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FUNNEL CONTROL FOR SYSTEMS WITH
RELATIVE DEGREE TWO∗

CHRISTOPH M. HACKL† , NORMAN HOPFE‡ , ACHIM ILCHMANN§ , MARKUS

MUELLER¶, AND STEPHAN TRENN‖

Abstract. Tracking of reference signals yref(·) by the output y(·) of linear (as well as a con-
siderably large class of nonlinear) single-input, single-output systems is considered. The system is
assumed to have strict relative degree two with (weakly) stable zero dynamics. The control objective
is tracking of the error e = y− yref and its derivative ė within two prespecified performance funnels,
respectively. This is achieved by the so-called funnel controller u(t) = −k0(t)2e(t)− k1(t)ė(t), where
the simple proportional error feedback has gain functions k0 and k1 designed in such a way to pre-
clude contact of e and ė with the funnel boundaries, respectively. The funnel controller also ensures
boundedness of all signals. We also show that the same funnel controller (i) is applicable to relative
degree one systems, (ii) allows for input constraints provided a feasibility condition (formulated in
terms of the system data, the saturation bounds, the funnel data, bounds on the reference signal, and
the initial state) holds, (iii) is robust in terms of the gap metric: if a system is sufficiently close to
a system with relative degree two, stable zero dynamics, and positive high-frequency gain, but does
not necessarily have these properties, then for small initial values the funnel controller also achieves
the control objective. Finally, we illustrate the theoretical results by experimental results: the funnel
controller is applied to a rotatory mechanical system for position control.

Key words. output feedback, relative degree two, input saturation, robustness, gap metric,
linear systems, nonlinear systems, functional differential equations, transient behavior, tracking,
funnel control

AMS subject classifications. 34H15, 70Q05, 93B35, 93D21

DOI. 10.1137/100799903

1. Introduction. We study tracking of reference signals yref(·) by the output
y(·) of a single-input, single-output system with (strict) relative degree two and
(weakly) stable zero dynamics. For the purpose of illustration, we first explain our
concept for the prototype of linear single-input, single-output systems

(1.1)
ẋ(t) = Ax(t) + bu(t), x(0) = x0,

y(t) = cx(t),

where (A, b, c) ∈ Rn×n × Rn × R1×n, x0 ∈ Rn, has relative degree two and positive
high-frequency gain, i.e.,

(1.2) cb = 0 and cAb > 0,
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966 HACKL, HOPFE, ILCHMANN, MUELLER, TRENN

and asymptotically stable zero dynamics (equivalently called minimum phase), i.e.,

(1.3) ∀ s ∈ C with Re s ≥ 0 : det

[
sIn −A b

c 0

]
�= 0.

1.1. Frequency domain: High-gain, zero dynamics, tracking. The zero
dynamics of system (1.1) (and also of nonlinear systems) play an essential role in
the design of a controller; see the nice textbooks [19, 20]. In the following we abuse
notation and write f(s) for the Laplace transform of f(t). The transfer function

of (1.1) may be written as y(s) = c(sI − A)−1b u(s) = γ q(s)d(s) u(s) for coprime, monic

q, d ∈ R[s] such that deg d > deg q, where the relative degree is r := deg d− deg q and
the high-frequency gain is γ �= 0. By the Euclidean algorithm d(s) = a(s) q(s) + l(s)
for some a, l ∈ R[s] such that deg l < deg q, we may decompose system (1.1) as shown
in the gray box of Figure 1(a).

1

a(s)
Σ1

− l(s)

q(s)

Σ2

+γ
y

yz

v
y

−k(s)

+uD
u

(a) Time-invariant system decomposition.

ÿ = f(pf , zf ) + v

Tf (y, ẏ)

Tg(y, ẏ)

×g(pg, zg) +

pg pf −yref,−ẏref

y, ẏ

y, ẏ

y, ẏ

zf

zg

v
e, ė

funnel
controller

+uD

e, ė

u

(b) Nonlinear system decomposition.

Fig. 1. Linear and nonlinear system; for details on the latter see section 3.1.

The subsystem Σ1 : v �→ y has relative degree r; the subsystem Σ2 : y �→ z is
asymptotically stable if and only if q(s) is Hurwitz. Recall that (provided (1.1) is sta-
bilizable and detectable) (1.3) is equivalent to q(s) being Hurwitz, [10, Prop. 2.1.2];
hence we see that Σ2 captures the zero dynamics. Suppose we apply (time-invariant)
derivative feedback of the form u(s) = −k(s)y(s) + uD(s), k(s) ∈ R[s] (see Fig-
ure 1(a)), where uD is a disturbance or a new input to check stability of the closed-loop
system; then the transfer function of the closed-loop system is

(1.4) y(s) =
γ q(s)

[a(s) + k(s)γ] q(s) + l(s)
uD(s).

We stress the following observations: (i) If the zero dynamics are asymptotically sta-
ble, i.e., q(s) is Hurwitz, then a Hurwitz polynomial k(s) may be chosen independently
of the special structure of the zero dynamics to yield an asymptotically stable sys-
tem (1.4). (ii) If the systems entries are unknown and only the structural assumptions
of minimum phase and sign of the high-frequency gain γ of (1.1) are assumed, then we

may choose k(s) = κ k̃(s) such that k̃(s) is Hurwitz and has coefficients of the same
sign as γ, and for sufficiently large κ system (1.4) becomes asymptotically stable.

We illustrate (ii) for relative degree two systems which are minimum phase and
have high-frequency gain γ > 0. Let a(s) = s2 + a1s + a0, and choose k(s) =
k1s + k0 so that k0 = γ (k1/2)

2; then a(s) + γ k(s) has zeros s1;2 = − γ k1+a1
2 ±
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1
2

√
2γ a1k1 + a21 − 4a0, and for large k1, approximately s1;2 ≈ −(γk1 ±

√
2γa1k1)/2,

and so the denominator in (1.4) becomes stable for sufficiently large k1.
These properties, and generalizations thereof, will be exploited to design adaptive

controllers in the time domain in the following.
Note also that if we want to track asymptotically some reference signals yref(·),

then the internal model principle [35, sect. 8.8] says, roughly speaking, that the feed-
back controller has to reduplicate the dynamics of the class of reference signal by an
internal model. This can be circumvented and the controller can be kept simple by
weakening the control objective slightly: asymptotic tracking is replaced by practi-
cal tracking; i.e., the tracking error ultimately gets smaller than a prespecified error
bound.

1.2. Classical adaptive control. We now explain the classical concept of high-
gain control where the gain is determined adaptively. To illustrate the idea, we
consider relative degree one system (1.1) with positive high-frequency gain, i.e., cb > 0,
and asymptotically stable zero dynamics, i.e., (1.3). It is well known that proportional
output feedback u(t) = −k y(t) applied to (1.1) yields a closed-loop system which is
stable if k > 0 is sufficiently large; for a proof in time domain see, e.g., [10, Lem. 2.2.7].

This inherent high-gain property of the system class is used in adaptive control
(see the pioneering contributions [3, 22, 23, 25, 34] and the survey [12]) as follows:
Adaptive control means that k in the above feedback law becomes time-varying

(1.5) u(t) = −k(t) y(t),
and the gain is adapted by the output, e.g., k̇(t) = y(t)2, k(0) = k0.

If (1.5) with k̇ = y2, k(0) = k0 is applied to (1.1), then, for any initial data
x0 ∈ Rn, k0 ∈ R, the closed-loop system satisfies limt→∞ x(t) = 0 and limt→∞ k(t) =
k∞ ∈ R. Intuitively speaking, this adaptive control strategy increases the gain k(t) as
long as |y(t)| is large, until finally the gain is sufficiently large so that the closed-loop
system becomes asymptotically stable. The drawbacks of k̇ = y2 are that (i) the gain
increases monotonically and, albeit bounded, may finally be very large and amplifies
measurement noise; and (ii) no transient behavior is taken into account; an exception
is [24] wherein the issue of prescribed transient behavior is successfully addressed.

1.3. The funnel controller for systems with relative degree one. The
fundamentally different approach of funnel control, introduced by [14]—for systems
of functional differential equations, including the class of systems of form (1.1) with
relative degree one (i.e., satisfy cb > 0) which are minimum phase (i.e., satisfy (1.3))
resolves these drawbacks. To explain the concept, we stick to the relative degree
one case and consider output stabilization, i.e., yref = 0: the simplicity of (1.5) is
preserved, but gain adaptation is replaced by

(1.6) k(t) =
1

ψ(t)− |y(t)| ,

where ψ : R≥0 → [λ,∞) is, for some λ > 0, a bounded differentiable function rep-
resenting the funnel boundary; see Figure 2. Now if (1.5), (1.6) is applied to (1.1),
then, for any initial data x0 ∈ Rn such that the initial output is in the funnel, i.e.,
|cx0| < ψ(0), the closed-loop system has a unique solution on R≥0, the gain k(·) is
bounded, and the output evolves within the funnel, i.e., |y(t)| < ψ(t) for all t ≥ 0.

The intuition of funnel control is, roughly speaking, that the gain k(t) is only
“large” if |y(t)| is “close” to the funnel boundary ψ(t), and then the inherent high-gain
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968 HACKL, HOPFE, ILCHMANN, MUELLER, TRENN

property of the system class precludes boundary contact. In contrast to the adaptive
high-gain approach, the gain is no longer monotone, transient behavior within the
funnel is guaranteed, and the gain is not dynamically generated and does not invoke
any internal model. While in adaptive control the output (or the output error) tends
to 0 as t → ∞, in funnel control we may guarantee only that lim supt→∞ |y(t)| < λ;
however, λ > 0 is prespecified and may be arbitrarily small.

Funnel control has been successfully applied in experiments controlling the speed
of electric devices [18]; see also the survey [12] and references therein.

As in adaptive control, funnel control becomes more difficult if one has to cope
with the obstacle of higher relative degree. Clearly, if u(t) = −k y(t) is applied to
a relative degree two system, take, for example, ÿ(t) = u(t); then the closed-loop
system is not asymptotically stable. In [15, 16] an extension to systems with higher
relative degree is provided; however, the controller in [15] involves a filter, the feedback
strategy is dynamic, and the gain occurs with k(t)6; see [15, Rem. 4 (ii), (iii)].

1.4. Contributions of the present paper. We introduce a funnel controller
with derivative feedback to achieve output tracking of relative degree two systems
where a funnel for each output error and its derivative is prespecified to shape the
transient behavior. The funnel controller is simply

(1.7) u(t) = −k0(t)2 e(t)− k1(t) ė(t),

where k0(·), k1(·) are defined analogously as in (1.6) with funnel boundaries ψ0(·)
and ψ1(·), resp., and e(t) = y(t) − yref(t) is the error between the output and some
desired reference signal. This simple controller applied to linear single-input, single-
output systems of form (1.1) with stable zero dynamics (1.3) and relative degree
two (1.2) ensures that the error and its derivative evolve within the funnels, and all
internal variables remain bounded. We can enlarge the system class to encompass also
nonlinear systems described by functional differential equations, and we are able to
show that this controller also works for systems with relative degree one; i.e., we can
apply this controller also in the case where only the upper bound two is known for the
relative degree. Moreover, if input constraints are present, then the funnel controller
is applicable provided the saturation is larger than a feasibility number. We also show
that the funnel controller is robust in terms of the gap metric. Finally, our results are
applied to position control with two stiff coupled machines; experimental results are
shown.

The paper is structured as follows. In section 2, we introduce the funnel and
state the main result for linear systems with relative degree two. Further results are
presented in section 3: in section 3.1, nonlinear systems; in section 3.2, that funnel
controller (1.7) also works for relative degree one systems; in section 3.3, control in
the presence of input saturation; and in section 3.4, robustness. The application to
a laboratory setup of two stiff coupled machines is described in section 4. To im-
prove readability, proofs are given in Appendix A; however, sketches of the intuitions
are discussed in the subsections. We finalize this introduction with the following
nomenclature:
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|x| =
√
x�x, the Euclidean norm of x ∈ Rn

|M | = max { |M x| | x ∈ Rm, |x| = 1 }, induced matrix norm of
M ∈ Rn×m

L∞(I →M) : the space of essentially bounded functions y : I →M ⊆ R�,
I ⊆ R some interval, with norm

‖y‖∞ := ‖y‖L∞ = ess supt≥0 |y(t)|
L∞
loc(I →M) the space of locally bounded functions y : I → M ⊆ R�,

with ess supt∈K |y(t)| <∞ for all compact K ⊆ I
W i,∞(I →M) : the Sobolev space of i-times weakly differentiable functions

y : I → M ⊆ R� such that y, . . . , y(i) ∈ L∞(I → R�) and
norm

‖y‖Wi,∞ =
∑i

j=0 ‖y(j)‖L∞ , i ∈ N

W i,∞
loc (I →M) : the space of i-times weakly differentiable functions y : I →

M ⊆ R� such that y, . . . , y(i) ∈ L∞
loc(I → R�)

‖ · ‖L∞×Wi,∞ : some product norm on the product space L∞(I → M) ×
W i,∞(I →M)

Ci(I →M) : the space of i-times continuously differentiable functions
y : I →M ⊆ R�

Note that y ∈ W i,∞
(loc)(I → M) implies that y(i−1) is absolutely continuous. Further-

more, we consider solutions of differential equations in the sense of Carathéodory (see,
e.g., [9, sect. 2.1.2]), and “a.a.” stands for “almost all.”

2. Funnel control for linear systems with relative degree two.

2.1. The performance funnels. The central ingredient of our approach is the
concept of two performance funnels within which the tracking error e = y − yref and
its derivative ė are required to evolve; yref denotes a reference signal. A funnel

Fϕ := { (t, η) ∈ R≥0 × R | ϕ(t)|η| < 1 }

is determined by a function ϕ belonging to the class

G1 :=

{
ϕ : R≥0 → R≥0

∣∣∣∣ ϕ is absolutely continuous ∀ t > 0 : ϕ(t) > 0 and
∃λ > 0 ∀ ε > 0 : 1/ϕ

∣∣
[ε,∞)

∈ W1,∞([ε,∞) → [λ,∞)
) } .

Note that the funnel boundary is given by the reciprocal of ϕ. This formulation allows
for ϕ(0) = 0 which, by 0 = ϕ(0)|e(0)| < 1, puts no restriction on the initial value,
and hence we are able to prove global results. In the presence of input saturations
we cannot allow for arbitrary initial values, and hence we consider the class of finite
funnels

Gfin
1 :=

{
ϕ ∈ G1

∣∣ 1/ϕ ∈ W1,∞(R≥0 → R≥0)
}
.

An important property of the funnel class G1 is that each funnel Fϕ with ϕ ∈ G1 is
bounded away from zero; i.e., there exists λ (depending on ϕ) such that 1/ϕ(t) ≥ λ
for all t > 0. This condition is equivalent to the assumption that ϕ is bounded, which
should not be confused with the assumption that 1/ϕ is bounded corresponding to
finite funnels in Gfin

1 . Two typical funnels are illustrated in Figure 2.
As indicated in Figure 2, we do not assume that the funnel boundary decreases

monotonically; while in most situations the control designer will choose a monotone
funnel, there are situations where widening the funnel at some later time might be

D
ow

nl
oa

de
d 

04
/1

2/
16

 to
 1

44
.1

73
.5

7.
69

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

970 HACKL, HOPFE, ILCHMANN, MUELLER, TRENN

λ
0 t−λ

�

(0, e(0)) ψ(t) = 1/ϕ(t)
e(t)

λ
0 t−λ

�

(0, e(0)) ψ(t) = 1/ϕ(t)
e(t)

Fig. 2. Error evolution in a funnel Fϕ with boundary ψ(t) = 1/ϕ(t) for t > 0. Left: general
funnel case ϕ ∈ G1. Right: a finite funnel ϕ ∈ Gfin

1 .

beneficial, e.g., when the reference signal changes strongly or the system is perturbed
by some calibration so that a large error would enforce a large control action.

As mentioned above, we consider two funnels: one for the error and one for its
derivative. The main control objective is to keep the error signal within prespecified
error bounds, i.e., within some funnel. In order to achieve this control objective, we
introduce a second funnel for the derivative of the error. This “derivative funnel”
might originate in physical bounds on the derivative of the error or could be seen as a
controller design parameter. If the error evolves within the funnel Fϕ for some ϕ ∈ G1,
then the derivative of the error eventually has to fulfill

ė(t) <
d

dt
(1/ϕ)(t) or ė(t) > − d

dt
(1/ϕ)(t);

i.e., at some time the error must decrease faster than the upper funnel boundary
grows smaller, or the error must increase faster than the lower funnel boundary grows
larger. This implies that the derivative funnel must be large enough to allow the error
to follow the funnel boundaries. Therefore, we consider the following family of tuples
(ϕ0, ϕ1):

G2 :=

{
(ϕ0, ϕ1) : R≥0 → R≥0 × R≥0

∣∣∣∣ ϕ0, ϕ1 ∈ G1 and ∃ δ such that
for a.a. t > 0 : 1/ϕ1(t) ≥ δ − d

dt (1/ϕ0)(t)

}
with corresponding funnel Fϕ0 for the error and Fϕ1 for the derivative of the error.
The finite version Gfin

2 is defined in the same way as G2 by replacing G1 with Gfin
1 in

the definition.

ẋ = Ax+ bu

y = cx

system

+

ud

× −ϕ1

1−ϕ1|ė|

× −ϕ0

1−ϕ0|e|

u

funnel controller

+

+

W2,∞
ė

e−yref

−ẏref y

ẏ

+ ṅ
+ n

Fig. 3. Closed-loop system (1.1), (2.2) subject to input disturbances ud and measurement
noise n; for the latter see Remark 2.2.

2.2. Funnel control for linear systems with relative degree two. In this
section we show funnel control for linear systems with relative degree two and stable
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zero dynamics. This result is fundamental for various generalizations and aspects
considered in section 3.

Theorem 2.1 (funnel control for linear systems with relative degree two). Con-
sider linear systems (1.1) with relative degree two and positive high-frequency gain,
i.e., (1.2), and asymptotically stable zero dynamics, i.e., (1.3). Let yref ∈ W2,∞(R≥0 →
R) be a reference signal, ud ∈ L∞(R≥0 → R) an input disturbance, (Fϕ0 ,Fϕ1) a pair
of funnels for (ϕ0, ϕ1) ∈ G2, and x

0 ∈ Rn an initial value such that

(2.1) ϕ0(0) |yref(0)− cx0| < 1 and ϕ1(0) |ẏref(0)− cAx0| < 1.

Then the funnel controller

(2.2)

u(t) = −k0(t)2 e(t)− k1(t) ė(t) + ud(t), e(t) = y(t)− yref(t),

ki(t) =
ϕi(t)

1− ϕi(t)|e(i)(t)| , i = 0, 1,

applied to (1.1) yields a closed-loop system, as shown in Figure 3 with the following
properties:

(i) Precisely one maximal solution x : [0, ω) → Rn exists, and this solution is
global (i.e., ω = ∞); in particular, the error and its derivative evolve within
the corresponding funnels:

∀ t ≥ 0 : (t, e(t)) ∈ Fϕ0 and (t, ė(t)) ∈ Fϕ1 .

(ii) The input u(·) and the gain functions k0(·), k1(·) are uniformly bounded.
(iii) The solution x(·) and its derivative are uniformly bounded; furthermore, the

signals e(·), ė(·) are uniformly bounded away from the funnel boundaries:

(2.3) ∀ i ∈ {0, 1} ∃ εi > 0, ∀ t > 0 : 1/ϕi(t)− |e(i)(t)| ≥ εi.

The proof is in Appendix A; however, we sketch its main ideas in the following.
First, assume without loss of generality, that the funnels are finite: ϕ0, ϕ1 ∈ Gfin

1 ;
otherwise there will exist a local solution on [0, ε), and we may consider the problem
on the interval [ε/2,∞) instead of [0,∞). Therefore, ψi := 1/ϕi denotes the finite
funnel boundaries of Fϕi , i = 0, 1. To simplify the arguments, we assume that the
derivatives of absolutely continuous functions are defined everywhere. Finally, we
restrict our attention to positive errors e(t); the negative case follows analogously.

In section 1.1 we have, although in a time-invariant setup, motivated the gains
k0(t)

2 for e(t) (squared!) and k1(t) for ė(t).
The standard theory of ordinary differential equations guarantees existence and

uniqueness of a solution x(·) of (1.1) on [0, ω) for some maximal ω ∈ (0,∞]. Since e
and ė are bounded (they evolve within bounded funnels), the minimum phase condi-
tion (1.3) yields that z is bounded, so there exists a constant M > 0 such that

(2.4) ë(t) ≤M + γu(t) ∀ t ∈ [0, ω).

In particular, if u(t) � 0, then ë(t) � 0. If we knew that the product k0(·)2e(·) in the
control law (2.2) is bounded, then it would follow from (2.4) that ė remains bounded
away from the boundaries of the funnel F1 because we were able to choose ε1 > 0 in
such a way that the following implications hold for all t ∈ [0, ω): ė(t) = ψ1(t)−ε1 =⇒
ë(t) < ψ̇1(t) and ė(t) = −ψ1(t) + ε1 =⇒ ë(t) > −ψ̇1(t). Hence, it suffices to prove
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ψ0(t)2ε0

e(t)
τ (ε0)

t0 t1 t2

Fig. 4. Illustration of the main idea of the proof of Theorem 2.1 showing the parabolic phase
on [t0, t1) and the linear phase on [t1, t2).

that k0 is bounded or, equivalently, that e is uniformly bounded away from the funnel
boundary; i.e., there must exist ε0 > 0 such that |e(t)| ≤ ψ(t) − ε0 for all t ∈ [0, ω).
This is the key step of the proof; it is illustrated in Figure 4 and goes as follows.

Consider, for some “small” ε0, t0 ≥ 0 such that e(t0) = ψ0(t0) − 2ε0 and e(t) <
ψ0(t) − 2ε0 for some t < t0. Then we show that there exists τ(ε0) > 0 such that
e(t) ≤ ψ0(t) − 2ε0 + τ(ε0) for t > t0 and that τ(ε0)/ε0 → 0 as ε0 → 0. This implies
that, for sufficiently small ε0 > 0 and all t ≥ 0, it follows that e(t) ≤ ψ0(t) − ε0. We
show that the following three properties hold:

• Parabolic phase on [t0, t1): ë(t) < −M(ε0) for some M(ε0) > 0 with

M(ε0) → ∞ as ε0 → 0.

• Linear phase on [t1, t2): ė(t) < ψ̇0(t) .

• Once in the linear phase, we remain in it until e(t) < ψ0(t)− 2ε0.

The parabolic phase is characterized by (P) : ė(t) ≥ −ψ1(t) + δ/2 , where δ > 0 is

given in the definition of G2. The linear phase is characterized by

(L1) : e(t) ≤ ψ0(t)− 2ε0 + τ(ε0) and (L2) : ė(t) ≤ −ψ1(t) + δ/2 ;

additionally we may assume for both phases that (PL) : e(t) ≥ ψ0(t)− 2ε0 . Ap-

plying (PL) and (P) to the funnel controller (2.2) and for 2ε0 ≤ λ0/2, we obtain
u(t) < − 1

(2ε0)2
λ0

2 + 1
δ/2‖ψ1‖∞ + ‖ud‖∞, which, together with (2.4), yields the pro-

posed property ë(t) < −M(ε0) of the parabolic phase, where M(ε0) → ∞ as ε0 → 0.
Hence the error is bounded by a parabola (recall ė(t0) ≤ ‖ψ1‖∞ and e(t0) ≤ ‖ψ0‖∞):

∀ t ∈ [t0, t1) : e(t) < −M(ε0)

2
(t− t0)

2 + ė(t0)(t− t0) + e(t0).

In particular, there exists a maximal “overshoot” τ(ε0) of the error starting at ψ0(t0)−
2ε0, and we can show that τ(ε0)/ε0 → 0 as ε0 → 0 (here we exploit the fact that the
gain k0(·) enters quadratically into the equation). The parabolic phase is active only
as long as (P) holds; however, if (P) does not hold, then the property of G2 yields
ė(t) ≤ −ψ1(t)+ δ/2 < ψ̇0(t), which ensures that the distance between the error e and
the funnel boundary ψ0 increases. Finally, it can be shown that the parabolic phase is
active for some time and the distance between the error and the funnel boundary gets
bigger than 2ε0 either in this phase or in the subsequent linear phase. Altogether, by
choosing ε0 small such that τ(ε0) ≤ ε0, it follows that the error is uniformly bounded
away from the funnel boundary with e(t) ≤ ψ0(t)− ε0 for all t ≥ 0.
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Remark 2.2 (measurement noise). If system (1.1) is subject to measurement
noise n(·) ∈ W2,∞(R≥0 → R), then the disturbed error signal is e = (y + n)− yref =
y − (yref − n), and the funnel controller tracks the disturbed reference signal yref − n.
Now Theorem 2.1 ensures that the disturbed error e and its derivative ė remain within
its funnels. Hence, the “real” error remains in the bigger funnel obtained by adding
the corresponding bound of the noise to the funnel bounds used for the control.

A remedy to suppress noise would be the introduction of a PI-extension as in [7,
Lem. 3.4] or [18, Figure 2]. To avoid technicalities, we omit it in the present paper.

3. Nonlinear systems, systems of relative degree one or two, input sat-
urations, and robustness. In this section, we show that the funnel controller (2.2)
has far-reaching consequences. We show in section 3.1 that it is also applicable to a
fairly large class of nonlinear strict relative degree two systems described by infinite-
dimensional functional differential equations with weakly stable zero dynamics; in
section 3.2 it is shown that the funnel controller is applicable whether or not the sys-
tem is of relative degree one or two; in section 3.3 we show that the funnel controller
copes with input saturations if a feasibility condition is satisfied; and in section 3.4
we show that the funnel controller is robust in terms of the gap metric.

3.1. Nonlinear and infinite-dimensional systems governed by functional
differential equations. A careful inspection of the proof of Theorem 2.1 reveals that
the essential property of system (1.1) is the existence of constants M > 0 and γ > 0
such that

(3.1) ∀ t ≥ 0 : −M + γu(t) ≤ ë(t) ≤M + γu(t),

i.e., the property that a large u implies a large value for ë with the same sign. In the
following (see also Figure 1(b)), we show that the funnel controller is therefore also
applicable to a large class of nonlinear systems described by functional differential
equations as long as (i) the system has strict relative degree two with positive high-
frequency gain, (ii) it is in a certain Byrnes–Isidori form, (iii) the zero dynamics map
bounded signals to bounded signals, and (iv) the operators involved are sufficiently
smooth to guarantee local maximal existence of a solution of the close-loop system. We
study the large class of infinite-dimensional nonlinear systems governed by functional
differential equations with “memory” h > 0:

(3.2) ÿ(t) = f
(
pf (t), Tf (y, ẏ)(t)

)
+ g
(
pg(t), Tg(y, ẏ)(t)

)
u(t),

y
∣∣
[−h,0] = y0 ∈ W1,∞([−h, 0] → R),

where
• pf , pg ∈ L∞(R≥0 → RP ), P ∈ N, are bounded disturbances;
• f, g ∈ C(RP × RW → R), W ∈ N, such that for all (p, w) ∈ RP × RW :
g(p, w) > 0;

• Tf , Tg : C([−h,∞) → R) → L∞
loc

(
[0,∞) → RW

)
are operators with the fol-

lowing properties, where T = Tf and T = Tg, respectively:
– T maps bounded trajectories to bounded trajectories; i.e., there exists a

function α : R≥0 ×R≥0 → R≥0 such that for all y0, y1 ∈ L∞([−h,∞) →
R) ∩ C([−h,∞) → R) : ‖T (y0, y1)‖∞ ≤ α(‖y0‖∞, ‖y1‖∞);

– T is causal; i.e., for all t ≥ 0, for all ξ, ζ ∈ C([−h,∞) → R)2 : ξ
∣∣
[−h,t) =

ζ
∣∣
[−h,t) =⇒ T (ξ)

∣∣
[0,t]

= T (ζ)
∣∣
[0,t]

;
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– T is “locally Lipschitz” continuous in the following sense: for all t ≥
0 ∃τ, δ, c > 0 such that for all y0, y1,Δy0,Δy1 ∈ C([−h,∞) → R) with
Δy0/1

∣∣
[−h,t] ≡ 0 and

∥∥(Δy0,Δy1)∣∣[t,t+τ ]‖∞ < δ,∥∥(T (y0+Δy0, y1+Δy1)−T (y0, y1)
)∣∣

[t,t+τ ]

∥∥
∞ ≤ c

∥∥(Δy0,Δy1)∣∣[t,t+τ ]∥∥∞.
For relative degree one systems, the operators Tf , Tg and systems similar to (3.2)
are well studied; see [28, 13, 14, 17], and see [16] for higher relative degree. In these
references it is shown that system (3.2) encompasses linear system (1.1) with (1.2)
and (1.3), and the generality of the operators Tf and Tg allows for infinite-dimensional
linear systems, systems with hysteretic effects, systems with nonlinear delay elements,
input-to-state stable (ISS) systems, and combinations thereof.

We state the nonlinear generalization of Theorem 2.1 for systems given by (3.2).
Theorem 3.1 (funnel control for nonlinear functional differential equations with

relative degree two). Consider systems (3.2). Let yref ∈ W2,∞([0,∞) → R) be a
reference signal, ud ∈ L∞(R≥0 → R) an input disturbance, (Fϕ0 ,Fϕ1) a pair of
funnels for (ϕ0, ϕ1) ∈ G2, and y

0 ∈ W1,∞([−h, 0] → R) an initial trajectory such that

(3.3) ϕ0(0) |yref(0)− y0(0)| < 1 and ϕ1(0) |ẏref(0)− ẏ0(0)| < 1.

Then the funnel controller (2.2) applied to (3.2) yields a closed-loop system which also
satisfies properties (i)–(iii) of Theorem 2.1.

The proof is in Appendix A.
Note that (3.2) may be written in block form as depicted in Figure 1(b).
Comparing the linear and the nonlinear case, i.e., Figure 1(a) and Figure 1(b),

the zero dynamics captured by Σ2 are now captured by Tf . In [19, sect. 4.1] it is
shown that for nonlinear (as opposed to linear) systems of a relative degree two, the
zero dynamics in the Byrnes–Isidori form are driven by y and ẏ (not only by y). Now
the weak condition that Tf is a bounded-input bounded-output operator allows the
same design of the controller as in the linear case. The function g stands for the
high-frequency gain (see γ in Figure 1(a)) and the assumptions on it ensures that it
is uniformly bounded away from zero.

3.2. Linear systems with relative degree one. One may ask whether the
funnel controller (2.2), which is designed for systems with relative degree two, also
works for minimum-phase systems with relative degree one, i.e., (1.1) with (1.3)
and cb > 0. The answer is affirmative.

Theorem 3.2 (relative degree one case). Consider linear system (1.1) with
relative degree one and positive high-frequency gain, i.e., cb > 0, and asymptotically
stable zero dynamics, i.e., (1.3). Let yref ∈ W2,∞(R≥0 → R) ∩ C2(R≥0 → R) be a
reference signal, ud ∈ L∞(R≥0 → R)∩C1(R≥0 → R) an input disturbance, (Fϕ0 ,Fϕ1)
a pair of funnels for (ϕ0, ϕ1) ∈ G2∩C1(R≥0 → R)2, ϕ1(0) = 0, and x0 ∈ Rn an initial
value such that (2.1) holds. Then the funnel controller (2.2) applied to (1.1) yields a
closed-loop system which also satisfies properties (i)–(iii) of Theorem 2.1.

The proof is in Appendix A.
The mathematical difficulty for application of the relative degree two funnel con-

troller to a relative degree one system is as follows: Due to the derivative feedback,
the resulting closed-loop system yields an implicit differential equation. To utilize the
implicit function theorem to prove existence and uniqueness of solutions, we have to
slightly restrict the class of allowed funnels and reference signals: ϕ0, ϕ1, and ẏref are
assumed to be continuously differentiable instead of just being absolutely continuous.
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Additionally, we assume ϕ1(0) = 0 for two reasons: (i) If ϕ1(0) > 0, then ė(0) has
to fulfill |ė(0)| < 1/ϕ1(0), which might contradict the implicit differential equation.
(ii) If ϕ1(0) = 0, then u(0) does not depend on ė(0), and hence the implicit ordinary
differential equation is explicit for ė at t = 0, which yields existence and uniqueness
of at least a local solution starting at t = 0.

3.3. Input saturation. In many practical applications, the input may be sub-
ject to certain bounds: say there is some maximal bound û > 0 such that |u(t)| ≤ û
is required for all t ≥ 0. In this case the funnel controller had to be replaced by

u(t) = satû
(− k0(t)

2e(t)− k1(t)ė(t) + ud(t)
)

with e(·), k0(·), k1(·) as in (2.2), and saturation function defined by satû : R →
{ w ∈ R | |w| ≤ û } , v �→ satû(v) := sgn(v)min{|v|, û}. We will show that funnel
control is also feasible in the presence of input constraints provided the saturation is
larger than a certain feasibility number.

Theorem 3.3 (funnel control with input saturation). Suppose the linear sys-
tem (1.1) has relative degree two with positive high-frequency gain (1.2) and asymp-
totically stable zero dynamics (1.3), and let Yref, Ud,Ψ0,Ψ1, δ, λ0, λ1, X0, ε

x0
0 ∈ R>0.

Then there exists a feasibility number ffeas > 0 such that, for any û ≥ ffeas, the
saturated funnel controller

(3.4)

u(t) = satû
(− k0(t)

2e(t0)− k1(t)ė(t) + ud(t)
)
, e(t) = y(t)− yref(t),

ki(t) =
ϕi(t)

1− ϕi(t)|e(i)(t)| , i = 0, 1,

applied to (1.1) is applicable for all reference signals yref ∈ W2,∞(R≥0 → R) with
‖yref‖W 2,∞ ≤ Yref, for all input disturbances ud ∈ L∞(R≥0 → R) with ‖ud‖ ≤ Ud,
for all pairs of finite funnels (Fϕ0 ,Fϕ1) with (ϕ0, ϕ1) ∈ Gfin

2 and ‖1/ϕ0‖W 1,∞ ≤
Ψ0, ‖1/ϕ1‖W 1,∞ ≤ Ψ1, inft≥0 1/ϕ0(t) ≥ λ0, inft≥0 1/ϕ1(t) ≥ λ1, inft≥0(1/ϕ0(t) +
d
dt (1/ϕ1)(t)) ≥ δ, and for all initial values x0 ∈ Rn with ‖x0‖ ≤ X0 and ψ(0)−|cx0−
yref(0)| ≥ εx0

0 ; i.e., the closed-loop system satisfies properties (i)–(iii) of Theorem 2.1.
The proof is in Appendix A and uses arguments from the following.
As shown in Theorem 2.1, the input of the closed-loop system (1.1), (2.2) is

bounded; however, in Theorem 3.3 we state that a saturated input yields the same
result, provided the saturation bound is sufficiently large. In fact, we will show that
the feasibility bound ffeas > 0 depends on all parameters involved in the closed-loop
system. In most cases the calculated ffeas may be very conservative; in applications
of small dimension, it may be useful. However, for the position control problem
considered in section 4, ffeas is already much larger than û required in the experiments.

In the remainder of this section, we collect several bounds which in the end
determine ffeas. This derivation has several consequences: (i) the bounds help us to
understand the interplay between the two different “players” k0(·) and k1(·); (ii) if the
entries of (1.1) are known, it may be possible to determine a sharper number ffeas;
(iii) for simplicity we have considered only symmetric funnels, which is a rather hard
assumption; this can be relaxed, and the feasibility bound becomes smaller; see [21]
for a more detailed analysis in a comparable context.

In the following, we consider the closed-loop system (1.1), (3.4). Existence and
uniqueness of a solution is treated in the proof of Theorem 3.3. Here we assume that a
solution exists on the whole of R≥0, and we may also assume without loss of generality
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that system (1.1) is in Byrnes–Isidori form as follows: see [19] and [16, Lem. 3.5] for
an explicit derivation of the transformation which transforms (1.1) in Byrnes-Isidori
form:

(3.5)
ÿ(t) = r0y(t) + r1ẏ(t) + s�z(t) + γu(t),

(
y(0)
ẏ(0)

)
=
(

cx0

cAx0

)
,

ż(t) = p y +Qz, z(0) = z0,

where r0, r1 ∈ R, s, p ∈ Rn−2, Q ∈ R(n−2)×n(n−2), z0 ∈ Rn−2. By (1.2), the high-
frequency gain is γ = cAb > 0. For further analysis we need constants Y 0

0 , Y
1
0 , Z0 ∈

R>0 such |x0| ≤ X0 implies |cx0| ≤ Y 0
0 ∧ |cAx0| ≤ Y 1

0 ∧ |z0| ≤ Z0.

3.3.1. A bound from the zero dynamics. Note that the minimum phase
assumption (1.3) is equivalent to the matrix Q being Hurwitz, i.e.,

(3.6) ∃MQ ≥ 1 ∃λQ > 0 ∀ t ≥ 0 : |eQt| ≤MQe
−λQt.

Applying variations of constants to the second equation in (3.5) and taking norms

yields, for all t ≥ 0, |z(t)| ≤ MQe
−λQt|z0| + ∫ t0 MQe

−λQ(t−τ)|p| |y(τ)| dτ ≤ MQ|z0|+
MQ

λQ
|p| [‖yref‖∞ + ‖e|[0,t]‖∞

]
. Writing

Mz :=MQZ0 +
MQ

λQ
|p| [Yref +Ψ0] ,

M := |r0|Ψ0 + |r1|Ψ1 + |s�|Mz +max{|r0|, |r1|, 1}Yref,
(3.7)

and observing that ë(t) = r0e(t)+r1ė(t)+s
�z(t)+r0yref(t)+r1ẏref(t)− ÿref(t)+γu(t),

together with the fact that both e and ė are bounded since they evolve within the
bounded funnels, we conclude that the key inequality (3.1) holds.

3.3.2. Bounds from the parabolic phase. We consider the parabolic and lin-
ear phases as described in section 2.2 separately to determine a sufficiently large û. In
the following we will consider only the case where the error e is positive; by symmetry
the obtained bound will also be valid for negative errors. Choose ε0 > 0 such that
2ε0 ≤ λ0

2 , where λ0 := inft≥0 ψ0(t) > 0 and 2ε0 ≤ ψ(0)− |e(0)| (the latter is positive
by (2.1)), and assume the parabolic phase is active on the interval [t0, t1). Then,
by (P) and (PL), e(t) ≥ ψ0(t) − 2ε0 ≥ λ0/2, ψ1(t) > ė(t) ≥ −ψ1(t) + δ/2 for all
t ∈ [t0, t1), where δ > 0 exists by definition of G2. Hence, for all t ∈ [t0, t1),

(3.8) −k0(t)2e(t)− k1(t)ė(t) + ud(t) < − λ0
8ε20

+
2Ψ1

δ
+ Ud =: −U2ε0 ,

and if û ≥ U2ε0 , we obtain by (3.1), which is proved in section 3.3.1, e(t) < 1/2(M −
γU2ε0)(t−t0)2+ ė(t0)(t−t0)+e(t0). Since e(t0) = ψ(t0)−2ε0, we can easily obtain the
following sufficient condition, which ensures that e(t) ≤ ψ0(t)− ε0 for all t ∈ [t0, t1):

(3.9)
1

2
(M − γU2ε0)(t− t0)

2 + (Ψ1 +Ψ0)(t− t0)− ε0 ≤ 0.

Under the assumption M − γU2ε0 < 0 or, equivalently, ε0 <
√

γλ0

M0
, where

(3.10) M0 := 8(M + 2γΨ1/δ + γUd),
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the parabola (3.9) obtains its maximum at tmax > t0, which is the solution of (M −
γU2ε0)(tmax − t0)+Ψ1 +Ψ0 = 0. Basic calculations reveal that, with M0 as in (3.10),

(3.11) 0 < ε0 ≤ ε0 :=
−2(Ψ1 +Ψ0)

2

M0
+

√
γλ0
M0

+
4(Ψ1 +Ψ0)4

M2
0

<

√
γλ0
M0

,

together with û ≥ U2ε0 ensures that e(t) ≤ ψ0(t)− ε0 for all t ∈ [t0, t1).

3.3.3. Bounds from the linear phase. It remains to consider the linear phase
on [t1, t2) characterized by ψ0(t) − 2ε0 ≤ e(t) ≤ ψ0(t) − ε0 and ė(t) ≤ −ψ1(t) + δ/2
for all t ∈ [t1, t2). Since −ψ1(t) + δ/2 ≤ ψ̇0(t) − δ/2 for almost all t ≥ 0, the linear
phase ensures e(t) ≤ ψ0(t)− ε0 for all t ∈ [t1, t2). Thus we have to find a sufficiently
large û, which ensures that we remain in the linear phase until the distance between
the error e and the funnel boundary ψ0 is bigger than 2ε0. First observe that, for
2ε0 ≤ λ0/2,

λ0

8ε20
− Ud ≤ k0(t)

2e(t)− ud(t) <
Ψ0

ε20
+ Ud for all t ∈ [t1, t2), and thus the

following implications hold for all t ∈ [t1, t2) and all ε1 ∈ (0,max{λ1/2, δ/2}
]
, where

λ1 := inft≥0 ψ1(t):

ė(t) = −ψ1(t) + δ/2 ⇒ k0(t)
2e(t) + k1(t)ė(t)− ud >

λ0
8ε20

− Ud − 2Ψ1

δ
= U2ε0 ,

ė(t) = −ψ1(t) + ε1 ⇒ k0(t)
2e(t) + k1(t)ė(t)− ud <

Ψ0

ε20
+ Ud − λ1/2

ε1
=: −Uε0,ε1 .

Clearly, by (3.1), the set { (t, ė) ∈ R≥0 × R | − ψ1(t) + ε1 ≤ ė ≤ −ψ1(t) + δ/2 } ⊆
Fϕ1 is positively invariant for small enough ε0 and ε1 (and corresponding large enough
û ≥ max{U2ε0 , Uε0,ε1}); i.e., once in the linear phase, we remain there, and ė is
bounded away from the funnel boundary −ψ1. In fact, withM0 as in (3.10), and with

M from (3.7), ε0 ≤ ε0
∗ :=

√
γλ0

M0+8Ψ1
and ε1 ≤ ε1(ε0) :=

γλ1/2
Ψ1

+M + γΨ0

ε20
+ γUd,

together with sufficiently large û and (3.1), ensure that ė(t) = −ψ1(t) + δ/2 ⇒
ë(t) < −‖ψ̇1‖∞, and ė(t) = −ψ1(t) + ε1 ⇒ ë(t) > ‖ψ̇1‖∞.

3.3.4. Feasibility number. In summary, if εm0 := min
{
λ0

4 ,
ε
x0
0

2 , ε̄0, ε̄
∗
0

}
, εm1 :=

min
{
λ1

2 ,
δ
2 , ε1(ε

m
0 )
}
, and ffeas := max

{
λ0

8(εm0 )2 − 2Ψ1

δ − Ud,
λ1

2εm1
− Ψ1

(εm0 )2 − Ud

}
, then

funnel control (3.4) with saturation is applicable if the saturation is larger than the
feasibility number û ≥ ffeas.

3.4. Robustness in the sense of the gap metric. We now study robustness
of the funnel controller (2.2) in terms of the gap metric [36]; see also [26] and the
references therein.

Define the class of nominal systems of form (1.1) with asymptotically stable zero
dynamics and relative degree two with positive high-frequency gain by

P :=
{
(A, b, c) ∈ Rn×n × Rn × R1×n ∣∣ n ∈ N, (A, b, c) satisfies (1.2) and (1.3)

}
.

Clearly, the funnel controller, as a universal controller, is already robust for disturbed
systems within the class P . Additionally, the aim of this section is to study robustness
also for disturbances of a nominal plant θ = (A, b, c) ∈ P which yield a disturbed plant

θ̃ = (Ã, b̃, c̃) /∈ P . We will give sufficient conditions in terms of the gap metric for
the funnel controller (2.2) to achieve the control objective if applied to a disturbed
system belonging to the more general systems class

P̃ :=

{
(Ã, b̃, c̃) ∈ Rq×q × Rq × R1×q

∣∣∣∣∣ q ∈ N, (Ã, b̃, c̃) is stabilizable

and detectable, c̃ b̃ = 0

}
� P .
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In particular, the disturbance of the nominal plant can yield a plant which has a
different state space dimension, has a higher relative degree than two, does not have
a positive high-frequency gain, and/or is not minimum phase. Note that we do not
consider disturbances which yield a relative degree one system; the reason for this is
twofold: (i) due to the implicit nature of the resulting closed-loop system, we were
not able to prove the general robustness result for cb < 0, and (ii) we have already
shown in section 3.2 that the funnel controller works for any minimum-phase, relative
degree one system with positive high-frequency gain.

In order to define the gap metric between plants in P̃, we first have to introduce
the plant operator associated to θ = (A, b, c) ∈ P̃ as follows:

(3.12) Pθ,x0 : L∞(R≥0 → R) → W2,∞
loc (R≥0 → R), u �→ y,

where x0 ∈ Rdim θ, dim θ is such that A ∈ Rdim θ×dim θ, and y is the unique output of
the initial-value problem ẋ = Ax + bu, x(0) = x0, y = cx. Since cb = 0, it is easy to
see that Pθ,x0 is well defined and causal; i.e., for all u ∈ L∞(R≥0 → R) it follows that

the corresponding output fulfills y ∈ W2,∞
loc (R≥0 → R), and y

∣∣
[0,τ)

does not depend

on u
∣∣
[τ,supdomu)

for all τ ∈ domu. With abuse of notation, we write P ∈ P̃ if there

exists θ ∈ P̃ and x0 ∈ Rdim θ such that P = Pθ,x0 . For P ∈ P̃ define the graph of P
as GP :=

{
(u, P (u))

∣∣ u ∈ L∞(R≥0 → R), P (u) ∈ W2,∞(R≥0 → R)
}
.

We are now able to define the gap metric of two systems in P̃.

Definition 3.4 (directed gap metric [6]). For P1, P2 ∈ P̃ define the (possibly
empty) set OP1,P2 := { Φ : GP1 → GP2 | Φ is causal and surjective and Φ(0) = 0 } .
The directed gap is given by

�δ(P1, P2) := inf
Φ∈OP1,P2

sup

{ ∥∥(Φ− I)(x)
∥∥
L∞×W2,∞∥∥x∥∥L∞×W2,∞

∣∣∣∣∣ x ∈ GP1 ,
∥∥x∥∥L∞×W2,∞ > 0

}
,

with the convention that �δ(P1, P2) := ∞ if OP1,P2 = ∅.
Note that we here define the system graphs and the gap metric in the signal

space setting of Theorem 2.1, i.e., GP ⊂ L∞ ×W2,∞. It is also possible to define the
system graphs and the gap metric, respectively, in different signal space settings. This
may simplify the calculation of upper bounds for the gap metric. For an example of
when systems are “close” in the gap metric, we refer the reader to [26, sect. 6.3.1]:
the systems considered there may be extended to the case of a nominal system with
relative degree two and a “disturbed system” with, e.g., relative degree three; see also
Appendix B.

We are now ready to state the main robustness result. Note that we have to
assume that the funnels are not finite at t = 0, the reason being that in the analysis
we study the plant and controller as operators on certain signal spaces separately. In
particular, the (bounded) signals can have arbitrarily big bounds, and if the funnels
are finite at t = 0, we could in general not guarantee existence of a local solution for
large “inputs” to the funnel controller operator because the initial values might not
be contained within the funnels.

Theorem 3.5 (robustness of the funnel controller). Consider the funnel con-
troller (2.2) with infinite funnels Fϕ0 ,Fϕ1 , (ϕ0, ϕ1) ∈ G2\Gfin

2 , input disturbance
ud ∈ L∞(R≥0 → R), and reference signal yref ∈ W2,∞(R≥0 → R). Let θ ∈ P be a
nominal system with associated zero-initial-value plant operator Pθ,0 given by (3.12).
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Then there exist functions η : (0,∞) → (0,∞) and α : P̃ → (0,∞) such that, for

θ̃ ∈ P̃, x̃0 ∈ Rdim ˜θ, and r > 0,

(3.13) α(θ̃)|x̃0|+ ‖(ud, yref)‖L∞×W2,∞ ≤ r ∧ �δ(Pθ,0, P˜θ,0) ≤ η(r)

implies that the closed loop of disturbed plant P
˜θ,x̃0 and funnel controller (2.2) works;

that means properties (i)–(iii) of Theorem 2.1 hold.
The proof is in Appendix A.
Theorem 3.5 also holds for ud ∈ W1,∞

0 , where W1,∞
0 are all W1,∞-functions,

which are 0 at time 0, and yref ∈ W2,∞, which allows a simpler calculation of upper
bounds for the gap metric; see Example B.1.

Remark 3.6. Assume we are given an input disturbance ud and a reference
signal yref with ‖(ud, yref)‖L∞×W2,∞ ≤ C for some C > 0, and choose r > C. Then

Theorem 3.5 ensures that for any disturbed plant θ̃ ∈ P̃ which is “close enough” to the
nominal plant θ ∈ P in the sense that the directed gap metric is smaller than η(r),

the funnel controller will also work for the disturbed plant P
˜θ,x̃0 ∈ P̃, provided the

initial value x̃0 of P
˜θ,x̃0 is “small enough” in the sense that |x̃0| < (r − C)/α(θ̃). In

summary, if the directed gap between two plants is small enough and the initial value
is small enough, then the funnel controller also works for the disturbed plant.

4. Experimental results. In this section we consider a simple rotatory model
for the standard position control problem and will apply the funnel controller to a
laboratory setup of two stiff coupled machines; see Figure 5(a).

(a)

0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

15

20

25

30

35

40

time t [s]

(b)

Fig. 5. (a) Laboratory setup of rotatory system: stiff coupled machines (drive and load). (b)
Reference signal for experiment: yref(·) [rad], ẏref(·) [rad/s].

4.1. Standard position control problem. The mathematical model of a ro-
tatory system (a translational system is similar) with actuator for position control is
given by

(4.1)

d

dt
x(t) =

[
0 1
0 0

]
x(t) +

(
0
1
Θ

)(
satûA

(u(t) + uA(t))− uL(t)− (Tx2)(t)
)
,

y(t) =
(
1 0

)
x(t), x(0) =

(
φ0,Ω0

)�
,

where the state variable x(t) = (φ(t),Ω(t))� represents angle φ(t) and angular velocity
Ω(t) = φ̇(t) at time t ≥ 0 in [rad] and [rad/s], respectively.

In the “real world,” the drive (or load) torque is generated by a saturated actuator
comprising an inverter and machine (with current/torque control-loop) that is a non-
linear dynamical system. Since its dynamics are very fast, e.g., u(t) ≈ satûA

(u(t) +
uA(t)) for |u(t) + uA(t)| ≤ ûA (see, e.g., [29, pp. 775–779]), we model the actuator by
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the (small) disturbance uA ∈ L∞(R≥0 → R) [Nm] and the saturation satûA
(·) with

ûA > 0 [Nm]. The input u(·) [Nm] represents the “desired” drive torque. It is ad-
ditionally corrupted by an external load disturbance uL ∈ L∞(R≥0 → R) [Nm] and
by friction, which is modeled by an (unbounded) operator T : Ω(·) �→ (TΩ)(·) [Nm].
The friction operator T : C(R≥0 → R) → L∞

loc(R≥0 → R) maps angular velocity to
the friction torque, covers viscous and dynamic friction effects, and allows for char-
acterization of, e.g., the (nonlinear and dynamic) Lund–Grenoble friction model [4].
We omit further explanation of the friction model here; however, we refer the reader
to [27, Chap. 3] and [18]; see also Appendix C.

The moment of inertia Θ > 0 [kgm2] is a constant, the reciprocal of which is the
high-frequency gain γ := (1, 0)

[
0 1
0 0

](
0

1/Θ

)
= 1/Θ > 0. The influence of gears and

elasticity in the shaft is neglected. Note that if a gear is applied and yields a negative
high-frequency gain, then the gains k0(t)

2 and k1(t) in funnel controller (2.2) have to
be modified to −k0(t)2 and −k1(t), respectively, and the same results hold.

The output y(·) = φ(·) and its derivative ẏ(·) = Ω(·) are available for feedback
and corrupted by measurement noise n ∈ W2,∞(R≥0 → R). The control objective
is tracking of a reference signal yref(·) and its derivative in the presence of input
constraints; see Figure 5(b). Although in many applications derivative feedback is
a problem, in the present setup of stiff coupled machines, or more generally in joint
position control of robotics, it may be justified; see, e.g., [30, pp. 210–213 and 290–
292].

Letting

f(p, w) :=
1

Θ
(p+ w), p(t) := −uL(t) + uA(t), g(p, w) :=

1

Θ
, Tf(y, ẏ) := −T (ẏ),

and h := 0, (4.1) without saturation reads as (3.2) and fulfills all its properties. Hence,
for any funnels Fϕ0 and Fϕ1 with (ϕ0, ϕ1) ∈ G2, Theorem 3.1 ensures existence of
a global solution x : [0,∞) → R2 of the closed-loop of the unsaturated system (4.1)
and funnel controller (2.2); in particular, y and its derivative ẏ evolve within the fun-
nels Fϕ0 and Fϕ1 around the reference signal yref and its derivative ẏref, respectively.

Furthermore, if (ϕ0, ϕ1) ∈ Gfin
2 , we can also show (3.1) for γ = 1/Θ and

(4.2)

M = ‖ÿref‖∞ + γ
(
‖uL‖∞ + sup { ‖T (Ω)‖∞ | Ω ∈ C(R≥0 → R) : ‖Ω‖∞ ≤ ‖ψ1‖∞ }

)
.

Note that Theorem 3.3 also holds for nonlinear systems with relative degree two if
(1.1) is replaced by (3.2) (and the corresponding properties described in section 3.1)
and (2.1) is replaced by (3.3). Therefore, properties (i)–(iii) of Theorem 2.1 hold in
the presence of input saturations for (4.1).

4.2. Controller and funnel design. We are now ready to apply the saturated
funnel controller (3.4) to the stiff coupled machines in the laboratory; see Figure 5(a).
We have introduced a saturation with û > 0 to prevent destruction of the actuator and
for safety reasons. The considered reference signal yref : [0, T ] → R with T = 40 [s]
for the experiment is shown in Figure 5(b).

The functions (ϕ0, ϕ1) ∈ Gfin
2 determine the funnels Fϕ0, Fϕ1 and their reciprocals

by
(4.3)
ψ0(t) := (Λ0 − λ0) exp (−t/TE)+λ0, ψ1(t) := −ψ̇0(t)+λ1, Λ0 ≥ λ0 > 0, λ1, TE > 0,

respectively. Note that ψ0, ψ1 ∈ W1,∞(R≥0 → R>0) with ‖ψ0‖∞ = Λ0, ‖ψ̇0‖∞ =
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(Λ0−λ0)/TE , ‖ψ1‖∞ = (Λ0−λ0)/TE+λ1, ‖ψ̇1‖∞ = (Λ0 − λ0) /T
2
E, and, furthermore,

inft≥0 ψ0(t) = λ0 and inft≥0 ψ1(t) = λ1.

To check the feasibility condition in Theorem 3.3, we collect the implementation,
design, and system data in Table 4.1.

Table 4.1

Systems, implementation, and controller design data.

Description Symbol(s) & Value(s) Dimension(s)

Moment of inertia Θ = 0.342 [kgm2]
Gain (assumed bounds) γ = 1/Θ = 2.924 (γmin = γ/2, γmax = 3γ) [rad/(Nms2)]
Initial values φ0 = 0, Ω0 = 0 [rad], [rad/s]
Initial reference values yref(0) = π, ẏref(0) = 0 [rad], [rad/s]
Input saturation û = 7.0 (chosen), ûA = 22.0 (specified) [Nm]
Disturbance bounds ‖uA‖∞ ≤ 0.56 (measured), ‖uL‖∞ ≤ 4.0 [Nm]
Measured noise bounds ‖n‖∞ ≤ 5.8 · 10−5, ‖ṅ‖∞ ≤ 0.024 [rad], [rad/s]

Reference bounds ‖yref‖∞ = 37.37, ‖ẏref‖∞ = 6.81, ‖ÿref‖∞ = 6.05 [rad], [ rad
s

], [ rad
s2

]

Initial boundary values ψ0(0) = Λ0 = 2π, ψ1(0) = 8.853 [rad], [rad/s]
Time constant TE = 0.8189 [s]
Asymptotic accuracies λ0 = 0.2618, λ1 = 1.5 [rad], [rad/s]
Sampling time (xPC) h = 1 · 10−3 [s]

By Theorem 3.3 and neglecting (unknown) friction TΩ in (4.2), we conclude that
M = 41.14, M0 = 473.72, ε∗0 = 0.0265, εm0 = ε0 = 3.64 · 10−4, ε1(ε

m
0 ) = εm1 =

1.58 · 10−8, where we used, based on worst case analysis, γ = γmax for calculating M
and γ = γmin in (3.1) and hence in the rest of the calculation. Finally, the feasibility
numbers are ûA ≥ 2.466 · 105 [Nm] and û ≥ 2.466 · 105 + ‖uA‖∞ ≈ 2.467 · 105 [Nm].
This computed lower bound of û is very large and unrealistic compared to the actual
required maximal torque of approximately 7.0 [Nm] (see Figure 6(c)); it demonstrates
how conservative the feasibility bound of Theorem 3.3 can be.

Finally, we illustrate the application of the funnel controller to the laboratory
setup of two permanent magnetic synchronous machines, two power inverters, a re-
mote host for monitoring, and a real-time xPC target rapid-prototyping system. Fig-
ure 5(a) depicts the coupled machines—drive and load. Both machines and inverters
are identical in construction. Each machine is driven by its own power inverter. The
actuators generate the torques u(·) + uA(·) and uL(·), respectively. The built-in en-
coders of the machines provide position (and velocity) information. The motor drive
accelerates or decelerates the inertia Θ, whereas the load drive emulates external loads
uL. The dynamics (faster than 1 · 10−3 [s]) of each actuator are negligible compared
to those of the mechanical system (4.1) (see also the experiments in, e.g., [8, 18]).

Figure 6 depicts the measurements for the funnel controller (3.4) at the laboratory
setup. The control error and its derivative remain within the prescribed funnel (see
Figure 6(a),(b)). The control gains are adjusted “instantaneously” (see Figure 6(d))
so that boundary contact is excluded. The funnel controller is capable of tracking the
time-varying reference with prescribed accuracy also when load torques uL(·) �= 0 are
induced (see Figure 6(c)). Noise amplification (see Figure 6(c)) and “oscillations” in
speed, torque, and gains (see Figure 6(b),(c),(d)) are acceptable.

Appendix A. Proofs. To simplify the notation, we introduce for (ϕ0, ϕ1) ∈ G2

the funnel boundaries

(A.1) ψi : (0,∞) → (0,∞), t �→ 1/ϕi(t), i = 0, 1.

D
ow

nl
oa

de
d 

04
/1

2/
16

 to
 1

44
.1

73
.5

7.
69

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

982 HACKL, HOPFE, ILCHMANN, MUELLER, TRENN
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(a) e(·) [rad] and ±ψ0(·) [rad].
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(b) ė(·) [ rad
s

] and ±ψ1(·) [ rads ].
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(c) u(·)+uA(·) [Nm] and −uL(·) [Nm].
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(d) k0(·)2 [Nm
rad

] and k1(·) [Nms
rad

].

Fig. 6. Experimental results of the controller design at the laboratory setup.

A.1. Proof of Theorem 2.1: Funnel control for linear systems with
relative degree two. Without loss of generality, we may assume that system (1.1)
is in Byrnes–Isidori form (3.5). The main difficulties in proving Theorem 2.1 are, first,
that the closed-loop initial-value problem (1.1), (2.2) has a potential singularity (a
pole) on the right-hand side of the differential equation and, second, to show that the
solution does not have a finite escape time, i.e., exists globally on [0,∞).

Step 1. We show existence and uniqueness of a maximal solution.
Define, for (ϕ0, ϕ1) ∈ G2,

(A.2) D :=
{
(t, μ0, μ1, ξ) ∈ R≥0 × R× R× Rn−2

∣∣ (t, μ0) ∈ Fϕ0 , (t, μ1) ∈ Fϕ1

}
and f : D → Rn by

f(t, μ0, μ1, ξ) =

⎛⎜⎜⎜⎝
[
0, 1
r0, r1

](
yref(t) + μ0

ẏref(t) + μ1

)
−
[
0
s�

]
ξ −

(
ẏref(t)
ÿref(t)

)
+ γ

(
0

ud(t)− ϕ0(t)
2μ0

(1−ϕ0(t)|μ0|)2 − ϕ1(t)μ1

1−ϕ1(t)|μ1|

)
[
p, 0
](yref(t) + μ0

ẏref(t) + μ1

)
+Qξ

⎞⎟⎟⎟⎠.

The relative degree two condition (1.2) implies γ = cAb > 0, and the minimum-phase
condition (1.3) is equivalent to Q being Hurwitz, i.e., (3.6). Then the initial-value
problem (3.5), (2.2) may be written as

(A.3)
d

dt

⎛⎝e(t)ė(t)
z(t)

⎞⎠ = f(t, e(t), ė(t), z(t)),

⎛⎝e(0)ė(0)
z(0)

⎞⎠ =

⎛⎝ cx0 − yref(0)
cAx0 − ẏref(0)

z0

⎞⎠ .

Clearly, f is locally Lipschitz in μ0, μ1, and ξ and measurable in t; hence the theory
of ordinary differential equations (see, e.g., [33, Thm. III, section 10.XX]) ensures
existence of a unique absolutely continuous solution (e, ė, z) : [0, ω) → R×R×Rn−2,
0 < ω ≤ ∞, which is maximally extended, i.e., the graph of the solution is not
completely contained in any compact subset of D.

In the following, let (e, ė, z) : [0, ω) → R×R×Rn−2 be the unique and maximally
extended solution of the closed-loop initial-value problem (A.3).
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Step 2. We show that there exists M > 0 such that

(A.4) for a.a. t ∈ [0,∞) : −M + γu(t) ≤ ë(t) ≤M + γu(t) .

By continuity of e(·), ė(·), z(·), and the corresponding k0(·), k1(·), there exists
ε ∈ (0, ω) such that
(A.5)
∀ i = 0, 1, ∀ t ∈ [0, ε] : |e(i)(t)| ≤ |e(i)(0)|+ 1, |z(t)| ≤ |z0|+ 1, ki(t) ≤ ki(0) + 1.

Hence it suffices to consider the interval [ε, ω), and we may adopt the notation (A.1).
By definition of G1 we have that ‖ψi‖ε,∞ :=

∥∥ψi∣∣[ε,∞)

∥∥
∞, i = 0, 1, and hence

(A.6) ∀ t ∈ [ε, ω) : |e(t)| < ψ0(t) ≤ ‖ψ0‖ε,∞ and |ė(t)| < ψ1(t) ≤ ‖ψ1‖ε,∞.

Applying variation of constants to the third subsystem in (A.3) yields for all t ∈
[ε, ω) : z(t) = eQ(t−ε)z(ε) +

∫ t
ε
eQ(t−τ)p [yref(τ) − e(τ)] dτ, and thus, in view of (3.6),

(A.5), and (A.6), it follows that

(A.7) ∀ t ∈ [0, ω) : ‖z(t)‖ ≤Mz,

where, with MQ ≥ 1 and λQ > 0 as in (3.6), Mz :=MQ[|z0|+1]+
MQ

λQ
‖p‖ [‖yref‖∞ +

‖ψ0‖∞]. Since, for almost all t ∈ [0, ω), ë(t) = r0[e(t) + yref(t)] + r1[ė(t) + ẏref(t)] +
s�z(t)− ÿref(t) + γu(t), we obtain, by invoking (A.5) and (A.6), the claimed inequal-
ity (A.4) for

M := |r0| [max{‖e(0)‖+ 1, ‖ψ0‖ε,∞}+ ‖yref‖∞]

+ |r1| [max{|ė(0)|+ 1, ‖ψ1‖ε,∞}+ ‖ẏref‖∞] + |s�|Mz + ‖ÿref‖∞.

Step 3. We show that |e(·)| is uniformly bounded away from funnel boundary
ψ0(·):

(A.8) ∃ ε0 > 0 ∀ t ∈ [ε, ω) : ψ0(t)− |e(t)| ≥ ε0 .

Consider two phases: a parabolic phase and a linear phase. In the parabolic phase
the distance of the error e(·) to the funnel boundary ψ(·) is bounded by a parabola as
formalized by Step 3a below. Step 3b ensures that the “overshoot” of this parabola
can be made sufficiently small. In the linear phase, the distance of the error and the
funnel boundary grows linearly as formalized in Step 3c, and Step 3d ensures that the
linear phase remains active as long as the error is close to the boundary.

Step 3a. We show that for ε0 ∈ (0, λ0/2) the following implication holds on any
interval [t0, t1] ⊆ [ε, ω):
(A.9)[
ψ0(t0)− |e(t0)| = 2ε0 ∧ for a.a. t ∈ [t0, t1] :

ë(t) sgn e(t) ≤ −(‖ψ1‖ε,∞ + ‖ψ̇0‖ε,∞)2/(2ε0)

]
⇒ ∀ t ∈ [t0, t1] : ψ0(t)− |e(t)| ≥ ε0.

First note that there exists a countable family of pairwise disjoint intervals Ti =
[τ i, τ i], i ∈ I, and Sj = (σi, σi), j ∈ J , with [t0, t1] ⊆

⋃
i∈I Ti ∪

⋃
j∈I Sj such that

∀ i ∈ I : ψ0(τ i)− |e(τ i)| = 2ε0 ∧ ∀ t ∈ Ti : ψ0(t)− |e(t)| ≤ 2ε0,

∀ j ∈ J : ∀ t ∈ Sj : ψ0(t)− |e(t)| > 2ε0.
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On the intervals Sj , j ∈ J , the conclusion of (A.9) is trivially true, and hence we
have only to consider the intervals Ti, i ∈ I, i.e., to show (A.9) under the additional
assumption

(A.10) ∀ t ∈ [t0, t1] : ψ0(t)− |e(t)| ≤ 2ε0.

From λ0 > 2ε0 it follows that sgn e(·) is constant on [t0, t1]. We consider only the case
sgn e(·) ≡ 1; the case sgn e(·) ≡ −1 follows analogously. Integrating the inequality
ë(·) ≤ −(‖ψ1‖ε,∞ + ‖ψ̇0‖ε,∞)2/(2ε0) twice over [t0, t] yields

∀ t ∈ [t0, t1] : e(t) ≤ e(t0)− (‖ψ1‖ε,∞ + ‖ψ̇0‖ε,∞)2

4ε0
(t− t0)

2 + ė(t0)(t− t0),

and in combination with ė(t0) ≤ ‖ψ1‖ε,∞ and ψ0(t) ≥ ψ0(t0) − ‖ψ̇0‖ε,∞(t − t0) we
conclude, for all t ∈ [t0, t1],

ψ0(t)− e(t) ≥ ψ0(t0)− e(t0)︸ ︷︷ ︸
=2ε0

−
(
(‖ψ̇0‖ε,∞ + ‖ψ1‖ε,∞)(t− t0)− (‖ψ1‖ε,∞ + ‖ψ̇0‖ε,∞)2

4ε0
(t− t0)

2

)
.

The parabola t �→ (‖ψ1‖ε,∞ + ‖ψ̇0‖ε,∞)(t − t0) − (‖ψ1‖ε,∞+‖ψ̇0‖ε,∞)2

4ε0
(t − t0)

2 attains

its maximum at t − t0 = 2ε0
‖ψ1‖ε,∞+‖ψ̇0‖ε,∞

with the maximum value ε0, and hence

ψ0(t)− e(t) ≥ ε0 for all t ∈ [t0, t1]. This proves Step 3a.
Step 3b. We show that there exists ε̄0 ∈ (0, λ0/4] such that the following impli-

cation holds on any interval [t0, t1] ⊆ [ε, ω) and for all ε0 ∈ (0, ε̄0]:

(A.11)
[∀ t ∈ [t0, t1] : ė(t) sgn e(t) ≥ −ψ1(t) + δ/2 ∧ ψ0(t)−

∣∣e(t)∣∣ ≤ 2ε0
]

=⇒ for a.a. t ∈ [t0, t1] : ë(t) sgn e(t) ≤ −(‖ψ1‖ε,∞ + ‖ψ̇0‖ε,∞)2/(2ε0).

The condition 2ε0 ≤ λ0/2, together with ψ0(t) −
∣∣e(t)∣∣ ≤ 2ε0 on [t0, t1], implies

that sgn e(·) is constant on [t0, t1]. We consider only the case sgn e(·) ≡ 1; sgn e(·) ≡
−1 follows analogously. The condition ė(t) ≥ δ/2 − ψ1(t) on [t0, t1] implies that for

all t ∈ [t0, t1] : −k1(t)ė(t) = −ė(t)
ψ1(t)−|ė(t)| ≤ 2|ė(t)|

δ <
2‖ψ1‖ε,∞

δ . From ψ0(t) − e(t) ≤ 2ε0

and 2ε0 ≤ λ0/2, it follows that e(t) ≥ λ0/2 on [t0, t1], and hence −k0(t)2e(t) ≤
− λ0

8ε20
for all t ∈ [t0, t1]. Inserting these inequalities into (A.4) and invoking (2.2) yields

(A.12) for a.a. t ∈ [t0, t1] : ë(t) < M − γ
λ0
8ε20

+ γ
2‖ψ1‖ε,∞

δ
+ γ‖ud‖∞,

whence (A.11) for sufficiently small ε0 > 0.
Step 3c. We show the following implication:

(A.13)
[∀ t ∈ [t1, t2] : ė(t) sgn e(t) ≤ −ψ1(t) + δ/2 ∧ ψ0(t)− |e(t)| ≤ 2ε0

]
=⇒ t �→ ψ0(t)− |e(t)| is monotonically increasing on [t1, t2].

Note that the presupposition in (A.13) precludes a sign change of e(·) on [t1, t2].
We consider only the case sgn e(·) ≡ 1; the other case follows analogously. Invoking the
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definition of G2, for a.a. t ∈ [t1, t2] : ψ̇0(t)− ė(t) ≥ ψ̇0(t)+ψ1(t)−δ/2 ≥ δ−δ/2 = δ/2
yields (A.13).

Step 3d. We show that there exists ε̄∗0 ∈ (0, λ0/4] such that the following impli-
cation holds for any [t1, t2] ⊆ [ε, ω) and any ε0 ∈ (0, ε̄∗0]:

(A.14)
[
ė(t1) sgn e(t1) = −ψ1(t1) + δ/2 ∧ ∀ t ∈ [t1, t2] : ψ0(t)− |e(t)| ≤ 2ε0

]
=⇒ ∀ t ∈ [t1, t2] : ė(t) sgn e(t) ≤ −ψ1(t) + δ/2.

From 2ε0 ≤ λ0/2 and ψ0(t) − |e(t)| ≤ 2ε0 it follows that sgn e(·) is constant on
[t1, t2]. We only consider sgn e(·) ≡ 1 here; the negative case follows analogously.

We show that the existence of t̂ ∈ (t1, t2] with ė(t̂) > −ψ1(t̂) + δ/2 yields a con-
tradiction to the assumptions of the implication (A.14). Therefore, choose t̂1 ∈ [t1, t̂)
with ė(t̂1) = −ψ1(t̂1) + δ/2 and ė(t) ≥ −ψ1(t) + δ/2 for all t ∈ [t̂1, t̂]. Together with
ψ0(t)−e(t) ≤ 2ε0 we can conclude as in Step 3b that (A.12) holds for the interval [t̂1, t̂],
and hence for small enough ε̄∗0 and all ε0 ∈ (0, ε̄∗0]: ë(t) < −‖ψ̇1‖ε,∞ for all t ∈ [t̂1, t̂].

Now, δ/2 < ė(t̂) +ψ1(t̂) = ė(t̂1) +ψ1(t̂1) +
∫ t̂
t̂1
ë(τ) + ψ̇1(τ) dτ < ė(t̂1) +ψ1(t̂1) = δ/2,

whence a contradiction to the choice of t̂.
Step 3e. We show that for sufficiently small ε0 > 0 the claim of Step 3 holds.
Choose ε0 > 0 such that (A.11), (A.14), and ψ0(ε) − |e(ε)| ≥ 2ε0 hold. Seeking

a contradiction, assume that there exists t2 ∈ (ε, ω) such that ψ0(t2) − |e(t2)| < ε0.
Choose t0 ∈ [ε, t2) such that

(A.15) ψ0(t0)− |e(t0)| = 2ε0 and ∀ t ∈ [t0, t2] : ψ0(t)− |e(t)| ≤ 2ε0.

Since 2ε0 < λ0, it follows that e(·) has a constant sign on [t0, t2], we consider here
only the positive case; the negative follows analogously. It follows from (A.15) that
there exists ν > 0 such that for a.a. t ∈ (t0, t0 + ν] : ψ̇0(t) − ė(t) ≤ 0, hence by the
property of G2 we have for a.a. t ∈ (t0, t0 + ν] : ė(t) ≥ −ψ1(t) + δ > −ψ1(t) + δ/2,
and by continuity of ė and ψ1 it follows that ė(t0) > −ψ1(t0) + δ/2, and hence there
exists a maximal t1 ∈ (t0, t2] such that

(A.16) ∀ t ∈ [t0, t1] : ė(t) ≥ −ψ1(t) + δ/2.

Now implications (A.11) and (A.9) from Steps 3b and 3a, respectively, together
with (A.15) and (A.16), show that ψ0(t) − e(t) ≥ ε0 for all t ∈ [t0, t1]. Hence t1 <
t2, which implies ė(t1) = −ψ1(t1) + δ/2. Combining this with (A.15) and impli-
cation (A.14) from Step 3d yields ė(t) ≤ −ψ1(t) + δ/2 for all t ∈ [t1, t2]. Implica-
tion (A.13) from Step 3c now gives ψ0(t2) − e(t2) ≥ ψ0(t1) − e(t1) ≥ ε0, which
contradicts the choice of t2. Hence Step 3 is shown.

Step 4. We show that ė(·) is uniformly bounded away from funnel boundary ψ1(·):

(A.17) ∃ ε1 > 0 ∀ t ∈ [ε, ω) : ψ1(t)− |ė(t)| ≥ ε1 .

We have, for ε0 > 0 as in Step 3, that k0(t)
2 ≤ 1/ε20 for all t ∈ [ε, ω) which,

together with (A.6), yields for all t ∈ [ε, ω) : k0(t)
2|e(t)| < ‖ψ0‖ε,∞/ε20. Assume ε1 ≤

min{λ1/2, ψ1(ε)− |ė(ε)|}. Then, in view of (A.4) and (2.2), for almost all t ∈ [ε, ω) :[
ψ1(t)− |ė(t)| ≤ ε1 =⇒ ë(t) sgn ė(t) < M + γ

‖ψ0‖ε,∞
ε20

− γ λ1/2
ε1

+ γ‖ud‖∞
]
; hence for

sufficiently small ε1 > 0 and a.a. t ∈ [ε,∞): ψ1(t)− |ė(t)| ≤ ε1 =⇒ ë(t) sgn ė(t) <
−‖ψ̇1‖ε,∞, which ensures that the set { (t, ξ) ∈ [ε, ω)× R | ψ1(t)− |ξ| ≥ ε1 } is pos-
itively invariant for ė(·). Hence Step 4 is proved.
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Step 5. We show assertions (i)–(iii).
Boundedness of e(·), ė(·), z(·), k0(·), k1(·) on [0, ω) follows from (A.5), (A.6),

(A.7), (A.8), and (A.17). The inequality (2.3) holds on [0, ω) because ki(·) is bounded,
with i = 0, 1. Therefore, assertions (i)–(iii) hold if ω = ∞. For ε0 and ε1 as in (2.3)
and Mz as in (A.7), let
(A.18)

C :=

⎧⎨⎩ (t, e0, e1, z) ∈ [0, ω]

×R× R× Rn−2

∣∣∣∣∣∣
∀ i ∈ {0, 1} : |ei| ≤ |e(i)(0)|+ 1 if t ∈ [0, ε],

|ei| ≤ ψi(t)− εi otherwise,
‖z‖ ≤Mz

⎫⎬⎭ .

Let D be as in Step 1. If ω <∞, then C � D is a compact subset of D which contains
the whole graph of the solution t �→ (e(t), ė(t), z(t)), which contradicts the maximality
of the solution. Hence ω = ∞. This completes the proof.

A.2. Proof of Theorem 3.1: Nonlinear systems described by functional
differential equations. It suffices to show that there exists a maximal solution
y : [−h, ω), and each solution fulfills the minor modification of (A.4):

(A.19) ∃M > 0 ∃ γ > 0 for a.a. t ∈ [0, ω) : ë(t) sgnu(t) ≥ −M sgnu(t) + γu(t).

Then Steps 3–5 of the proof of Theorem 2.1 can then be repeated identically to prove
Theorem 3.1.

Step 1. We show existence of maximally extended solutions y : [−h, ω), ω ∈ (0,∞].
Define

F : [−h,∞)×D × R2W → R3, (t, (τ, e0, e1), (w1, w2)) �→(
1, e1, f(pf (t), w1) + g(pg(t), w2)

(
− ϕ0(τ)

2

(1− ϕ0(τ)|e0|)2 e0 −
ϕ1(τ)

1− ϕ1(τ)|e1|e1 + ud(t)

)
− ÿref(t)

)
,

where D := { (τ, e0, e1) ∈ [−h,∞)× R× R | (|τ |, e0) ∈ Fϕ0 , (|τ |, e1) ∈ Fϕ1 } and the

operator T̂ : [−h,∞)× C([−h,∞) → R)2 → L∞
loc

(
[0,∞) → RW

)2
with T̂ (τ, e0, e1) :=

(Tf (e0 + yref, e1 + ẏref), Tg(e0 + yref, e1 + ẏref)) , where yref is extended to [−h, 0) in
such a way that yref ∈ W2,∞([−h,∞) → R) and for all t ∈ [−h, 0] : ϕ0(|t|) |y0(t) −
yref(t)| < 1 and ϕ1(|t|) |ẏ0(t)− ẏref(t)| < 1. This is possible since (3.3) and (ϕ0, ϕ1) ∈
G2 hold.

Writing τ0 : [−h, 0] → R, t �→ t, it follows that x = (τ, e, ė) is a solution of

ẋ = F (t, x, T̂ (x)), x
∣∣
[−h,0] = (τ0, y0−yref|[−h,0], ẏ0−ẏref|[−h,0]) if and only if y = yref+e

solves the closed-loop system (3.2), (2.2). Finally, [14, Thm. 5] ensures the existence
of a maximally extended solution y : [−h, ω) → R, ω ∈ (0,∞].

Step 2. We show (A.19).
Consider a fixed solution y : [−h, ω) → R of (3.2), (2.2); i.e., for a.a. t ∈ [0, ω) :

ë(t) = f(pf (t), T (y, ẏ)(t)) + g(pg(t), Tg(y, ẏ)(t))u(t) − ÿref(t). Choose ε > 0 such that
|y(t)| ≤ ‖y0‖∞ + 1 and |y(t)| ≤ ‖ẏ0‖∞ + 1 for all t ∈ [0, ε], and since

∀ t ∈ [ε, ω) : |y(t)| < ‖yref‖∞+‖1/ϕ0

∣∣
[ε,∞)

‖∞ and |ẏ(t)| < ‖ẏref‖∞+‖1/ϕ1

∣∣
[ε,∞)

‖∞,
the trajectories y and ẏ are bounded on [0, ω), and hence Tf (y, ẏ)

∣∣
[0,ω)

and Tg(y, ẏ)
∣∣
[0,ω)

are well defined and bounded, say by MTf
and MTg . Let Mpf and Mpg be the corre-

sponding bounds of pf(·) and pg(·); then by continuity of f and g,

max
|p|≤Mpf

,|w|≤MTf

|f(p, w)| =:Mf <∞ and min
|p|≤Mpg ,|w|≤MTg

g(p, w) =: γ > 0,

and so (A.19) holds for M :=Mf + ‖ÿref‖∞.
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A.3. Proof of Theorem 3.2: Systems with relative degree one. The proof
is based on the following existence and uniqueness of the solution of an implicit ordi-
nary differential equation.

Lemma A.1 (existence and uniqueness of the solution of an implicit ordinary
differential equation). Let D ⊆ R≥0 × R × R × Rn−1 be a nonempty and relatively
open set, and let (t0, e

0
0, e

0
1, z

0) ∈ D. Let F ∈ C1(D → R) be such that

F (t0, e
0
0, e

0
1, z

0) = 0 and(A.20)

∀ (t, e0, e1, z) ∈ D :
∂F

∂e1
(t, e0, e1, z) �= 0.(A.21)

Consider, for p ∈ Rn−1, Q ∈ R(n−1)×(n−1), and g ∈ W1,∞(R≥0 → R), the implicit
initial-value problem

(A.22)
0 = F (t, e, ė, z), e(t0) = e0,
ż = pe+Qz + g(t), z(t0) = z0.

Then there exists a unique maximal solution (e, z) : [t0, ω) → R × Rn−1, ω ∈ (t0 ∞],
of (A.22) such that graph(e, ė, z) = { (t, e(t), ė(t), z(t)) | t ∈ [0, ω) } ⊆ D, and max-
imality implies that graph(e, ė, z) is not completely contained in any compact subset
of D.

Proof.
Step 1. We show existence and uniqueness of a local solution of the initial-value

problem (A.22).
Differentiability of F (·), together with (A.20) and (A.21), allows us to apply the

implicit function theorem (see, for example, [1, Thm. VII.8.2]) to conclude the follow-
ing: there exist a relatively open neighborhood U ⊆ R≥0 × R × Rn−1 of (t0, e

0
0, z

0),
an open neighborhood V ⊆ R of e01, a unique function f ∈ C1(U → V) such that
f(t0, e

0
0, z

0) = e01, and F (t, e0, f(t, e0, z), z) = 0 for all (t, e0, z) ∈ U ; moreover,

(A.23) ∀ (t, e0, z) ∈ U : [F (t, e0, e1, z) = 0 ∧ e1 ∈ V ] ⇐⇒ e1 = f(t, e0, z).

Consider next the initial-value problem

(A.24)
d

dt

(
e0
z

)
=

(
f(t, e0, z)

pe0 +Qz + g(t)

)
,

(
e0(t0)
z(t0)

)
=

(
e00
z0

)
.

The right-hand side of (A.24) is continuous on the relatively open set U and locally
Lipschitz in e0 and z; hence the standard theory of ordinary differential equations (see,
e.g., [33, Thm. III, sect. 11.III]) yields existence of a unique solution (e, z) : [t0, ω) →
R × Rn−1, ω ∈ (t0,∞], of the initial-value problem (A.24). From (A.23) it follows
that this solution is also a unique (local) solution of (A.22).

Step 2. We show that every solution of (A.22) can be maximally extended.
Let (e, z) : [t0, ω) → R × Rn−1, ω ∈ (t0,∞], be a solution of (A.22). If ω = ∞,

nothing is shown; hence assume ω <∞. Define

A(ω,e,z) :=

{
(σ, ξ(·))

∣∣∣∣∣ σ ∈ [ω,∞], ξ ∈ C1([t0, σ) → Rn), ξ
∣∣
[t0,ω)

= (e, z)

(ξ1, ξ̇1, ξ2, . . . , ξn) solves (A.22) on [t0, σ)

}
,

that is, the set comprising the solution (e, z) and all proper right extensions of (e, z)
that are also solutions. Define on this nonempty set a partial order � by (σ1, ξ1(·)) �
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(σ2, ξ2(·)) :⇐⇒ σ1 ≤ σ2 and ξ1(·) = ξ2|[t0,σ1]. Let A1 be a totally ordered subset
of A(ω,e,z). Set σ∗ := sup { σ ∈ [ω,∞] | ∃ (σ, ξ(·)) ∈ A1 } and let ξ∗ : [t0, σ

∗) →
Rn be defined by the property that, for every (σ, ξ) ∈ A1, ξ

∗|[t0,σ) = ξ(·). Then
(σ∗; ξ∗) ∈ A(ω,e,z) and it is an upper bound for A1. By Zorn’s lemma (see, e.g., [33,
sect. 7.XIII]), it follows that A(ω,e,z) contains at least one maximal element. Hence
there exists a maximal solution (e, z) : [t0, ω

∗) → R × Rn−1, ω∗ ∈ (t0,∞] of the
initial-value problem (A.22).

Step 3. We show uniqueness of the solution of the initial-value problem (A.22).

Let (e, z) : [t0, ω) → Rn, ω ∈ (t0,∞], and (ẽ, z̃) : [t0, ω̃) → Rn, ω̃ ∈ (t0,∞], be
two solutions of the initial-value problem (A.22). Seeking a contradiction, suppose
that there exists a first time t1 ∈ [t0,∞) where the two solutions separate; more
precisely, t1 := max

{
t ∈ [t0,min{ω, ω̃}) ∣∣ (e, z)∣∣

[t0,t]
= (ẽ, z̃)

∣∣
[t0,t]

} ∈ R. According

to Step 1, the corresponding initial-value problem (A.22) at t1 with initial value
(e1, z1) := (e(t1), z(t1)) = (ẽ(t1), z̃(t1)) has a unique local solution on [t1, t1 + δ) ⊆
[t0,min{ω, ω̃}) for some δ > 0; hence (e, z)

∣∣
[t1,t1+δ)

= (ẽ, z̃)
∣∣
[t1,t1+δ)

. This contradicts

the definition of t1 and proves the claim of Step 3.

Step 4. We show that the graph of the maximal solution (e, ė, z) is not contained
in any compact subset of D.

Let (e, ė, z) : [t0, ω) → R×R×Rn−1, ω ∈ (t0,∞], be the unique maximal solution
of (A.22). An equivalent formulation of the claim of Step 4 is that the closure of
graph(e, ė, z) is not a compact subset of D. Denote the closure of graph(e, ė, z) by
C ⊆ R≥0×R×Rn−1 and, seeking a contradiction, assume that C is a compact subset
of D. Then, first of all, ω <∞. By continuity of F and by construction of C we have

∀ (t, e0, e1, z) ∈ C : F (t, e0, e1, z) = 0.

Hence the implicit function theorem ensures, for each (t∗, e∗0, e∗1, z∗) ∈ C, existence of
(relatively) open neighborhoods U(t∗,e∗0 ,z∗) of (t∗, e∗0, z

∗) and Ve∗1 of e∗1, as well as a

function f(t∗,e∗0 ,e∗1 ,z∗) ∈ C1(U(t∗,e∗0 ,z∗) → Ve∗1 ) such that (A.23) holds. LetW(t∗,e∗0 ,z∗) :={
(t, e0, e1, z)

∣∣ (t, e0, z) ∈ U(t∗,e∗0 ,z∗), e1 ∈ Ve∗1
}

which is a (relatively) open neigh-
borhood of (t∗, e∗0, e∗1, z∗), and

⋃
(t∗,e∗0 ,e

∗
1 ,z

∗)∈C W(t∗,e∗0 ,e
∗
1,z

∗) is an open covering of C.

By compactness of C we may choose a finite subcovering of C; in particular, there
exist ε > 0 and (tω, eω0 , e

ω
1 , z

ω) ∈ C such that graph
(
(e, ė, z)

∣∣
[ω−ε,ω)

) ⊆ W(tω,eω0 ,e
ω
1 ,z

ω).

Hence, by (A.23), ė(t) = f(tω,eω0 ,eω1 ,zω)(t, e(t), z(t)) on [ω− ε, ω); i.e., (e, z)
∣∣
[ω−ε,ω) is a

solution of an (explicit) ordinary differential equation whose graph is contained in the
compact set C. Now an application of [33, Lem. II, sect. 6.VI] ensures that this solu-
tion can be extended to the closed interval [ω−ε, ω]; in particular, (e(ω), ė(ω), z(ω)) =
limt↗ω(e(t), ė(t), z(t)) ∈ C ⊆ D is well defined and F (e(ω), ė(ω), z(ω)) = 0. Hence,
by Step 1 with initial time ω and corresponding initial value, the solution can be
extended locally to the interval [ω, ω∗) for some ω∗ > ω which contradicts maximality
of the solution. This shows the assertion of Step 4, and the proof of the lemma is
complete.

Proof of Theorem 3.2.

Step 1. We show existence of a maximal solution.

Without loss of generality, we may assume that system (1.1) is in Byrnes–Isidori
form, i.e., ẏ = ry + s�z + γu(t), y(0) = cx0, ż = py +Qz, z(0) = z0, where r ∈ R,
s, p ∈ Rn−1, Q ∈ R(n−1×n−1) is Hurwitz by (1.3), z0 ∈ Rn−1, and γ := cb > 0. The
closed-loop system (1.1), (2.2) may be written as the following implicit differential
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equation:

(A.25)

ė(t) = r(e(t) + yref(t)) + s�z(t)− ẏref(t)

+ γ

(
ud(t)− ϕ0(t)

2e(t)

(1 − ϕ0(t)|e(t)|)2 − ϕ1(t)ė(t)

1− ϕ1(t)|ė(t)|
)
,

ż(t) = p(e(t) + yref(t)) +Qz(t),

with initial values e(0) = e0 := cx0−yref(0) and z(0) = z0. For D ⊆ R≥0×R×R×Rn−1

defined analogously as in (A.2), the implicit ordinary differential equation (A.25) can
be written as 0 = F (t, e(t), ė(t), z(t)), ż(t) = pe(t)+Qz(t)+pyref(t), with correspond-
ing F : D → R. Simple observations, taking also into account the absolute value func-

tion | · |, reveal that F is differentiable with ∂ F
∂ e1

(t, e0, e1, z) = 1 + γ ϕ1(t)
(1−ϕ0(t)|e1|)2 ≥ 1

for all (t, e0, e1, z) ∈ D. Since ϕ1(0) = 0, it follows that (A.25) is explicit in ė at t = 0;
hence

F (0, e00, e
0
1, z

0) = 0 ⇐⇒ e01 = r(e00+yref(0))+s
�z0−ẏref(0)−γ ϕ0(0)e

0
0

(1− ϕ0(0)e00)
2
+γud(0).

Lemma A.1 now yields that there exists a unique and maximally extended solution
(e, z) : [0, ω) → R× Rn−1 of (A.25) with (t, e(t), ė(t), z(t)) ∈ D for all t ∈ [0, ω).

Step 2. We show existence of M > 0 such that

(A.26) ∀ t ∈ [0, ω) : −M + γu(t) ≤ ė(t) ≤M + γu(t).

This follows analogously as in Step 2 of the proof of Theorem 2.1.
Step 3. We show ∃ ε0 ∈ (0, λ0/2) for all t ∈ (0, ω) : 1/ϕ0(t)− |e(t)| ≥ ε0.
Adopting the notation (A.1) and choosing ε > 0 as in (A.5), it suffices to show that

the set { (t, e0) ∈ [ε, ω)× R | ψ0(t)− |e0| ≥ ε0 } is positively invariant for sufficiently
small ε0 > 0 and ψ0(ε) − |e(ε)| ≥ ε0. The former clearly follows if the following
implication holds for all t ∈ [ε, ω):

ψ0(t)− |e(t)| = ε0 =⇒ ė(t) sgn e(t) ≤ −ψ1(t) + δ/2,

because, by definition of G2, −ψ1(t) + δ/2 ≤ ψ̇0(t)− δ/2. Seeking a contradiction, we
assume there exists t ∈ [ε, ω) with ψ0(t)−|e(t)| = ε0 and ė(t) sgn e(t) > −ψ1(t)+ δ/2.
From ε0 < λ0/2 together with (2.2) and (A.26) it then follows that

ė(t) sgn e(t) < M − γ
λ0/2

ε20
+ γ

‖ψ1

∣∣
[ε,∞)

‖∞
δ/2

+ γ‖ud‖∞,

and hence, for sufficiently small ε0, we have a contradiction to the assumption.
Step 4. We show ∃ ε1 ∈ (0, λ1/2] for all t ∈ (0, ω) : 1/ϕ1(t)− |ė(t)| ≥ ε1.
Adopting the notation (A.1) and choosing ε > 0 as in (A.5), it suffices to show

that |ė(t)| ≤ ψ1(t) − ε1 for all t ∈ [ε, ω) and for sufficiently small ε1. Seeking a
contradiction, assume |ė(t)| > ψ1(t) − ε1 for some t ∈ [ε, ω) and arbitrary small
ε1 > 0. We consider only the case ė(t) > 0; the other case follows analogously.
Choose ε0 > 0 accordingly to Step 3. From ε1 ≤ λ1/2 together with (2.2) and (A.26)
it follows that

λ1/2 ≤ ψ1(t)− ε1 < ė(t) < M + γ
‖ψ0

∣∣
[ε,ω)

‖∞
ε20

− γ
λ1/2

ε1
+ γ‖ud‖∞,
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which is a contradiction for sufficiently small ε1.
Step 5. We show that the maximal solution is global.
Assume ω <∞; then C ⊆ R≥0 ×R×R×Rn−1 defined as in (A.18) is a compact

subset containing graph(e, ė, z), which according to Lemma A.1 contradicts maximal-
ity of the solution; hence ω = ∞, and the proof of Theorem 3.2 is complete.

A.4. Proof of Theorem 3.3: Input saturations. Existence and uniqueness
of a maximal solution (e, ė, z) : [0, ω) → R × R × Rn−2 follows similarly to Step 1
in the proof of Theorem 2.1. Now all the inequalities derived in sections 3.3.1–3.3.4
hold on [0, ω) instead of R≥0, and with minor modifications the steps of the proof of
Theorem 2.1 can be repeated to prove Theorem 3.3. We omit the details.

A.5. Proof of Theorem 3.5: Robustness in the gap metric.

A.5.1. Prerequisites. To match the notation of the gap metric (see, e.g., [26]),
we rename the signals from Theorem 3.5 as u0 := ud, u1 := u, u2 := u0 − u1 =
k20e + k1ė, y0 := yref, y1 := y, y2 := y0 − y1 = −e. Corresponding to this notation,
we consider the plant operator and the operator representing the funnel controller
Pθ,x0 : u1 �→ y1, Cϕ0,ϕ0 : y2 �→ u2, respectively. Due to possible finite escape time, we
introduce the ambient signal spaces L∞

a and W2,∞
a (see [26, sect. 6.1] for more details),

so that the plant and the controller can be considered as the maps Pθ,x0 : L∞
a →

W2,∞
a , Cϕ0,ϕ1 : W2,∞

a → L∞
a . Finally, let the closed-loop equations be given by

[Pθ,x0 , Cϕ0,ϕ1 ] : y1 = Pθ,x0(u1), u2 = Cϕ0,ϕ1(y2), u0 = u1 + u2, y0 = y1 + y2.

Theorem 2.1 ensures that for all (u0, y0) ∈ L∞(R≥0 → R) ×W2,∞(R≥0 → R) there
exists unique (u1, y1), (u2, y2) ∈ L∞(R≥0 → R) ×W2,∞(R≥0 → R) which solves the
closed loop [Pθ,x0 , Cϕ0,ϕ1 ]. This implies, in the terminology of [26], that the closed
loop [Pθ,x0 , Cϕ0,ϕ1 ] is globally well posed and

(L∞(R≥0 → R) × W2,∞(R≥0 → R)
)

stable.
We now study the closed loop [P̃ , Cϕ0,ϕ1 ] of the disturbed plant P̃ ∈ P̃ and the

(unchanged) funnel controller Cϕ0,ϕ1 . In general, this closed loop will not generate
globally defined solutions; however, we can show the following properties.

Lemma A.2. Let (ϕ0, ϕ1) ∈ G2 \ Gfin
2 , P̃ ∈ P̃, and (u0, y0) ∈ L∞(R≥0 → R) ×

W2,∞(R≥0 → R). Then the closed loop [P̃ , Cϕ0,ϕ1 ] has the following properties:
(i) There exist unique, maximally extended solutions (u1, y1), (u2, y2) : [0, ω) →

R2, for some ω ∈ (0,∞].
(ii) If (u2, y2) ∈ L∞([0, ω) → Rm) × W2,∞([0, ω) → Rm), then ω = ∞; y2 and

ẏ2 are uniformly bounded away from the funnel boundaries ϕi(·)−1, i = 0, 1,
respectively.

(iii) [P̃ , Cϕ0,ϕ1 ] is regularly well posed [26]; i.e., it is locally well posed and

ω <∞ =⇒ ‖(u2, y2)
∣∣
[0,τ)

‖L∞×W2 → ∞ as τ ↗ ω.

Proof. (i) Let θ̃ = (Ã, b̃, c̃) ∈ P̃ and x̃0 ∈ Rdim ˜θ be such that P̃ = P
˜θ,x̃0 . The

closed loop can then be rewritten as ẋ = f(t, x), x(0) = x̃0, where

f : D → Rn, (t, x) �→ Ãx+ b̃u0(t)

+ b̃
ϕ0(t)

2

(1− ϕ0(t)|y0(t)− cx|)2 (y0(t)− c̃x) + b̃
ϕ1(t)

1− ϕ1(t)|ẏ0(t)− c̃Ãx| (ẏ0(t)− c̃Ãx)
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for D := { (t, x) ∈ R≥0 × Rn | (t, y0(t)− cx) ∈ Fϕ0 , (t, ẏ0(t)− cAx) ∈ Fϕ1 } , and

y1 = c̃x, ẏ1 = c̃Ãx, y2 = y0 − y1, ẏ2 = ẏ0 − ẏ1,

u2 = −
(

ϕ0

1− ϕ0|y2|
)2

y2 − ϕ1

1− ϕ0|ẏ2| ẏ2, u1 = u0 − u2.

Now, as in the proof of Theorem 2.1, the theory of ordinary differential equations [33,
Thm. III, sect. 10.XX] ensures existence and uniqueness of a maximally extended
solution.

(ii) For t ∈ [0, ω), let ki(t) =
ϕi(t)

1−ϕi(t)|y(i)2 (t)| , i = 0, 1.

By construction ϕi(t)|y(i)2 (t)| < 1 for all t ∈ [0, ω). We may choose ε ∈ (0, ω) such
that

∀ t ∈ [0, ε] ∀ i ∈ {0, 1} : |y(i)2 (t)| ≤ |y(i)2 (0)|+ 1 ∧ ki(t) ≤ ki(0) + 1 .

In the following we adopt the notation (A.1), i.e., ψ0/1(·) denote the funnel boundaries.
We will show that boundedness of u2 implies boundedness of k0(·) and k1(·) on the
interval [0, ω). Then the same line of argument as in the proof of Theorem 2.1 shows
that ω = ∞ and that y2, ẏ2 are uniformly bounded away from their corresponding
funnel boundaries.

Seeking a contradiction, assume (a) k0 is unbounded and k1 is bounded, (b) k0
is bounded and k1 is unbounded, or (c) both k0 and k1 are unbounded. Cases (a)
and (b) can be treated analogously; therefore we consider only case (a). Boundedness
of u2 implies that the product k20y2 is bounded; hence unboundedness of k0 implies
that we may choose a sequence (tn)n∈N with tn ↗ ω and k0(tn) → ∞ and y2(tn) → 0.
This is a contradiction because |y2(tn)| < λ0/2 implies ψ0(t0)−|y2(tn)| > λ0/2; hence
k0(tn) < 2/λ0.

It remains to consider (c). Assume that k0 and k1 are both unbounded. Since
the (weak) derivative of ψi, i = 0, 1, is essentially bounded on [ε, ω) and the (weak)

derivative of y
(i)
2 , i = 0, 1, is essentially bounded on [0, ω) by assumption, it follows

that for all i ∈ {0, 1} and all s, t ∈ [ε, ω) with t > s,

ψi(t)− |y(i)2 (t)| ≤ ψi(s)− |y(i)2 (s)|︸ ︷︷ ︸
=1/ki(s)

+
(‖ψ̇i‖ε,∞ + ‖y(i+1)

2 ‖∞
)︸ ︷︷ ︸

=:Mi

(t− s).

Hence, by choosing s such that 0 < t − s ≤ ω − s is small enough and ki(s) is big
enough it holds that

(A.27) ∀M > 0 ∀ i ∈ {0, 1} ∃ si ∈ [ε, ω) ∀ t ∈ [s, ω) :

ki(t) = 1/(ψi(t)− |y(i)2 |) ≥ 1

1/ki(si) +Mi(ω − si)
≥M.

This implies that ki(t) → ∞ as t ↗ ω, and therefore by positivity and continuity of

ψi we have limt↗ω |y(i)2 (t)| → ψi(ω), and close to ω no sign change occurs for y
(i)
2 ,

i = 0, 1. First, assume that ẏ2 is positive near ω; then choose t∗ ∈ [ε, ω) such that,
in view of (A.27) and the properties of G2, for a.a. t ∈ [t∗, ω) : ẏ2(t) ≥ ψ1(t) − δ >
−ψ̇0(t). Hence t �→ ψ0(t) + y2(t) is strictly increasing on [t∗, ω) which, in view of
limt↗ω ψ0(t) − |y2(t)| = 0, is possible only if y2(t) is positive on [t∗, ω). Second,
the analogue argument shows that a negative sign of ẏ2 near ω implies a negative
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sign of y2 near ω. Altogether this shows that y2 and ẏ2 have the same sign near ω.
In particular, boundedness of u2 implies that both products k20y2 and k1ẏ2 must be
bounded, which yields a contradiction in the same way as in cases (a) and (b).

(iii) This follows directly from (i) and (ii).

A.5.2. Proof of Theorem 3.5. Since the perturbed closed loop [P
˜θ,x̃0 , Cϕ0,ϕ1 ]

is, according to Lemma A.2, regularly well posed, we can repeat the proofs of [11,
Props. 4.3, 4.4] (see also [26, Thms. 6.5.3, 6.5.4] for signal spaces in the present
setting) to show existence of functions η and α such that (3.13) implies that the
closed loop [P

˜θ,x̃0 , Cϕ0,ϕ1] maps (u0, y0) = (ud, yref) ∈ L∞(R≥0 → R)×W2,∞(R≥0 →
R) to (u1, y1), (y2, u2) ∈ L∞(R≥0 → R) × W2,∞(R≥0 → R). In particular, there
exists a unique global and uniformly bounded solution. As shown in the proof of
Lemma A.2(ii), boundedness of (u2, y2) implies that the gain functions k0 and k1
of the funnel controller are bounded, which in turn shows that the error and its
derivative, i.e., y2 and ẏ2, are uniformly bounded away from the funnel boundaries.

It remains to show that the state variable x of the linear system corresponding
to θ̃ = (Ã, b̃, c̃) and its derivative are bounded. Detectability of (Ã, b̃, c̃) yields the

existence of F ∈ Rq, q := dim θ̃, such that spec (Ã + F c̃) ⊆ C−. Setting g :=

−[F − k20 b̃
]
y2 + k1 b̃ẏ2 + b̃ u0 gives

(A.28) ẋ =
[
Ã− k20 b̃c̃

]
x− k1 b̃c̃ ẋ+ b̃ u0 + k20 b̃ y0 + k1 b̃ ẏ0 =

[
Ã+ F c̃

]
x+ g.

Since y2 ∈ W2,∞(R≥0 → R) and ki ∈ L∞(R≥0 → R), i ∈ {0, 1}, and since w0 =
(u0, y0) ∈ L∞(R≥0 → R) × W2,∞(R≥0 → R) it follows that g ∈ L∞(R≥0 → Rq).
Hence, by (A.28) and variation of constants we obtain x ∈ L∞(R≥0 → Rq) and,
by (A.28), also ẋ ∈ L∞(R≥0 → Rq).

Appendix B. “Close” systems in terms of the gap metric.
Example B.1. Consider the linear system P ∈ P, given by ẋ =

[ 0 1
−a2 2a

]
x +[

0
1

]
u, y = [1, 0]x, where a > 0, and the “disturbed system” P̃ ∈ P̃ given by

ẋ =

[ 0 1 0 0
0 0 1 0
0 0 0 1

−2a2M2, 4aM2−3a2M, 6aM−2M2−a2, 2a−3M

]
x+

[
0
0
0

−2M

]
u, y =

[−M, 1, 0, 0
]
x,

where M > 0. Their transfer functions are given by g(s) = 1
(s−a)2 and g̃(s) =

−2M(s−M)
(s−a)2(s+2M)(s+M) , respectively; hence P̃ is a system with relative degree three, with

negative high-frequency gain −2M , and with a zero M in the right-half plane: the
system is not minimum phase. Both systems arise from the example in [26, sect.
6.3.1] by multiplication with 1

s−a . Note that the line of argument in [26, sect. 6.3.1] is
incomplete and we were not able to prove the following estimation for the gap metric
defined in L∞ ×W2,∞. However, if we replace L∞ ×W2,∞ by W1,∞

0 ×W2,∞ in the
definition of graphs and gap metric, one can adopt the idea from [26, sect. 6.3.1] to

show that limM→∞ �δ(P, P̃ ) = 0; i.e., in an arbitrary small neighborhood of the nominal

plant P ∈ P, we find a plant P̃ having relative degree three, negative high-frequency
gain, and being nonminimum phase.

Appendix C. Friction model. Friction counteracts the acceleration of a body
in motion. The popular (nonlinear and dynamic) Lund–Grenoble friction model intro-
duced in [4] cannot reproduce hysteretic behavior with nonlocal memory (see [32]) and
nonphysical drift phenomena may occur for small vibrational forces (see [5]). How-
ever, it is adequate for the position control problem since most of the friction effects
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observed in “reality” are covered, e.g., sticking, break-away (and varying break-away
forces), presliding displacement, and frictional lag; moreover, stick-slip and hunting
for controllers with integrational part can be reproduced (see, e.g., [4, 27]) and the
Lund–Grenoble friction model can be rendered passive [2].

To explain the Lund–Grenoble friction model, we first introduce, following [27],
the Stribeck function. For Coulomb friction torque uC and static friction (stiction)
torque uS such that 0 < uC ≤ uS , Stribeck velocity ΩS > 0, stiffness σ0 > 0 of the
bristles, and δS ∈ [1/2, 2], let the Stribeck function be given by

(C.1) β : R → [uC/σ0, uS/σ0], Ω �→ σ−1
0

(
uC + (uS − uC) exp

−(|Ω|/ΩS)
δS
)
.

The function β(·) covers the Stribeck effect (Stribeck curve): a “rapid” decrease in
friction for increasing but very low speeds close to standstill [31].

Next, the dynamics of the average bristle deflection ϑ(·) of the asperity junctions
is modeled, for some angular velocity Ω ∈ C(R≥0 → R) and initial average bristle
deflection ϑ0 ∈ R, by

(C.2) ϑ̇(t) = Ω(t)− |Ω(t)|
β(Ω(t))

ϑ(t), ϑ(0) = ϑ0 .

The damping (of the deflection rate ϑ̇(·)) and the viscous friction are modeled, for
σ1, σ2,ΩD > 0 and δD, δV ≥ 1, by

σD : R → [0, σ1], Ω �→ σ1 exp
−(|Ω|/ΩD)δD and σV : R → R, Ω �→ σ2|Ω|δV sgn(Ω).

We are now ready to define the friction operator mapping the angular velocity to the
friction torque and which is parameterized by ϑ0:

(C.3)

T : C(R≥0 → R) → L∞
loc(R≥0 → R),

Ω(·) �→ σ0ϑΩ(·) + σD(Ω)

(
Ω− |Ω|

β(Ω)
ϑΩ(·)

)
+ σV (Ω), with ϑΩ(·) solves (C.2).

Some care must be exercised to show that (C.3) is well defined. We first show
that the initial-value problem (C.2) has a unique solution for each Ω ∈ C(R≥0 → R):

ϑΩ(·) : R≥0 → [−max
{
uS/σ0, |ϑ0|

}
,max

{
uS/σ0, |ϑ0|

}]
.

Existence, uniqueness, and extension on R≥0 follow from the standard theory of linear,
time-varying, differential equations; furthermore, it is easy to see that if |ϑΩ(·)(t)| ≥
uS/σ0, then

d

dt

(
ϑΩ(·)(t)2

)
= −2|ϑΩ(·)(t)Ω(t)|

⎛⎜⎝− sgn
(
ϑΩ(·)(t)Ω(t)

)︸ ︷︷ ︸
∈{−1,0,1}

+
|ϑΩ(·)(t)|
β(Ω(t))

⎞⎟⎠ ≤ 0,

and hence |ϑΩ(·)(t)| ≤ max{uS/σ0, |ϑ0|} for all t ≥ 0. Therefore, we have, for all
Ω ∈ L∞(R≥0 → R),
(C.4)

‖T (Ω)‖∞ ≤ σ0 max

{
uS
σ0
, |ϑ0|

}
+ σ1‖Ω‖∞

(
1 +

σ0
uC

max

{
uS
σ0
, |ϑ0|

})
+ σ2‖Ω‖δV∞ ,

and so T is well defined.
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