoccur in similar geographical locations. Ignoring these missing data within intense blooms is likely to result in an underestimation of the influence that coccolithophores, and their changing distributions, are having on the North Atlantic carbon cycle. We see no evidence in this 12-year time series of a temporal poleward movement of these intense bloom events.en_GB
dc.description.sponsorshipThe authors thank the NASA Goddard Space Flight Centre, Ocean Biology Processing Group (NASA OB.DAAC) for supplying data for this study and the NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS) for processing them. JS and PL were also supported by the UK Natural Environment Research Council (NERC) projects CArbon/Nutrient DYnamics and FLuxes Over Shelf Systems (CANDYFLOSS, contract NE/K002058/1) and the Radiatively Active Gases from the North Atlantic Region and Climate Change (RAGNARoCC, contract NE/K002511/1).en_GB
dc.identifier.citationPublished online 4 December 2017en_GB
dc.identifier.doi10.1109/TGRS.2017.2763456
dc.identifier.urihttp://hdl.handle.net/10871/30308
dc.language.isoenen_GB
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_GB
dc.rightsOpen access. This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
dc.subjectOptical saturationen_GB
dc.subjectRemote sensingen_GB
dc.subjectSatellite applicationsen_GB
dc.subjectSea surfaceen_GB
dc.titleCorrection of Sensor Saturation Effects in MODIS Oceanic Particulate Inorganic Carbonen_GB
dc.typeArticleen_GB
dc.identifier.issn0196-2892
dc.descriptionThis is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.en_GB
dc.identifier.journalIEEE Transactions on Geoscience and Remote Sensingen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record