Show simple item record

dc.contributor.authorPorter, SL
dc.contributor.authorRoberts, MA
dc.contributor.authorManning, CS
dc.contributor.authorArmitage, JP
dc.date.accessioned2013-06-03T09:10:10Z
dc.date.issued2008-11-25
dc.description.abstractPhosphorylation-based signaling pathways employ dephosphorylation mechanisms for signal termination. Histidine to aspartate phosphosignaling in the two-component system that controls bacterial chemotaxis has been studied extensively. Rhodobacter sphaeroides has a complex chemosensory pathway with multiple homologues of the Escherichia coli chemosensory proteins, although it lacks homologues of known signal-terminating CheY-P phosphatases, such as CheZ, CheC, FliY or CheX. Here, we demonstrate that an unusual CheA homologue, CheA(3), is not only a phosphodonor for the principal CheY protein, CheY(6), but is also is a specific phosphatase for CheY(6)-P. This phosphatase activity accelerates CheY(6)-P dephosphorylation to a rate that is comparable with the measured stimulus response time of approximately 1 s. CheA(3) possesses only two of the five domains found in classical CheAs, the Hpt (P1) and regulatory (P5) domains, which are joined by a 794-amino acid sequence that is required for phosphatase activity. The P1 domain of CheA(3) is phosphorylated by CheA(4), and it subsequently acts as a phosphodonor for the response regulators. A CheA(3) mutant protein without the 794-amino acid region lacked phosphatase activity, retained phosphotransfer function, but did not support chemotaxis, suggesting that the phosphatase activity may be required for chemotaxis. Using a nested deletion approach, we showed that a 200-amino acid segment of CheA(3) is required for phosphatase activity. The phosphatase activity of previously identified nonhybrid histidine protein kinases depends on the dimerization and histidine phosphorylation (DHp) domains. However, CheA(3) lacks a DHp domain, suggesting that its phosphatase mechanism is different from that of other histidine protein kinases.en_GB
dc.identifier.citationProceedings of the National Academy of Sciences of the United States of America, 2008, Vol. 105, Issue 47, pp. 18531 - 18536en_GB
dc.identifier.doi10.1073/pnas.0808010105
dc.identifier.other0808010105
dc.identifier.urihttp://hdl.handle.net/10871/9781
dc.language.isoenen_GB
dc.publisherNational Academy of Sciencesen_GB
dc.relation.urlhttp://www.ncbi.nlm.nih.gov/pubmed/19020080en_GB
dc.subjectChemotaxisen_GB
dc.subjectDimerizationen_GB
dc.subjectKineticsen_GB
dc.subjectPhosphoric Monoester Hydrolasesen_GB
dc.subjectPhosphorylationen_GB
dc.subjectPhosphotransferasesen_GB
dc.subjectRhodobacter sphaeroidesen_GB
dc.subjectSignal Transductionen_GB
dc.titleA bifunctional kinase-phosphatase in bacterial chemotaxis.en_GB
dc.typeArticleen_GB
dc.date.available2013-06-03T09:10:10Z
exeter.place-of-publicationUnited States
dc.descriptionaddresses: Oxford Centre for Integrative Systems Biology and Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.en_GB
dc.descriptionnotes: PMCID: PMC2587623en_GB
dc.descriptiontypes: Journal Article; Research Support, Non-U.S. Gov'ten_GB
dc.descriptionCopyright © 2008, The National Academy of Sciencesen_GB
dc.identifier.journalProceedings of the National Academy of Sciences of the United States of Americaen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record